

Zero Knowledge
Proofs with MPC-
in-the-Head

António Maria Ribeiro Ferreira Santos
da Cunha
Master in Information Security
Department of Computer Science
Faculty of Sciences of the University of Porto
2023/2024

Zero Knowledge
Proofs with MPC-
in-the-Head

António Santos da Cunha
Dissertation carried out as part of the Master in Information
Security
Department of Computer Science
2023/2024

Supervisor
Bernardo Portela, Assistant Teacher, DCC-FCUP
Co-supervisor
Hugo Pacheco, Assistant Teacher, DCC-FCUP

Dedicated to my parents who’ve brought me this far, my success

and all future accomplishments are theirs as well

FCUP ii

Zero Knowledge Proofs with MPC-in-the-Head

Abstract

Imagine a world where you can ensure to a bank you have enough money to withdraw a

certain amount without ever sharing your balance with the bank.

That is the promise of Zero Knowledge Proofs (ZKPs), a cryptographic technique that

allows for a prover to successfully convince a verifier of the truthness of a given statement

without ever disclosing any information about said statement other than it’s truthness.

Now, although very useful in contexts where privacy, security and integrity are paramount,

these proofs are traditionally very costly and inefficient, making them unreliable in real

world applications where scalability and performance are of the utmost importance.

There are many approaches that aim to solve this issue, but in the work described in

this document we’re going to dive in the concept of introducing simulating Multi-Party

Computation techniques in the proving mechanisms of traditional ZKPs. This approach,

called MPC-in-the-Head, is a rather promising technique that has shown great impact in

improving traditional ZKPs, turning them into scalable and highly efficient proofs that can

be used in ’real-world’ scenarios.

As such we’ll be instantiating a specific ZK protocol that uses MPCitH, ZKBoo as well as

a circuit generator with the goal of addressing a real use case, of proving citizenship on

a given country without revealing any information about the national ID. This use case

reflects the problem of proving private set membership (PSM) in a ZK fashion, and it is

our goal to test the suitability of the instantiated protocol to address this kind of real-life

scenarios.

Keywords: Zero-Knowledge (ZK), Zero-Knowledge Proofs (ZKP’s), Multi-Party Compu-

tation (MPC), Multi-Party Computation in-the-Head (MPCitH), Private Set Membership

(PSM)

FCUP iii

Zero Knowledge Proofs with MPC-in-the-Head

Table of Contents

List of Figures...v

1. Introduction..1

1.1. Motivation...1

1.2. Objectives ..3

1.3. Report Outline..3

2. Preliminaries..4

2.1. Zero-Knowledge ..4

2.2. Multi-Party Computation ..5

2.2.1. Additive Secret Sharing ...5

2.3. MPC In-The-Head..8

2.4. Bristol Circuits ..8

2.5. Private Set Membership ..10

2.5.1. RSA Accumulators...10

3. State of the Art ..12

3.1. ZK-SNARKS ..12

3.2. ZK-STARKs ...13

3.3. ZKBoo ..14

3.4. NIZPoK ..16

3.5. Ligero ...16

4. ZKBoo and Circuit Generation ..19

4.1. ZKBoo ..19

4.2. Proof Creation (Bristol Circuits + MPCitH) ..20

4.3. Proof Validation ...23

4.3.1. Consistency Check ..23

4.3.2. Execution Check ..24

4.3.3. Result Check..24

4.4. PSM ...25

4.4.1. Approach..25

4.4.2. SHA-256 Circuit and New Operations ...26

4.4.3. Final Circuit Assembly ...27

5. Experimental Results ..30

5.1. Offline Stage ..31

5.2. Online Stage ..33

5.2.1. Prover...33

FCUP iv

Zero Knowledge Proofs with MPC-in-the-Head

5.2.2. Verifier ..35

5.3. Comparison..36

6. Conclusion and Future Work...37

Bibliography ...37

FCUP v

Zero Knowledge Proofs with MPC-in-the-Head

List of Figures

2.1. The Strange Cave of Ali Baba Experiment[3] ...5

2.2. Example of a MPC multiplication ..7

2.3. Example on how to convert a simple boolean circuit to the bristol format9

3.1. Illustration of the execution of ZKBoo[10] ...15

3.2. Prover and verifier running times for verifying a single instance of different circuit sizes17

4.1.Communication pattern of a Σ-protocol ..20
4.2. Small illustrative example of a circuit that follows the mentioned approach21

5.1. Time spent on each stage for 0 ≤ n ≤ 10000 ...36

FCUP vi

Zero Knowledge Proofs with MPC-in-the-Head

FCUP 1

Zero Knowledge Proofs with MPC-in-the-Head

1. Introduction

1.1. Motivation

Zero-Knowledge Proofs (ZKPs) have emerged as an exciting cryptographic technique

with the promise of allowing one party, the prover, to prove to another party, the verifier,

the truthness of a given statement without revealing any additional information about the

statement itself during the process. This unintuitive property is crucial in scenarios where

privacy and confidentiality are of the utmost importance.

The main advantage of ZKPs is their ability to enable secure computations without com-

promising the privacy of the involved parties. By leveraging on ZKPs, it becomes possible

to perform rather complex calculations on sensitive data while guaranteeing the under-

lying information remains confidential. This has a vast number of implications in various

domains, such as:

• Financial Transactions: by allowing anonymous payments where the buyer would

convince the seller he could afford the payment without revealing any information

about he’s balance or personal account.

• Electronic Voting: by allowing voters to cast their ballots without revealing their pref-

erences or identity to anyone.

• Medical Data Analysis: One of the main issues of medical studies consist on the

anonymization of the patient, with ZK techniques, no identifiable information about

the patient would ever be disclosed, allowing for the analysis of the medical data

without ever knowing the underlying patient information.

However, traditionally these proofs are computationally costly and quite inefficient, making

ZK often regarded only out of theoretical intrest and unfit to be adapted and introduced in

real-world problems.

While there are some efficient approaches designed to address this issue, these are often

conceived to deal with very specific contexts instead of being of general-purpose.

That’s where MPCitH comes in. Multi-party computation (MPC) is another cryptographic

technique that enables multiple parties to jointly compute a function over their private

FCUP 2

Zero Knowledge Proofs with MPC-in-the-Head

inputs without revealing any individual inputs. MPC-in-the-Head is then the result of com-

bining ZKPs with a local simulation of a regular MPC protocol. By doing this we unlock

the possibility to create even more efficient and scalable, general-purpose protocols.

By leveraging ZKPs with MPCitH, we unlock several benefits:

• Efficiency: MPCitH can reduce the computational complexity and communication

overhead associated with traditional MPC protocols, making the solution more prac-

tical for real-world applications.

• Flexibility: MPCitH allows for the ZK protocol to be able to efficiently address any

general-purpose computation as long as it can be described and executed in a MPC

protocol.

• Optimised Verification: MPCitH often generates efficient proofs, making these ver-

ifiable by other parties in a rather efficient time, helping the protocol become more

scalable.

• Simple Design: MPCitH stands out for its ease of representation and understanding,

making it a simple and easy way

Finally, in this document we aim to take this improvement and apply it onto a real-world use

case of proving citizenship for a given country. This use case is described by the private

set membership (PSM) problem in the ZK context, a fundamental cryptographic task that

involves determining whether a given element belongs to a private set without revealing

the contents of the set or the element itself. This problem has significant applications in

various domains, including IAMs1, proof of ownership, cryptocurrency, etc....

Keeping in mind that given the fact that the protocol here instantiated is a general-purpose

one, our approach can easily be adapted to deal with any other problem or context by

changing only the circuit being generated.

In conclusion, the combination of ZKPs with MPC in the head offers a promising approach

to solving the PSM problem. By leveraging the power of these cryptographic techniques,

we can develop efficient, secure, and privacy-preserving solutions that have the potential

to transform various domains and applications.

1Identity Access Managers

FCUP 3

Zero Knowledge Proofs with MPC-in-the-Head

1.2. Objectives

The work described in this document aims to investigate the usage of ZKPs with the opti-

misation introduced by MPCitH to address the limitations of traditional proofs, specifically

when creating and solving multiple instances of the PSM problem.

As such, the goals established for this work were to:

• Explore ZKP constructions and the impact of introducing MPCitH to check how effi-

cient these are in a real use case.

• Emulate an example instance of ZKBoo with a prover and verifier that’ll emulate the

participants in our use case.

1.3. Report Outline

This work we’ll be exposed and organised in the following chapters:

1. Preliminaries: This will be the chapter that will provide the reader with the necessary

background knowledge to better understand the concepts further mentioned.

2. State of the Art: This is the chapter where we’ll go over some key approaches

from the last 10 years highlighting the improvements at each step as well as key

implementation aspects.

3. ZKBoo and Circuit Generation: This is the chapter where we’ll closely look into the

cornerstones necessary to achieve a viable solution to the proposed use case.

4. Experimental Results: This is the point where we have a critical analysis regarding

performance and possible improvements given the obtained experimental results.

5. Conclusion and FutureWork: Finally we’ll conclude by summarizing the key findings

of the developed work and highlight possible future studies with this as a starting

point.

FCUP 4

Zero Knowledge Proofs with MPC-in-the-Head

2. Preliminaries

2.1. Zero-Knowledge

Zero-Knowledge proofs have emerged as a rather powerful and promising cryptographic

tool with a vast number of applications. First proposed in 1985 on the paper ”The Knowl-

edge Complexity of Interactive Proof-Systems” by Goldreich, Micali, and Wigderson [1].

Their vision was to allow for a prover to be able to convince a verifier of the thruthness of

a public statement without revealing any information about the statement itself. As such

the innovation brought by these aproaches lies in their ability to separate the verification

part of the protocol from the disclosure of its underlying details.

The best way to start grasping how these kind of proofs work is one of the examples

proposed by Quisquater et al. on their short paper ”How to Explain Zero Knowledge Pro-

tocols to Your Children”[2] as an attempt to easily illustrate how ZKPs work. In this paper,

the authors describe many practical and illustrative examples to introduce the concept of

a ZK protocol in a high-level and easy to understand format. The example in question is

known as ”The Strange Cave of Ali Baba”(as illustrated in 2.1) and it takes place in a cave

that has 2 paths that meet in the middle, separated by a locked door. In this scenario,

Alice wants to prove to Bob the truthness of the Statement ”I have the key to the door”.

However, since we wants to do this in a Zero-Knowledge Fashion, she establishes the

following protocol:

1. Alice randomly chooses a path (either A or B).

2. Bob, not knowing which path Alice chose, randomly chooses a path for Bob to come

out from.

3. Alice finally returns using the path chosen by Bob.

Notice that by following this protocol, Bob ends up with the exact same amount of informa-

tion he started the experiment with, however he can say with an 1− ε1 amount of certainty

that he is properly convinced that Alice owns, in fact, the key.

1probability of fooling Bob

FCUP 5

Zero Knowledge Proofs with MPC-in-the-Head

Figure 2.1: The Strange Cave of Ali Baba Experiment[3]

This is due to the fact that if we repeat the experiment just once there is 1 possible way

of Bob going in and out the same path, thus not proving he actually owns the key. The

more this experiment is repeated the less likely Bob can trick Alice.

Being ε the probability of Bob convincing Alice he owns the key without actually owning

it, we have:

ε =
1
2n (2.1)

with n being the number of rounds we repeat this same experiment.

It is important to highlight that most of the traditional proofs are safe when assuming an

attacker with bound computational resources, meaning someone with enough computa-

tional power could convince the verifier of a wrong statement.

2.2. Multi-Party Computation

Diving now into the 2nd building block of the approach here being explored we have

Multi-Party Computation, another cryptographic primitive that allows for multiple parties

to jointly compute one or more functions over their private set of inputs without revealing

any actual individual input.

The primary advantage of this technique is then to enable executing a function f (x) in

a private fashion, meaning we can run it like f (x1, x2, x3) where each xi comes from a

different participant, so that all of the 3 participants end up with the output of f but none

knows any other input besides their own.

2.2.1 Additive Secret Sharing

Now, although there are many ways to accomplish MPC, the one we’ll be focusing on is by

using a property called additive secret sharing. Additive secret sharing is a cryptographic

technique used to divide a secret (SHARE) x into n secrets (for n participants to compute

on), or shares, so that only specific subsets of these shares can reconstruct (UNSHARE)

the original secret.

FCUP 6

Zero Knowledge Proofs with MPC-in-the-Head

Take into consideration the secret value x = 15, if we break it into x1 = 5, x2 = 7, x3 = 3we

manage to break it in such way that no party knows the original value and we can easily

reassemble it and have x1 + x2 + x3 = x(15). With these kinds of shares we manage

to perform regular computations (like adding, multiplying, dividing and subtracting) while

preserving the original secret.[4]

These kind of mechanisms are possible due to the fact that we’re working in a fixed field

Zr (r, the range of the field, being usually a large prime for arithmetic circuits and 2 for

boolean circuits).

Algorithm 1 SHARE(x)
Require: r ≥ 0

x1 ← rand(r)
x2 ← rand(r)
x3 ← y− (x1 + x2)mod(r)

Return→ (x1, x2, x3)

Algorithm 2 UNSHARE(x1, x2, x3)

Return→ (x1 + x2 + x3)mod(r)

This way we ensure we get the same values as when calculating with the original secrets

but having the guarantee that the original secrets, each party’s input and intermediate

values stay private.

While addition operations may be quite simple (as for the associative trait of addition),

things can escalate in complexity when we’re dealing with operations like multiplication

(as for their distributive trait). The example pictured in 2.2 describes a simplemultiplication

between 2 inputs x and y and unrolls as such:

1. We first break both private values (x, y) each into 3 shares for each of the 3 partici-

pants (P1, P2, P3) which makes x× y is the same as (x1 + x2 + x3)× (y1 + y2 + y3).

2. Then, due to the distributive character of traditional multiplication, we’ll end up with

parts like x1y2, which no party can compute by themself as no one owns shares of

other parties. As such, each party sends their shares to the next one.

3. Finally, after the product is computed by each party, the resulting shares of the

operation are fed into the UNSHARE function to reassemble it into the actual output.

FCUP 7

Zero Knowledge Proofs with MPC-in-the-Head

In this scenario it is noticeable that even though parties are communicating between them

they are never able to reconstruct the original secrets as everyone will always still be

missing one final pair of shares.

Figure 2.2: Example of a MPC multiplication

To be able to safely perform these, when drafting a MPC protocol we need to ensure 2

key properties:

1. Correctness: A protocol is correct if and only if the probability of the function com-

puted through MPC outputing the same as if normally computed is 1:

Pr[f (x) = MPC(f , x)] = 1 (2.2)

2. d-Private: An MPC protocol is d-private, if there exists a possibility for someone to

simulate a party’s view of the execution without knowing the secret. Meaning the

real execution never reveals any information about the secret and that it is safe to

d− 1 corrupt parties, meaning it can only be subverted if all d parties were to collude.

Then, the level of complexity and additional concerns can vary according to the chosen

assumption on the parties’ behaviour. We have 2 different assumptions on malicious

behaviour:

• Active: we assume that a malicious actor or corrupt party can behave freely to try

and corrupt the protocol by obtaining additional information.

• Semi-honest: we assume that parties will properly follow the protocol but they still

might be curious and try to infer additional information by looking into the exchanged

messages.

By assuming a semi-honest perspective, one concern we have is that of introducing ran-

domnesses r1, r2, r3 in the messages send between parties in such way that they mask

FCUP 8

Zero Knowledge Proofs with MPC-in-the-Head

the value being sent but also r1 + r2 + r3 = 0 thus ensuring they do not impact the com-

putation of f .

2.3. MPC In-The-Head

Taking the previous section we now look into the ”in-the-head” concept, an approach that

simply put is a technique that resorts to the assurances of traditional MPC protocols to be

able to simulate this process locally and still guarantee that:

• Each of the generated views, by themselves, do not reveal any information about

the original secret(s) (Zero Knowledge Property).

• All of these same views can not be consistently created without knowledge of the

original secret(s) (Soundness Property).

This way, the goal of integrating this approach with traditional ZKPs will be to have the

prover generate a set of views of a simulatedMPC protocol and have the verifier challenge

this by opening a subset of these. Like in the above mentioned ”The Strange Cave of Ali

Baba”, there is still a slim chance of the prover to get lucky and being able to forge one

of the chosen views, however, as it is not possible to forge them all (given the soundness

property abovementioned), themore this experiment is repeated, the slimmer the prover’s

odds to fool the verifier become.

2.4. Bristol Circuits

Bristol Circuits are the final building block to be able to assemble the implementation

described ahead.

Circuits are used to illustrate MPC computations by offering a formal representation of

the computations to be performed by the participating parties. Usually defined as a DAG

(Directed Acyclic Graph) where nodes represent computational operations (Gates) and

edges the flow of data between these operations (Wires). This representation when well

structured offer us safety guarantees for both the inputs and the operations being per-

formed, allowing for each and every function f to be presentable into an admissible ver-

sion of MPC.

The way we chose to present these circuits is by using the Bristol Format, one of vari-

ous acceptable ways of describing circuits in text formats, and taken as a standard, that

traditionally follows the below mentioned structure:

FCUP 9

Zero Knowledge Proofs with MPC-in-the-Head

• A Header, composed by:

– A line defining the number of gates and then the number of wires in the circuit.

– Then two numbers defining the number n1 and n2 of wires in the inputs to the

function given by the circuit (usually Bristol Format will describe a function with

arity 2).

– Then on the same line comes the number of wires in the output n3.The wires

are then ordered so that the first n1 wires correspond to the first input value,

the next n2 wires correspond to the second input value. The last n3 wires

correspond to the output of the circuit.

• The body, composed by a list of gates defined by:

– Number input wires.

– Number output wires.

– List of input wires (indexes).

– List of output wires (indexes).

– Gate operation.

So given the above mentioned structure, we can have a simple logic circuit turn into an

easily parsed text file like this:

Figure 2.3: Example on how to convert a simple boolean circuit to the bristol format

In this specific report however, we’ll be dealing with Bristol Fashion Circuits, a newer,

more modern and tidier format proposed by professor Nigel Smart [5] that adapts the

syntax to accommodate for more complex operations and generic problem solving. The

new format differs from the old one by changing the header to have 2 new fields:

FCUP 10

Zero Knowledge Proofs with MPC-in-the-Head

• The number of input values niv (e.g. if doing z=a+b mod p we have niv=3, one input

each for a, b and p). Followed by niv sizes (in wires) respective to the number of

inputs.

• The number of output values nov (e.g. if doing z=a+b mod p we have nov=1, cor-

responding to z). Followed by nov sizes (also in wires) respective to the number of

outputs.

This format allows for the creation of functions with multiple outputs such as MANDs (mul-

tiple AND gate that takes 2n input wires and produces n outputs result of the application

of the traditional AND to each pair of input wires) making circuit definition more concise

and execution way more efficient.

2.5. Private Set Membership

Set membership is the problem of checking whether an element belongs to some private

set S without disclosing which element it is.

It manifests in a vast amount of contexts, mostly in applications with large datasets where

efficiency and privacy (either of S or a given element x ∈ S) are at stake. Some examples

are scenarios where someone needs to prove citizenship, like a Bank proving to regulators

a new client is citizen of a given country. In this scenario the list of citizens might be public

but the bank might not want to disclose information that identifies the client himself.

More recently this problem has also emerged in the blockchain context mainly in cryp-

tocurrency design to track the Unspent Transaction Outputs (UTXO2)[6].

In the context of the proposed use case, of proving citizenship of a given country, this

problem reflects as a citizen proving he belongs to a given set S of a country’s population

without disclosing any information about himself. For this scenario, where we deal with

large datasets that aim to represent an entire population worth of data, 2 concerns arise

about both scalability but also privacy.

2.5.1 RSA Accumulators

RSA Accumulators represent a promising way to prove PSM in an efficient and computa-

tionally cheap fashion. The way this technique approaches this problem is by representing

2A set containing all the coins that haven’t been already spent and are therefore eligible to be spent in a

new transaction

FCUP 11

Zero Knowledge Proofs with MPC-in-the-Head

the set publicly as an accumulator A of its elements. So that:

A← G∏n
i=1 ei modN (2.3)

Where G is a generator fromZ∗N that represents the ring of non-negative elements modulo

N and ei primes belonging to the ring.

From here, we know that a prover P knows an element x ∈ S iff he knows a witness W

so that We
i = A. However, this approach is not enough to ensure the correctness of the

proof as a malicious party might simply use W = n
√

A, thus being able to easily compute

A without necessarily knowing an element of the set.

That’s where Pedersen Commitments3 become handy. By having the prover ensure that

he commits the element he knows into a public Pedersen commitment, then we ensure

the locking and blinding of the proof, guaranteeing a proper trust-worthy execution. The

proof will then consist in proving knowledge of (ei, W, r) such that:

A = Wei modN ∧ Ce = gei hr ∈ G (2.4)

Where G is the group of prime order where the element ei is committed and g and h 2

generators of the said group.[6] In this way, we ensure an efficient way of proving PSM in

ZK as described in the work of Camenisch and Lysyanskaya [7], who managed to design

a ZKP protocol that follows this approach.

3Pedersen commitments are a type of cryptographic commitment scheme that allow a party to commit

to a value without revealing it. They are based on the discrete logarithm problem and offer strong security

properties.

FCUP 12

Zero Knowledge Proofs with MPC-in-the-Head

3. State of the Art

In this chapter we’ll deep dive over the evolution of related works over the past 10 years,

analyse the contributions introduced by every new protocol and how that helped shape

future work.

3.1. ZK-SNARKS

SNARKs (Succint Non-Interactive Argument of Knowledge) are proof systems designed

to efficiently prove integrity of results for large computations.

By breaking down this system’s name we get the following definitions that already paint

us a picture on the way these proofs work [8]:

• Succint: the size of the proof is very small compared to the size of the statement or

the witness (the size of the computation itself e.g.).

• Non-Interactive: a concept already covered that means it does not require multiple

rounds of interaction between the prover and the verifier.

• ARgument: meaning it is assumed to be secure only for provers that have bounded

computational resources, whichmeans that provers with enough computational power

can convince the verifier of a wrong statement.

• Knowledge (bound): meaning it is assumed to be impossible for the prover to con-

struct a valid proof without knowing a certain witness for the statement.

One of the disadvantages of these proof systems is the need of a trusted setup phase to

safely exchange the keys involved in the proof generation and validation.

By introducing the ZK concept in SNARKs, we can add a ZK property that enables the

proof to be done without revealing anything about the intermediate steps. These new

systems, called ZK-SNARKs, can preserve the original ones properties while eliminating

the risk of privacy breaches during setup.

A traditional ZK-SNARK can so be described using 3 algorithms[8]:

• Gen is the setup algorithm, generating a necessary string crs used later in the prov-

ing process as a public binding parameter and some verification key vrs, sometimes

assumed to be secret to the verifier only. It is typically run by a trusted party.

FCUP 13

Zero Knowledge Proofs with MPC-in-the-Head

• Prove is the proving algorithm that takes as input the crs, the public statement u and

a secret witness w and produces the proof π.

• Finally, Verify takes the verification key vrs, the statement u and the proof π as an

input and returns True or False.

3.2. ZK-STARKs

This new approach (Zero-Knowledge Scalable Transparent Arguments of Knowledge)

follows a transparent proof system that enables for efficient verification while maintaining

privacy. These systems differ from standard ZK-SNARKs for the ability to be either inter-

active or non-interactive, and they improve on the traditional proof system in the following

fields [9]:

1. Transparency:

• ZK-SNARKs require a trusted setup which involves a phase to generate and

share public parameters generated with non-public randomness. This lack of

transparency constitutes a single point of failure as if this is compromised the

security of the whole system can be as well.

• ZK-STARKs on the other hand are completely transparent and do not require a

trusted setup phase, making themmore robust again vulnerabilities associated

with these trusted step processes.1

2. Proof Size and Verification Time

• ZK-SNARKs produce rather shorter proofs when compared with ZK-STARKs

(around 1000 times smaller) allowing for quite quick verification times.

• ZK-STARKs generate larger proofs, often several megabytes long, but these

can be verified in a time-efficient manner, making them way more scalable.

3. Computational efficiency: Due to the cryptographic techniques use by ZK-SNARKs,

their generation can usually be quite more computationally intensive when com-

pared with ZK-STARKs.

4. Practical Applications:

1ZK-STARKs are designed to have verification times that are often smaller than the naive running time

of computations since they manage to have the complexity of the verifier bein independent of the prover’s

complexity

FCUP 14

Zero Knowledge Proofs with MPC-in-the-Head

• ZK-SNARKs are widely used in applications requiring short proofs such as

privacy-preserving cryptocurrencies (Zcash e.g.).

• ZK-STARKs on the other hand represent a promising alternative for decen-

tralised systems that require scalability and transparency.

3.3. ZKBoo

ZKBoo, first mentioned in ”ZKBoo: Faster Zero-Knowledge for Boolean Circuits” by Irene

Giacomelli, Jesper Madsen and Claudio Orlandi [10] describes a proposal for practically

efficient ZKPs especially optimised for Boolean circuits (although it can be adapted to

arithmetic ones as well, as it is a general purpose protocol). It leverages the MPCitH

approach, enhancing the practicality of zero-knowledge proofs.

This innovative approach constitutes a generalization of the IKOS (Ishai et al. acronym)

protocol by extending it into enabling faster Σ-protocols2 suitable for various soundness

parameters. In addition to this, it also dables in function decomposition introducing a sim-

plified method for achieving linear decompositions for arithmetic circuits, aiding in the con-

struction of more efficient ZK protocols. This leads to the above-mentioned outstanding

performance benchmarking with experimental results indicating that ZKBoo outperforms

existing systems like Pinocchio and ZKGC in proving times, especially for practical circuits

such as SHA-1 and SHA-256

This is a non-interactive protocol (meaning it can be executed with only 1 exchange, and

does not need back and forth communication) that takes the approach to ZK proposed by

Ishai et al. (IKOS construction [11]) as a strating point and uses MPCitH to increase its

efficiency and performance in a prover/verifier protocol.

This protocol is designed to deal with statements of the structure ”I know x such that

y = φ(x) holds, where φ is a public circuit and y a public value. The way this works is by

following the below described structure for a prover P and a verifier V.

In the figure 3.1 we can observe that for the public parameters C, a public boolean circuit

that represents a function f , and y a public output, usually an expected output we have a

prover P who wants to show that she knows a x for which f (x) = y with y being a public

value. To achieve this, she’ll follow the following approach:

2ASigma (Σ) protocol for L is a 3-move public coin interactive proof system that allows a prover to convince

a verifier that he knows a witness w of a public instance x without disclosing w.

FCUP 15

Zero Knowledge Proofs with MPC-in-the-Head

1. P will run f in MPC, using the secret input x and breaking it into 3 shares (we’re

assuming MPC with 3 different parties).

2. By playing the role of these 3 parties, P will generate 3 different individual views

of what each of this fictitious parties would ”watch” in a real MPC scenario. (As

previously stated, none of these views will reveal any information about x and it is

impossible to generate them consistently without knowing x).

3. After generating these, P will commit these 3 views by hashing them3 and send

them to the verifier V, locking the generated views and giving V the guarantee that

those won’t be able to be changed without V noticing.

4. V then chooses an index e ∈ 1, 2, 3 so that P opens the commits e and e + 1.

5. P then sends them the opened commits (the original views).

6. Finally V accepts the proof iff:

(a) The received views are consistent with the commits (Hash(views) = commits).

(b) He can reconstruct the MPC execution described in viewe+1 using the views

he got.

(c) UNSHARE(final shares) = y.

Figure 3.1: Illustration of the execution of ZKBoo[10]

Imagine now, that we want to prove that we have a private key pk used for digital signa-

tures. In this scenario, f (pk) would consist in creating a digital signature and verifying its

3Thus ensuring the blinding property that guarantees the commitments do not reveal any information from

the views

FCUP 16

Zero Knowledge Proofs with MPC-in-the-Head

validity using a public key integrated in the circuit. In this scenario, proving f (pk) = true

means a valid signature was produced.

While ZKBoo exhibits a linear scaling of proof size with circuit complexity, its verification

times are comparable to SNARKs, and the proving process is significantly faster—up to

1000 times quicker than some traditional methods.

Despite all of the mentioned advantages, ZKBoo’s proof sizes increase quite a lot with

circuit complexity, which may be a trade-off in certain applications with large datasets.[10]

3.4. NIZPoK

Non-Interactive Zero-Knowledge Proofs of Knowledge (NIZPoKs) are a rather modern

and innovative approach proposed by Jonathan Katz, Vladimir Kolesnikov and XiaoWang

(KKW) back in 2018 that leverages on symmetric-key primitives, enhancing both security

and efficiency. It refines the previously introduced concept of MPCitH enabling the gen-

eration of way shorter proofs while maintaining computational efficiency.

This protocol applies a 5-round public-coin proof of knowledge, which can be compressed

to three rounds 4 while retaining zero-knowledge properties. This facilitates the creation

of NIZKPoKs for arbitrary circuits where the Prover simulates an MPC execution of these

same circuits. This technique is designed to help manage circuit complexities while en-

suring security against both honest and malicious verifiers.

This proposed protocol shows rather significant improvements when compared to proto-

cols that came before it, such as ZKBoo, particularly when it comes to proof length and

efficiency. As such, the advances proposed in the original article position NIZKPoKs as

a noteworthy contribution in the still evolving world of ZKPs in particular for post-quantum

applications.[12]

3.5. Ligero

Ligero represents a novel zero-knowledge argument protocol for NP problems, which

innovatively reduces communication complexity to the square root of the verification circuit

size.

This protocol stands out due to its concrete efficiency and reliance solely on black-box

symmetric-key primitives, specifically collision-resistant hash functions. Unlike some of

4A public-coin proof of knowledge is a cryptographic protocol that allows a prover to demonstrate knowl-

edge of a secret (or witness) to a verifier in an interactive manner. This type of proof is characterized by its

use of public coins, where the verifier’s challenges are made using random values that are publicly available.

FCUP 17

Zero Knowledge Proofs with MPC-in-the-Head

the previously mentioned protocols, Ligero does not require any trusted setup or complex

public-key operations, making it accessible for practical applications.

Some of Ligero’s most significant contributions and innovations include:

• Sublinear Communication: Ligero achieves communication complexity that is pro-

portional to the square root of the size of the verification circuit, which is a significant

improvement over prior protocols that often had linear or worse complexities.

• Use of Symmetric-Key Primitives: Ligero exclusively employs symmetric-key tech-

niques, which simplifies the implementation and reduces potential vulnerabilities

associated with public-key cryptography as well as communication overhead.

• Concrete Efficiency: The authors of the original paper (Ames et al.) provide an

implementation demonstrating the protocol’s efficiency, particularly in scenarios re-

quiring multiple evaluations of the same NP verification circuit, thereby improving

amortized communication and verification times (see 3.2).

• Lightweight Design: The protocol is designed to be lightweight, making it suitable for

applications with limited computational resources while still maintaining robust se-

curity features (like privacy preserving cryptocurrency or blockchain technologies).

• Optimised to deal with multi-instance complexity: In multi-instance settings, Ligero

shows enhanced performance, allowing for efficient verification of several instances

of NP problems simultaneously.

Figure 3.2: Prover and verifier running times for verifying a single instance of different

circuit sizes

FCUP 18

Zero Knowledge Proofs with MPC-in-the-Head

As such, Ligero is currently positioned as a really fierce competitor when faced against

earlier works regarding prover running time, especially when dealing with larger verifica-

tion circuits, representing itself as a significant advancement in the ZK arguments field,

however, all of this efficiency comes with some associated costs such as[13]:

• Design complexity: Ligero’s design is more intricate than most protocols, which can

complicate implementation and understanding for developers and researchers.

• Communication complexity: Although Ligero achieves sublinear communication com-

plexity, this efficiency diminishes for smaller circuit sizes. For circuits smaller than 3

million gates, the communication complexitymay not outperform simpler approaches

(making it hard to scale).

• Prover and verifier performance: While Ligero demonstrates competitive prover run-

ning times for large verification circuits, the prover’s overhead is logarithmic in rela-

tion to the circuit size, which can constitute a disadvantage in scenarios that demand

quick proof generations.

• Limited Flexibility: Ligero is optimised for specific applications such as verifying SHA

preimages. In these contexts its performance is quite robust, but in more gener-

alised protocols this performance usually gets limited.

FCUP 19

Zero Knowledge Proofs with MPC-in-the-Head

4. ZKBoo and Circuit Generation

In this section we’ll go over 2 key aspects of the final implementation, both ZKBoo’s prover

and verifier scheme and the Bristol Circuits generation and how it works in MPC (for both

boolean and aritmetic implementations).

4.1. ZKBoo

As previously described, ZKBoo is a ZK protocol optimised for Boolean Circuits (even

though it can be adapted to be general purpose) that utilises a commitment-hybrid model,

this is a property derived from using MPC techniques, a commitment-hybrid model inte-

grates the concept of commitments with the functionality of secure computation, enabling

parties to collaboratively compute a function while maintaining the privacy of their inputs

to enhance efficiency.

The way this protocol works is by having 3 different phases (when in an interactive form):

1. Commit Phase: The prover (P) samples random tapes 1 and runs, in an MPC fash-

ion, the specific computation described by the public circuit. Then, P generates n

views (that reflect each of the parties’ view over their own execution of the circuit)

and commits them by using a computationally strong cryptographic function (usually

SHA-256) sending those, after, to the verifier (V)

2. Challenge Phase: V randomly selects an index i challenging P to reveal 2 of the

commitments (i and i + 1) corresponding to the views with the same indexes.

3. Verification Phase: Finally, V receives the views (or openings) from P and accepts

the proof by running 3 different checks: Consistency Check, Execution Check and

Expected Result Check (as mentioned in ??).

This patter of communication classifies as a Σ- protocol, ensuring, by definition, the fol-

lowing key properties:

• Completeness: If both P and V are honest and y ∈ L then Pr[(P, V)(y) = accept]

= 1.
1These tapes are a way to separate the randomness from the rest of the process making it deterministic.

this will later be used to allow us to repeat processes that are, otherwise, probabilistic

FCUP 20

Zero Knowledge Proofs with MPC-in-the-Head

Figure 4.1: Communication pattern of a Σ-protocol

• s-special soundness: This property implies a bound of
(s−1)

c on the soundess error

(with c being the cardinality of the choice set, in this case, 3) of the protocol.

For this communication to take place, the first step is exactly to sample the n tapes for the

n fictitious parties simulating the MPC execution.

As such, the first concept to be studied and implemented on this work was exactly MPCitH,

starting with Additive Secret Sharing.

4.2. Proof Creation (Bristol Circuits + MPCitH)

As previously stated, the circuit syntax here used was a modern twist on traditional Bristol

Format called Bristol Fashion[5].

For our use case, we need to represent a relation R(x) that reflects the knowledge of

preimage of HASH(x). As such, for a set S of n elements, we want our circuit to verify

if we know one of the n−many preimages of a set C of hashes, meaning it will hash the

input and repeatedly test it against every hash of the commitment group returning True if

it matches with any of the values being compared.

FCUP 21

Zero Knowledge Proofs with MPC-in-the-Head

Figure 4.2: Small illustrative example of a circuit that follows the mentioned approach

The chosen approach was so to represent each party using a Map<Integer,Integer> so

that we were able to dynamically had indexes that didn’t necessarily exist yet. By doing

this we would always ensure that as long as we ordered the secret sharing positions in the

map by their key we’d be able to have every party index aligned and ensure for a smooth

computation with their keys acting as indexes.

This leaves us the ability to quickly perform operations with the gate information we can

read from the circuit like so:

1 public class Circuit{

2 (...)

3 private void AddOp (int w1_index, int w2_index, int w3_index){

4 p1.add(out_index, (p1.get(w1_index)+p1.get(w2_index))%module);

5 p2.add(out_index, (p2.get(w1_index)+p2.get(w2_index))%module);

6 p3.add(out_index, (p3.get(w1_index)+p3.get(w2_index))%module);

7 }

8 (...)

9 }

Whilst the above mentioned approach may look quite simple even when executing in

MPC, operations with communication involved can be slightly trickier, as it requires ran-

domness generation to mask the sent shares but also operation decomposition.

Take a look at the case of the AND operation, if we look into this operator’s truth table

FCUP 22

Zero Knowledge Proofs with MPC-in-the-Head

it becomes apparent that in the field Z2 this operation works the exact same way as a

regular multiplication. As such, having share(x) = (x1, x2, x3) and share(y) = (y1, y2, y3)

we have:

x ∗ y = (x1 + x2 + x3) ∗ (y1 + y2 + y3)

= x1y1 + x1y2 + x1y3 + x2y1 + x2y2 + x2y3 + x3y1 + x3y2 + x3y3

(4.1)

Shares like x1y2 involve communication between parties, in this case, from p1 to p2, as

such, we associate randomnesses per party (r1, r2, r3) leaving us with the following:

1 public class Circuit{

2 (...)

3

4 private void andOp(int w1_index, int w2_index, int out_index) {

5 int rand12 = gen1.nextInt(module);

6 int rand23 = gen2.nextInt(module);

7 int rand31 = gen3.nextInt(module);

8 p1.put(out_index,align(((p1.get(w1_index)*p1.get(w2_index)

9 +p1.get(w1_index)*p3.get(w2_index)

10 +p3.get(w1_index)*p1.get(w2_index)

11 +rand31-rand12) % module)));

12 p2.put(out_index,align(((p2.get(w1_index)*p2.get(w2_index)

13 +p2.get(w1_index)*p1.get(w2_index)

14 +p1.get(w1_index)*p2.get(w2_index)

15 +rand12-rand23) % module)));

16 p3.put(out_index,align(((p3.get(w1_index)*p3.get(w2_index)

17 +p3.get(w1_index)*p2.get(w2_index)

18 +p2.get(w1_index)*p3.get(w2_index)

19 +rand23-rand31) % module)));

20 }

21 (...)

22 }

Notice that the added randomness does not impact the calculations as when added up

(UNSHARE) everything adds up to 0, not influencing the result of the computations. No-

tice also that in both examples given, we add every operation result to each party’s tape.

This is necessary to introduce the above-mentioned concept of ”Trace”. Traces represent

the perspective from a single party from its own circuit execution. It represents the corner

FCUP 23

Zero Knowledge Proofs with MPC-in-the-Head

stone necessary to build the views and commitments (consequently). A Trace is defined

as such:

1 public class Trace{

2 private int seed;

3 private Map<Integer, Integer> shares = new HashMap<>();

4

5 public int getSeed() {

6 return seed;

7 }

8

9 public Map<Integer, Integer> getShares() {

10 return shares;

11 }

12 }

By providing the used seed in the randomness generation we’re able to replicate that

exact same randomness when verifying the proof and the protocol execution.

Once we have this Trace generated we can proceed with both the views and commits

generation. A commit will then be defined simply by hashing the originated view (plain

trace).

4.3. Proof Validation

Given the above-mentioned description on the prover stage with the circuit execution,

we get 4 files, 3 commit files and 1 file containing the final share from each party (not

committed). As such, now, on the verifier end we’ll choose one index i ∈ {1, 2, 3} so that

we can have access to the views i and i + 1.

Once we have access to this on the verifier side we’ll run 3 checks as mentioned before:

4.3.1 Consistency Check

This consistency check as explained in a previous chapter is obtained by applying the

follow steps:

FCUP 24

Zero Knowledge Proofs with MPC-in-the-Head

Algorithm 3 Consistency Check (View1, View2)

HashView1 ← SHA-256(View1)

HashView2 ← SHA-256(View2)

Return→ HashView1 == Commit1 ∧ HashView2 == Commit2

Here, we’re simply calculating the received view hash and comparing it with the corre-

sponding public commit. This serves to check if the view has been adulterated compared

to the moment it was first committed. It offers the verifier the insurance that the sent

execution, either trustworthy or not, has not been tampered with after creation.

4.3.2 Execution Check

This secondary check can be slightly trickier, its goal is basically to ensure that the given

2 views reflect a trustworthy execution of the public circuit being executed.

The idea here is to take the first n shares of the view i + 1 and populate them as input

for a new party (let’s call it pr) that will try to reconstruct pi+1 execution. It’s necessary to

have 2 views so we can perform the operations that require inter-party communication.

As such, after providing pr with pi+1 first n shares, we leave it as is until it is time to check

everything properly matches.

From there onwards we redo every step of the public circuit and fill the shares of pr using

the same randomness generated on the Prover’s execution and finally compare each and

every share of the the obtained new trace with the original pi+1 from the opened view.

Algorithm 4 Execution Check (Trace1, Trace2)

while i ≤ n do

pr ← Trace2.get(i)

end while

Reconstruct(c, pr, Trace1) . Were c is the public circuit in Bristol Fashion

Return→ pr == Trace2

4.3.3 Result Check

After running the previously mentioned checks, we check if the final shares provided by

the Prover add up to the expected result (True, or 1):

FCUP 25

Zero Knowledge Proofs with MPC-in-the-Head

Algorithm 5 Result Check(f inal1, f inal2, f inal3)

Return→ UNSHARE(f inal1, f inal2, f inal3) == 1

If this is the case we can then assume that the proof:

• Has not been tampered with.

• Reflects a trustworthy execution of the public circuit.

• The witness held by the prover holds for the relation we’re trying to prove, meaning

the Prover has indeed the knowledge to do so.

4.4. PSM

Having covered how the prover/verifier structure works and was implemented to ZKBoo

for basic boolean operations, it’s time to look at some proper circuits and focus on the

scope of the problem, proving private set membership.

4.4.1 Approach

As before-mentioned, the problem consists in proving, in ZK, belonging to a given set.

This represents the ability for a prover P to prove to a verifier V that he has ownership of

a witness w such as w ∈ S, S being a private Set.

As you were able to read in Chapter 3 there are many approaches to solving this problem,

but they all have one goal in common, to be modular, thus allowing them to easily build

up to different problems and protocols.

In this work we’ve decided to obtain benchmark results by following the ”naive” approach

where having the following:

• S the private set we’re trying to prove belonging.

• C a public commit group that is obtained by hashing private group S.

• x the piece of knowledge necessary to solve the problem. x ∈ S and it’ll be our

witness in assembling the proof.

With this parameters we basically want to prove knowledge of a pre-image that belongs

to C:

H(x) ∈ C (4.2)

FCUP 26

Zero Knowledge Proofs with MPC-in-the-Head

without (1) revealing x itself and (2) any additional information (like the index of C that x

corresponds to).

This is easily achievable by masking the comparisons between the generated hash with

each hash of the public commitment (ci) group like so:

¬(H(x)⊕ c1 ∧ H(x)⊕ c2 ∧ (...) ∧ H(x)⊕ cn) (4.3)

The above logical equation will evaluate to True iff x ∈ C. Now, to be able to feed this

approach to our ZKBoo implementation we have to represent into a circuit that performs

these operations on the bit level.

To be able to represent this into our protocol we’ll need to be able to hash input but also

add new operations that allow us to compare wires with fixed values (1 or 0) rather than

other wire indexes.

4.4.2 SHA-256 Circuit and New Operations

As mentioned above, our first requirement is to be able to perform hashing in ZK. As such

we’ve used an implementation by Nigel Smart et al. [5] where they define a circuit in their

new Bristol Fashion that takes a bit-string of size 512 (message input) and returns its

SHA-256 hash representation by using the set of boolean operations previously defined.

Then, to be able to compare every single output bit from the SHA-256 function with the

hashes in the public commit we created a brand new operation called XORI defined similar

to the previous ones with the following syntax:

• Number of Input Wires (always 2)

• Number of Output Values (always 1)

• Input Wire Index (can range from the any number in the wire range)

• Input Scalar Value (either 0 or 1)

• Output Wire Index

This leaves us with every necessary piece to assemble the final circuit that hashes and

compares a given witness with the hashes of a public commitment.

FCUP 27

Zero Knowledge Proofs with MPC-in-the-Head

4.4.3 Final Circuit Assembly

The problem in using a pre-existing circuit and building it into a new one is having to do

the math beforehand to predict how the circuit’s header is going to expand regarding both

number of gates and wires.

The new header will so have the following increments for n elements in the set:

• 511n wires and gates for the 1st comparison stage: as we need to compare 256

bits from the hash output with 256 bits from the set C, we end up having for each

comparison, 256 XORI gates + 255 OR Gates.

• n− 1 wires and gates for the conjunction stage: after the 1st stage comparison we

have to confirm that we’ve had 1 comparison turning back positive, as such we use

conjunctions to group every result from the 1st stage, leading to having additional

n− 1 gates and wires.

• 1 final gate and wire as this represents the inv gate we add at the end so we end up

with True for when x actually belongs in S.

That being said, the new header will always have an additional 512n gates and wires being

generated as such:

1 private static int putHeader(int count, FileWriter fw) throws IOException {

2 (...)

3 int finalWires = numWires + count*shift; // count = n and shift = 512

4 int finalGates = numGates + count*shift;

5 (...)

6 fw.write(finalGates + " " + finalWires + "\n");

7 fw.write(finalInput + " " + finalState + " " + finalKey + "\n"); // These

represent the input that'll be staying the same as we still just provide the

element we want to hash

8 fw.write(finalOut + " " + finalBOut + "\n"); //Output wires are simply 1

as we just want a 1 or a 0

9 (...)

10 }

11 }

From here we simply copy the whole hashing circuit so, given x as secret input it generates

its hash value. Then we add the first stage of comparisons as described above:

FCUP 28

Zero Knowledge Proofs with MPC-in-the-Head

1 private static void putCompare(int offset, int pivot, int i, FileWriter fw)

throws IOException {

2 String TBC = pubGroup.get(i);

3 // ADDING XORIS

4 for (int j = 0; j < 256; j++) {

5 fw.write(2 + " " + 1 + " " + (offset + j) + " " + TBC.charAt(j) + " "

+ (pivot + j) + " XORI\n");

6 }

7 // OFFSET and PIVOT after XORIS

8 int xorEnd = pivot + 256; // End of the XORI results

9 // ADDING OR gates iteratively

10 int orOffset = pivot; // Starting point for OR gates input

11 int orPivot = xorEnd; // Starting point for OR gates output

12 for (int step = 256; step > 1; step /= 2) {

13 for (int j = 0; j < step; j += 2) {

14 fw.write(2 + " " + 1 + " " + (orOffset + j) + " " + (orOffset + j

+ 1) + " " + (orPivot) + " OR\n");

15 orPivot++;

16 }

17 orOffset = orPivot - (step / 2); // Reset offset to the beginning of

the new layer of OR results

18 }

19 }

Finally we add the remaining AND gates and INV gate by applying the following algorithm

to take into consideration when the number of elements is pair or not:

1 while(finORS.size()>1){

2 int lIndex = finORS.remove(0);

3 int rIndex = finORS.remove(0);

4 finORS.add(pivot);

5 fw.write(2 + " " + 1 + " " + lIndex + " " + rIndex + " " + (pivot) +

" AND\n");

6 pivot++;

7

8 }

9 fw.write(1 + " " + 1 + " " + (pivot-1) + " " + pivot + " INV\n");

FCUP 29

Zero Knowledge Proofs with MPC-in-the-Head

Once this script is executed for a given public commitment set of 256-long bit strings, we

can feed it into the previously described implementation of ZKBoo and have the protocol

run normally.

Taking this into a proper scenario, we can observe how a circuit grows for an increasing

number of elements in a set S.

n Gates Wires

1 135585 136353

2 136097 136865

5 137633 138401

10 140193 140961

20 145313 146081

50 160673 161441

100 186273 187041

200 237473 238241

500 391073 391841

1000 647073 647841

10000 5255073 5255841

Table 4.1: Circuit Size for an increasing number of group elements

Note that the additional elements lead to an increase in the width of the circuit rather

than the depth of it, meaning it can be parallelized to make the execution faster and more

scalable.

FCUP 30

Zero Knowledge Proofs with MPC-in-the-Head

5. Experimental Results

As previously mentioned, in this chapter we’ll analyse the obtained results of the imple-

mented instances of ZKBoo and PSM circuits and conclude on their suitability and how

far these are to a real world application.

For a real world application we would expect for a fast protocol time, for both proving and

verifying stages, that works with small and easily updatable general-purpose circuits (to

reflect the forever changing character of a set in the PSM problem).

Inserting the instance in the context of the proposed use case, we can state that S repre-

sents the list or database containing all citizens of a given country (let’s assume this list is

represented by every national ID number of every citizen), x the individual aiming to prove

citizenship and finally we mean to prove that x ∈ S in the ZK fahion above described, so:

H(x) ∈ C (5.1)

Where H represents the chosen hash function and C the public commitment group ob-

tained by hashing each element of S.

When tackling a real world use case it’s necessary to try and establish some constraints

that reflect and frame the experimentation into an accurate (or scaled down) version of

the reality.

In 2023, the average population per country in the world was 40.69 million, ranging from

1428.63 million people in India to 764 people in Vatican, as such, given the benchmark

and ”naive” approach followed in this implementation, we’ve decided to obtain results up

to n = 10000 as we’ve consider this to be a good scaled down threshold to represent quite

small countries but also because with the intermediate values we believe we’re reflecting

some additional use cases’ reality (like access control systems for some medium/large

companies).

In the following sections we’ll evaluate performance in 2 different stages:

• Offline Stage: This stange involves the preparation necessary for the proof to be

built, in this case, the pre-computation of the public circuit that we’ll be applying our

secret input x that represents our national ID in the use case context.

FCUP 31

Zero Knowledge Proofs with MPC-in-the-Head

• Online Stage: We refer to online stage, the stage of the protocol that ”requires”1

communication between the prover and the verifier.

In this experiment we’ve considered the following setup:

• Device: Macbook Pro 14” 2021

• CPU: Apple M1 Pro

– 10-core CPU

– 16-core GPU

– 16-core Neural Engine

• Language of Choice: Java

• Java Compiler: javac 17.0.6

• Java Version: OpenJDK 17.0.6

And for each value of n, performed 10 measurements, taking the average as a represen-

tative value for each of the set’s sizes, regarding:

• User Time, that represents the elapsed time that the generation runs in ”user mode”

without needing to access the underlying hardware.

• System Time which represents the elapsed time where accessing the underlying

hardware is a necessity.

• Line Count (this one being constant regardless of the amount of measurements)

5.1. Offline Stage

In this stage we’ve obtained the below mentioned metrics for the following values of n:

1as ZKBoo can be made non-interactive as previously mentioned

FCUP 32

Zero Knowledge Proofs with MPC-in-the-Head

N User Time (s) System Time (s) Line Count

1 0,33 0,06 135589

2 0,32 0,04 136101

5 0,30 0,06 137637

10 0,32 0,05 140197

20 0,32 0,04 145317

50 0,34 0,07 160677

100 0,34 0,05 186277

200 0,38 0,06 237477

500 0,45 0,06 391077

1000 0,48 0,05 647077

10000 1,12 0,15 5255077

Table 5.1: Experimental results on circuit generation

We can easily notice that even following the naive approach, the produced results show

some promising metrics, representing a linear growth with a really small growth factor,

meaning that the instance of the circuit generator has a relative useful performance for

even large sets, taking around 54 minutes to generate a circuit with an entire country’s

population ID (given the above mentioned average). Keep in mind that in the proving

context, this can be considered a 1 time step as this public circuit does not need to be

computed by any of the parties involved in the protocol.

Now, let’s take a look at the experimental results regarding the generated circuit’s size:

N Size(MB)

1 3,6

2 3,6

5 3,6

10 3,7

20 3,8

50 4,2

100 4,9

200 6,3

500 10,3

1000 17,1

10000 147,8

Table 5.2: Experimental results on the generated circuit’s size

FCUP 33

Zero Knowledge Proofs with MPC-in-the-Head

As you can notice, although the size of the generated circuits also grows linearly, the

growth factor in this case is quite bigger than in the circuit generation times. Taking this

into consideration, to the average population per country, we would have a circuit with

size around 57GB, making it quite large to be processed by the Prover and the Verifier

and leading to rather slow proof times.

Some optimisations would offer some great improvement when addressing this size issue,

such as:

• The use of MAND gates (described before, aggregate multiple AND gates into a

single one).

• Using RSA Accumulators, that describe more complex yet less numerous compu-

tations, leading to shorter public circuits.

Looking now into the context of the problem where a citizen group is constantly changing

for a variety of reasons, we can conclude with quite some level of confidence that the

performance hereby demonstrated allows us to generate a daily circuit for proving citi-

zenship. However, this also rises the need to optimise the generation of these to build

them into smaller and more manageable files.

5.2. Online Stage

5.2.1 Prover

For the prover side of the communication we’re measuring the performance on the pro-

cess of:

1. Executing the Public Circuit and generating 3 Views with the traces of the 3 ficticious

parties (heaviest part of the protocol as it involves running and recording the whole

circuit execution)

2. Commiting these 3 views by hashing them and writing them into a file.

3. Opening 2 of these 3 commits.

4. Filesystem accesses that reflect the simulated ”communication” between prover and

verifier as al the ”sent” information is simply written down in files to be later picked

up.

FCUP 34

Zero Knowledge Proofs with MPC-in-the-Head

For this stage we’ve obtained the following results:

N User Time (s) System Time (s)

1 0,99 0,08

2 1,04 0,09

5 0,98 0,07

10 1,00 0,08

20 1,01 0,07

50 1,03 0,09

100 1,20 0,09

200 1,33 0,11

500 1,86 0,16

1000 2,56 0,20

10000 15,98 1,22

Table 5.3: Experimental results on the prover stage

It is noticeable that once again, we’re before a linear progression, this time however one

with a quite rapid growth with a factor of 1, 50E−3, leading to a proof generation time of

around 16 hours for a group with n = 4690000 elements. It is worth noting, however, that

for smaller datasets it actually performs quite well, taking only 2,56 seconds for a group

with n = 1000 elements, making this a suitable approach for smaller countries such as

the Vatican.

Some improvements that might help scale this approach into a more suitable one for big

countries pass through:

• Shortening the circuit’s size: by applying some of the improvements previously men-

tioned, we ensure smaller circuits and consequently smaller MPC executions, which

lead to shorter and faster proofs.

• Using concurrent computation: by working with threads and computing in parallel,

we enhance both performance (by taking better advantage of the CPU’s usage and

of the available computing power) as well as scalability (threads can be dynamically

created and managed to efficiently utilise available resources, thus facilitating appli-

cation scaling). We know that this work can be parallelised for as we saw in 4, the

circuit grows essentially wider and not deeper.

FCUP 35

Zero Knowledge Proofs with MPC-in-the-Head

5.2.2 Verifier

Finally, on the verification stage of the communication we’re measuring the performance

on the process of:

• Picking an index i ∈ {1, 2, 3}.

• Checking view consistency by hashing the views and comparing them to the original

commits.

• Reconstructing the MPC execution resorting to the 2 opened views for 1 party only

(heaviest part of the process as this involves reconstructing the whole circuit with

the 2 provided views).

• Reconstruct the final shares to check if the obtained result is the expected one.

Our intuition here is that in this stage, has less computation cost than the proof assembly

stage as we’re reconstructing the execution just for 1 party and we do not need to break

the secrets into shares.

N User Time (s) System Time (s)

1 0,78 0,06

2 0,79 0,08

5 0,78 0,07

10 0,77 0,05

20 0,78 0,06

50 0,86 0,07

100 0,87 0,06

200 1,01 0,08

500 1,39 0,12

1000 2,19 0,19

10000 14,60 0,87

Table 5.4: Experimental results on the verifier stage

Now although these results exhibit a quite similar behaviour as on the prover stage, we

can notice a tendency to grow slower, making it more efficient with a smaller growth fac-

tor, leading to a verification time of around 1:48 hours for the average country population,

FCUP 36

Zero Knowledge Proofs with MPC-in-the-Head

making it still not quite viable for real world scenarios of the proposed use case but defi-

nitely less costly than building the proofs themselves.

5.3. Comparison

Given the above mentioned experimental results, when putting side by side each of the

three stages involved in this proof we get:

Figure 5.1: Time spent on each stage for 0 ≤ n ≤ 10000

Through the chart represented in 5.1 it becomes apparent that even though this approach

might be fit for small datasets, as n grows, the online stage’s efficiency takes linearly more

time to be executed, making it a good system for use cases with smaller sets, like privilege

accesses in a file system or for resource accesses in an infrastructure, but not ideal for

contexts with really large datasets as the proposed use case.

FCUP 37

Zero Knowledge Proofs with MPC-in-the-Head

6. Conclusion and Future Work

In this final chapter, we’ll look atthe results exposed in 5, conclude over its suitability in

real world use cases like the one proposed in the beginning and finally understand what

future work on this topic would look like taking the work described in this report as a

starting point.

As the work described in this report reflects a benchmark ”naive” approach, it represents a

good starting point to develop upon and experiment with more refined approaches, having

a collection of protocols and optimisations, comparing their performance and conclude on

their suitability to understand the best use cases for each chosen approach.

A proposed approach to follow up the work here would then be:

1. Start by introducing the optimisations described in 5 to have smaller proofs and

fastest proving and verifying stages.

2. Experiment and instantiate more modern and intricate approaches like Ligero or

KKW.

3. Compare the obtained results with the ones obtained in this benchmark, thus mea-

suring the efficiency of the introduced optimisations.

4. Build the protocol into an actual application and test its suitability on an actual real

world scenario (like a digital ID wallet or an identity and privilege manager)

FCUP 38

Zero Knowledge Proofs with MPC-in-the-Head

References

[1] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of

interactive proof-systems,” in Proceedings of the Seventeenth Annual ACM

Symposium on Theory of Computing, ser. STOC ’85. New York, NY, USA:

Association for Computing Machinery, 1985, p. 291–304. [Online]. Available:

https://doi.org/10.1145/22145.22178 [Cited on page 4.]

[2] J.-J. Quisquater, M. Quisquater, M. Quisquater, M. Quisquater, L. Guillou, M. A.

Guillou, G. Guillou, A. Guillou, G. Guillou, and S. Guillou, “How to explain zero-

knowledge protocols to your children,” in Conference on the Theory and Application

of Cryptology. Springer, 1989, pp. 628–631. [Cited on page 4.]

[3] ”Nico”, “Zero-knowledge proofs decoded: A simple intro,” 2023. [Online]. Available:

https://mightyblock.co/blog/zero-knowledge-proof/ [Cited on pages v and 5.]

[4] A. C. Yao, “Protocols for secure computations,” in 23rd annual symposium on foun-

dations of computer science (sfcs 1982). IEEE, 1982, pp. 160–164. [Cited on

page 6.]

[5] N. S. et al., “’bristol fashion’ mpc circuits.” [Online]. Available: https://nigelsmart.

github.io/MPC-Circuits/ [Cited on pages 9, 20, and 26.]

[6] D. Fiore, “Zero-knowledge proofs for set membership.” [Online]. Available:

https://zkproof.org/2020/02/27/zkp-set-membership/ [Cited on pages 10 and 11.]

[7] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to effi-

cient revocation of anonymous credentials,” in Advances in Cryptology—CRYPTO

2002: 22nd Annual International Cryptology Conference Santa Barbara, California,

USA, August 18–22, 2002 Proceedings 22. Springer, 2002, pp. 61–76. [Cited on

page 11.]

[8] A. Nitulescu, “zk-snarks: A gentle introduction,” Ecole Normale Superieure, 2020.

[Cited on page 12.]

[9] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transparent, and

post-quantum secure computational integrity,” Cryptology ePrint Archive, Paper

2018/046, 2018. [Online]. Available: https://eprint.iacr.org/2018/046 [Cited on

page 13.]

https://doi.org/10.1145/22145.22178
https://mightyblock.co/blog/zero-knowledge-proof/
https://nigelsmart.github.io/MPC-Circuits/
https://nigelsmart.github.io/MPC-Circuits/
https://zkproof.org/2020/02/27/zkp-set-membership/
https://eprint.iacr.org/2018/046

FCUP 39

Zero Knowledge Proofs with MPC-in-the-Head

[10] I. Giacomelli, J. Madsen, and C. Orlandi, “ZKBoo: Faster zero-knowledge for

boolean circuits,” Cryptology ePrint Archive, Paper 2016/163, 2016. [Online].

Available: https://eprint.iacr.org/2016/163 [Cited on pages v, 14, 15, and 16.]

[11] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Zero-knowledge from secure

multiparty computation,” in Proceedings of the thirty-ninth annual ACM symposium

on Theory of computing, 2007, pp. 21–30. [Cited on page 14.]

[12] J. Katz, V. Kolesnikov, and X. Wang, “Improved non-interactive zero knowledge

with applications to post-quantum signatures,” Cryptology ePrint Archive, Paper

2018/475, 2018. [Online]. Available: https://eprint.iacr.org/2018/475 [Cited on

page 16.]

[13] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero: Lightweight

sublinear arguments without a trusted setup,” Cryptology ePrint Archive, Paper

2022/1608, 2022. [Online]. Available: https://eprint.iacr.org/2022/1608 [Cited on

page 18.]

https://eprint.iacr.org/2016/163
https://eprint.iacr.org/2018/475
https://eprint.iacr.org/2022/1608

	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Report Outline

	2 Preliminaries
	2.1 Zero-Knowledge
	2.2 Multi-Party Computation
	2.2.1 Additive Secret Sharing

	2.3 MPC In-The-Head
	2.4 Bristol Circuits
	2.5 Private Set Membership
	2.5.1 RSA Accumulators

	3 State of the Art
	3.1 ZK-SNARKS
	3.2 ZK-STARKs
	3.3 ZKBoo
	3.4 NIZPoK
	3.5 Ligero

	4 ZKBoo and Circuit Generation
	4.1 ZKBoo
	4.2 Proof Creation (Bristol Circuits + MPCitH)
	4.3 Proof Validation
	4.3.1 Consistency Check
	4.3.2 Execution Check
	4.3.3 Result Check

	4.4 PSM
	4.4.1 Approach
	4.4.2 SHA-256 Circuit and New Operations
	4.4.3 Final Circuit Assembly

	5 Experimental Results
	5.1 Offline Stage
	5.2 Online Stage
	5.2.1 Prover
	5.2.2 Verifier

	5.3 Comparison

	6 Conclusion and Future Work
	Bibliography

