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Pegmatites represent a critical source of raw materials for the European Union’s future, emphasizing the need to
explore new deposits. Remote sensing plays a pivotal role in early-stage pegmatite exploration, generating
prospectivity maps to facilitate field validation. The higher the false positive rate, the higher the time and costs
required for field campaigns. This study aims to devise an approach that minimizes false positives, optimizing the
work of the exploration field team. The proposed method seeks to create mineral prospectivity maps that
accurately pinpoint high potential areas for pegmatite occurrences with minimal false positives occurrence
through the application of fuzzy logic and leveraging the best mapping methods identified in prior research, in
the Tysfjord region, northern Norway. Data from two multispectral satellites, namely WorldView-3 (WV3) and
Sentinel-2, as well as light detection and ranging (LiDAR) data point cloud, were used, the last allowing the
creation of a high-resolution hillshade map. Two classification methods were applied to the satellite images to
leverage their individual advantages while minimizing possible weaknesses: the Mixture Tunned Matched
Filtering (MTMF) using the Spectral Hourglass Wizard (SHW) Workflow and boosting through the LightGBM
(LGBM) algorithm. These classification methods were employed to identify potential points for pegmatite
exploration as these rocks have gained economic importance for being sources of raw materials such as high-
purity quartz, ceramic feldspars, and Rare Earth Elements (REE). The high-resolution hillshade map was used
to extract geological structures in the study area. The results of the fuzzy logic approach indicate potential lo-
cations of interest for pegmatite prospecting, providing a more comprehensive analysis of the remote sensing
methods in the Tysfjord area. The resulting map seamlessly integrates into reports, streamlining field validation
and supports informed decision-making. The methodology proposed in this study can be adaptable to other
targets (minerals and rocks) and can be used as a guide for exploration worldwide.

families: Niobium, Yttrium, Fluorine (NYF), and Lithium, Cesium, and
Tantalum (LCT). Therefore, identifying novel pegmatite deposits stands

1. Introduction

Pegmatites play a crucial role as economically significant sources of
various rare elements and for sustainable development (Chaves et al.,
2021; Gourcerol et al., 2019). They are characterized as coarse-grained
magmatic rocks, featuring crystals that exceed 2 cm in size (London,
2016). Additionally, these rocks host minerals of industrial importance,
including potassium and sodium feldspar, quartz, and mica. According
to Cerny (1991), rare-element pegmatites can be classified into two
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as a pivotal step in the exploration process, where remote sensing
techniques emerge as a pivotal tool, particularly in the preliminary
phases of mineral exploration (Chirico et al., 2023; Sabins, 1999; Zhao
et al., 2021). Remote sensing techniques provide an efficient means for
detecting pegmatite outcrops over extensive terrains, offering a non-
intrusive alternative to conventional methodologies (Cardoso-Fer-
nandes et al., 2019; Ding et al., 2023).
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Recent studies in the realm of remote sensing applications for
pegmatite exploration have yielded noteworthy contributions, including
the application of machine learning algorithms (Abdelkader et al., 2022;
Jiang et al., 2023), supervised classification methods (Gemusse et al.,
2023; Mashkoor et al., 2022), spectral data collection (Bai et al., 2024;
Cardoso-Fernandes et al., 2023a), and the synergistic use of techniques
for lithological units and lineament structures mapping (Ali et al., 2023;
Dao et al., 2022; Forson et al., 2021; Yamusa et al., 2018). However,
these methods are predominantly tailored to Lithium-Cesium-Tantalum
pegmatite studies. Regarding the prospecting of NYF pegmatites, key
work has been conducted by Santos et al. (2022b), who adapted
different image processing methods, such as Band Ratio (BR) and tree-
based machine learning algorithms, to map NYF-type pegmatites. In
Tysfjord, northern Norway, obstacles to the use of remote sensing data
for pegmatite exploration have been identified, such as vegetation
cover, subpixel occurrence, spectrally similar rocks (granite), and false
positives related to urban areas. Previous studies (Santos et al., 2022b;
Santos et al., 2023b) have revealed additional factors in Tysfjord, that
can exacerbate false positives, including snow and coastal areas. Despite
efforts to refine powerful processing methods like boosting through the
LightGBM — (Santos et al., 2022b) and Spectral Unmixing (Santos et al.,
2023b), these obstacles persist in Tysfjord. Furthermore, the relatively
small size of European pegmatite bodies complicates their identification
using open satellite data, where pixel size often exceeds the spatial
extent of outcropped pegmatites (Santos et al., 2023b).

While spectral analyses can assist in distinguishing pegmatites from
granites, and spectral unmixing has shown effectiveness in mitigating
subpixel occurrences, addressing false positives in Tysfjord remains an
ongoing problem to solve for both spectral unmixing and machine
learning algorithms. The issues related to false positives can be divided
into three sets: (i) Distinguishing false positives associated with mate-
rials sharing a chemical composition similar to pegmatites, like granites,
proves to be challenging in satellite imagery. Addressing false positives
with granite often necessitates on-site fieldwork, incurring both time
and financial investments, (II) Materials exhibiting high albedo, such as
snow, slopes, and coastal lines, contribute to false positives. Processing
analyses employing a snow mask effectively eliminate false positives
related to snow (Adiri et al. 2020; Santos et al. 2022). However, miti-
gating false positives in coastal areas and slopes proves to be more
complex, requiring a meticulous manual analysis. This detailed process
demands a significant time commitment from the analyst; (iii) False
positives arising from urban features, including houses, roads, and
streets, present another challenge. Although conventional urban masks
can be employed to mask such false positives, they also risk masking
pegmatite occurrences. Past studies show that while Mixture Tuned
Matched Filtering (MTMF) demonstrates effectiveness in minimizing
false positives with granite, signal confusion persists in both MTMF and
boosting through the LightGBM (LGBM) classifications regarding urban
areas, slopes, and coastal lines (Santos et al., 2022b; Santos et al.,
2023b).

The main objective of this study is to develop a prospecting map for
NYF pegmatites in the Tysfjord area, aiming to minimize (or eliminate)
false positives to ensure the reliability of the results. The fuzzy logic
approach has been employed to integrate various types of data with
remote sensing for generating prospecting maps, including geochemical
and geophysical data, along with basic remote sensing processing
methods (Abdelkareem and Al-Arifi, 2021; Boadi et al., 2022; Forson
et al., 2021; Ghoneim, 2018). However, limited research has been
conducted on NYF pegmatite prospecting, often relying on data with
prior knowledge of the study area, which excludes greenfield sites. Thus,
the question arises: what steps should be taken to create prospecting
maps with minimal false positives that can effectively be applied to NYF
pegmatite exploration in greenfield sites? This study introduces a novel
fuzzy logic-based approach to mineral prospectivity mapping, intending
to provide a clear and objective indication of potential pegmatite loca-
tions while minimizing false positives. All input layers used in this study
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were tested in previous works (Santos et al., 2023b; Santos et al., 2023a,
2022b) and are products of remote sensing that can be obtained without
extensive prior knowledge of the study area. These products include
Worldview-3 (WV-3) and Sentinel-2 data, and LiDAR point cloud data,
which was used to generate the Digital Terrain Model (DTM) and Line
Density Map (LDM).

Through a synergistic integration of distinguishing input layers, this
study utilizes Sentinel-2 and WV-3 satellite data, along with spectral
analyses on laboratory-collected spectral data and satellite imagery. The
input layers consist of MTMF, LGBM, and LDM. Each method has its
strengths and weaknesses, and by combining them, it is possible to
leverage their respective advantages to overcome limitations and
enhance the final results. MTMF may excel at certain aspects of classi-
fication (subpixel classification, abundance mapping), while LGBM
could provide additional insights or address different aspects of the data
that MTMF might miss. This synergistic approach helps to ensure a more
comprehensive and accurate analysis of the data, ultimately leading to a
more robust exploration strategy. The resulting prospectivity maps,
corresponding to each satellite data type, offer significant potential
contributions to the exploration of NYF pegmatites in Tysfjord,
providing valuable insights for further research and practical
applications.

2. Geological setting

The study area is situated in Nordland, northern Norway, specifically
within the Tysfjord pegmatite field, identified as an NYF-type pegmatite
field (Fig. 1). According to Zhou et al. (2023), more than 30 NYF peg-
matites are hosted by the Tysfjord granite gneiss. These pegmatites
predominantly consist of potassium feldspar, plagioclase, biotite, and
quartz. Notable accessory minerals encompass allanite-(Ce), columbite-
(Fe), gadolinite-(Y), fergusonite-(Y), thalénite-(Y), yttrium-rich fluorite,
zircon, beryl, and various sulfides. Within this pegmatite field, we
highlight two main bodies: Jennyhaugen and Hakonhals (Fig. 1).

In terms of historical pegmatite mining, activities in the Tysfjord area
date back to 1906, persisting until around 1970. The primary focus
during this period was on extracting ceramic feldspar. However, a
notable shift occurred in 1996, marking a transition towards the
extraction of high-purity quartz used for photovoltaics, semiconductors,
and the manufacturing of quartz glass.

The Tysfjord pegmatites and granite gneisses are exposed in the
tectonic Tysfjord basement window, belonging to the Svecofennian
basement of the ancient Baltic continent (Miiller et al. 2022). The win-
dow is surrounded by the complexes of Caledonian nappes. The Sveco-
fennian basement underwent high-grade metamorphism up to
amphibolite facies during the Caledonian collisional orogeny resulting
in the recrystallization and deformation of the granites and pegmatites
(Zhou et al., 2022).

In the genetic context, the pegmatites are intrinsically linked to the
Tysfjord granite gneiss, which belongs geotectonically to the Trans-
Scandinavian Igneous Belt — TIB (Fig. 1b). The magmatism of the TIB
underwent two distinct stages (Andersson et al., 2004). The first stage
occurred between 1.81 and 1.77 Ga ago and the second stage took place
between 1.71 and 1.67 Ga ago (Romer et al. 1992). Based on their
deformation, age, and size, two types and generations of pegmatites
were identified in the area (Miiller et al. 2022). The first generation,
denominated as “meta-pegmatites” (Husdal, 2008; Miiller et al., 2022),
comprises large and lenticular bodies, dating back to the Paleoproter-
ozoic (1772-1755 Ma). This generation represents residual melts of the
first stage of TIB granites and underwent deformation during the Cale-
donian collisional orogeny, evidenced by pegmatite shearing and min-
eral recrystallization as highlighted by Zhou et al. (2022). While it is
possible to visualize the contact between the pegmatite bodies and the
granite gneiss, the primary magmatic zoning of the meta-pegmatites,
including the border, wall, intermediate, and core zones, is locally
preserved (Miiller et al. 2022). This occurs due to intense deformation,
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often resulting in the absence of a linear geological structure but rather
in ductile reactions, meaning irregular, rounded, and undulating struc-
tures. The pegmatites used as ground truth, Jennyhaugen and
Hékonhals (Fig. 1¢), fit into this classification. The second generation of
pegmatites has an emplacement age that ranges from 400 to 380 Ma
(Miiller et al. 2022). Originating from anatectic melts and emplaced
during the Caledonian post-collisional extension, this generation re-
mains undeformed (Miiller et al. 2022). They form sheet to dyke-like
bodies with sharp contacts that cut across the foliation of the host
granite gneiss. These details underscore the temporal complexity and
diverse geological conditions that influenced the formation of these
distinct generations of pegmatites in Tysfjord.

According to Miiller et al. (2022), the Proterozoic Jennyhaugen
pegmatite corresponds to a lens-shaped body, approximately 40 m wide
and at least 200 m long. The body is parallel to the foliation of the host
rock, Tysfjord granite gneiss, and has a dip of 70°. Its mineral assem-
blage includes quartz, biotite, feldspars and the color variety amazonite,
as well as accessory minerals like allanite-(Ce), garnet, fluorite,

monazite-(Ce), and zircon, among others.

As for the Proterozoic Hakonhals pegmatite, it has a dip of 36° and
boasts dimensions of approximately 200 x 400 x 25 m, earning recog-
nition as the world’s largest intraplutonic NYF pegmatite (Zhou et al.,
2023). The pegmatite displays significant ductile deformation, and
although the contacts with the Tysfjord granite are distinct, extreme
deformation led to pronounced mylonitization, with the primary
magmatic zoning preserved locally (Miiller et al., 2022). The predomi-
nant mineral composition in the Hakonhals pegmatite includes quartz,
potassium feldspar, plagioclase, and biotite. Furthermore, different va-
rieties of yttrofluorite are identified, alongside various accessory min-
erals such as beryl, thorite, gadolinite, bastnasite-(Ce), allanite-(Ce),
monazite-(Y), xenotime-(Yb) and kainosite-(Y).

The study area is home to more than 30 identified pegmatite sites,
including prominent locations like Hékonhals and Jennyhaugen.
Examining Fig. 1c reveals that nearly all these known pegmatite sites are
concentrated in the eastern sector of the study area, right where the
Jennyhaugen pegmatite is situated. Among the 30 pegmatite sites, eight
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of them showcase visible outcrops detectable through orbital satellite
imagery, such as WV3, in the study area.

3. Methodology
3.1. Data

Data from two multispectral sensors were used in this study, namely
WV-3 from Maxar Technologies and Sentinel-2 from the European Space
Agency. The LiDAR point cloud data, which was collected and classified
by Terratec AS was used to generate the DTM.

A WV-3 image was acquired on May 23, 2022. The WV-3 satellite
was launched in 2014 on an Atlas-V 401 vehicle designed by Lockheed
Martin Commercial Launch Services (LMCLS). The platform carries the
high-resolution WV-3 Imager Multispectral sensor, which has 8 bands
between 400 nm and 1040 nm in the VNIR, with a spatial resolution of
1.24 m at nadir, and 8 bands between 1195 nm and 2365 nm in the
SWIR, with a spatial resolution of 3.7 m at nadir.

A Sentinel-2 image collected on 28 September 2019 was acquired
from the GREENPEG project database. The Copernicus Sentinel-2
mission comprises a constellation of two identical satellites, the
Sentinel-2A and Sentinel-2B, launched in 2015 and 2017, respectively,
both on a Vega Rocket. The multispectral sensor operates in push broom
mode and has a swath width of 290 km. The instrument comprises a total
of 13 spectral bands. There are three bands situated in the Visible region
range, spanning from 468 nm to 680 nm, each featuring a spatial reso-
lution of 10 m. In the Red Edge region, three bands extend from 698 nm
to 793 nm, providing a Ground Sample Distance (GSD) of 20 m. Addi-
tionally, the Near Infrared (NIR) region is covered by two bands ranging
from 785 nm to 875 nm, offering spatial resolutions of 10 m and 20 m.
Lastly, the SWIR region is represented by two bands spanning from 1565
nm to 2280 nm, with a GSD of 20 m. Bands 1 (coastal aerosol), 9 (water
vapor) and 10 (cirrus) have no surface information.

Two sets of satellite data were chosen because each offers unique
advantages that enhance our analysis. Despite WV-3 providing superior
spectral and spatial resolution, which is crucial for capturing smaller
geological features and improving pegmatite detection accuracy, WV-3
data is not open source. Testing our method with Sentinel-2 allows us
to demonstrate its applicability using open-source data. Sentinel-2, with
its broader accessibility, enables the method to be more widely appli-
cable and feasible for various users, extending the study’s relevance
beyond proprietary data constraints.

The airborne laser scan LiDAR data, collected by Terratec AS, con-
sisted of a classified point cloud with a minimum point density of 2
points/m?2. The LiDAR acquisition mission happened in August 2016 and
used a Leica ALS80 sensor to capture the data mounted on a Cessna C208
aircraft. The mission covered an area of 598,4 km?.

The reflectance spectral data used in this study were obtained
through the GREENPEG Spectral Library, which is made available in
open access (Cardoso-Fernandes et al., 2022).

3.2. Software and equipment

The study utilized PCI Geomatica (version 2018) to assess class
separability in the classification process for the LGBM algorithm and to
extract lineaments. ENVI (version 5.6) software supported satellite
image pre-processing, including layer stacking, pixel size resampling,
and atmospheric correction, as well as image processing via the HSW
workflow. ENVI was also employed in post-processing steps (e.g., color
slicing), extracting pixel spectra, and resampling lab-acquired hyper-
spectral spectra to match the resolution of multispectral satellite images.
The Python programming language was used to develop and implement
the LGBM algorithm. Lastly, ArcGIS Pro (version 3.2) enabled pixel data
extraction for Python processing and contributed to fuzzification pro-
cesses, including fuzzy membership and overlay analyses.

The spectral data retrieved from the GREENPEG spectral library
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were collected with the support of Analytical Spectral Devices (ASD).
The ASD FieldSpec 4 spectroradiometer is a transportable battery-
powered spectrometer with a spectral range of 350-2500 nm, a spec-
tral resolution of 3 nm at 700 nm (VNIR), 10 nm at 1400 nm (SWIR 1),
and 10 nm at 2100 nm (SWIR 2), with a scanning time of 100 ms
(Cardoso-Fernandes et al., 2022). The analyses of laboratory spectra
were made through OriginPro (version 2018) software.

3.3. Satellite data pre-processing

The layer stacking tool in ENVI was used on the images from both
satellites (Sentinel-2 and WV3) to merge the VNIR and SWIR bands into
a single layer and resample the pixel size. As the bands have different
spatial resolutions, all the Sentinel-2 bands were resampled to 10 m and
all the WV-3 bands were resampled to 2 m using the function nearest
neighbor. After the stacking, the images from both satellites the images
were converted into surface reflectance using Fast Line-of-sight Atmo-
spheric Analysis of Spectral Hypercubes (FLAASH) atmospheric
correction.

3.4. Analysis of laboratory reflectance spectra

Spectral analysis such as reflectance spectroscopy is an important
tool in remote sensing and mineral exploration, allowing us to connect
spectral data obtained in the laboratory with orbital satellite sensor data
(Santos et al., 2022; Cardoso-Fernandes et al. 2023a). Many geological
studies were conducted using reflectance spectral analyses (Badr, 2021;
Santos et al., 2022b; Sekandari et al., 2020; Roger, 1999). Recently,
Cardoso-Fernandes et al. (2023b) conducted research based on
acquiring, processing, and organizing spectral data of pegmatite min-
erals in a spectral library for several study areas including Tysfjord
(Cardoso-Fernandes et al., 2023b). This research exploits information
from this database and follows the method applied by Santos et al.
(2022), who use spectral analyses to select the most important bands to
be used as input in the image processing methods.

First, spectral data of the principal minerals that compose the ground
truth sites (Hakonhals and Jennyhaugen mines) were analyzed. The
minerals chosen were biotite, plagioclase, K-feldspar, and quartz. These
spectra were collected using the ASD Fieldspec 4 spectrometer and are
available in GREENPEG’s spectral library. Here we should point out that
the samples can be divided into two types. The large monomineralic
samples and the samples in which the grain size is smaller, and there is a
variety of minerals within the field of view (FOV) of the spectrometer.
The GREENPEG samples whose spectra are available in the spectral li-
brary are mostly of the smaller grain size type, i.e., with a variety of
minerals representative of the pegmatite or granite body. This means
that by passing the pegmatite samples through the spectroradiometer,
the information will be collected on the minerals present in the equip-
ment’s FOV. This generates a mixed spectrum, which is analyzed later
(Annex 1). After, the absorption features and reflectance peaks were
identified and evaluated. The minerals in question are representative of
the pegmatites in Tysfjord. Using minerals as pathfinders is a very
common approach in remote sensing applied to mineral exploration
(Rajan Girija and Mayappan, 2019; RAJESH, 2004). Those spectra were
analyzed with the continuum removed (already provided in the data-
base). The continuum removal process, in the broad band technique,
ensures that the absorptions are more prominent, providing a more
efficient analysis and making the data comparable with other study
cases (Cardoso-Fernandes et al., 2022).

On the other hand, to compare those spectra with the multispectral
sensors data, both absorptions and reflectance peaks need to be
analyzed. For this, raw spectra were compared with the orbital satellite
data, ensuring that reflectance peaks and absorptions were well corre-
lated with the spectral range of multispectral sensors. The spectra cho-
sen for the analyses were from amazonite, plagioclase, K-feldspar, and
quartz. As granite and pegmatite are intrinsically correlated in Tysfjord,
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a spectral analysis was also conducted to assess the potential to differ-
entiate these two rock types using the selected satellite sensors.

A total of 48 laboratory reference reflectance spectra were analyzed
for this research, but only the most representative were selected for
illustration purposes. The most representative spectra were selected by
observing the spectral behavior that is most frequent among the min-
erals studied. Out of the 48 samples, 5 were amazonite, 5 were biotite
and granite, 3 were granite, 10 were K-feldspar, 9 were plagioclase, 8
were quartz, and 8 were pegmatite. Following the methodology applied
by Santos et al. (2022b), an average of each mineral studied was taken to
compare the laboratory spectra with the multispectral data. Using the
information available in the “sample_description” field of the GREEN-
PEG spectral library, it was possible to select the mineral spectra used in
this study. The spectral analysis was then carried out on the basis of the
data available in the spectral library, as well as a comparison with
available literature.

3.5. Analysis of satellite image spectra

Pegmatite spectra were also collected directly from the WV-3 images
using the Z profile (spectrum) tool in ENVI software. These spectra were
chosen where the pegmatite is most exposed to ensure the maximum
purity possible (Santos et al., 2022a). An average of 233 spectra was
made for Jennyhaugen, and for Hdkonhals 917 spectra were averaged.
This analysis is the most direct way to identify the key bands to be used
as input in the image processing methods. Santos et al. (2022b) con-
ducted a robust spectral analysis for Sentinel-2 satellite data, so this
research will present new information about the WV-3 satellite.

The spectra collected with the spectroradiometer were only used for
analysis or comparison with the multispectral sensors and to identify the
most important bands to be used in LGBM classification. To map the
pegmatites in the study area using the MTMF, endmembers obtained
through the Spectral Hourglass Wizard (SHW) workflow were utilized.

3.6. Processing spectral Hourglass Wizard (SHW) workflow

In this research, spectral unmixing was applied through the SHW
workflow that directs the user through diverse methods designed to
identify, select, and extract endmembers from an image (L3Harris n.d.;
Santos et al 2022a; Santos et al., 2023b). These extracted endmembers
are subsequently employed in the MTMF process for effective mapping
of pegmatite abundance. Data processing consists of three steps (Fig. 2).

1st step: Data reduction — After applying the Minimum Noise Fraction
(MNF), the SHW workflow allows us to either accept the spectral
reduction performed by the MNF or carry out this reduction using the
Data Dimensionality Panel tool. The Data Dimensionality Panel tool
works by separating the noise from the data of interest through the
adjustment of a threshold value, graphically represented as a red line
(Santos et al. 2023; Wolfe and Black 2018). Everything above the red
line is considered data of interest (>0.85 for WV-3 and >0.90 for
Sentinel-2), i.e., the bands we want to use, while everything below the
red line is noise (Annex 2). Seven MNF bands were extracted from the
noise for WV-3 imagery (Annex 2a), while three MNF bands were
selected for Sentinel-2 imagery (Annex 2b).

After that, the Pixel Purity Index (PPI) is applied to find the most
spectrally pure pixels in the image and, consequently, perform the
spatial reduction of the data. The PPI finds the most spectrally pure
pixels through several interactions (Wolfe and Black, 2018). In this
study, PPI was performed considering 10.000 iterations and a threshold
of 5.0 for WV-3 imagery. For Sentinel-2 imagery, 5000 iterations and a
threshold of 2.5 were applied. Different iterations and thresholds were
chosen to account for the unique spectral and spatial characteristics of
each satellite imagery type, WV-3 and Sentinel-2. The justification for
using PPI in this work lies in its ability to identify the most spectrally
pure pixels, which can aid in accurate end member selection even in
multispectral satellite data like WV-03 (Ahmad, 2013; Hafid, 2004).
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2nd step: Extract Endmembers — The PPI found in the last step is
plotted in a scatter plot that can be visualized in the n-D Visualizer tool.
So, it is possible to add more than two dimensions to the scatter plot and
rotate it to find endmembers (Santos et al., 2023). The endmembers are
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distributed at the corners of the scatter plot, so rotation is necessary until
these corners are found and the endmembers are selected by clusters.

After selecting the endmembers, it’s possible to extract, visualize,
and export them using the spectral analyst tool. The spectral analyst tool
also allows the user to compare the endmembers extracted with a known
spectral library (Wolfe and Black, 2018). In previous research, this
method has been ineffective (Santos et al., 2023b; Santos et al. 2022a).
Therefore, in this study, an alternative approach was employed where
the endmembers were used to proceed with the classification and to
verify if the pegmatite information was correctly extracted.

The pegmatite endmember for Sentinel-2 imagery was designated as
endmember 3, and for WV-3 imagery, it was endmember 2 (Fig. 3).
Finding pegmatite endmembers in Tysfjord was not a significant chal-
lenge, thanks to the contributions from the Hikonhals and Jennyhaugen
mines. These two large open-pit mines may have a substantial impact on
the scatter plot, making it easier to locate the corner where the
pegmatite endmembers are.

3rd step: Classification — In the third step, the extracted endmembers
were used as input in the MTMF for image classification. The MTMF is a
powerful classification method that yields excellent results in subpixel
occurrence situations (Adiri et al. 2020; Santos et al., 2023). It’s possible
to observe the step by step of the SHW processes in Fig. 2.
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3.7. Processing Mixture Tuned Matched Filtering (MTMF)

After extracting the pegmatite endmembers, they were used as a
reference spectrum for the MTMF to classify the full images. The MTMF
method is a pixel-based partial spectral unmixing method that can be
employed when not all the endmembers of a scene are identified (Adiri
et al., 2020; Asadzadeh and de Souza Filho, 2016; Badr, 2021; Banerjee
et al.,, 2019). The method provides a Matched Filtering (MF) score and
an infeasibility value for each endmember, allowing for the reduction of
false positives from the MF processing step (Ellis and Scott, 2004;
Nv5geospatial, 2024a). The SHW workflow allows the user to interpret
the MTMF results through a histogram. The data of interest (pegmatite
endmember) are located in the wupper tail of the histogram
(Nv5geospatial, 2024b). By adjusting the histogram, it is possible to
decrease the number of false positives and highlight only the data of
interest. After ensuring that the information of interest was selected by
the histogram, we can analyze the MTMF results using the spectral
behavior of Jennyhaugen and Héakonhals as ground truth. For this
analysis, color slices were applied to the MTMF results. In cold colors are
the pixels with a lower abundance of pegmatite, while in hot colors are
the pixels with a higher abundance of pegmatite. Color slices allow for
analyzing the patterns and spatial distribution of pegmatite occurrences
in Tysfjord.
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Fig. 3. Endmembers extracted from Sentinel-2 (a) and WV-3 (b).
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3.8. Processing light Gradient boosting Machine (LGBM)

The LGBM algorithm is an ensemble tree-type classifier created by
Microsoft in 2017 (Hajihosseinlou et al., 2023), based on the Gradient
Boosting Decision Tree (BGDT) algorithm. To overcome the BGDT
problem with the limit of training data size (Hajihosseinlou et al., 2023),
LGBM implemented the Gradient Based One-Side Sampling (GOSS) and
the Exclusive Feature Bundling (EFB) methods (Hajihosseinlou et al.,
2023). In the GOSS approach, only a fraction of samples with small
gradients are randomly chosen and then treated to compensate for data
distribution. The EFB applies an algorithm to detect similar features on
the dataset, and then bundle them so the number of features and
bundled features are lower than the original features (Hajihosseinlou
et al., 2023). Another difference that boosts the performance of the
LGBM algorithm is that it uses a leaf-wise growth strategy instead of a
level-wise technique (Hajihosseinlou et al., 2023), which can overfit the
model by expanding decision trees too deep. Because of that, parameters
need to be chosen carefully. The max_depth parameter prevents trees
from growing too deep, as well as the num_leaves parameter, which
controls the complexity of the tree model. The algorithm was imple-
mented in Python programming language using the LGBM library and
was applied for the Sentinel-2 and Worldview-3 imagery, through the
following steps.

1st Step: Reconnaissance of the area — The first step of classification
consisted of applying the vegetation, snow, water, and built-up indices
(Normalized Difference Vegetation Index (NDVI), Normalized Differ-
ence Snow Index (NDSI), Normalized Difference Water Index (NDWI)
and Normalized difference Build Index (NDBI)) for an initial recon-
naissance of the area. In terms of lithology, the two predominant types
(Miiller et al., 2022) — AMCG (anorthositic, magnetitic, charnockitic,
and granitic) rocks and the Tysfjord granite gneiss — were grouped in one
Granite class. After the first analysis, four classes were defined: 1. Peg-
matites, 2. Granite, 3. Water, 4. Vegetation. False positives with granite
and snow were a problem in past works (Santos et al., 2023). Therefore,
in this study area snow was not classified to analyze the method’s
effectiveness in eliminating the most challenging false positives. After
the reconnaissance and definition of the classes, the training sites were
chosen. The information regarding the number of pixels per class can be
found in Annex 3.

2nd Step: Class separability — The second step consists of guaranteeing
that the classes are well separated. For this, a class separability tool
available on PCI Geomatica software was used. This tool uses the
Bhattacharyya Distance method and results range between 0 and 2,
being interpreted as: (i) 0 < x < 1 — very poor separability; (i) 1 < to
<1.9 - poor separability; (iii) 1.9 < to < 2 — good separability.

The signature separability can be observed in Table 1 (WV-3) and
Table 2 (Sentinel-2).

The unexpected observation of granite and pegmatite demonstrating
better separability for Sentinel-2 than for WV-3 prompts a closer ex-
amination of our sampling strategy. Notably, a larger quantity of pixels
were utilized for sampling in WV3. While the heightened spatial reso-
lution of WV-3 allows for increased pixel sampling, it also introduces the
potential for more confusion between pegmatite and granite, leading to
a higher number of misclassified pixels. This, consequently, impacts the
observed separability of classes.

3rd Step: Data pre-processing — After ensuring the classes are well
separated, the third step consisted of preparing the data to be used in the

Table 1
Signature separability for WV-3 imagery.
Pegmatite Granite Vegetation Water
Pegmatite
Granite 1.89
Vegetation 1.99 1.91
Water 1.99 1.99 1.99
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Table 2
Signature separability for Sentinel-2 imagery.
Pegmatite Granite Water Vegetation
Pegmatite
Granite 1.95
Water 2.00 1.99
Vegetation 1.99 1.96 1.99

Python script. ArcGIS Pro software was used to extract pixel information
from the training areas of the different classes. According to Santos et al.
(2022b), the bands in the reflectance peaks of the target minerals are the
most suitable inputs for the classification. So, with support of the
spectral analyses, and following the methodology proposed by Santos
et al. (2022) the Sentinel-2 bands 4, 6, 7, and 8A were chosen as inputs
while for WV-3, bands 5, 7, 9, 10, 13 and 15 were selected (see section
4.1).

4th Step: Model creation — In the model creation step, the data set was
split into 25% of pixels for testing and 75% of pixels for training. This
method is applied to ensure the maximum independence between
training and test subsets (Cardoso-Fernandes et al., 2020). The param-
eters to be optimized using a grid search procedure with cross-validation
were also defined in this step: “max_depth”, “n_estimators”, and
“num_leaves”.

5th Step: Model evaluation — This step involves applying different
metrics to evaluate the best model identified in the previous grid search.
The metrics used include precision, recall, F1 scores, and Kappa statis-
tics. Additionally, a confusion matrix is generated based on the test
subset. These evaluations are crucial for assessing the trained model’s
effetiveness and its ability to generalize to unseen data.

3.9. Processing Automated lineament extraction

Mineral deposits are often associated with structural controls - e.g.
faults, fractures, and shear zones — which can be identified through the
respective morphological lineaments that can be extracted from a vari-
ety of optical, radar, and LiDAR data (El-Desoky et al., 2022; Tripp and
Vearncombe, 2004). Geological faults can be indicative of the presence
of mineralized pegmatites and are, therefore, useful for identifying
them. However, it is possible to hypothesize that the significant degree
of metamorphism in the region may have obliterated numerous
geological structures associated with pegmatites. This hypothesis would
make the lineaments ineffective for use as input in this study. None-
theless, by extracting the lineaments and creating a lineament density
map (LDM) using a high-resolution hillshade (refer to Annex 4),), we
were able to observe a correlation between the LDM and the locations of
pegmatite mines (Fig. 4). Consequently, we opted to utilize the LDM as
an input, as there is a potential connection between these lineaments
and the pegmatites (Fig. 4 b). The process of extracting the lineaments
can be viewed in Annex 4.

3.10. Standardized criteria for fuzzy logic

The processing method results need to be standardized before being
used as inputs in the fuzzification phase. Standardization is essential to
ensure that the data have a consistent and comparable scale, which helps
prevent distortions in the final model outcomes (Abdelkareem and Al-
Arifi, 2021; Mamouch et al., 2022; Zadeh, 1965). This process is typi-
cally performed to ensure that different variables have the same scale
and variance, facilitating data comparison and processing.

To achieve this standardization, we utilized the Fuzzy Membership
tool available in ArcGIS Pro software. This tool is employed to transform
precise values into imprecise terms, often referred to as fuzzy values, on
a scale from O to 1.

This process accurately reflects the relative suitability of the speci-
fied criteria value (Abdelkareem and Al-Arifi, 2021; Mamouch et al.,
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Fig. 4. Lineament Density Map — LDM (a) The LDM for Tysfjord displays the most concentrated lineaments in hot colors. The known pegmatite points are pre-
dominantly clustered in the eastern zone of the area. (b) Known points are highlighted in relation to the LDM.

2022; Zadeh, 1965). Within the fuzzy function, a range of parameters
are available, including Gaussian, Small, Large, Near, MSLarge,
MSSmall, and Linear. Following comprehensive testing, the Linear
function emerged as the most suitable. The linear function is referred to
in many works as the best option for fuzzification (Porwal et al., 2003;
Yousefi and Carranza, 2015). Nevertheless, we tested all the functions to
make sure we chose the most suitable one for our set of data. The Linear
function computes membership through a linear transformation of the
input raster, assigning a membership value of 0 at the minimum and 1 at
the maximum. These parameters intricately govern the amplitude of the
linear transformation applied to the input data.

3.11. Mineral prospectivity mapping through fuzzy overlay

After ensuring that all the input data were standardized, on a scale
from O to 1 using the Fuzzy Membership tool, the fuzzy overlay
modeling was tested in a GIS environment (ArcGIS Pro). The fuzzy logic
modeling is based on the fuzzy set theory proposed by Zadeh (1965) and
has been applied successfully to generate mineral prospectivity maps
(Abdelkareem and Al-Arifi 2021; Mamouch et al. 2022; Sekandari et al.
2020). The real values of the inputs are included in the interval [0-1],
where 0 represents pixels with no suitable location and 1 represents
pixels with suitable locations (Mamouch et al., 2022). Equation (1)
represents the fuzzy set theory.

Ay = {(Xypa)[yeXi}, (0<p,<1) M

where pA is called the degree of membership function of x in A and X
corresponds to a set of layers Xi (i =1, 2, 3, ..., n), and each layer to r
classes define.

The fuzzy overlay takes into consideration whether a particular

location belongs to one or a combination of various sets (Zheng et al.,
2023). Therefore, weighting the criteria is not necessary for a fuzzy
overlay, as the primary focus is on the location of memberships rather
than their weights (Zheng et al., 2023). Fuzzy overlay employs specific
techniques to explore relative relationships and quantify interactions.
The functions that can be employed are fuzzy AND, fuzzy OR, fuzzy
PRODUCT, fuzzy SUM, and fuzzy GAMMA (Bonham-Carter, 1994; Lewis
et al., 2014).

This study tests three fuzzification models (Fig. 5), each representing
the combination of different data to generate prospecting maps for NYF
pegmatites. Each model comprises at least one set, with each set con-
taining distinct input layers used in the fuzzification process. Each set
undergoes testing with various overlay types (SUM, OR, AND, PROD-
UCT (PROD), and GAMMA). According to (Bonham-Carter, 1994), a
single map can have more than one fuzzy function, which is why the
authors believe that testing all the functions is important so the reader
can understand in detail the response of each function tested for our
dataset.

In Model 1 (Fig. 5a), the MTMF and LGBM classification results are
placed in separate sets and subjected to fuzzification combined with the
LDM. Subsequently, an initial analysis of overlay-type results is con-
ducted, with the best outcome from each test selected. The selected
outcomes of each set are fuzzified again to produce the final output.
Model 2 (Fig. 5b) adopts a combined approach where all three inputs are
fuzzified, and each overlay type is individually tested. The optimal
output is chosen as the prospectivity map. Lastly, Model 3 (Fig. 5¢)
follows a similar methodology to Model 2 but omits the use of LDM as
input. Implementing three models allows for a comprehensive exami-
nation of approaches tailored to the specialized demands of mapping
NYF pegmatites. This approach allows for evaluating effectiveness,
considering several variables, reducing bias, and ensuring robust and
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Fig. 5. Step by step of Fuzzy logic approach applied. a) Approach applied for model 1. b) Approach applied for model 2. ¢) Approach applied for model 3.

reliable research results. Ultimately, the results of the three models were 4. Results and discussion
compared to determine the most suitable approach.

To identify potential points of interest for pegmatite exploration, the 4.1. Reflectance spectroscopy analysis
final output from both satellites (WV-3 and Sentinel 2) was subjected to

fuzzification. The definition of each function can be observed in Annex In this section, we analyzed not only the spectral behavior of the
5. principal minerals that can be found in NYF pegmatites but also
The authors would like to emphasize that the fuzzy overlay does not compared the spectral behavior between pegmatites and host granites in
necessarily aim to obtain more accurate results than the input data, but Tysfjord. Considering that false positives with granite are a great chal-
rather to integrate and weight different pieces of information in a more lenge in pegmatite studies, this analysis aims to understand not only the
flexible and holistic way (Sabbaghi and Tabatabaei, 2023). Fuzzy op- spectral behavior of pegmatites but also to understand how the classi-
erators make it possible to assess the uncertainty and ambiguity asso- fication methods can differentiate pegmatites and granites. The study of
ciated with data, taking into account a range of variables and criteria to the difference in spectral behavior will help to mitigate false positives
improve decision-making (Makropoulos et al., 2008; Popchev Ivan, between these two rocks with similar chemical compositions.
1999). First, an analysis of the spectral behavior of the principal minerals

found in Tysfjord NYF pegmatites was done. These analyses are
important to select the most important bands to compose the remote
sensing processing methods. The bands can be used as absorption or
reflectance inputs according to their spectral behavior. These methods
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Fig. 6. Spectra from quartz, Amazonite, k-feldspar, and plagioclases from Tysfjord.
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can be the most commonly used such as RGB combination, BR, and
Principal Components Analyses (PCA) or even classification algorithms
such as LGBM.

Fig. 6 shows the spectra of quartz, K-feldspar (including the green K-
feldspar variety amazonite), and plagioclase about the WV-3 satellite
spectral range. Considering that pegmatites typically contain feldspar of
ceramic grade, quartz, and white mica, these three minerals are most
susceptible to being picked up by the satellite sensors. These analyses
provide information that allows us to apply image-processing methods
focused on these specific minerals. This method can be adapted to other
minerals. Concerning the amazonite spectra, it is possible to observe a
iron absorption feature at (~622 nm) (Cardoso-Fernandes et al. 2023a)
that is encompassed by bands 4 — yellow (B4), and B5 (red). While B6
(red edge) also includes this absorption, it is noticeable that it is not
located at the center of the absorption feature. Thus, although B6 can
also be used for image processing, preference should be given to the
bands located closer to the center of the absorptions. An AIOH absorp-
tion feature at ~2220 nm (J Cardoso-Fernandes et al. 2023a) is
encompassed by B14 (SWIR 6). We observed that B2 and B3 encompass
the reflectance peak in the visible region. Both Near 1, and Near 2 also
can be used as reflectance bands for amazonite, and SWIR 5 can be used
as a reflectance band in the SWIR region. The spectra of K-feldspar,
plagioclase, and quartz had similar absorption features and reflectance
peaks with importance for WV-3 satellite bands. The plagioclase sample
is the only one with an absorption (~660 nm) in the visible spectrum
besides amazonite and is encompassed by B4 (red). In the SWIR region,
the AIOH absorption (~2200 nm) present in the three samples (K-feld-
spar, quartz, and plagioclase) encompassed by SWIR 6. A FeOH ab-
sorption (~2250 nm) and a MgOH absorption (~ 2350 nm) in the
plagioclase sample are covered by SWIR 7 and 8, respectively. These
absorptions may indicate the presence of biotite in the sample. Quartz,
and K-feldspar have similar spectral behavior for absorption features, so
the bands that can be used as input are practically the same. It is
essential to emphasize that none of these characteristics are exclusive to
these minerals, indicating the presence of spectral mixtures even when
observed on a mineral scale.

Except B4 for plagioclase and amazonite, all other bands within the
visible range can be used as reflectance peaks. As same as for NIR 1 and
NIR 2 the SWIR — 4, 5, 7, and 8 are the best options to be used as
reflectance inputs for quartz, K-feldspar, and plagioclase in image pro-
cessing methods. The only one that encompasses an absorption feature
for quartz, plagioclase, and K-feldspar is the SWIR-6 band. For
amazonite, the best bands to be used as reflectance inputs are NIR 1 and
2, and SWIR-5 and 8. For absorption features, we can select band 5, and
SWIR-6 as the best option. It is important to emphasize the importance
of carefully selecting multispectral data bands, as the lack of diagnostic
features in certain WV-3 bands renders them predominantly reflectance
bands, thereby diminishing their utility for target mapping.

To gain a better understanding of the spectral mixtures present in
samples of quartz, K-feldspar, and plagioclase, a more thorough analysis
was conducted.

In the processed quartz spectrum (Fig. 7 a), we can observe two
water absorptions (~1435 nm and ~1917 nm) and one single AIOH
absorption (~2207 nm). Iron Features (~486 nm and ~664 nm) were
also identified. The quartz spectra analyzed from the GREENPEG spec-
tral library had similar spectral behavior. Most of the spectra had the
presence of iron features (Fe2+ and Fe3+) and absorptions that indicate
montmorillonite presence. Although, the quartz spectra of samples from
Krakmo present a deep water absorption (~1900 nm), a single sharp
AlOH absorption (~2220 nm), and two diagnostic absorptions (~2300
nm and 2400 nm respectively) that can indicate Illite presence. The k-
feldspar spectra also present a similar behavior. In Fig. 7 b, it’s possible
to observe a spectrum with a single OH absorption (~1419 nm), an
AlOH absorption (~2213 nm), and two absorptions that are diagnostic
of Illite (~2362nm and ~2454 nm). This set of absorption features
forms a strong indicative of illite presence. In Fig. 7 ¢, we can observe
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two water absorption features (~1414 nm and ~1931 nm), one single
AlOH absorption (~2204 nm), and a bending (highlighted by the red
rectangle) that may indicate the presence of montmorillonite. The k-
feldspar samples also present mixed spectra between montmorillonite
and illite. Iron features were also detected (VNIR region) in all K-feld-
spar samples. The two most representative spectra were chosen to
represent plagioclase samples. In Fig. 7 d, it is possible to observe a
water absorption (~1418 nm), a deep water absorption (~1933 nm),
and an absorption around ~2220 nm. These absorptions can indicate the
presence of Illite in the sample. The absorption feature around ~2352
nm, can may indicate that this spectrum is mixed with illite. In Fig. 7 e,
we can observe two water absorptions (~1414 nm and ~1933 nm) and
one single AIOH absorption (~2198 nm). These absorptions, together
with the bending anomaly (highlighted by the red rectangle), may
indicate the presence of montmorillonite. Also identified iron features in
the VNIR region (~670 nm).

4.2. Contact granite and NYF pegmatite spectral behavior

To comprehend the distinctions in spectral behavior between NYF
pegmatite and granite, a spectral analysis was conducted on these rock
samples. We opted for raw spectra for analysis in this section since it is
the raw spectra’s behavior that is sensed by orbital sensors. Thus,
analyzing raw spectra is the optimal way to compare laboratory spectral
measurements with orbital sensor data.

The four most representative spectra of NYF pegmatite from Tysfjord
were selected for a more detailed analysis. The analysis of spectral
spectral data from rock samples, as depicted in Annex 6, is pivotal for
understanding the mineral composition and characteristics. Through
detailed examination, characteristic absorptions were identified,
providing insights into the presence of various minerals within the
samples. One notable feature observed is the ramp-like Fe?* absorption,
which is particularly prominent in samples containing biotite (Annex 6a,
Annex 6b, Annex 6¢, Annex 6d). This absorption, along with others such
as FeOH and MgOH, indicates the potential occurrence of biotite within
the samples. Additionally, other diagnostic absorptions suggest the
presence of other minerals like muscovite, chlorite, and members of the
montmorillonite and white mica groups (Annex 6e, Annex 6f, Annex 6g,
Annex 6h). Notably, distinct features, such as an absorption at ~2088
nm, may indicate the presence of topaz, which adds to the spectrum of
minerals identified (Annex 6h).

In summary, we observed that despite biotite being present in both
granite and pegmatite samples, the biotite is more spectrally influent in
the granite spectral behavior which is in line with previous studies
(Cardoso-Fernandes et al. 2023a). This is because biotite is evenly
distributed and much more abundant in the granite gneiss than in the
pegmatites. However, the optical sensors of the multispectral satellites,
such as WV-3, do not have enough spectral resolution to detect these
absorption features in detail. For this, a more direct comparison between
the spectral behavior and the spectral range of the WV-3 satellite bands
was done.

When we compare an average of a spectrum of granite from a contact
zone with the range of the WV-3 satellite bands (Fig. 8a), it is noticeable
that the ramp-like Fe>* biotite absorption is encompassed by many
bands on the VNIR region (B4, B5, B6, NIR 1 and NIR 2). The same as the
VNIR region, many bands on the SWIR region (SWIR-1, SWIR-2, SWIR-3,
and SWIR-4) also encompass the ramp-like Fe?t. The absorption at
~2202 nm, corresponding to the AIOH feature, is encompassed by the
SWIR-6 band, the FeOH absorption feature at ~2258 nm is encompassed
by the SWIR-7 band, and the MgOH absorption feature at ~2357 nm is
encompassed by SWIR-8.

A comparison between the average pegmatite spectra and the spec-
tral range of the WV-3 bands was made (Fig. 8b). It is possible to observe
that all the bands in the VNIR are located where the pegmatite reflects
electromagnetic energy. Regarding the SWIR region, although the SWIR-
1 band is not located at the center of the absorption at ~1145 nm, it can



D. Santos et al. Ore Geology Reviews 175 (2024) 106347

1.00

0.98 +

0.96

(664, 0.985)

Reflectance
(086°0 ‘6EEL)

0.94 +

(1777, 0.963)
(2207, 0.962)

[ T4220082905U10_1 |

0.92 +

(1817, 0.917)

090 T T T T T
500 1000 1500 2000 2500

nm
b)

1.20

1.154

(1935, 0.889)

1.10

(1797, 0.993)
(2362, 0.988)
(2454, 0.989)

(669, 0.980)
(896, 0.990)
(1145, 0.985)

1.05

[T4220082823U10_1 |

(1419, 0.965)

(2213, 0.930)

)|

1.00

Reflectance

0.95

0.90

(693, 0.993)
(1803, 0.981)

(1168, 0.967)

0.85

(1414, 0.923)
(2204, 0.947)

[ T4220090211U10_1 |

0.80

T T T T T T T T
500 1000 1500 2000 2500
nm

1.20 5

S
I
@
=}
S
I\
S

1.15

(1933, 0.838)

(679, 0.986)

1.10

T4220090212U10_2

(1785, 0.994)

(1144, 0.943)
(1327, 0.967)

1.05

1.00

0.95

Reflectance

(1776, 0.993)

0.90

(673, 0.969)
(1029, 0.966)

(1144, 0.938)
(2198, 0.962)

(1334, 0.953)
T4220090318U10_1

0.85

(1415, 0.939)

0.80

T T
2000 2500

-
(S
o
o

T T
500 1000

>
3

Fig. 7. Processed spectra from Quartz, k-feldspar, and Plagioclase and samples used to collect the respective spectra. The orange circles mark the location where the
spectrum was collected. a) Processed spectrum of quartz (sample T4220082905UIO_1); b) Presents a possible K-feldspar spectrum mixed with illite (sample
T4220082823UI0_1); c) Presents a possible K-feldspar spectra mixed with montmorillonite (sample T4220090211UIO_1). The bending highlighted by the red
rectangle indicates the presence of montmorillonite. d) Presents a plagioclase spectrum with illite (sample T4220090212UIO_2). e) Presents a possible plagioclase
spectrum of montmorillonite (sample T4220090318UIO_1).
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Fig. 8. A) average spectrum from granite samples in contact zone with pegmatite from tysfjord. b) average spectrum from pegmatite sample from tysfjord.

be useful for image processing. Moreover, SWIR-6 encompassed the
AlOH absorption feature at ~2207 nm while SWIR-7 encompassed the
FeOH absorption feature at ~2249 nm. The SWIR-2, SWIR-3, SWIR-4,
and SWIR-5 are on the reflectance behavior of the pegmatite.

After analyzing and comparing the spectral behavior of granite and
pegmatites with the WV-3 bands, it is noticeable that the absorption
features in the SWIR region are not enough to differentiate pegmatites
and granites. Although chlorite, muscovite, and biotite have important
absorption features in the last bands of the SWIR region, these absorp-
tion features will be detected in both granite and pegmatite with poor
detail to allow the multispectral satellite sensors to differentiate them.
On the other hand, the ramp-like Fe?t present in biotite can be detected
by many bands on VNIR and the first bands of the SWIR region and can
be the principal factor in discriminating granites and pegmatites in
Tysfjord. In contrast to the diagnostic absorptions located at the end of
the SWIR regions, the ramp-like Fe?* is detected by sufficient bands
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permitting the ramp-like Fe?>* behavior to be captured even on multi-
spectral satellites.

To ensure that the ramp-like Fe?* absorption feature is picked up by
the sensors, the average granite and pegmatite spectra were resampled
to WV3 and Sentinel-2 resolution. In Fig. 9, the ramp-like Fe?* ab-
sorption feature is highlighted by the red rectangle, confirming that the
ramp-like Fe?" absorption can be identified by multispectral satellites,
even by sensors with lower spectral resolution such as Sentinel-2 (Fig. 9
B). As expected, the ramp-like Fe?" absorption is more detailed in the
WV3 resampled spectrum (Fig. 9 A). However, the average pegmatite
spectral behavior doesn’t show the ramp-like Fe?" absorption and, for
both sensors’ spectral resolution, there is a crescent reflective behavior
that starts ~1400 nm. Thus, the granite’s ramp-like Fe?* absorption can
be used to differentiate pegmatite from granite in contact zones reducing
false positives in classification results. As predicted, in Fig. 9, the SWIR 6
and SWIR 7 bands of WV3 detected the AIOH absorption, while the
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Fig. 9. Comparison of pegmatite and granite spectral behavior. Average spectral behavior of granite resampled for WV-3 (A) and Sentinel-2 (B) resolutions, and of
pegmatite resampled for WV-3 (C) and Sentinel 2 (D) resolutions. The ramp-shaped Fe" is indicated by the red rectangle.
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MgOH absorption is reflected in bands SWIR 7 and SWIR 8 (Fig. 9 D).
This indicates that the WV3 satellite can detect mineral compositions
with its spectral resolution. The same cannot be stated for Sentinel-2:
while the biotite absorption was detected (Fig. 9 B), band 12 (Fig. 9
D) is not detailed enough to distinguish AIOH, FeOH, and MgOH fea-
tures with the Sentinel-2 spectra, as shown in previous studies (van der
Meer et al., 2014). Overall, these results show that the WV3 data is a
powerful tool for mineral spectral analyses in comparison with the open-
source multispectral satellites.

The spectral analyses have been important to understand the min-
erals influencing the signal that is captured by the satellite sensors.
Although, according to Santos et al. (2022) the analyses of spectra
collected directly from the satellite images are the best way to select the
bands to be used as input in the image processing. This comparison can
help select key bands for multispectral data processing and can be
applied in greenfield areas or brownfields when there are no known
pegmatite outcrops to be used as ground truth.

As expected for minerals, it is possible to observe (Annex 7) a
stronger spectral response in the SWIR region. On the SWIR region, the
reflectance peaks are almost the same for both mines (SWIR 1, SWIR 2,
SWIR 5, and SWIR 7). Although in Jennyhaugen mine, SWIR 1 reflects
more than SWIR 2, while in Hakonhals mine we observed the opposite.
The absorption bands on the SWIR region are the same for the two mines
(SWIR 3, SWIR 6, and SWIR 8). Despite the spectral response on the
VNIR region being especially weak in Jennyhaugen, the reflectance and
absorption bands are the same between the two mines.

A comparison was also made between the pegmatite spectrum
(Annex 8 a) and a possible granite spectrum (Annex 8c) directly on the
WV3 image. It is observed that the ramp-like Fe> absorption is not
evident in the spectrum analysis, but the pegmatite exhibits more pro-
nounced reflection peaks compared to the granite. This difference could
be attributed to the presence of biotite in the granite, which may have
influenced its less reflective behavior in the spectrum.

4.3. LGBM classification

The inputs used in LGBM for the Sentinel-2 data were the bands 4, 6,
7, and 8A. The classification was performed using all inputs previously
described. For WV-3, bands 5, 7, 9, 10, 13, and 15 were used as inputs.
The best parameters, after cross-validation, for the Sentinel-2 data were
max_depth = 10, n_estimators = 45, and num_leaves = 15. The kappa
statistic was 0.97. The best parameters for the WV3 data were max_-
depth = 10, n_estimators = 500, num_leaves = 15. The kappa statistic
was 0.99. Other metrics can be observed in Table 3. As it is possible to
observe in Table 4, WV3 has better scores than Sentinel-2. This phe-
nomenon may be attributed to the greater quantity of sampled pixels
acquired from WV3, a possibility facilitated by its superior spatial res-
olution (Alwosheel et al., 2018; Krizhevsky et al., 2017).

The most important input features weighing on the final prediction
were also analyzed (Table 4). Regarding Sentinel-2, band 4 had the
highest contribution, while bands 7 and 8A had the lowest. When
compared with previous results obtained by Santos et al. (2022a), band
4 shows the highest reflectance among the visible bands in NYF peg-
matites. Despite pegmatites reflecting more electromagnetic energy in
bands 6 and 7 than in band 4, in that region, there is no clear reflectance
peak like in band 4. This can be indicative that the bands that are at the

Table 3
Score report for LightGBM algorithm.
Precision Recall F1 score
Sentinel-2 WV-3 Sentinel-2 WV-3 Sentinel-2 WV-3
Pegmatites 0.97 1.00 0.97 0.98 0.97 0.99
Granite 0.95 0.98 0.98 1.00 0.96 0.99
Vegetation 1.00 1.00 0.99 1.00 0.99 1.00
Water 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4
Feature importance.
Sentinel-2 Wwv3
Inputs Importance % Inputs Importance %
Band 4 40 Band 5 7
Band 6 26 Band 7 7
Band 7 17 Band 9 23
Band 8A 17 Band 10 18
Band 13 23
Band 15 22

top of reflectance peaks had more influence in the classification than
others.

The most important inputs for WV3 classification were band 9 (SWIR
1) and band 13 (SWIR 5). Both SWIR 1 and SWIR 5 are the bands with
higher reflectance peaks among all the bands. This indicates that
choosing bands where NYF pegmatites have the highest reflectance can
be an assertive method. Band 15 (SWIR 7), and band 10 (SWIR 2) also
encompass reflectance peaks for pegmatite. The lowest contribution is
from the VNIR bands, contrasting the highest contribution of the SWIR
bands, showing the importance of the SWIR region for mineral studies.
Using Sentinel-2 as an example, in the absence of more bands in the
SWIR region, bands in the VNIR region can be used as an alternative.
This becomes evident when observing the number of bands that can
sense the Fe ramp-like absorption characteristic of biotite in the VNIR
bands, as was noted in the previous section.

In Fig. 10, is possible to observe the classification result for both
satellites. Fig. 10 a) shows us the WV3 classification result for
Hékonhals, where all the mine area was classified as pegmatite,
including the mine paths that may contain pegmatite traces. Fig. 10 b)
shows the WV3 classification result for Jennyhaugen. In this case, the
algorithm didn’t identify all the mine areas as pegmatite. This result is
more accurate with the location where the pegmatite is more exposed in
the mine. Sentinel-2 didn’t have a result as refined as WV-3, but both
mines were correctly identified.

As expected, the WV3 classification gets better results in the identi-
fication of the ground truth sites, especially in Jennyhaugen. However,
false positives still appear in satellite results, on coastal lines and urban
areas. The WV-3 had more false positives with urban areas, especially
roads. It is worth noting that WV-3 classification identified snow as
pegmatite. These false positives with snow were not as prominent for
Sentinel-2, as snow pixels were mistakenly classified as vegetation.
Comparing the results of Sentinel-2 with the true-color composite image
reveals that in certain areas where vegetation, rocks, and snow share the
same space, the spatial resolution of Sentinel-2 may have been a limiting
factor. In these areas, vegetation might have been more dominant than
other classes, suppressing information from the others. WV-3, with
higher spatial resolution, was better able to distinguish between ele-
ments in the same area. False positives with snow/ice were expected,
allowing us to assess the method’s efficiency in eliminating these false
positives in the prospectivity map.

Introducing a poor class separability between pegmatite and granite,
it’s not surprising that the WV-3 had more misidentified pixels between
these two classes. The confusion matrix can be observed in Fig. 11.

4.4. MTMF abundance mapping

The MTMF process generates a comprehensive raster rule by amal-
gamating all MF bands and providing a visual representation of each MF
band separately in grayscale. Upon inspecting each MF band, a histo-
gram emerges. Fine-tuning this histogram enables the precise selection
of pixels containing the target material. Analyzing the histogram
(Fig. 12) is of great importance to ensure that the target information was
correctly selected. Knowing the target (endmember) is in the upper tail
of the histogram, it is possible to adjust the histograms to maximize
target information and minimize false positives.
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Fig. 12 shows the best stretch of the lines that best correspond to each
satellite. We can observe in Fig. 12 a) that the best stretch for WV-3 was
between the values 0.253 and 0.587. Fig. 12 b) shows us that the stretch
between 0.228 and 0.638 was the best option for selecting the pegmatite
information for the Sentinel-2 data.

As well as being able to see the results of the MTMF, we were also
able to see the relationship between pixels with an abundance of
pegmatite and a lack of lineaments. This analysis is important to justify
the structural control on pegmatite emplacement, but first, let’s analyze
the MTMF result. The MTMF shows a similar result in Hikonhals for
both WV-3 (Fig. 13 a) and Sentinel-2 (Fig. 13 ff). In both satellites, the
MTMF was capable of correctly identifying where the pegmatite is more
exposed (240240 to 255 values). The spatial patterns observed in
Hékonhals predominantly exhibit pixels with medium to maximum
values (144144 to 255 values), surrounded by clusters of pixels with the
lowest values (00 to 127 values). In Jennyhaugen, a more distinguish-
able spectral behavior is observed. For WV-3, the MTMF was capable of
correctly identifying where the pegmatite is more exposed (Fig. 13 hh),
as well as traces of pegmatite in the middle of the Jennyhaugen mine.
For Sentinel-2, the MTMF identified the Jennyhaugen mine with lower
values than for the WV-3 data (Fig. 13 cc). The location where the
pegmatite is more exposed was assigned medium values (128128 to
143) and the other parts of the mines have even lower values (00 to
127). This is likely due to the absence of distinct spectral bands in
Sentinel-2 for identifying the areas where pegmatite is more promi-
nently exposed in the Jenny Haugen mine.

Given that the maximum values (240 to 255) in WV-3 satellite results
indicate pixels where the pegmatite is more exposed, normally, at the
mine and recognizing that this scenario is less common in nature, we are
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Fig. 10. LightGBM classification result for WV-3 and Sentinel-2 satellites. a) WV-3 classification results highlighting Hékonhals. b) WV-3 classification results
highlighting Jennyhaugen. c) Sentinel-2 classification results highlighting Hakonhals. d) Sentinel-2 classification results highlighting Hékonhals.
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specifically examining spatial patterns in 144 to 159 values, 160 to 175
values, 176 to 191 and 192 to 207 values to identify pegmatites. These
pixels can be surrounded by clusters with lower values than the pixels
with a lower abundance of pegmatite. This spectral behavior is more
specific to WV3, for Sentinel-2 we observed clusters with maximum
values (up to 255 values) in areas other than mines. In general, the
MTMF showed good performance for both WV-3 and Sentinel-2 satel-
lites. The WV-3 satellite’s highest GSD gives it an advantage over
Sentinel-2 results. However, the MTMF, when applied through the SHW
workflow, can still produce acceptable results for multispectral
satellites.

The study area encompasses 30 known pegmatite points, out of
which six exhibit detectable exposure through orbiting satellites
(excluding the Hakonhals and Jennyhaugen mines). The MTMF applied
to the WV-3 satellite successfully identified all of these six points. In
contrast, the application of the same method to the Sentinel-2 bands
identifies only two points and with a low distribution of pegmatites.
Additionally, the LGBM applied to WV-3 bands identified 4 of the known
pegmatite points, while the Sentinel-2 bands managed to identify 3 of
the known points.

Regarding the connection between pegmatites and linear structures,
some points mapped by the MTMF were chosen for comparison between
the pegmatite distribution and the LDM. We can see a relationship be-
tween the Hakonhals (Fig. 13b, g) and Jennyhaugen (Fig. 13c, h) mines
for both satellites. While Hakonhals is in an area of high lineament
density, Jennyhaugen is in an area of low density. Concerning Sentinel-
2, we can highlight two points. One, 3.5 km northeast of Hakonhals
(Fig. 13 d), is a cluster of clusters indicating the abundance of pegma-
tites. These clusters are in a location with a medium to low density of
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Fig. 11. Confusion matrix using: a) WV-3 satellite data; b) Sentinel-2 satellite data.

lineaments. Another point is 3.8 km from Hékonhals (Fig. 13e) and is
also in an area of medium lineament density. Concerning WV3, we can
highlight the point 3.5 km from the Hakonhals (Fig. 13i), this point was
also highlighted by Sentinel-2 (Fig. 13d).

It is possible to validate the precision of the MTMF results by
examining a 2D scatter plot that displays the distribution of mapped
endmembers (Fig. 14). In this plot, background noise is represented by
points with MF scores around or below zero. False-positive pixels are
characterized by high infeasibility (IF) values, while correctly mapped
pixels present low IF values coupled with high MF scores. This analysis

15

reveals that correctly identified endmembers are clustered over
Hékonhals, one of the ground truth areas, thus confirming the precision
of endmember selection within the workflow for WV-3.

The final prospectivity map successfully identified three of the six
known pegmatite points in the study area, excluding the Hékonhals and
Jennyhaugen mines, while the MTMF method alone identified all six
points. However, the final map significantly reduced the number of false
positives compared to the MTMF results. This reduction in false positives
is a crucial improvement, enhancing the efficiency of the mapping
process for pegmatite prospecting by minimizing confusion with urban
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areas, coastal lines, and other geological formations that traditionally
introduce noise into the data.

4.5. Mineral prospectivity mapping
4.5.1 Model 1 results

Model 1 demonstrates variability among the outputs of each set,
despite utilizing satellite images of the same study area. This un-
derscores the importance of thoroughly testing each function and
selecting the most suitable one. The results indicate that the outputs of
these functions vary depending on the input data. In other words, even
when employing the same function, the results may differ if the input
data varies.

As observed in Table 5, the best first fuzzy operator for Model 1 was
the “Prod” operator, while in the second operator, the “Gamma” oper-
ator was optimal for both the WV-3 and Sentinel-2 data. For set 2, the
best fuzzy operators were the “Prod” operator for WV-3 and the
“Gamma” operator for Sentinel-2. The best outputs from both sets were
used in synergy to create the final prospectivity map, with the “Gamma”
operator proving to be the most effective function for both the WV-3 and
Sentinel-2 data.

In the obtained results, pegmatites exhibit values of > 0.59 on
Sentinel-2, on a scale from 0 to 0.92, whereas on the WV3, pegmatite
points show values of >0.18, on a scale from 0 to 0.62. The Sentinel-2
output successfully eliminated all false positives associated with snow
and coastal regions. The Sentinel-2 satellite is also effective in reducing
false positives in urban areas, outperforming WV-3 in specific locations.
However, when considering the overall context, there is no significant
difference between the two satellites in terms of false positive elimina-
tion in urban areas. Furthermore, WV-3 exhibits pixels along coastal
areas with values ranging from 0.001 to 0.11, where these low values

Table 5
Statistical data for Hikonhals and Jennyhaugen.
Jennyhaugen Hékonhals

Pixels Count 7 101
Mean 3.2 5.2
Standard Deviation 1.3 0.8
Fuzzy Value Count Percent Count Percent
0.56-0.63 1 14.29 % — —
0.69-0.76 3 42.85 % 2 1,98 %
0.76-0.82 2 28.57 % 16 15.84 %
0.82-0.89 1 14.29 % 34 33.67 %
0.89-0.95 — . 49 48.51 %
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assist in distinguishing them from potential pegmatite points.

When comparing the results of Model 1 with the inputs utilized in
each set (MTMF and LGBM), it becomes apparent that the methodology
employed effectively reduced false positives, especially concerning the
Sentinel-2 data. This underscores the substantial potential of Sentinel-2
for pegmatite prospecting using the proposed method, despite being free
data with lower special resolution than WV-3. However, the fuzzifica-
tion on WV-3 managed to identify more potential pegmatite spots,
which may be related to its higher spatial and spectral resolution.

4.5.2. Model 2 results

Model 2 combines all processing data into a single set. For the
Sentinel-2 data, much like in Model 1, the gamma fuzzy operator yielded
the best results, eliminating false positives. The overall outcomes of
Model 2 for Sentinel-2 data closely resemble those of Model 1, high-
lighting the same potential points with minimal differences. Pegmatite
points in the Sentinel-2 output have values > 0.76 (on a scale from 0 to
0.95). Moving to the WV-3 data, the “Prod” operator produced the best
results, with pegmatite points having values > 0.16 (ranging from 0 to
0.36). However, false positives with urban areas persisted, and coastal
lines appeared with very low values (close to 0). Similarly, to the
Sentinel-2 data, the WV-3 output of Model 2 closely resembles the final
output of Model 1. However, Model 2 identified fewer pixels as peg-
matites in the WV-3 data. Comparing the two models, it is apparent that
Sentinel-2 performed better in Model 2, while WV-3 produced better
results in Model 1. This suggests that the method proposed in Model 1
may be more suitable for handling more robust data, such as that from
WV-3.

The application of additional fuzzy operations in Model 1 may
explain the difference in results for the WV-3 data. In Model 1, the
“Prod” function was applied at least once to the WV-3 data before the
“Gamma” operation in both sets 1 and 2. In contrast, Model 2 applied
only one fuzzy operation (Gamma) to the entire set. Regarding the
Sentinel-2 data, the “Gamma” function was applied twice in Model 1:
once in Set 2 and again in the final step to compose the prospecting map.
The similar output of the Sentinel-2 data for Models 1 and 2 can be
attributable to both models having a greater influence from the
“Gamma” operator.

4.5.3. Model 3 results

Model 3 performs the fuzzification of processing data without the
LDM input. The best output for Sentinel-2 data is obtained with the
“And” operator. Pegmatites receive a value > 0.80 (on a scale from 0 to
1). There is a greater influence from the MTMF classification. False
positives with snow have been eliminated; however, false positives with
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coastal lines and urban areas such as roads still appear but with mod-
erate values. There is not much difference between this result and the
MTMF classification used as input. The best operation for WV-3 data was
the “Gamma” operator. Pegmatites receive a value > 0.86 (on a scale
from O to 1). It eliminates false positives with urban areas and reduces
false positives with coastal areas compared to the LGBM classification;
however, the result is very similar to the MTMF classification used as
input.

The absence of LDM results in outcomes that closely resemble only
one of the inputs used, providing little enhancement in false positive
elimination when compared with Models 1 and 2. This underscores the
significance of incorporating LDM in fuzzification for NYF pegmatite
prospecting.

An important observation from the results is that, across all models,
the operations “And”, “Gamma,” and “Prod” yielded similar outcomes,
aligning well with the study’s objectives. On the other hand, the “Or”
and “Sum” operations also produced similar results, but they diverged
the most from the study’s goals. These operations generated maps with
aggregated information from all inputs, resulting in visually cluttered
outputs that hindered the clear and objective identification of potential
pegmatite points in the study area.

The best function for the fuzzification of the final outputs from each
satellite was the “sum” function. This function ensured the combination
of data from both WV-3 and Sentinel-2 in Model 1 without any loss of
information. This allowed for the analysis of results from both satellites
in a single raster.

5. Points of interest for exploration

An analysis of the fuzzy scores of Hakonhals and Jennyhaugen was
conducted to select the points of interest based on the fuzzy logic
approach to mineral prospectivity mapping. As indicated in Table 5,
Hékonhals demonstrates notably higher values, ranging from a mini-
mum of 0.69 to a maximum of 0.95, with an average of 5.2 units.
Overall, Hakonhals accounted for 101 pixels corresponding to pegma-
tites. Among these 101 pixels, 48.51% exhibit values classified as very
high to maximum, 33.67% as very high, 15.84% as high to very high,
and 1.98% as high. When focusing solely on Hakonhals, point selection
would be limited to values above 0.69 units. However, Jennyhaugen
exhibits lower values, ranging from a minimum of 0.56 to a maximum of
0.76, with an average of 3.28 units. Only seven pixels were identified as
pegmatites in Jennyhaugen. Of these pixels, 14.29% correspond to
medium values, 42.85% correspond to high values, 28.57% to very high
values, and 14.29% to very high to maximum values. Unlike H&konhals,
no pixels were classified with the maximum value (0.95). Observing the
fuzzy scores behavior of Hakonhals and Jennyhaugen, it was possible to
determine that values between 0.56 and 0.89 correspond to the highest
abundance of pegmatites.

Applying a color slice allowed for the selection of values of interest
(between 0.56 and 0.89), which were then analyzed in a GIS environ-
ment to determine the main points of interest.

Fig. 15 presents a graph illustrating the relationship between the
quantity of pixels and their corresponding fuzzy values. Upon analyzing
these statistical data from the final prospecting map, we observe that
pixels with very high to maximum values (between 0.89 and 0.95) are
the least represented in the image (13% of the total pixels), whereas
pixels with values between 0.69 and 0.76 are the most represented
(19.8%). This was expected, as pixels with values closer to the maximum
are more likely to be pegmatites. Consequently, few pixels are classified
with maximum values, enabling clear and objective identification, and
facilitating the differentiation of false positives with granites. Thus, in
selecting potential prospecting points, priority was given to pixels with
values >0.76 and <0.95. Pixels with values <0.76 were then considered
false positives with granite.

A total of 19 points of interest and two areas of interest were iden-
tified on the final map. These areas of interest correspond to locations
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Fig. 15. Relationship between the quantity of pixels and their corresponding
fuzzy values in the final prospecting map.

exhibiting notable clustering of points. The points and areas of interest
are depicted in Fig. 16. Points 1 to 5 (Fig. 16 d-g): surround the
Hékonhals mine, in the southwest zone of the study area. Points 6, 8 to
13 (Fig. 16 h, j-n): are located 3 km north of the Hakonhals mine and
3.5 km south of the village of Presteid. Points 7, 14, and 15 (Fig. 16 i,
0): are located 3.5 km north of the Hdkonhals mine and 2 km southwest
of Kaldvag village. Point 16 (Fig. 16 p): is located 1 km southwest of
Kaldvag village.

Point 17 (Fig. 16 q): is located 500 m southeast of Mgllnvatnet Lake.
Points 18 and 19 (Fig. 16 r, s): Both spots are located 5.6 km distance
from Jennyhaugen mine and near Klottervatnet lake. Area 1: This is
located near form points 14, 15 and 7 and 3.5 km north of the Hikonhals
mine and 2 km southwest of the Kaldvag village. Area 2: Is located 2 km
northeast of the Kaldvag village.

6. Conclusion

Working with different fuzzification models was crucial to analyze
the effectiveness of each approach regarding the specific challenges of
NYF pegmatite prospecting and allowed us to identify which one ach-
ieved the best result. All inputs utilized in the tested models can be
derived through data processing methods that do not require extensive
and complex data from the study area, such as geochemical and
geophysical data. This enables application of this method in greenfield
sites facilitating exploration in previously unexplored regions with
limited available data. The ramp-like Fe?t absorption marks the pres-
ence of biotite, and it is marked in granite samples showing to be a
potential key to distinguish between granite and pegmatite. The ramp-
like Fe?" can be detected by enough bands in the VNIR and SWIR re-
gion to be detected even by multispectral satellites. Comparing the re-
sults of the classification methods, it is notable that MTMF achieved
more refined results, managing to distinguish different concentrations of
pegmatites within the Jennyhaugen and Hakonhals mines. However, the
LGBM algorithm was able to identify both mines perfectly, also
demonstrating itself to be a powerful method in pegmatite identification
Model 1 achieved good performance in both satellites. The application
of more fuzzy operators in Model 1 may have been the key to its success.
Model 2 had a very close result to model 1, however, model 1 stands out
in terms of reducing false positives. The final prospecting map was
generated by fuzzifying the results from Sentinel-2 and WV-3 in Model 1.
In this map, the pixels of interest (potentially corresponding to pegma-
tites) have values >0.76 and <0.95. Nineteen points of interest and two
areas of interest were selected for validation by fieldwork. In this study,
the focus was on a method that can be adapted to greenfield areas.



D. Santos et al. Ore Geology Reviews 175 (2024) 106347

2 km

527500 528000

543100 543200 543300 526900 527000
=

7548100

ol
0 75150m

0 25 som 0 25 som

526980 527010 527040 527640 527670 528175 528200 528225
— 3 ) ——

526680 526735 526790

7548640 =
O

7548585

u;
01020m 0 75 15m

527220 527250 527280
y i

527150 527175 527200

527760 527820 527880
. —)
Ve,

7548660
=
7548625—

7548630
7548600

0 75 15m

v
8
8
4
g
&
R

—
0 1020m

527730

529900 530000
‘—

75486002

7548000 S

7548420 =

533600 533700
—

537500 537550

537720 537780

»

7547130

7547085

0 25 50m

528900 529200

A
01020m

535500
—

Area of interest
[7710.56 t0 0.63
[ 0.63 t0 0.69
I 0.69 t0 0.76 A
I 0.76 t0 0.82 N

I 0.82100.89
I 0.89t0 0.95

7548900

g
8
3
S8
2
3
R

0 75150m 0 75150m

Coordinate system: WGS 84 UTM zone 33N (EPSG:32633)

Fig. 16. Distribution of Points and Areas of Interest in the Study Area. a) Overview of the study area showing the identified points of interest and areas of interest.
Notable clustering of points is observed around specific geographic features. b) Fuzzy scores in the Hakonhals mine. ¢) Fuzzy scores in the Jennyhaugen mine. d)
Points of interest 1 and 2. e) Point of interest 3. ) Points of interest 4. g) Point of interest 5. h) Point of interest 6. I) Point of interest 7. j) Point of interest 8. k) Point of
interest 9. L) Point of interest 10. m) Points of interest 11 and 13. n) Point of interest 12. o) Points of interest 14 and 15. p) Points of interest 16. q) Point of interest 17.
1) Point of interest 18. s) Point of interest 19. t) Area of interest 1. u) Area of interest 2.

19



D. Santos et al.

However, this method can be evaluated with other inputs for Brownfield
areas with more known data.
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