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Abstract

We consider continuous actions of finitely generated semigroups
and countable sofic groups, generated either by continuous self-maps
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or homeomorphisms of a compact metric space. For each known
topological pressure operator associated to these actions, we pro-
vide a measure-theoretic entropy map which is concave, upper semi-
continuous and satisfies a variational principle whose maximum is
always attained. In the case of countable amenable group actions
whose amenable entropy is concave and upper semi-continuous, we
show that, for any sofic approximation sequence, the amenable metric
entropy and the previous measure-theoretic entropy coincide in the
space of invariant probability measures, and are equal to the upper
semi-continuous envelope of the sofic entropy.

1 Introduction

Measure-theoretical and topological entropies have an intrinsic connection,
which is provided by the classical variational principle for the topological
pressure (cf. [43]). This principle asserts that, if f is a continuous map
acting on a compact metric space X, ϕ : X → R is a continuous potential
and Ptop(f, ϕ) its topological pressure, then

Ptop(f, ϕ) = sup
µ∈Pf (X)

{
hµ(f) +

∫
ϕdµ

}
where Pf (X) denotes the space of f -invariant probability measures de-

fined on the σ-algebra B(X) of the Borel subsets of X. The thermodynamic
formalism aims to establish the existence of measures which maximize the
previous equality, besides reporting on their statistical properties. Such mea-
sures, called equilibrium states, include as specific examples Gibbs measures,
physical measures and measures of maximal entropy.

We may find in the literature several proposals to extend the previous
notions of measure-theoretic entropy and topological pressure to the setting
of finitely generated group or semigroup actions, which in general depend
on the type of (semi)group and on the fixed set of generators. The thermo-
dynamic formalism of these actions has received much attention in recent
years, though there is still no axiomatic frame for it. A main difficulty in
setting up a unified thermodynamic formalism for (semi)group actions is
the following: although the adapted notion of pressure matches the kind
of (semi)group under study, a general concept of measure-theoretic entropy
should make no reference to probability measures invariant by all the ele-
ments of the (semi)group, since typical finitely generated (semi)groups are
expected to be free (see [24]) and to carry no common invariant measure.

In [7], given a pressure function on a suitable Banach space, the au-
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thors used methods from Convex Analysis to obtain upper semi-continuous
measure-theoretic entropy maps, defined either on the space of probability
measures or on the space of finitely additive set functions. This strategy
does not summon any dynamics and is unspecific enough to be applied to
either the classical topological pressure associated to a dynamical system (as
done in [7]) or to the recently defined notions of topological pressure for the
(semi)group actions we address in this work: finitely generated semigroup
actions and countable sofic group actions.

For finitely generated semigroup actions, the first notion of topological
pressure we will analyse was inspired by foliations on compact manifolds.
More precisely, E. Ghys, R. Langevin and P. Walczak introduced in [23] the
notion of entropy of a foliation, which conveyed the concept of topological
entropy of the pseudogroup induced by the foliation. The main property
of the former notion for codimensional one foliations F is its connection
with the geometry of the manifold. For instance, if this geometric entropy
vanishes, then so does the Godbillon-Vey class of F . On the other hand,
if the geometric entropy of F is positive then there exists a so called re-
silient leaf, which is a counterpart of a horseshoe for classical dynamical
systems. Moreover, any foliation with vanishing geometric entropy admits
a nontrivial transverse invariant measure (cf. [42]). However, no measure-
theoretic counterpart was proposed in [23]. One may instead define the
topological pressure of a finitely generated semigroup action by means of
the Carathéodory structures developed in [35, Chapter 4]. These structures,
which also appear in the definition of Hausdorff or box-counting dimensions,
have been extensively used by several authors (see, for instance [6, 46, 47])
but, while the topological objects are already well understood, neither a
measure-theoretic entropy map nor a variational principle have yet been
described.

For countable sofic groups, introduced by M. Gromov in [25], L. Bowen
proposed in [11] the concept of metric entropy of the action of such a group
acting on a probability space. In rough terms, it measures the exponential
growth of the complexity seen through a reference measure, and does not
require invariance whatsoever. Later, a topological entropy for this kind of
actions was defined by D. Kerr and H. Li in [27], where the authors also
established a variational principle under mild assumptions. More recently, a
notion of sofic pressure and a corresponding variational principle have been
introduced in [18]. These are quite general concepts, which generalize the
metric entropy, pressure and variational principle for countable amenable
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group actions proved in [33]. We are naturally led to ask whether equilibrium
states exist and are unique. As far as we know, there are few classes of sofic
group actions for which equilibrium states are known to exist. Existence is
guaranteed under weak forms of expansiveness, which imply upper semi-
continuity of the sofic metric entropy with respect to the weak∗ topology
on the space of probability measures. This holds, for instance, whenever a
countable amenable group acts on a set X = AG by shifting, where A is
a finite alphabet (cf. [18, Theorem 5.3] and [13, Example 7]). Regarding
uniqueness, we may find in [13, §8.2] an example of a mixing Markov chain
over a free group with more than one measure of maximal sofic entropy.
We refer the reader to [13] for a comprehensive survey on sofic entropy and
related subjects.

2 Main results

Let (X, d) be a locally compact metric space with a distance d, B be its σ-
algebra of Borel sets, P(X) denote the space of Borel probability measures
on X with the weak∗-topology, Pa(X) stand for the set of Borel real-valued
normalized finitely additive set functions (which we will simply call finitely
additive probabilities) with the total variation norm, and C(X) the space of
continuous maps ψ : X → R.

2.1 An abstract variational principle

In what follows we will consider a Banach space B over the field R equal to
either

L∞(X) =
{
ϕ : X → R | ϕ is measurable and bounded

}
or

Cc(X) =
{
ϕ ∈ C(X) | ϕ has compact support

}
endowed with the supremum norm ‖ϕ‖∞ = supx∈X |ϕ(x)|, whose elements
will be called potentials. The Riesz representation theorem asserts that the
dual of Cc(X) is identified with the collection of all finite signed measures
on (X,B), whose positive normalized continuous functionals correspond to
the space P(X). It is known that the latter set is compact when equipped
with the weak∗ topology (cf. [21, Theorem 2, V.4.2]). On the other hand,
the dual of L∞(X) is isometrically isomorphic to the space of regular finitely
additive bounded signed measures on (X,B) with the total variation norm,
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whose subset of positive normalized elements is represented by Pa(X). We
refer the reader to [2] for more information on these dualities.

Definition 2.1. A function Γ: B → R is called a pressure function if it
satisfies the following conditions:

(C1) Increasing: ϕ 6 ψ ⇒ Γ(ϕ) 6 Γ(ψ) ∀ϕ, ψ ∈ B.

(C2) Translation invariant: Γ(ϕ+ c) = Γ(ϕ) + c ∀ϕ ∈ B ∀ c ∈ R.

(C3) Convex: Γ(t ϕ+ (1− t)ψ) 6 tΓ(ϕ) + (1− t) Γ(ψ) ∀ϕ, ψ ∈ B

∀ t ∈ [0, 1].

Properties (C1) and (C2) imply that any pressure function is Lipschitz
continuous, meaning that
|Γ(ϕ) − Γ(ψ)| 6 ‖ϕ − ψ‖∞ for every ϕ, ψ ∈ B. The following is the

abstract variational principle we will use further on. It associates to each
pressure function Γ a measure-theoretic entropy map which is upper semi-
continuous and upper bounded by Γ(0).

Theorem 2.2. [7, Theorem 1] Let (X, d) be a locally compact metric space,
Γ: B→ R be a pressure function and AΓ be the set

AΓ =
{
ϕ ∈ B : Γ(−ϕ) 6 0

}
.

Then there exists a concave, upper semi-continuous map h which satisfies:

(a) If B = Cc(X), then

(2.1) Γ(ϕ) = max
µ∈P(X)

{
h(µ) +

∫
ϕdµ

}
∀ϕ ∈ Cc(X)

and

(2.2) h(µ) = inf
ϕ∈AΓ

{∫
ϕdµ

}
= inf

ϕ∈Cc(X)

{
Γ(ϕ)−

∫
ϕdµ

}
for every µ ∈ P(X). Moreover, if Eϕ(Γ) denotes the set of maximizing
elements in (2.1), then there is a residual subset R ⊂ Cc(X) such that
# Eϕ(Γ) = 1 for every ϕ ∈ R.

(b) If B = L∞(X), then

(2.3) Γ(ϕ) = max
µ∈Pa(X)

{
h(µ) +

∫
ϕdµ

}
∀ϕ ∈ L∞(X)

and

(2.4) h(µ) = inf
ϕ∈AΓ

{∫
ϕdµ

}
= inf

ϕ∈L∞(X)

{
Γ(ϕ)−

∫
ϕdµ

}
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for every µ ∈ Pa(X). Furthermore, if α : P(X) → R ∪ {−∞} (respectively
α : Pa(X) → R ∪ {−∞}) is another function taking the role of h in (2.1)
(respectively (2.3)), then α 6 h.

Comparing Theorem 2.2 to a similar result in [26], one notes that we nei-
ther require the pressure function to preserve co-boundary type maps, nor
we need to consider a dynamical system somehow determining the pressure
function. This will be crucial later on, since we will deal with pressure func-
tions associated to group and semigroup actions. Item (a) in Theorem 2.2
was used in [7] to produce a class of generalized equilibrium states for maps
that do not admit equilibrium states within the classical setting. Item (b) of
Theorem 2.2 turned out to be fundamental to construct equilibrium states
for certain sub-additive sequences of potentials, appearing naturally in the
context of linear cocycles, through the reduction of the thermodynamic for-
malism for sub-additive sequences of continuous maps into another one for
bounded measurable maps (cf. [7, §8]).

As the function Γ is increasing and translation invariant, one has

Γ(0) + inf
x∈X

ϕ(x) 6 Γ(ϕ) 6 Γ(0) + sup
x∈X

ϕ(x) ∀ϕ ∈ B.

Consequently, from Theorem 2.2 we deduce that, for every µ ∈ P(X) (re-
spectively, Pa(X)),

Γ(0) + inf
ϕ∈B

{
inf
x∈X

ϕ(x)−
∫
ϕdµ

}
6 h(µ) 6 Γ(0).

It is immediate from (2.3) that the map h is upper bounded by Γ(0). Since
the pointwise infimum of concave functions is concave, and affine maps are
themselves concave, we get from (2.2) (respectively (2.4)) that h is concave.
The upper semi-continuity of h is also an immediate consequence of (2.2)
(respectively (2.4)), since h is the infimum of the family

( ∫
ϕdµ

)
ϕ∈AΓ

of
continuous maps.

Although Theorem 2.2 is stated within the general setting of locally com-
pact metric spaces, in what follows we will restrict to actions of semigroups
on compact metric spaces.

2.2 Semigroup and group actions

Given a semigroup G of continuous self-maps of a compact metric space
(X, d), with the supremum norm and the composition operation, the semi-
group action of G on X is the continuous map S : G × X → X, defined
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by S(g, x) = g(x) for every x ∈ X and every g ∈ G, which satisfies the
condition

∀ g, h ∈ G ∀x ∈ X S(g h, x) = S(g, S(h, x)).

Since we will address several types of (semi)groups G and their corre-
sponding known notions of topological pressure, one needs to treat them
separately, showing for each case that the topological pressure operator is
a pressure function. In this regard, we summarize in the following table the
main sources of information we will need further on.

Action type Topological pressure Metric entropy Variational principle
Zd [32, 39] [32, 39] [32, 39]
CAG [33] [33, 48] [33]
CSG [18] [11, 27] [18]
FFGS [15, 16, 23] [16] [16]
FGS [23, 5, 6, 46] – –

CAG=Countable amenable group, CSG=Countable sofic group, FFGS=Free
finitely generated semigroup, FGS=Finitely generated semigroup

Denote by G the family of the (semi)groups we have just mentioned. For
each G ∈ G, let Ptop(G, ·) : C(X) → R be a matching notion of topological
pressure as specified in the previous table, and htop(G) = Ptop(G, 0) be the
topological entropy of G. The next statement guarantees that the assump-
tions of Theorem 2.2 are fulfilled by the known definitions of topological
pressure for the type of group and semigroup actions we address in this
work.

Main Theorem 2.3. If G ∈ G and htop(G) < +∞, then Ptop(G, ·) is a
pressure function.

Therefore, under the assumptions of Theorem 2.3, the unifying state-
ment of Theorem 2.2 provides a concave upper semi-continuous function
hG : P(X) → R such that

(2.5) Ptop(G, ϕ) = max
µ∈P(X)

{
hG(µ) +

∫
ϕdµ

}
∀ϕ ∈ C(X)

and

(2.6) hG(µ) = inf
ϕ∈C(X)

{
Ptop(G, ϕ)−

∫
ϕdµ

}
∀µ ∈ P(X).

Consequently, a measure-theoretic entropy map (namely, hG), a variational
principle and equilibrium states are now available for all these semigroup
and group actions.
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2.3 Coexisting variational principles

In the cases of semigroups G ∈ G for which there is already in the literature
a notion of measure-theoretic entropy hG, defined on the compact (in the
weak∗-topology) and convex subset PG(X) ⊆ P(X) of Borel probability
measures in X invariant by all the elements of the group (which we will call
G-invariant), and whose topological pressure satisfies a variational principle
with respect to hG, we have now two variational principles and two metric
entropy maps (possibly coincident) to deal with. This happens, for instance,
when G is generated by a single map (cf. [43, §9.3]) or, more generally,
when G is a countable amenable group (cf. [33]). The next result generalizes
Theorem 5 in [7], relating the restriction to PG(X) of the variational metric
entropy hG with:

(a) The star-entropy of these semigroup actions, defined at each µ ∈
PG(X) by

h∗G(µ) = sup
{

lim sup
n→+∞

hG(µn) | µn ∈ PG(X) and lim
n→+∞

µn = µ
}

where the convergence of (µn)n∈N happens in the weak∗-topology. It
is known (cf. [20, page 467]) that h∗G is the upper semi-continuous
envelope of hG in PG(X), that is, for every µ ∈ PG(X) one has

h∗G(µ) = inf
{
T (µ) | T : PG(X)→ R is continuous and T > hG

}
.

(b) The double-star entropy, which is the upper semi-continuous concave
envelope of the metric entropy hG (cf. [20]), defined in PG(X) by

h∗∗G (µ) = inf
{
T (µ) | T : PG(X)→ R is continuous, affine, T > hG

}
.

Clearly,
h∗G(µ) 6 h∗∗G (µ) ∀µ ∈ PG(X).

Since the star-entropy h∗G is the upper semi-continuous envelope of hG,
the next result states, in particular, that the variational measure-theoretic
entropy hG is a regularization of the map hG in the sense of [20, 9].

Main Theorem 2.4. Consider a semigroup (resp. a group) G of contin-
uous self-maps (resp. homeomorphisms) of a compact metric space X. Let
hG : P(X)→ R denote its variational metric entropy, provided by (2.6) for
Γ = Ptop(G, ·) : C(X) → R. Assume that PG(X) 6= ∅ and that the pressure
function Ptop(G, ·) satisfies another variational principle

(2.7) Ptop(G, ϕ) = sup
µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
∀ϕ ∈ C(X)

with respect to a non-negative metric entropy map hG : PG(X) → [0,+∞[.
Then:
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(a) If ϕ ∈ C(X) and µϕ ∈ P(X) attains the maximum in (2.5), then µϕ
is G-invariant, that is,∫

(ψ ◦ g) dµϕ =

∫
ψ dµϕ ∀ g ∈ G ∀ψ ∈ C(X).

(b) Given µ ∈ P(X), one has µ ∈ PG(X) if and only if hG(µ) > 0.

(c) For every µ ∈ PG(X),

0 6 hG(µ) 6 h∗G(µ) 6 hG(µ) and h∗∗G (µ) 6 htop(G).

(d) If hG is concave and upper semi-continuous, then hG = h∗G = hG in
PG(X).

(e) For every ϕ ∈ C(X),

Ptop(G,ϕ) = max
µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
= max

µ∈PG(X)

{
h∗G(µ) +

∫
ϕdµ

}
.

Remark 2.5. If µ0 ∈ PG(X) is an equilibrium state for ϕ with respect to
the variational principle (2.7), that is

Ptop(G,ϕ) = hG(µ0) +

∫
ϕdµ0,

then µ0 attains the maximum at (2.5) as well. Indeed,

Ptop(G,ϕ) > hG(µ0) +

∫
ϕdµ0 > hG(µ0) +

∫
ϕdµ0 = Ptop(G,ϕ).

The converse is not true in general (see [7, §7.4]).

In the next sections, we will prove Theorem 2.3 and Theorem 2.4. The
proof of the former is quite long, inasmuch as it has to be done separately
for each type of (semi)group in G and corresponding topological pressure
operator. In the last section we will verify that, under mild assumptions
which are satisfied by the pressure function of any G ∈ G, the variational
metric entropy map hG is an invariant by isomorphism of the (semi)group
actions (see Section 8 for the definitions and more details).

3 Proof of Theorem 2.4
Let G be a semigroup of continuous self-maps of a compact metric space X
and Ptop(G, ·) be a pressure function satisfying the assumptions of Theo-
rem 2.4. The following argument also works if G is a group of homeomor-
phisms of X.
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(a) As Ptop(G, ·) satisfies the variational principle (2.7) with respect to
G-invariant probability measures, it is easy to conclude that, for every ob-
servables ϕ, ψ ∈ C(X) and every g ∈ G, we have

Ptop(G, ϕ+ ψ ◦ g − ψ) = sup
µ∈PG(X)

{
hG(µ) +

∫
(ϕ+ ψ ◦ g − ψ) dµ

}
= sup

µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
and, consequently,

(3.1) Ptop(G, ϕ+ ψ ◦ g − ψ) = Ptop(G, ϕ) = Ptop(G,ϕ+ ψ − ψ ◦ g).

We claim that every probability measure attaining the supremum in
(2.5) is G-invariant. Consider ψ ∈ C(X), g ∈ G and fix µϕ, µ1, µ2 ∈ P(X)
provided by (2.5) such that

Ptop(G,ϕ) = hG(µϕ) +

∫
ϕdµϕ

Ptop(G,ϕ+ ψ ◦ g − ψ) = hG(µ1) +

∫
ϕdµ1 +

∫
(ψ ◦ g) dµ1 −

∫
ψ dµ1

Ptop(G,ϕ+ ψ − ψ ◦ g) = hG(µ2) +

∫
ϕdµ2 +

∫
ψ dµ2 −

∫
(ψ ◦ g) dµ2.

The first two equalities, property (3.1) and the variational principle (2.5)
now yield

hG(µϕ) +

∫
ϕdµϕ = hG(µ1) +

∫
ϕdµ1 +

∫
(ψ ◦ g) dµ1 −

∫
ψ dµ1

> hG(µϕ) +

∫
ϕdµϕ +

∫
(ψ ◦ g) dµϕ −

∫
ψ dµϕ

and so
∫

(ψ ◦ g) dµϕ −
∫
ψ dµϕ 6 0. In a similar way, we deduce that

hG(µϕ) +

∫
ϕdµϕ = hG(µ2) +

∫
ϕdµ2 +

∫
ψ dµ2 −

∫
(ψ ◦ g) dµ2

> hG(µϕ) +

∫
ϕdµϕ +

∫
ψ dµϕ −

∫
(ψ ◦ g) dµϕ

so
∫
ψ dµϕ −

∫
(ψ ◦ g) dµϕ 6 0. Therefore, µϕ is G-invariant.

Remark 3.1. The only property we used so far is (3.1), which in general
may be established either before or without proving that the pressure func-
tion Ptop(G, ·) satisfies a variational principle like (2.7) with respect to a
non-negative metric entropy map. This is the case of both the topological
pressure for a map [43, §9.2] and the pressure function defined by Ollagnier
and Pinchon in [33] for countable amenable group actions.
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Remark 3.2. Whenever an action of a (semi)group G on a compact metric
space X does not admit a G-invariant Borel probability measure, although
its topological entropy is finite, we conclude from item (a) of Theorem 2.4
that the pressure function we are dealing with does not satisfy (3.1). See
Examples 5.5 and 5.6.

(b) The proof of assertion (b) in Theorem 2.4 is analogous to the arguments
in [43, page 222], for a map, and in [16, page 464] for free finitely generated
semigroup actions. Indeed, from the assumptions that htop(G) < +∞ and
that the topological pressure satisfies a variational principle with the non-
negative metric entropy map hG, we conclude that, given µ ∈ P(X),

µ ∈ PG(X) ⇔
∫
ϕdµ 6 Ptop(G,ϕ) ∀ϕ ∈ C(X).

Therefore, by formula (2.6), we get

µ ∈ PG(X) ⇔ hG(µ) > 0.

This ends the proof that the map hG determines the set PG(X), as claimed.

(c) By definition, one has 0 6 hG(µ) 6 h∗G(µ) for every µ ∈ PG(X). More-
over, by the variational principle (2.7), for each µ ∈ PG(X)

hG(µ) 6 Ptop(G,ϕ)−
∫
ϕdµ ∀ϕ ∈ C(X)

and so

(3.2) hG(µ) = inf
ϕ∈C(X)

{
Ptop(G,ϕ)−

∫
ϕdµ

}
> hG(µ).

Consequently, if h∗G(µ) > hG(µ) for some µ ∈ PG(X), then there would exist
ν ∈ PG(X) satisfying hG(ν) > hG(ν), contradicting (3.2). This proves that

(3.3) 0 6 hG(µ) 6 h∗G(µ) 6 hG(µ) ∀µ ∈ PG(X).

By the variational principle (2.7), we know that the continuous affine
(constant) map htop(G) satisfies htop(G) > hG. Thus, by definition, one has
h∗∗G (µ) 6 htop(G) for every µ ∈ PG(X).

(d) Assume that hG is concave and upper semi-continuous. Then, using the
variational principle (2.7) and [43, Theorem 9.12], we conclude that

hG(µ) = inf
ϕ∈C(X)

{
Ptop(G,ϕ)−

∫
ϕdµ

}
∀µ ∈ PG(X).

Since hG also satisfies this formula (cf. (2.2)), one has hG = hG in PG(X).
Hence, the inequalities (3.3) yield hG = h∗G = hG in PG(X).
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(e) We start by observing that the inequalities (3.3) imply that

sup
µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
6 max

µ∈PG(X)

{
h∗G(µ) +

∫
ϕdµ

}
6 max

µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
.

On the other hand, as PG(X) ⊂ P(X) and hG is upper semi-continuous
(hence it has a maximum on the compact PG(X)), for every ϕ ∈ C(X) one
has

max
µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
6 max

µ∈P(X)

{
hG(µ) +

∫
ϕdµ

}
.

Therefore, from the variational principles (2.5) and (2.7) we obtain

max
µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
6 max

µ∈P(X)

{
hG(µ) +

∫
ϕdµ

}
= Ptop(G,ϕ)

= sup
µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
6 max

µ∈PG(X)

{
h∗G(µ) +

∫
ϕdµ

}
6 max

µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
.

Consequently,

Ptop(G,ϕ) = max
µ∈PG(X)

{
hG(µ) +

∫
ϕdµ

}
= max

µ∈PG(X)

{
h∗G(µ) +

∫
ϕdµ

}
.

The proof of Theorem 2.4 is complete. �

In the next section we will prove Theorem 2.3, addressing each type of
(semi)group action separately: finitely generated semigroup actions in Sec-
tions 4 and 5; Carathéodory structures for finitely generated group actions
in Section 6; and countable sofic group actions in Section 7.

4 Finitely generated free semigroup actions
Consider a compact metric space (X, d) and a semigroup (G, ◦) of contin-
uous endomorphisms of X, where the semigroup operation ◦ is the compo-
sition of maps. Assume that G is finitely generated, that is, there exists a
finite set G1 = {idX , g1, · · · , gp} ⊂ G such that G =

⋃+∞
n=1 Gn, where, for

each n ∈ N,

Gn =
{
gjn ◦ · · · ◦ gj1 : gji ∈ G1 ∀ 1 6 i 6 n

}
.
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Each element g of Gn may be seen as a word which originates from the
concatenation of n elements in G1. Yet, different concatenations may gen-
erate the same element in G, unless G = F+

p is the free semigroup. So, when
considering free semigroup actions, we will regard the different concatena-
tions instead of the elements in G they create. One way to interpret this
statement is to define the itinerary map

ι : Fp → Gn ⊂ G
j1 . . . jn 7→ gjn ◦ · · · ◦ gj1

where Fp is the free semigroup with p generators, thus addressing concate-
nations on G as images by ι of finite words on Fp. Thereby, each x ∈ X is
endowed by the pair (G, G1) with infinitely many path-orbits, whose union
describes accurately the action of (G, G1) on X.

There have been several proposals to generalize the notions of entropy
and pressure for a continuous map to the setting of finitely generated semi-
group actions; for an account on some of them we refer the reader to [4], [16]
and references therein. We shall start by considering the notion introduced
by Ghys, Langevin and Walczak in [23], which we denote by htop(G, G1)
to emphasize its dependence on the set G1 of generators. In what follows
we will define a corresponding pressure Ptop(G, G1, ·) on C(X) and prove
that it is a pressure function provided that Ptop(G, G1, ϕ) is finite for every
ϕ ∈ C(X).

4.1 Topological entropy

Given n ∈ N and ε > 0, the (n, ε)-Bowen ball generated by the semigroup
action and centered at x is defined by

BG
n (x, ε) =

{
y ∈ X : d(g(x), g(y)) < ε ∀ g ∈ Gn

}
.

One says that two points x, y ∈ X are (n, ε)-separated by G if there exists
g ∈ Gn such that d(g(x), g(y)) > ε, that is, y does not belong to BG

n (x, ε).
A subset E of X is (n, ε)-separated if any two distinct points of E are
(n, ε)-separated by G. Having fixed n ∈ N and ε > 0, consider

sn(G,G1, ε) = max {|E| : E ⊂ X is (n, ε)-separated}.

Since X is compact, sn(G,G1, ε) is finite for every n ∈ N and ε > 0.
Moreover, the map

ε > 0 7→ lim sup
n→+∞

1

n
log sn(G,G1, ε)

is monotone.

Definition 4.1. The topological entropy of the semigroup G generated by
G1 is given by

htop(G, G1) = lim
ε→ 0+

lim sup
n→+∞

1

n
log sn(G,G1, ε).
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4.2 Topological pressure for finitely generated free semi-
group actions

Our aim is to generalize the previous notion to any potential ϕ ∈ C(X).
Given n ∈ N, ε > 0 and g ∈ Gn presented by the concatenation g =
gjn ◦· · ·◦ gj1 (which may be one of many such presentations), where gji ∈ G1

for every i ∈ {1, · · · , n}, define

x ∈ X 7→ Sgn ϕ(x) = ϕ(x)+ϕ(gj1(x))+ϕ(gj2 gj1(x))+· · ·+ϕ(gjn · · · gj1(x)).

Definition 4.2. The topological pressure of a free finitely generated semi-
group (G,G1) and the potential ϕ is given by

Ptop(G, G1, ϕ) = lim
ε→ 0+

lim sup
n→+∞

1

n
log Pn(G, G1, ϕ, ε)

where, for every n ∈ N and ε > 0,

Pn(G, G1, ϕ, ε) =
1

|Gn|
∑
g ∈Gn

sup
E

{∑
x∈E

eS
g
n ϕ(x) : E ⊂ X is (n, ε)-separated

}
.

4.3 Properties of the pressure

We now study the behavior of the operator Ptop(G, G1, .) when we change
either the potential or the semigroup. The following properties are similar to
the ones listed on [43, Theorem 9.7] and [43, Theorem 9.8] for the pressure
associated to one dynamics. Their proofs are also identical to [43, §9].

4.3.1 Variation of Ptop(G, G1, .) with the potential

We start by verifying that the map Ptop(G, G1, .) : C(X) → R satisfies
the three axioms requested on the definition of a pressure function.

Lemma 4.3. If htop(G, G1) < +∞, then Ptop(G, G1, .) is a pressure func-
tion.

Proof. Consider ϕ, ψ ∈ C(X), c ∈ R and ε > 0. From Definition 4.2 it is
clear that

1. Ptop(G, G1, 0) = htop(G, G1).

2. Ptop(G, G1, ϕ+ c) = Ptop(G, G1, ϕ) + c.

3. ϕ 6 ψ ⇒ Ptop(G, G1, ϕ) 6 Ptop(G, G1, ψ).

In particular,

htop(G, G1) + min ϕ 6 Ptop(G, G1, ϕ) 6 htop(G, G1) + max ϕ
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from whose inequalities we also conclude that Ptop(G, G1, .) is either finite
valued or identically +∞.

The pressure map Ptop(G, G1, .) is also convex. Clearly, given 0 < t < 1,
n ∈ N, g ∈ Gn and ϕ, ψ ∈ C(X), one has

Sgn
(
tϕ+ (1− t)ψ

)
= t Sgn ϕ+ (1− t)Sgn ψ.

Moreover, for every finite subset E of X, by the Holder’s inequality (using
p = 1/t and q = 1/(1− t)) we know that

∑
x∈E

eS
g
n

(
tϕ+(1−t)ψ

)
(x) 6

(∑
x∈E

eS
g
n ϕ(x)

)t (∑
x∈E

eS
g
n ψ(x)

)1−t

.

Besides, since the maps u > 0 → ut and u > 0 → u1−t are increasing,
having fixed ε > 0 the previous inequality yields

sup
E

∑
x∈E

eS
g
n

(
tϕ+(1−t)ψ

)
(x) 6

(
sup
E

∑
x∈E

eS
g
n ϕ(x)

)t (
sup
E

∑
x∈E

eS
g
n ψ(x)

)1−t

where the supremum is taken over all (n, ε)-separated subsets E of X. So,

1

|Gn|
∑
g ∈Gn

sup
E

{∑
x∈E

eS
g
n

(
tϕ+(1−t)ψ

)
(x) : E ⊂ X is (n, ε)-separated

}

6
1

|Gn|
∑
g ∈Gn

(
sup
E

∑
x∈E

eS
g
n ϕ(x)

)t (
sup
E

∑
x∈E

eS
g
n ψ(x)

)1−t

.

Applying again the Holder’s inequality (with the same values of p and
q), we obtain

1

|Gn|
∑
g ∈Gn

sup
E

{∑
x∈E

eS
g
n

(
tϕ+(1−t)ψ

)
(x) : E ⊂ X is (n, ε)-separated

}

6

(
1

|Gn|
∑
g ∈Gn

sup
E

∑
x∈E

eS
g
n ϕ(x)

)t (
1

|Gn|
∑
g ∈Gn

sup
E

∑
x∈E

eS
g
n ψ(x)

)1−t

where the supremum is taken over the (n, ε)-separated subsets of X. Thus,

Pn(G, G1, tϕ+ (1− t)ψ, ε) 6
(
Pn(G, G1, ϕ, ε)

)t (
Pn(G, G1, ψ, ε)

)1−t

which implies that

Ptop(G, G1, tϕ+ (1− t)ψ) 6 tPtop(G, G1, ϕ) + (1− t)Ptop(G, G1, ψ).
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4.3.2 A variational principle for a finitely generated free semi-
group action

Firstly note that

Ptop(G, G1, ϕ) 6 htop(G, G1) + max
x∈X

ϕ < +∞ ∀ϕ ∈ C(X).

Consequently, Theorem 2.2 and the information from Subsection 4.3 yield:

Proposition 4.4. Let (G, G1) be a finitely generated free semigroup with
htop(G, G1) < +∞. Then there exists a concave, upper semi-continuous
function hG : P(X) → R such that, for every ϕ ∈ C(X),

(4.1) Ptop(G, G1, ϕ) = max
µ∈P(X)

{
hG(µ) +

∫
ϕdµ

}
.

As far as we know, the previous result establishes the first variational
principle for the notion of topological entropy introduced by Ghys, Langevin
and Walczak, whose maximal entropy measures have been discussed in
[5]. Due to Proposition 4.4, new concepts are now available for finitely
generated free semigroup actions with finite topological entropy. For in-
stance, we may define invariant measures for the semigroup action as fol-
lows: µ ∈ P(X) is a G-invariant probability measure if hG(µ) > 0, or,
equivalently, if Ptop(G, G1, ϕ) >

∫
ϕdµ for every ϕ ∈ C(X)). Afterwards,

we may take hG(µ) as a natural notion of measure-theoretic entropy of a
free semigroup action, finitely generated and with finite topological entropy,
with respect to a G-invariant probability measure µ ∈ P(X). We refer the
reader to Section 8 for an extra property of hG which confirms its entropy-
like nature.

5 Finitely generated semigroup actions
The pressure operator Ptop(G, G1, .) that we analyzed in Section 4 suits free
finitely generated semigroup actions. It may be reshaped, though, to comply
with more general finitely generated semigroups. Consider a semigroup G
generated by a finite set G1 of continuous self-maps of X which contains the
identity map. For each n ∈ N, recall that Gn =

{
gin ◦ gin−1 ◦ ... ◦ gi1 : gij ∈

G1

}
and that each element g ∈ Gn is represented by a concatenation

gin , gin−1 , ..., gi1 , not necessarily in a unique way. Given a continuous po-
tential ϕ : X → R, n ∈ N, x ∈ X and g = gin ◦ gin−1 ◦ ... ◦ gi1 ∈ Gn,
define

S
(gin ,gin−1

,...,gi1 )
ϕ (x) = ϕ(x) + ϕ(gi1(x)) + ...+ ϕ(gin ◦ gin−1 ◦ ... ◦ gi1(x))

and, for each g ∈ Gn,

Maxgn(ϕ(x)) = max
{
S

(gin , gin−1
,..., gi1 )

ϕ (x) : gin ◦ gin−1 ◦ ... ◦ gi1 = g
}
.
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Definition 5.1. The topological pressure of a finitely generated semigroup
(G,G1) and a potential ϕ ∈ C(X) is given by

Ptop((G,G1), ϕ) = lim
ε→ 0+

lim sup
n→+∞

1

n
logPn((G,G1), ϕ, ε)

where

Pn((G,G1), ϕ, ε) =
1

|Gn|
∑
g∈Gn

sup
E

{∑
x∈E

eMaxg
n(ϕ(x)) : E ⊂ X is (n, ε)-separated

}
.

Observe that, when G is a free, finitely generated semigroup and ϕ = 0,
the notion of topological entropy we considered in Section 4 coincides with
Ptop((G,G1), 0). In the following lemmas we will verify that Ptop((G,G1), ·)
defines a pressure function.

Lemma 5.2. For any potentials φ, ψ with φ 6 ψ one has

Ptop((G,G1), ϕ) 6 Ptop((G,G1), ψ).

Proof. If φ 6 ψ then

S
(gin , gin−1

,..., gi1 )

φ (x) = φ(x) + φ(gi1(x)) + ...+ φ(gin ◦ gin−1 ◦ ... ◦ gi1(x))

6 ψ(x) + ψ(gi1(x)) + ...+ ψ(gin ◦ gin−1 ◦ ... ◦ gi1(x))

= S
(gin , gin−1

,..., gi1 )

ψ (x).

Therefore, Maxgn(φ(x)) 6 Maxgn(ψ(x)) for any g ∈ Gn, and consequently

Pn((G,G1), φ, ε) =
1

|Gn|
∑
g∈Gn

sup
E

{∑
x∈E

eMaxg
n(φ(x)) : E ⊂ X is (n, ε)-separated

}
6

1

|Gn|
∑
g∈Gn

sup
E

{∑
x∈E

eMaxg
n(ψ(x)) : E ⊂ X is (n, ε)-separated

}
= Pn((G,G1), ψ, ε).

Applying logarithms, dividing by n, and letting n → +∞ and ε → 0+, we
obtain Ptop((G,G1), φ) 6 Ptop((G,G1), ψ).

Lemma 5.3. For any potentials φ and constant c ∈ R one has

Ptop((G,G1), φ+ c) = Ptop((G,G1), φ) + c.

Proof. Firstly, notice that

S
(gin , gin−1

,..., gi1 )

φ+c (x) = S
(gin , gin−1

,..., gi1 )

φ (x) + (n+ 1)c.
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In particular, Maxgn(φ(x) + c) = Maxgn(φ(x)) + (n+ 1) c for any g ∈ Gn, so

Pn((G,G1), φ+ c, ε)

=
1

|Gn|
∑
g ∈Gn

sup
E

{∑
x∈E

eMaxg
n(φ(x)+c) : E ⊂ X is (n, ε)-separated

}
=

e(n+1) c

|Gn|
∑
g ∈Gn

sup
E

{∑
x∈E

eMaxg
n(φ(x)) : E ⊂ X is (n, ε)-separated

}
= e(n+1) c Pn((G,G1), φ, ε).

Applying logarithms, dividing by n, and
taking the limits with n→ +∞ and ε→ 0+, we get

Ptop((G,G1), φ+ c) = Ptop((G,G1), φ) + c.

Lemma 5.4. For any potentials φ, ψ and t ∈ [0, 1] one has

Ptop((G,G1), t φ+ (1− t)ψ) 6 t Ptop((G,G1), φ) + (1− t)Ptop((G,G1), ψ).

Proof. Clearly,

S
(gin , gin−1

,..., gi1 )

tφ+(1−t)ψ (x) = tS
(gin , gin−1

,..., gi1 )

φ (x) + (1− t)S(gin , gin−1
,..., gi1 )

ψ (x).

Therefore, for any g ∈ Gn,

Maxgn((tφ+ (1− t)ψ)(x))

= max
{
S

(gin , gin−1
,..., gi1 )

t φ+(1−t)ψ (x) : gin ◦ gin−1 ◦ ... ◦ gi1 = g
}

6 tMaxgn(φ(x)) + (1− t) Maxgn(ψ(x)).

We now proceed as in the proof of the convexity of the pressure in Lemma 4.3,
replacing Sgn by Maxgn.

From the previous lemmas we conclude that a statement similar to
Proposition 4.4 holds in this setting.

5.1 Examples

The next examples, together with item (a) of Theorem 2.4, show that the
pressure functions we have considered in this and the previous section do
not satisfy property (3.1).
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Example 5.5. Consider the unit circle X = S1 = {e2πi t : t ∈ [0, 1[} and
the action by the free semigroup F+

2 generated by

g1 : e2πi t ∈ S1 7→ e2πi t2 and g2 : e2πi t ∈ S1 7→ e2πi (t+α)

where α ∈ ]0, 1[. The only probability measure invariant by g1 is the
Dirac measure supported in the fixed point 1. However, this measure is not
invariant by the rotation g2. So the joint action by g1 and g2 has no common
invariant probability measure, which implies that the maximizing elements
of the generalized variational principle (4.1) are not G-invariant. We note
that these two generators are Lipschitz maps and therefore the topological
entropy of the corresponding action is finite (cf. [17, Proposition 3.1]).

Example 5.6. The special linear group SL(2,Z), generated by the two
linear maps with matrices

A1 =

(
0 −1
1 0

)
and A2 =

(
1 1
0 1

)
acts continuously on the projective space RP 1 through the projectivizations
g1, g2 : RP 1 → RP 1 of A1 and A2, respectively. It is known that this action
does not admit an SL(2,Z)-invariant Borel probability measure (cf. [50,
page 62]). Yet, the two generators are Lipschitz maps and so their action
has finite topological entropy.

5.2 Homogeneous and Gibbs probability measures

In [5, 10], to overcome the absence of a unifying notion of metric entropy
for finitely generated group actions, the authors propose a local entropy
formula which is similar to the Brin-Katok formula in [14], and prove that,
when the group G is amenable, the corresponding group action is finitely
generated and G admits a homogeneous probability measure µ, then µ is a
measure with maximal entropy. Let us be more precise.

Following [29], a countable group G is said to be amenable if for any
compact set K ⊂ G and δ > 0 there exists a compact set F ⊂ G such
that mL(F ∆KF ) < δmL(F ), where mL stands for the left Haar measure
on G or the counting measure in the case of a discrete group G, and ∆ is
the symmetric difference between the two sets. Such a set F is said to be
(K, δ)-invariant. A strictly increasing sequence (Fn)n of non-empty compact
subsets of G which exhausts G is said to be Følner if, for every compact
K ⊂ G, any δ > 0 and all large enough n ∈ N, the set Fn is (K, δ)-
invariant. We observe that, as (Fn)n∈N is a strictly increasing sequence of
finite non-empty subsets of G, then (|Fn|)n∈N is an injective sequence of
natural numbers, and so limn→+∞ |Fn| = +∞. A Følner sequence (Fn)n is
called tempered if there exists C > 0 such that

mL

( ⋃
16 k<n

F−1
k Fn

)
6 C mL(Fn) ∀n ∈ N.
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It is known that every Følner sequence has a tempered subsequence and that
every amenable group has a tempered Følner sequence (cf. [29, Proposition
1.4]). In [41, 34] one finds other equivalent definitions of amenability.

For any countable group G we may find a compact metric space X where
the action of G has a probability measure invariant by all the elements of
the group (see [13, §9]): for instance, X = AG on a finite alphabet A and
the action given by the left shift. Yet, as seen in Examples 5.5 and 5.6,
there are groups whose actions do not admit such common invariant proba-
bility measures. Regarding general sufficient conditions for the nonexistence
of G-invariant probability measures, see for instance [30, 38]. In contrast,
countable amenable groups acting on any compact metric space always have
probability measures which are invariant by all the elements of the group
(cf. [49]). Actually, a countable group G is amenable if and only if its action
on any compact metric space X has a G-invariant Borel probability measure
(see [44]).

Regarding a variational principle for amenable group actions, we refer
the reader to [33, 48] and references therein. In the special case of expansive
Zd-actions with the specification property, Ruelle constructed equilibrium
states and proved that they are Gibbs measures [39]. The Pointwise Ergodic
Theorem for amenable group actions (cf. [29, Theorem 1.2]) ensures that,
if µ is G-invariant and (Fn)n is a tempered Følner sequence, then for every
ϕ ∈ L1(µ) the limit

ϕ̄(x) = lim
n→+∞

1

|Fn|
∑
g ∈Fn

ϕ(g(x))

exists for µ-almost every x ∈ X, and it is G-invariant. If, in addition, µ is
ergodic then ϕ̄(x) =

∫
ϕdµ at µ almost everywhere.

We say that a probability µ on the Borel subsets of a compact metric
space (X, d) is G-homogeneous if given ε > 0 there exists δε > 0 and Cε > 0
such that

µ(BG
n (y, δε)) 6 Cε µ(BG

n (x, ε)) ∀n ∈ N ∀x, y ∈ X.

The space of finitely generated groups which admit G-homogeneous mea-
sures includes both finitely generated groups of isometries on a Riemannian
manifold and finitely generated groups of homeomorphisms on a compact
topological group (cf. [5, §4.2]).

Proposition 5.7. [5, Lemma 4.10 and Corollary 4.13] Let G be a group
generated by a finite collection G1 of homeomorphisms of a compact met-
ric space X. If the corresponding group action admits a G-homogeneous
probability measure µ, then the limit

hµ(G, G1, x) = lim
ε→ 0+

lim sup
n→+∞

− 1

n
log µ

(
BG
n (x, ε)

)
does not depend on x ∈ X and is equal to htop(G, G1).



Entropy functions for semigroup actions 21

This result may be generalized to the context of G-Gibbs probability
measures as follows. We say that a probability measure µ is a G-Gibbs
measure, with respect to a continuous potential ϕ and a strictly increasing
sequence (Fn)n of compact subsets of G which exhausts G, if given ε > 0
there exists a constant Kε > 0 such that

K−1
ε 6

µ
(
BG
n (x, ε)

)
e−Ptop((G,G1), ϕ)n+ 1

|Fn|
∑

g∈Fn
ϕ(g(x))

6 Kε ∀n ∈ N ∀x ∈ X.

Notice that a G-Gibbs measure for ϕ ≡ 0 is a G-homogeneous measure.

Corollary 5.8. Let G be an amenable group generated by a finite collection
G1 of homeomorphisms of a compact metric space X, and take ϕ ∈ C(X).
If the group action admits an invariant ergodic G-Gibbs measure µ with
respect to the potential ϕ and a tempered Følner sequence (Fn)n, then for
µ-almost every x ∈ X one has

Ptop((G,G1), ϕ) = lim
ε→ 0+

lim sup
n→+∞

− 1

n
log µ

(
BG
n (x, ε)

)
+

∫
ϕdµ.

6 Carathéodory structures for finitely gener-
ated group actions

Pesin and Pitskel introduced in [36] a notion of pressure for invariant but
not necessarily compact sets by a continuous map. This is a particular case
of the so-called Carathéodory structures (also known as Carathéodory ca-
pacities) described in great generality later in [35, Chapter 4], which turned
to have a wide range of applications in many different dynamical contexts.
We refer the reader e.g. to [6, 40, 47] and references therein for some of
these applications arising in the context of non-uniform hyperbolicity, free
and amenable group actions.

6.1 Upper Carathéodory capacities

Let G be a finitely generated group acting on a compact metric space (X, d).
Consider a finite generating set G1, made up from homeomorphisms of X,
which is symmetric (that is, G1 = G−1

1 ) and does not contain the identity
map idX . For each n ∈ N, let Gn ⊂ G denote the ball of radius n centered
at idX in the Cayley graph of the group G with respect to the distance

D(f, g) =

{
min

{
k ∈ N : fg−1 = gik . . . gi1 and gij ∈ G1

}
if exists

0 otherwise.

For instance, G1 = G1 ∪ {idX}. For each finite set F ⊂ G, consider the
F -dynamical ball centered at x ∈ X defined by

BF (x, ε) =
{
y ∈ X : d(g(x), g(y)) < ε ∀ g ∈ F

}
.
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and, given ϕ ∈ C(X), set SFϕ(x) =
∑

h∈F ϕ(h(x)). Take ϕ ∈ C(X) and
fix a subset Z ⊂ X, a real number s > 0, a natural N ∈ N, and a strictly
increasing sequence (Fn)n∈N of finite non-empty subsets ofG which exhausts
G. Define
(6.1)
Mϕ(Z,N, ε, s, (Fn)n) = inf

C

{ ∑
BFn (x, ε)∈C

exp
(
−s |Fn|+ sup

y ∈BFn (x, ε)

SFnϕ(y)
)}

where the infimum is taken over the collection CN(Z, ε, (Fn)n) of all finite or
countable covers C =

{
BFni

(xi, ε) : ni > N and xi ∈ X} of Z. The quantity
Mϕ(Z,N, ε, s, (Fn)n) is non-decreasing as N increases, so the limit

Mϕ(Z, ε, s, (Fn)n) = lim
N→∞

Mϕ(Z,N, ε, s, (Fn)n)

exists. It is known that the function s 7→ Mϕ(Z, ε, s, (Fn)n) has a unique
critical point where it jumps from infinity to zero. Thus one defines

P (Z, ε, ϕ, (Fn)n) = inf
{
s > 0: Mϕ(Z, ε, s, (Fn)n) = 0

}
.

One can prove that the function ε 7→ P (Z, ε, ϕ, (Fn)n) is monotone,
therefore the following limit exists

P (Z, ϕ, (Fn)n) = lim
ε→ 0+

P (Z, ε, ϕ, (Fn)n).

The topological pressure we will deal with in this section for finitely gener-
ated group actions is precisely P : ϕ 7→ P (X,ϕ, (Fn)n).

6.2 P is a pressure function

In this section we show that, having fixed Z and (Fn)n as before, the function
ϕ 7→ P (Z, ϕ, (Fn)n) is a pressure function if it is always finite. We remark
that the first term appearing in the summands in (6.1) might be more
generally written as e−s an for some sequence (an)n of real numbers. Yet, as
may be attested during the proof of Lemma 6.2, the map P is translation
invariant only if the sequences (an)n and (|Fn|)n have the same growth rate.

Lemma 6.1. P (Z, ϕ, (Fn)n) 6 P (Z, ψ, (Fn)n) for every ϕ, ψ ∈ C(X) sat-
isfying ϕ 6 ψ.

Proof. Consider ϕ, ψ ∈ C(X) with ϕ 6 ψ. Therefore SFnϕ(y) 6 SFnψ(y)
for every y ∈ Y and n ∈ N. Consequently, if C is an arbitrary finite or
countable cover of Z, then for s > 0∑

BFn (x,ε)∈C

exp
(
− s|Fn|+ sup

y ∈BFn (x,ε)

SFnϕ(y)
)

6
∑

BFn (x,ε)∈C

exp
(
− s|Fn|+ sup

y ∈BFn (x,ε)

SFnψ(y)
)
.
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Taking the infimum over covers C ∈ CN(Z, ε, (Fn)n) and letting N → +∞,
we get

Mϕ(Z,N, ε, s, (Fn)n) 6 Mψ(Z,N, ε, s, (Fn)n)

Mϕ(Z, ε, s, (Fn)n) 6 Mψ(Z, ε, s, (Fn)n)

which imply that

P (Z, ε, ϕ, (Fn)n) = inf
{
s : Mϕ(Z, ε, s, (Fn)n) = 0

}
6 inf

{
s : Mψ(Z, ε, s, (Fn)n) = 0

}
= P (Z, ε, ψ, (Fn)n).

Letting ε→ 0+, we get P (Z, ϕ, (Fn)n) 6 P (Z, ψ, (Fn)n), as claimed.

Lemma 6.2. P (Z, ϕ + c, (Fn)n) = P (Z, ϕ, (Fn)n) + c for every ϕ ∈ C(X)
and c ∈ R.

Proof. It is immediate that, for every ϕ ∈ C(X), c ∈ R and n ∈ N,

SFn(ϕ+ c)(x) =
∑
h∈Fn

(ϕ+ c)(h(x)) = c |Fn|+
∑
h∈Fn

ϕ(h(x)).

Thus, evaluating on dynamical balls and summing over each arbitrary finite
or countable cover C, we conclude that, for any s > 0,∑

BFn (x, ε)∈C

exp(−s |Fn|+ sup
y ∈BFn (x, ε)

SFn(ϕ+ c)(x))

=
∑

BFn (x, ε)∈C

exp((c− s) |Fn|+ sup
y ∈BFn (x, ε)

SFnϕ(x)).

Taking the infimum over covers C ∈ CN(Z, ε, (Fn)n) and letting N → +∞,
we deduce that

M(ϕ+c)(Z, ε, s, (Fn)n) = Mϕ(Z, ε, s− c, (Fn)n).

Thus,

inf
{
s : Mϕ+c(Z, ε, s, (Fn)n) = 0

}
= inf

{
s : Mϕ(Z, ε, s− c, (Fn)n) = 0

}
= inf

{
(s− c) + c : Mϕ(Z, ε, s− c, (Fn)n) = 0

}
= inf

{
(s− c) : Mϕ(Z, ε, s− c, (Fn)n) = 0

}
+ c.

Finally, taking the limit with ε→ 0+ we obtain the claimed equality.

The most laborious step to verify that the Carathéodory structure defines
a pressure function is to prove the convexity condition.
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Lemma 6.3. For every finite set I, a ∈ [0, 1] and arbitrary choices (xi)i∈ I ,
(yi)i∈ I and (zi)i∈ I , the following inequality holds∑

i∈ I

ezi ea xi+(1−a) yi 6
(∑
i∈ I

ezi+xi
)a(∑

i∈ I

ezi+yi
)1−a

.

Proof. Write
∑

i∈ I e
zi ea xi+(1−a) yi =

∑
i∈ I e

a (zi+xi)+(1−a) (zi+yi) and apply
Holder’s inequality.

Lemma 6.4. For any ϕ, ψ ∈ C(X) and arbitrary a ∈ [0, 1], one has

P (Z, aϕ+ (1− a)ψ, (Fn)n) 6 aP (Z, ϕ, (Fn)n) + (1− a)P (Z, ψ, (Fn)n).

Proof. As the generalized Birkhoff sums used on the definition of P are
affine, we have

SFn(aϕ+ (1− a)ψ)(y) = aSFnϕ(y) + (1− a)SFnψ(y) ∀ y ∈ X.

Thus, for any dynamical ball BFn(x, ε) and arbitrary finite or countable
cover C, we can write

sup
y∈BFn (x,ε)

SFn(aϕ+(1−a)ψ)(y) 6 a sup
y ∈BFn (x,ε)

SFnϕ(y)+(1−a) sup
y ∈BFn (x,ε)

SFnψ(y).

Therefore,∑
BFn (x,ε)∈C

exp
(
− s|Fn|+ sup

y ∈BFn (x,ε)

SFn(aϕ+ (1− a)ψ)(y)
)

6
∑

BFn (x,ε)∈C

exp
(
− s|Fn|+ a sup

y ∈BFn (x,ε)

SFnϕ(y) + (1− a) sup
y ∈BFn (x,ε)

SFnψ(y)
)
.

Lemma 6.3 now implies that the right-hand side is bounded above by the
product of ( ∑

BFn (x,ε)∈C

exp
(
− s |Fn|+ sup

y ∈BFn (x, ε)

SFnϕ(y)
))a

and ( ∑
BFn (x, ε)∈C

exp
(
− s |Fn|+ sup

y ∈BFn (x, ε)

SFnψ(y)
))1−a

.

To complete the proof it is enough to show that if

s > aP (Z, ϕ, (Fn)n) + (1− a)P (Z, ψ, (Fn)n)

then
P (Z, aϕ+ (1− a)ψ, (Fn)n) 6 s.
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Given such an s, either s > P (Z, ϕ, (Fn)n) or s > P (Z, ψ, (Fn)n). Assume
that the first inequality holds and consider ε > 0 and a family of covers
C̃ ∈ CN(Z, ε, (Fn)n) such that

Mϕ(Z, ε, s, (Fn)n) = inf
C̃

∑
BFn (x, ε)∈ C̃

exp
(
− s |Fn|+ sup

y ∈BFn (x, ε)

SFnϕ(y)
)
.

Then

Maϕ+(1−a)ψ(Z, ε, s, (Fn)n) =

= inf
C ∈CN (Z,ε,(Fn)n)

∑
BFn (x,ε)∈C

exp
(
− s|Fn|+ sup

y ∈BFn (x,ε)

SFn(aϕ+ (1− a)ψ)(y)
)

6 inf
C̃

∑
BFn (x,ε)∈ C̃

exp
(
− s|Fn|+ sup

y ∈BFn (x,ε)

SFn(aϕ+ (1− a)ψ)(y)
)

6Mϕ(Z, ε, s, (Fn)n)a · inf
C̃

( ∑
BFn (x,ε)∈ C̃

exp
(
− s|Fn|+ sup

y ∈BFn (x,ε)

SFnψ(y)
))1−a

soMaϕ+(1−a)ψ(Z, ε, s, (Fn)n) = 0. Thus, P (Z, aϕ+(1−a)ψ, (Fn)n) 6 s.

6.3 An alternative variational principle for finitely ge-
nerated group actions

We can now apply Theorem 2.2 and deduce the following consequence.

Proposition 6.5. Let (G, G1) be a group finitely generated by a finite set
G1, which is symmetric and contains the identity, of homeomorphisms of a
compact metric space X. Consider a strictly increasing sequence (Fn)n∈N of
finite non-empty subsets of G which exhausts G. Assume that P (X,ϕ, (Fn)n)
is finite for every ϕ ∈ C(X). Then there exists a concave, upper semi-
continuous function hG : P(X) → R such that

P (X,ϕ, (Fn)n) = max
µ∈P(X)

{
hG(µ) +

∫
ϕdµ

}
∀ϕ ∈ C(X).

7 Countable sofic group actions
For any integer ` > 1, let Sym(`) denote the group of permutations of the
set {1, 2, . . . , `}. Following Gromov [25] and Weiss [45], a countable group G
is called sofic if there exist a sequence of positive integers (`i)i∈N with limit
+∞ and a sequence of permutations, called sofic approximation sequence of
G and denoted by Σ = {σi : G → Sym(`i) | i ∈ N}, which satisfies

(a) limi→+∞
1
`i

#
{

1 6 k 6 `i : σi(h) ◦ σi(g)(k) = σi(hg)(k)
}

= 1 for all
g, h ∈ G;
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(b) limi→+∞
1
`i

#
{

1 6 k 6 `i : σi(h)(k) 6= σi(g)(k)
}

= 1 for all distinct
g, h ∈ G.

Thus, a sofic approximation sequence to a countable group is a sequence of
partial actions on finite sets that asymptotically approximates the action of
the group on itself by left-translations.

When no confusion arises, to simplify the notation we will write σg(·)
instead of σ(g)(·) for every map σ : G → Sym(`). Consider a metric ρ on
the space F({1, 2, . . . , `}, X) of functions from {1, 2, . . . , `} to X defined by

ρ(ψ1, ψ2) =
1

`

( ∑
16 j 6 `

d(ψ1(j), ψ2(j))2
) 1

2
.

Having fixed ` ∈ N, a finite subset F ⊂ G and σ : G→ Sym(`), define

Map(F, σ, δ) =
{
ψ : {1, 2, . . . , `} → X | max

g ∈F
ρ
(
σg ◦ ψ, ψ ◦ σg

)
< δ
}
.

Given a probability measure µ on the Borel subsets of X, non-empty
finite subsets F ⊂ G and L ⊂ C(X), a map σ : G → Sym(`) and δ > 0,
consider the set

Mapµ(F, σ, L, δ)=
{
ψ ∈ Map(F, σ, δ) :

∣∣∣ 1

`

`−1∑
j=0

ϕ(ψ(j))−
∫
ϕdµ

∣∣∣ < δ, ∀ϕ ∈ L
}
.

Definition 7.1. Given a probability measure µ on the Borel subsets of X
and a countable sofic group G with a sofic approximation sequence Σ, the
sofic metric entropy of the continuous action of G on X with respect to µ
is defined by

hΣ, G(µ) = sup
ε> 0

inf
F

inf
L

inf
δ > 0

hεΣ, µ(G,ϕ, F, L, δ),

where
hεΣ, µ(G,ϕ, F, L, δ) = lim sup

i→+∞

1

`i
log sεΣ, µ(F, σi, L, δ)

and sεΣ, µ(F, σi, L, δ) denotes the maximal cardinality of the (ρ, ε)-separated
subsets of maps which belong to the family Mapµ(F, σi, L, δ).

We have omitted the dependence of hΣ, G(µ) on ρ since this notion turns
out to be independent of the pseudo-metric as far as we keep it compatible
with the topology induced by ρ (cf. [27]).

7.1 Pressure function for countable sofic group actions

The concept of sofic pressure of a continuous action, which we will now
recall, was introduced in [18] as an extension of the sofic entropy of [11]. To
simplify the notation we shall omit the dependence of this notion on the
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spaceX and the pseudo-metric ρ. Let S be a continuous action of a countable
sofic group G of homeomorphisms of a compact metric space (X, d), and let
Σ be a sofic approximation sequence of G. Given a non-empty finite subset
F ⊂ G, ϕ ∈ C(X), σ : G→ Sym(`), δ > 0 and ε > 0, denote

M ε
Σ(ϕ, F, δ, σ) = sup

E

{ ∑
ψ ∈E

e
∑`

j=1 ϕ(ψ(j))
}

where the supremum is taken over all (ρ, ε)-separated subsetsE of Map(F, σ, δ).
Moreover, set

P ε
Σ(G,ϕ, F, δ) = lim sup

i→+∞

1

`i
logM ε

Σ(ϕ, F, δ, σi).

Definition 7.2. The sofic topological pressure of ϕ under the action of G
is defined by

PΣ(G,ϕ) = sup
ε> 0

inf
F

inf
δ > 0

P ε
Σ(G,ϕ, F, δ)

where the sets F ⊂ G are chosen non-empty and finite.

It is known that the sofic entropy hΣ(G) = PΣ(G, 0) of an action may
depend on the choice of the sofic approximation, and may have different
positive values even for mixing subshifts of finite type (see [1]).

7.2 A variational principle

Denote by PG(X) the set of probability measures on the Borel subsets of
X which are preserved by all elements of a group G and by hΣ, G(µ) the
extension in [18] of the concept of sofic metric entropy of µ ∈ PG(X) defined
by L. Bowen in [11]. The next result establishes a variational principle and
shows that the finiteness of the sofic pressure is a sufficient condition for
PG(X) 6= ∅.

Theorem 7.3. [18, Theorem 1.2] Given a countable sofic group G with
a sofic approximation sequence Σ, let S be a continuous action of G on a
metric space (X, d) and ϕ : X → R be a continuous potential. Then

(7.1) PΣ(G,ϕ) = sup
µ∈PG(X)

{
hΣ, G(µ) +

∫
ϕdµ

}
.

Moreover, if PΣ(G,ϕ) 6= −∞ then PG(X) 6= ∅.

The existence of equilibrium states for countable sofic group actions is
not known under great generality. If G is a countable sofic group and X =
{1, 2, . . . , d}G, then every local potential has an equilibrium state which is a
Gibbs measure (cf. [18, Theorem 5.3] and [3]). More generally, if the group
action is expansive then the metric entropy function hΣ, G(·) varies upper
semi-continuously and equilibrium states do exist for continuous potentials
(cf. [19]). In the next subsection we discuss the existence of finitely additive
equilibrium states for countable sofic group actions.
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Remark 7.4. On [27, page 541], one finds an example of an action of the
sofic free group G = F2 on a closed F2-invariant subset X of the shift
{0, 1, 2}F2 whose sofic topological entropy is equal to −∞ for every sofic
approximation sequence. In particular, PF2(X) = ∅. In this example, since
htop(F2) < +∞, after choosing a finite generator set G1 it is advantageous
to use instead the notion of entropy we have considered in Section 4. This
way, Proposition 4.4 may be applied and provides a concave, upper semi-
continuous function hF2 : P(X) → R such that

Ptop(F2, G1, ϕ) = max
µ∈P(X)

{
hF2(µ) +

∫
ϕdµ

}
∀ϕ ∈ C(X).

7.3 Sofic equilibrium states

Firstly, we observe that the sofic pressure satisfies the axioms of a pressure
function listed in Definition 2.1.

Lemma 7.5. [18, Proposition 6.1] The function ϕ ∈ C(X) 7→ PΣ(G,ϕ) is
monotone, translation invariant and convex, provided that PΣ(G, ·) 6= ±∞.

Therefore, we may apply Theorem 2.2 and Theorem 2.4, thus concluding
that:

Proposition 7.6. Given a countable sofic group G of homeomorphisms on
a compact metric space X, assume that PΣ(G, ·) 6= ±∞ for a sofic approxi-
mation sequence Σ. Then there exists a concave, upper semi-continuous map
hΣ,G : P(X) → R satisfying

hΣ,G(µ) = inf
ϕ∈C(X)

{
PΣ(G,ϕ)−

∫
ϕdµ

}
∀µ ∈ P(X)

and such that, for every ϕ ∈ C(X),
(7.2)

PΣ(G,ϕ) = max
µ∈P(X)

{
hΣ, G(µ) +

∫
ϕdµ

}
= max

µ∈PG(X)

{
hΣ, G(µ) +

∫
ϕdµ

}
.

Moreover:

(a) Every measure µ ∈ P(X) which attains the maximum is G-invariant
and hΣ, G(µ) > 0.

(b) There is a Baire residual subset R ⊂ C(X) such that every ϕ ∈ R
has a unique G-invariant maximizing probability measure.

(c) If the sofic metric entropy map µ ∈ PG(X) 7→ hΣ, G(µ) is concave and
upper semi-continuous, then hΣ, G(µ) = hΣ, G(µ) for every µ ∈ PG(X).
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Proof. Taking into account the proof of Theorem 2.4, we are left to show
the claim in item (b). Firstly, we observe that, using [7, Theorem 2], a G-
invariant probability measure µ attains the maximum in (7.2) if and only
if it is a tangent functional to the convex function PΣ(G, ·) at ϕ; that is, if
and only if

PΣ(G,ϕ+ ψ)− PΣ(G,ϕ) >
∫
ψ dµ ∀ψ ∈ C(X).

Thus, item (b) is a consequence of [31] (see also [37, page 12]), which ensures
that the convex function PΣ(G, ·), acting on the separable Banach space
B = C(X), admits a unique tangent functional for every ϕ in a residual
subset of B.

We note that, if one considers a pressure function P top
Σ (G, ·) whose do-

main is the space L∞(X) of bounded measurable maps on X, a direct
use of Theorem 2.2 also provides an upper semi-continuous entropy map
haΣ, G : Pa(X) → R such that, for each ϕ ∈ L∞(X),

P top
Σ (G,ϕ) = max

µ∈Pa(X)

{
haΣ, G(µ) +

∫
ϕdµ

}
.

Even though the maximum in the right-hand side above is taken over the
whole space of finitely additive measures, a further step can be performed
to show that such maximum is attained in the space of G-invariant finitely
additive measures. We leave the details to the interested reader.

It is also worth mentioning that, while the sofic metric entropy map µ ∈
PG(X) 7→ hΣ, G(µ) may be not affine for general approximation sequences
Σ, it is affine for uniformly diffuse sofic approximations. We refer the reader
to [13, §6.1] for the precise definitions and more information.

The sofic entropy map hΣ, G of the action of a sofic group G on a shift AG,
with a finite alphabet A, is upper semi-continuous ([19]). So, the existence
of equilibrium states for the variational principle (7.1) is guaranteed. In [13,
§8.2] we find an example of one such action by shifting, associated to a
free group G, with more than one measure of maximal sofic entropy. By
Remark 2.5, this example also provides an instance where uniqueness of
equilibrium states for the generalized variational principle (7.2) fails.

7.4 Uniqueness of sofic equilibrium states

This characterization of equilibrium states, as tangent functionals to a con-
vex pressure function, turns out to be extremely useful in order to obtain a
criterion for uniqueness of equilibrium states in terms of the differentiability
of the sofic pressure function (we refer the reader e.g. to [7] for the notions of
Fréchet and Gateaux differentiability). Indeed, Lemma 7.5 and [7, Theorem
3, Corollary 4] have the following immediate consequence.
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Corollary 7.7. Let G be a countable sofic group of homeomorphisms on
a compact metric space X, and assume that PΣ(G, ·) 6= ±∞ for a sofic
approximation sequence Σ. Then:

(a) PΣ(G, ·) is locally affine at ϕ if and only if PΣ(G, ·) is Fréchet diffe-
rentiable at ϕ.

(b) PΣ(G, ·) has a unique tangent functional at ϕ if and only if PΣ(G, ·)
is Gateaux differentiable at ϕ.

7.5 A particular case: countable amenable group ac-
tions

Let G be a countable amenable group (hence sofic) of homeomorphisms of a
compact metric spaceX. The amenable metric entropy, defined by Ollagnier
and Pinchon in [33], and the sofic metric entropy (respectively, the amenable
and sofic topological pressures) coincide for this class of group actions, as
proved in [12, 28]. Thus, in the case of amenable groups, the sofic metric
entropy does not depend on the chosen sofic approximation sequence Σ,
and the conclusions of Proposition 7.6, valid in this particular case, bridges
between the classical and the sofic thermodynamic objects.

Let us briefly recall the definition of the amenable metric entropy (more
details in [33]). Consider a tempered Følner sequence (Fn)n∈N in G. Take
a probability measure µ ∈ PG(X) and a finite measurable partition A of
X with finite Shannon conditional entropy with respect to µ (definition in
[43, §4.3]). Given n ∈ N, let

∨
g ∈Fn

g−1(A) denote the refinement of A by
g ∈ Fn. Then the limit, called the entropy of G with respect to µ and the
partition A,

hµ(G,A) = lim
n→+∞

1

|Fn|
H
( ∨
g ∈Fn

g−1(A)
)

exists and does not depend on the chosen Følner sequence (cf. [13]).

Definition 7.8. Given µ ∈ PG(X), the amenable metric entropy of µ with
respect to the action of G is defined by

h
(am)
G (µ) = sup

A
hµ(G,A)

where the supremum is taken over all the finite measurable partitions of X
with finite Shannon entropy.

As mentioned previously, the sofic measure-theoretic entropy may not
be affine, though modified versions of it are. However, the amenable metric
entropy map is affine. Actually, the proof of [43, Theorem 8.1], showing that
the measure-theoretic entropy map is affine when we consider a continuous
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self-map of a compact metric space, may be repeated in this setting (re-
placing

(
1
n

)
n∈N by

(
1
|Fn|

)
n∈N in the definition of entropy with respect to a

partition) to show that h(am)
G is an affine map.

According to item (c) of Proposition 7.6, if the sofic entropy map is
concave and upper-semicontinuous, then one has hΣ, G(µ) = hΣ, G(µ), for
every µ ∈ PG(X) and every sofic approximation sequence Σ. As h(am)

G is
affine, item (d) of Theorem 2.4 informs that, whenever h(am)

G is upper semi-
continuous, one also has h(am)

G = hΣ, G in PG(X).

8 Variational measure-theoretic entropy
Let X and Y be compact metric spaces. Assume that ΓX : C(X)→ R and
ΓY : C(Y )→ R are pressure functions, and hX and that hY are the concave,
upper semi-continuous maps provided by Theorem 2.2, which satisfy

hX(µ) = inf
ϕ∈C(X)

{
ΓX(ϕ)−

∫
ϕdµ

}
∀µ ∈ P(X)

hY (ν) = inf
ψ ∈C(Y )

{
ΓY (ψ)−

∫
ψ dν

}
∀ ν ∈ P(Y ).

Lemma 8.1. Suppose that there exists a homeomorphism F : X → Y and
that

(8.1) ΓY (ψ) = ΓX(ψ ◦ F) ∀ψ ∈ C(Y ).

Then hX(µ) = hY (F∗µ) for every µ ∈ P(X), where F∗µ stands for the
probability measure in P(Y ) defined by F∗µ(B) = µ(F−1(B)) for every Borel
subset B of Y .

Proof. We start by observing that, for every ϕ ∈ C(X), there is a unique
ψ ∈ C(Y ), namely ψ = ϕ ◦ F−1, such that ϕ = ψ ◦ F. Therefore, given
µ ∈ P(X),

hY (F∗µ) = inf
ψ ∈C(Y )

{
ΓY (ψ)−

∫
Y

ψ dF∗µ

}
= inf

ψ ∈C(Y )

{
ΓX(ψ ◦ F)−

∫
X

(ψ ◦ F) dµ

}
= inf

ϕ∈C(X)

{
ΓX(ϕ)−

∫
ϕdµ

}
= hX(µ).

Let G × X → X and H × Y → Y be two semigroup actions by con-
tinuous self-maps on compact metric spaces X and Y , respectively. These
actions may be rewritten using the continuous maps S1 : G→ C(X,X) and
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S2 : H → C(Y, Y ). Following [22], one says that the actions S1 and S2 are
isomorphic if there exist a semigroup isomorphism τ : G→ H and a home-
omorphism F : X → Y such that S2◦τ = T ◦S1, where T (f) = F◦f ◦F−1 for
every f ∈ C(X,X). In this case, we will use the same notion of topological
pressure for both G and H.

For instance, assume that G = H = Z, τ = idZ, that f1 : X → X
and f2 : Y → Y are homeomorphisms and let S1 : Z → Homeo(X,X) and
S2 : Z → Homeo(Y, Y ) be given by S1(n) = fn1 and S2(n) = fn2 , respec-
tively. Then S1 and S2 are isomorphic by the pair (τ,F) if and only if f1 is
topologically conjugate to f2 by F.

Proposition 8.2. Let X and Y be compact metric spaces and consider two
semigroup actions by semigroups G, H ∈ G, denoted by S1 : G→ C(X,X)
and S2 : H → C(Y, Y ). Let hX,G and hY,H be the concave, upper semi-
continuous measure-theoretic entropy maps assigned by Theorem 2.2 to the
pressure functions Ptop(G, .) : C(X) → R and Ptop(H, .) : C(Y ) → R. If
S1 and S2 are isomorphic by the pair (τ,F), then Ptop(G, .) and Ptop(H, .)
satisfy the condition (8.1), and so

hX,G(µ) = hY,H(F∗(µ)) ∀µ ∈ P(X).

Proof. To show that Ptop(G, .) and Ptop(H, .) satisfy the condition (8.1) we
just have to adapt the argument to prove [43, Theorem 9.8 (iv)], which was
done for a semigroup generated by a single continuous map. Afterwards, we
apply Lemma 8.1 to ΓX = Ptop(G, .) and ΓY = Ptop(H, .).

For example, if X = Y , G is an abelian group in G and τ : G → G
is defined by τ(g) = g−1, then Ptop(G, .) = Ptop(τ(G), .) and the condition
(8.1) holds. Given an action S1 : G→ Homeo(X,X), then S1 and S2 = S1◦τ
are isomorphic by the pair (τ, idX); thus hX,G = hX,τ(G).
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