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A B S T R A C T   

The appealing properties of quantum dots (QDs) have drawn the scientific community’s attention, leading to 
extensive research on using these nanomaterials as sensing platforms for the detection and quantification of a 
variety of analytes in environmental, biological, pharmaceutical and food samples. Despite the multiple inven-
tive strategies that can be used to develop efficient QDs-sensing schemes, the defiant reactivity of these nano-
materials, and their propensity to establish non-specific interactions, has significantly restrained their utilisation 
in situations demanding high selectivity, as is the case of the quantification of analytes in samples with inter-
fering species or complex matrices, and in multiplexed detection. Several approaches have been proposed to 
overcome these selectivity issues, among which the chemometric analysis of photoluminescent (PL) data ac-
quired from QDs-based analytical methodologies can be highlighted. 

This review details the application of chemometric models in the characterization and optimization of QDs- 
based analytical procedures, as well as for the analysis of data obtained from QDs-based PL methodologies, 
discussing how they can be used to circumvent selectivity issues and pointing out the corresponding advantages 
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and limitations. In this work, we provide insights not only about probe arrangement strategies that could be 
designed to obtain efficient QDs-based sensing platforms but also regarding the requirements that must be 
observed to select both the most suitable type of data and the most effective chemometric model to assure the 
objectives of the methodology. Related advantages, namely second and higher-order advantages, constraints, and 
application prospects are also discussed.   

1. Introduction 

The exceptionally attractive properties of quantum dots (QDs) make 
them one of the most auspicious nanomaterials in nanoscience and 
nanotechnology with a huge variety of applications [1,2], namely in 
bioimaging/biosensing [3–6], photocatalysis [7,8], chemical analysis 
[1,9–11], as light-emitting diodes (LEDs) or in light-harvesting systems 
[12,13]. This functional versatility is founded on their remarkable op-
toelectronic and chemical properties, which include: i) easily adjustable 
and controlled synthesis allowing to obtain nanomaterials of different 
composition, size and/or capping ligands; ii) wide excitation (due to the 
ability to absorb electromagnetic radiations in a wide range of wave-
lengths, usually with high molar attenuation coefficients) and narrow 
emission bands which allow the simultaneous excitation, at a single 
wavelength, of multiple QDs combined in a multi-emission probe 
without significant overlap between emission bands; iii) high quantum 
yields (QY) as well as impressive photochemical stability, when 
compared to other organic fluorophores, which provides enhanced 
sensitivity and permits kinetic-based procedures with long irradiation 
periods; iv) the surface chemistry of these nanoparticles can be effort-
lessly tailored enabling to adjust the selectivity and sensitivity of the 
sensing platform towards a specific target analyte through the QDs 
surface functionalization with distinct structures/biomolecules such as 
molecularly imprinted polymers (MIPs), aptamers and/or antibodies, 
etc [9,11,14,15]. Moreover, QDs could be combined with other organic 
or inorganic fluorescent materials, in a cross-reactive sensing array or in 
a multi-emitter nanoprobe, aiming at implementing multiplexed detec-
tion approaches [1,11]. The aforementioned features of QDs make them 
excellent fluorophores to be used in Forster Resonance Energy Transfer 
(FRET) schemes either as donors or acceptors [15]. 

In recent years, these nanomaterials have been successfully 
employed in some promising analytical methodologies, namely in 
ratiometric assays [16–18], and in visual [11,19,20] and multiplexed 
detections [4,10,21]. However, the reduced selectivity they usually 
exhibit towards the target analyte when their surfaces are not func-
tionalized with a specific recognition element, is a major drawback that 
restrains a more widespread application in chemical analysis, particu-
larly when it involves samples with complex matrices. 

Photoluminescent (PL) data analysis through chemometric tools has 
been gaining relevance as a pertinent solution to understand more 
efficiently the interrelations between samples and analysed variables 
[10]. When used in the implementation of analytical methodologies 
based on QDs PL, the versatility of chemometric tools can allow not only 
the simultaneous detection of multiple analytes in the same sample, in a 
single assay, but also enable the quantification of the target analyte in 
complex sample matrices, prone to the occurrence of interfering species. 

Alongside their use in QDs-based methodologies for analytical pur-
poses, chemometrics can also be applied in the optimization of nano-
crystals synthesis by assisting on the implementation of experimental 
designs aiming at defining the relative importance of each of the syn-
thesis variables, as well as the relationship between them [14]. More-
over, the chemometric models have also allowed to predict some 
important characteristics of the QDs such as their morphology (shape) 
[22], composition [23] and size [24,25] through the analysis of data 
obtained by vibrational or absorption spectrophotometry, and 
fluorometry. 

Chemometrics is a term introduced by Svante Wold in 1972 [26] to 
define the science of extracting valuable chemical information from 

complex experimental systems, converting the obtained data into useful 
information [27]. In fact, univariate methods, in which one variable is 
analysed independently of the others, are not capable to recognize the 
inter-correlation between the multiple variables. Contrarily, multivar-
iate strategies can consider different variables thus assuring a more 
detailed interpretation of the available data [27]. 

There are different chemometric models available in the literature, 
which can be used with distinct objectives, being their most common 
application for quantification and classification/discrimination pur-
poses. The selection of a specific model depends not only on the aim of 
the work but also on the type of generated data (zero-, first-, second- or 
higher-order data) as well as whether it shows a linear or nonlinear 
behaviour. It should be highlighted that before the selection of a given 
chemometric model, it is crucial to perform exploratory data analysis for 
the detection of outliers. This is usually carried out by using principal 
component analysis (PCA). This model compresses the original data and 
retains the most important information, maximizing its variance. It is 
considered as an unsupervised analysis because the model has no pre-
vious knowledge of the original data [28]. Regarding quantification 
purposes, there are several chemometric models (ex: artificial neural 
networks- ANN; partial least squares- PLS; multivariate curve resolution 
- MCR; principal component regression- PCR) that can be used. All these 
models require information regarding the calibration samples (ex: con-
centration values) to quantify the analytes of interest. PLS and PCR are 
very similar in their working principles: both start building an inverse 
model although PCR estimates latent variables that are independent of 
the analyte, while with PLS the estimated latent variables are analyte 
dependent. This means that PCR does not use information regarding 
analyte concentrations or sample properties to estimate the latent var-
iables [28]. The MCR model relies on a bilinear model decomposition to 
extract the relevant information and can be applied for quantification 
purposes through the application of the concentration correlation 
constraint [29]. In relation to ANN, this tool is often applied to nonlinear 
data, being capable of modelling complex functions and of “learning by 
example” [29]. For classification/discrimination purposes, linear 
discriminant analysis (LDA), partial least squares-discriminant analysis 
(PLS-DA) and soft independent modelling of class analogy (SIMCA) are 
the chemometric tools most widely used [28–30]. LDA maximizes the 
variance among the different classes and minimizes the variance within 
each class. However, in what represents a severe drawback, the number 
of variables needs to be smaller than the number of samples. Therefore, 
most of the time, PCA should be firstly used to reduce data dimension 
[31]. The working principle of PLS-DA is similar to PLS but the Y block 
contains a dummy matrix with the class membership of the samples, 
instead of sample properties values [32]. As this model performs data 
dimension reduction, and is capable of dealing with data where the 
variance within each class is higher than among different classes, it is 
considered to have a better performance than LDA [32]. SIMCA de-
velops a separate model for each class and then provides a probability 
value for the classes that each sample can belong to. As SIMCA deals 
with each class independently, it is less affected by the number of 
existing classes, which is a limiting factor for LDA [33]. Moreover, 
SIMCA can deal with test samples that do not belong to any of the 
predefined classes, which does not happen with LDA and PLS-DA. These 
can therefore lead to misleading classifications as both models will al-
ways discriminate the test samples according to one of the predefined 
classes [34]. All these chemometric models are able to handle only linear 
data. When dealing with non-linear data for classification/ 
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discrimination purposes, support vector machine (SVM) and ANN 
models are more appropriate. 

Bearing this in mind, before the development of a new methodology 
exploring QDs sensing platforms and chemometrics for data analysis, the 
researchers need to select the type of data that will be generated (zero-, 
first-, second- or higher-order data). For example, if the samples that will 
be analysed have no interfering species, zero-order data (e.g.: a PL value 
at a specific wavelength) can be used. On the other hand, if the samples 
that will be analysed have known interfering species in their composi-
tion, first-order data (e.g.: PL values within a specific range) are the most 
suitable. Finally, the acquisition of second-order data (e.g.: PL values 
within a specific range within a specific period of time) is the best option 
when dealing with samples that have a complex matrix, with unknown 
interfering species. After knowing this, the researchers need to select the 
most suitable chemometric model, considering the purpose of the work 
(e.g.: quantification or classification/discrimination) and if the acquired 
data fit linear or non-linear models. However, in some situations, it is 
not possible to know in advance if the acquired data has a linear or non- 
linear behaviour. In those situations, the researchers should try linear 
models first because are simpler and faster than non-linear models and 
then analyse the results, to verify if it is necessary to implement non- 
linear models. 

Despite the enormous potential of using chemometric models, not 
only for the optimization and characterization of QDs but also to 
circumvent selectivity issues in QDs-based chemical analyses, they are 
still slightly explored when compared to univariate methods. This re-
view highlights the use of chemometric tools in both instances, discus-
sing the advantages and limitations, and challenges and opportunities of 
combining QDs and chemometrics. 

2. Optimization of QDs synthesis and/or characterization by 
applying chemometric tools 

The optimization of nanocrystal synthesis is crucial to ascertain the 
experimental conditions that allow obtaining more efficient nano-
materials in terms of optical properties (fluorescent intensity, QY and PL 
decay lifetime), stability in solution (aqueous or organic solvent), 
morphology (size and shape), and reactivity (passivation of QDs surface 
with capping ligands containing selected terminal moieties to provide 
the required probing ability towards the target analyte). 

Distinct synthetic procedures (organometallic, conventional aqueous 
synthesis, aqueous synthetic route assisted by microwave irradiation, 
among others) have been developed allowing the preparation of a wide 
assortment of size-controlled nanoparticles, which emit at a wide range 
of wavelengths (from visible to near-infrared – NIR - region of the 
electromagnetic spectrum). The rigorous control of all parameters 
involved in their synthesis is decisive for obtaining the desired optical 
and morphological characteristics. Indeed, only by controlling param-
eters such as the precursors’ relative molar ratio, temperature, pH, re-
action/irradiation/heating time, solvent, and nature of passivating 
agents, it is possible to obtain high quality nanomaterials adjusted to the 
required purpose. 

The characterization of the nanocrystals in terms of morphology 
(size and shape) and structure (core composition, shell and capping 
layer) can be performed by advanced techniques such as Scanning 
Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), 
Atomic Force Microscopy (AFM), X-Ray powder Diffraction (XRD), 
Energy-Dispersive x-ray Spectroscopy (EDS), among others. Neverthe-
less, simpler equipment, such as a spectrofluorometer, which are 
intrinsically easier to operate, faster, and more cost-effective, could be 
used to analyse the nanomaterials, generating data that upon processing 
by chemometric models allows to accurately assess the nanocrystal 
properties. 

2.1. Optimization of the organometallic synthetic route and non-aqueous 
dispersed QDs characterization 

One of the most common approaches to synthesize QDs is the 
organometallic synthetic route, which relies on the hot injection of 
semiconductor precursors in specific organic solvents followed by a 
controlled heating, in terms of temperature and time, of the obtained 
mixture. The obtained QDs show usually higher QY and a narrower 
particle size distribution (narrower emission bands) than those synthe-
sized by aqueous synthetic routes [35,36]. Three different chemometric 
approaches [22–24] have been developed with the objective of obtain-
ing a simpler and faster characterization of the nanocrystals (Table 1). 
The first example describes a methodology for the size determination of 
hydrophobic CdSe and hydrophilic CdSe/ZnS QDs, in a rapid and reli-
able way, based on the fluorescence maxima positions of the pure 
spectral profiles retrieved by multivariate curve resolution-alternating 
least squares (MCR-ALS) [24]. The authors obtained excitation- 
emission matrices (EEM), by using a measuring procedure that 
involved the excitation of the QDs at increasing wavelengths (within a 
pre-selected spectral range), which were further analysed by the 
respective chemometric model. The number of components was selected 
(the authors did not mention if this was performed manually or by using 
singular value decomposition, SVD) with the help of evolving factor 
analysis (EFA), seeking to appraise the number of fractions of 
differently-sized QDs in solution. EFA is a possible option for the esti-
mation of the spectra components at the beginning of ALS optimization 
but it is more indicated for the analysis of evolving processes, which was 
not the case [37]. The subsequent application of MCR in the obtained 
data after ALS optimization, allowed not only a more exact assessment of 
the number of spectral components but also to obtain the pure spectral 
components. The number of pure spectral components is strictly related 
to the number of fractions of QDs of different diameter, present in the 
solutions. By using the maxima of the pure spectral profiles retrieved by 
MCR-ALS it was possible to estimate the average particle size. Despite 
the fact that TEM provides a more accurate determination of the referred 
size, its use for the rapid tracking of the QDs size distribution during the 
synthesis becomes unfeasible. In this sense, the described fluorometric 
methodology can be seen as an accessible and valuable alternative [24]. 

In the second example, variations in the absorbance spectra of CdSe 
QDs solutions, taking place during nanocrystals growth, were analysed 
by MCR-ALS. This allowed to evaluate the kinetics and mechanism of 
particle shape evolution [22]. First, the number of components, or in this 
case the number of reaction steps/number of particles, was assessed 
using SVD. Subsequently, the authors applied EFA to obtain an initial 
estimate of the concentration profiles of the possible particles present. 
Further analysis with MCR culminates in the attainment of the con-
centration and pure spectra profiles of the nanoparticles. Effectively, the 
analysis of concentration profiles retrieved by MCR-ALS revealed that it 
was possible to evaluate the shape of the nanoparticles during the syn-
thetic process. Unfortunately, as there was an overlap between the 
concentration profiles of the formed species, the analysis of the pure 
spectral profiles retrieved by MCR-ALS was not feasible. Nonetheless, 
the proposed methodology can be envisioned as a valuable and simpler 
alternative to TEM and XRD measurements [22]. 

In the third work, the internal structure of 42 different QDs, 
composed of two chemical domains (CdS/CdSe) and arranged in 7 alloys 
and (core)shell structural classes, were accurately classified through 
Raman spectroscopy (Fig. 1a) followed by chemometric analysis 
employing multiple linear regression (MLR) after PCA [23]. The pro-
posed strategy was able to predict the QY (within a range of up to 35 %) 
(Fig. 1b). The application of PCA before MLR was an expeditious way to 
circumvent the disadvantages of MLR, namely the need for a number of 
samples higher than the used wavelengths and the low degree of cor-
relation or overlapping that should be displayed by the used data [28]. 
The obtained results revealed the potential of this approach as a 
straightforward, rapid, and non-destructive methodology for the 
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monitoring of the structure and quality of the heterostructured nano-
crystals during their synthesis. Moreover, it can enable the real-time 
adjustment of the nanomaterials structures and properties [23]. 

All these examples demonstrated that the use of chemometric tools 
for the analysis of experimental data obtained by vibrational spectros-
copy, as well as by UV–Vis and fluorescence spectroscopy, allows to 
successfully characterize the nanomaterials in a simple and inexpensive 
way thus bypassing the need for advanced techniques that are usually 
more complex to handle, more expensive and not easily available to all 
research groups. 

2.2. Optimization of the aqueous synthetic route and aqueous dispersed 
QDs characterization 

Despite being the most used QDs synthetic route, the organometallic 
approach produces hydrophobic nanoparticles only soluble in organic 
media. Thus, for biological and clinical applications the QDs must be 
made water-soluble, which can be achieved by the modification of their 
surface. In alternative, QDs can be directly prepared via an aqueous 
synthetic route, which has evident advantages regarding the organo-
metallic one since it is easier, faster, less expensive, more environmen-
tally friendly and has a higher reproducibility [35,36]. In the aqueous 

route, the QDs are passivated with thiol-based hydrophilic molecules 
which are not only more biocompatible but have also functional ter-
minal groups that provide better chemical accessibility for further QDs 
surface functionalization. In addition, the obtained QDs can be precip-
itated, washed, and stored in the dry state under ambient conditions for 
longer periods of time while maintaining high stability. 

The use of chemometric models in experimental design and multi-
variate optimization for the definition of a synthetic route is a valuable 
strategy to obtain highly luminescent, crystalline and monodisperse 
QDs, since the QDs synthesis is a multi-step process that requires strict 
control of all involved variables (Table 1). The key factor to obtain the 
ideal synthesis procedure is to uncover how the experimental variables 
affect the required response (i.e., QDs properties) and thus to outline the 
best conditions for the intended aim. This optimization is usually carried 
out by using the univariate approach which involved to study all 
experimental variables, individually, regardless of all remaining vari-
ables that are kept constant throughout the assays. However, this 
approach has major drawbacks, not only because it requires many runs 
to obtain an optimal response, but also because it does not consider the 
interaction between variables. In this sense, multivariate optimization 
methods have been regarded as advantageous alternatives since they 
study the influence of all experimental variables, either alone or upon 

Table 1 
Chemometric-assisted approaches for the characterization of QDs-based nanoparticles and for the optimization of its synthetic route.  

Nanomaterial Chemometric model Experimental design Synthetic route Objective Ref. 

CdSe 
CdSe/ZnS 

MCR-ALS n.a. organometallic particle size estimation [24] 

CdSe MCR-ALS n.a. organometallic particle shape estimation [22] 
CdS:CdSe PCA followed by MLR n.a. organometallic internal structure [23] 
CdTe n.a. fractional factorial design and CCD aqueous synthesis optimization [38] 
AgInS2/ZnS n.a. fractional factorial design and CCD aqueous synthesis optimization [39] 
CdTe n.a. two-level factorial design and Doehlert design aqueous synthesis optimization and size estimation [25] 
Mn-doped ZnS n.a. Decision table aqueous synthesis optimization [40]  

Fig. 1. Raman spectroscopic characterization of CdS:CdSe heterostructured nanocrystals and the corresponding chemometric analysis in order to predict the size, 
composition and internal structure a), as well as, the QY b). Adapted with permission from [23]. Copyright 2016 American Chemical Society. 
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combined interaction effects, on the synthesis process, with a certain 
level of statistical reliability. Multivariate optimization is usually carried 
out in two steps: first, a screening experimental design is implemented 
aiming not only at evaluating and quantifying the effect of each indi-
vidual experimental variable on the QDs optical properties but also to 
assess possible interactions between the involved variables; second, the 
most significant experimental variables are fine-tuned throughout the 
use of a suitable experimental design that fits a quadratic model to the 
data in order to identify the combination of optimum variables’ levels. 
This strategy was applied by our research group for the development of 
one-stage synthetic route, assisted by microwave irradiation, for the 
aqueous synthesis of binary CdTe [38] and ternary AgInS2/ZnS QDs 
[39]. The synthesis parameters, namely the precursors’ relative molar 
ratio and the solutions’ pH, were firstly screened by a two-level frac-
tional factorial design to uncover those with the most significant influ-
ence on the QDs PL properties. Subsequently, a central composite design 
(CCD) was applied to obtain response surfaces for the quadratic model 
between the PL properties of the synthesized QDs and the parameters 
under study, allowing to uncover the optimum experimental conditions. 
For the optimization of binary CdTe QDs synthesis, QY was the outcome 
used to appraise the quality of the QDs and to design the mathematical 
model [38]. In the case of ternary AgInS2/ZnS QDs, the maximum 
emission wavelength, QY, PL lifetime, and the elemental composition in 
terms of Ag:In and Zn:In ratios, were considered the best features to 
evaluate the QDs quality. Consequently, five models were predicted, one 
for each outcome of the synthesis process [39]. In another work, the 
aqueous synthesis of CdTe QDs using a conventional hydrothermal 
approach was also optimized through an experimental design [25]. 
Likewise the abovementioned works, a two-level factorial design was 
initially used to establish the significance of each of the synthesis pa-
rameters (i.e., temperature, pH, reaction time and precursor molar ra-
tios). After that, a Doehlert design was applied to relate the most 
significant parameters (pH, temperature and reaction time) with the 
maximum absorbance wavelengths, allowing to predict the CdTe QDs 
diameters which were posteriorly successfully compared with high 
resolution (HR)-TEM and XRD measurements of the nanoparticles size 
[25]. Yang et al. proposed a Decision Table (DT) in Rough Set as a new 
chemometric approach for the optimization of the synthesis of Mn- 
doped ZnS QDs [40]. The DT was designed for the identification (and 
posterior reduction) of the synthesis variables that might be considered 
as non-critical based on the analysis of the observed PL intensity, which 
was used as a decision factor. After reducing the crucial experimental 
parameters from five to two, a second DT was applied to appraise the 
optimal synthesis strategy which was also able to pinpoint the core 
attribute as the most important parameter. The obtained results were 
then compared with those attained by using single factor analysis and 
orthogonal experiment, which confirmed these optimal experimental 
conditions. Nevertheless, the DT method allowed to achieve the optimal 
conditions with a lower number of experimental runs [40]. 

To conclude, characterizing nanocrystals usually involves complex 
techniques, but simpler and cheaper analytical tools like spectrofluo-
rometers, combined with chemometric models, offer a cost-effective 
alternative. By applying chemometric models to spectroscopy data, 
nanomaterial properties can be assessed without the need for advanced 
and expensive methods. In the synthesis of quantum dots (QDs), where 
precise control of variables is crucial, chemometric models play a key 
role. Unlike traditional univariate approaches that require many runs to 
achieve optimal responses, multivariate optimization considers variable 
interactions, providing a statistically reliable and efficient approach to 
achieve highly desirable QD properties. This strategic use of chemo-
metric tools streamlines the characterization process and proves essen-
tial in optimizing QD synthesis for enhanced luminescence and 
uniformity. 

Despite the clear advantages arising from using multivariate opti-
mization models for the design of efficient and reproducible synthetic 
routes to obtain nanomaterials with excellent quality, in terms of high 

luminescence, crystallinity and monodispersity, the use of the univariate 
approach is still predominant. 

3. Application of chemometric models to analyse QDs-based PL 
analytical data 

Although the use of chemometric tools regarding QDs synthesis is 
still scarce, their use in QDs-based PL analytical methodologies is 
increasing. This occurs because they allow to simultaneously relate 
unselective multiple instrumental signals with single or multiple ana-
lytes concentrations [41]. The acquired instrumental data for QDs-based 
PL methodologies can be classified according to their complexity. In 
1994, Booksh and Kowalski categorized the analytical data, in terms of 
increasing complexity, as zeroth-order, first-order, second-order, and 
higher-order data, depending on the characteristics of the instrument or 
method that provided it [42]. It is expected that by increasing the 
complexity of the data collected per sample analysis, it would be 
possible to obtain more resolved quantitative or qualitative analytical 
estimations, with a higher selectivity [43]. 

Zeroth-order data are obtained when the instrument produces a 
single output per sample, such as a fluorescence intensity, at a single 
wavelength, per analyte concentration (Fig. 2a). This means that each 
sample is characterized by a single numeric value. For analytical pur-
poses, it is important to understand that zeroth-order data, mostly used 
in univariate calibrations, require a full selectivity towards the analyte 
under determination and can only be used in the case of samples with 
known composition and without interfering species [44]. 

First-order data are obtained as a vector data for sample, which 
corresponds, for example, as to acquire a fluorescence emission spec-
trum at a fixed excitation wavelength (Fig. 2b). This spectrum corre-
sponds to a set of intensity values at different wavelengths, forming a 
vector of data. The analysis of first-order data with suitable first-order 
multivariate calibration methods allows to circumvent the lack of 
selectivity upon the application of efficient mathematical algorithms. 
Effectively, this is acknowledged as the first-order advantage, which 
states that it is possible to quantify the analyte in samples with known 
interferents as long as those interferents are included in the standard 
solutions used in the calibration process. Hence, unexpected constitu-
ents can represent a complicated issue to handle with first-order data 
only [44,45]. 

In the case of second-order data, a data matrix is obtained per sample 
(Fig. 2c). Considering analytical methodologies using QDs as PL probe, 
this type of data can be obtained in two ways: i) by using a spectroflu-
orometer able to generate an EEM or by recording the evolution of the 
sample PL spectrum, at a fixed excitation wavelength, throughout time 
(Fig. 2c) (e.g. the kinetics of the QDs/sample interaction) [46]; ii) by 
resorting to instruments hyphenation using multi-block data analysis 
techniques. These allow to collect data of different nature from multiple 
instrumental modes, which contain extractable complementary infor-
mation [41,47]. The exploration of second- and higher-order advantages 
allows to monitor the analyte even in the presence of unidentified in-
terferences that were not included in the calibration set. This is known as 
the second-order advantage, which enables to circumvent the presence 
of unpredicted components in complex matrixes, such as biological, 
environmental or food samples. This represents a major benefit under an 
analytical perspective since the calibrated analytes can be selectively 
determined in the existence of uncalibrated constituents. 

3.1. QDs -based analytical methodologies using first-order data 

As abovementioned, the methodologies relying on first-order data 
allow the determination of the target analytes with increased selectivity 
when compared to those using zeroth-order data. Nevertheless, to be 
fully effective, these methods need to include the interfering species in 
the calibration step. This is only possible in samples with known and 
simple matrix composition. 
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The selection of both the most suitable chemometric model and the 
most appropriate modulation strategy to employ QDs as fluorescence 
probes is very important to guarantee the objectives of the analysis. In 
this sense, different strategies have already been explored to obtain an 
effective QDs-based sensing platform, namely:  

i) the use of single-emitter QDs which, upon interacting with the 
analyte, have their optical properties modulated (Fig. 3a). The 
interaction, which can generate different PL responses, is essen-
tially determined by the QDs surface chemistry. Specifically, the 
reactivity of the nanocrystal towards the analyte depends on the 
different terminal functional groups of the capping ligand used to 
passivate the QD’s surface. This way, the optical proprieties can 
be modulated either by changes in the PL intensity (enhancing or 
quenching) or by deviations in the maximum emission wave-
length (hypsochromic or bathochromic effect).  

ii) the use of a multi-emitters probe resulting from the combination 
of different multicoloured fluorophores (QDs and other mole-
cules) with distinct affinity towards the analyte. In this case, 
during the interaction process between probe and analyte, the 
involved PL emitters can respond individually, producing a spe-
cific analyte-response profile (Fig. 3b).  

iii) the use of a cross-reactive sensing array, composed of multiple 
individually arranged single emitters, to monitor multiple ana-
lytes. This sensor configuration returns a collective response of 
non-selective interactions between each single emitter probe and 
the target analytes (Fig. 3c). Likewise, the previous example, the 
emitters could be either QDs combined with other QDs exhibiting 
distinct reactivities towards the analytes, or QDs combined with 
fluorophores of different nature, such as organic dyes and fluo-
rescent plasmonic nanoparticles.  

iv) the use of a cross-reactive sensing array composed of an 
arrangement of multiple multi-emitters probes. Each of these can 
be made of an assortment of QDs, with adjusted reactivity, or of a 
combination of QDs and other fluorophores (Fig. 3d). 

The data collected from the abovementioned strategies can be ana-
lysed by proper chemometric models, which allows the extraction of 
useful analytical information seeking either authentication/ 

discrimination, identification, or quantification of analytes in real 
samples. The most used chemometric tools for authentication/discrim-
ination purposes in QDs-based analytical methodologies are LDA, PLS- 
DA and SIMCA. Regarding identification, MCR is usually the best op-
tion as it enables the recovery of the spectral profiles of all species 
present in the sample. For quantification purposes, the most used che-
mometric tools are PCR, PLS and MCR-ALS. However, when the ac-
quired data reveals a non-linear relationship, ANN and SMV are the best 
options both in terms of authentication/discrimination and quantifica-
tion purposes. 

3.1.1. First-order analysis for discrimination purposes 
Most of the available analytical methodologies for discriminating 

samples from a characteristic group, seek the identification of different 
substances/species or the presence of an adulteration (Table 2). The 
selection of the sensing platform and of the most suitable chemometric 
model is crucial. As abovementioned, the most suitable chemometric 
models for authentication/discrimination purposes are PLS-DA and 
SIMCA, being MCR-ALS a very good option when the objective of the 
work is the identification and quantification of the species (through 
spectral profile recovery). An alternative chemometric model entitled 
data-driven soft independent modelling of class analogy (DD-SIMCA), 
which is one of the most suitable models for the discrimination between 
adulterated and authentic samples, should be also mentioned. This 
model works similarly to SIMCA but introduces a more robust estima-
tion of two relevant statistics (namely the orthogonal and score dis-
tances), offering not only a friendly design for the acceptance area 
(thresholds) but also the possibility of selecting different thresholds in 
addition to the calculated one. Pertinent supplementary information 
regarding this chemometric model could be found elsewhere [53–56]. 

3.1.1.1. Single emitter probe as sensing strategy. Carbon quantum dots 
(CDs) were explored as a single-emitter probe, in combination with LDA, 
in two distinct analytical methodologies for the discrimination of five 
pesticides [57] and five food additives [58] in food samples (Table 2). 

In the first case, the identification of the pesticides propanyl, para-
thion, dimethoate, chlorpyrifos and pirimicarb, was based on a FRET 
process using the CDs as donors and non-fluorescent silver nanoparticles 
(AgNPs) passivated with polyacrylate (PAA) and polyethyleneimine 

Fig. 2. Schematic representation of the different data structures that can be obtained for a sample in PL-based methodologies. Adapted with permission from [48]. 
Copyright 2023 MDPI. 
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Fig. 3. Different strategies to obtain efficient QDs-based sensing platforms: a) Single emitter nanoprobe; b) multi-emission combined nanoprobe; c) cross-reactive 
sensing array composed of multiple individually arranged single emitters; and d) cross-reactive sensing array composed of an arrangement of multiple multi- 
emitters probes. Adapted with permission from [49,50,51] and [52]. Copyright 2014 American Chemical Society, 2017 Elsevier, 2019 Elsevier and 2020 Elsevier. 
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Table 2 
Analytical approaches exploring the use of first-order data processed by chemometric tools.  

Analyte Sensing platform Sensing strategy Objective Chemometric 
model 

PL signal LOD Ref 

propanyl, parathion, 
dimethoate, chlorpyrifos 
and pyrimicarb 

CDs and AgNPs Single emitter probe discrimination LDA Quenching 250 ng mL− 1 [57] 

citric acid, lactic acid, 
ascorbic acid, sodium 
benzoate and potassium 
sorbate 

CDs Single emitter probe discrimination LDA Quenching 252 ng mL− 1 [58] 

6 Jujube species CDs Single emitter probe discrimination PCA, BDA Quenching n.a. [60] 
Dianhong black tea Co2+-modified CDs Single emitter probe discrimination PCA, BDA Quenching n.a. [62] 
29 green teas NALC-CdTe Single emitter probe discrimination PLSDA Quenching n.a. [49] 
53 green teas NALC-ZnCdSe@NALC-CdTe Multi emitter probe discrimination PLSDA Quenching n.a. [63] 
Orange juice adulteration NALC-ZnCdSe@NALC-CdTe Multi-emitter 

nanoplatform 
discrimination OCPLS Quenching 5 % (w/w) [64] 

kiwifruit juice adulteration NALC-ZnCdSe@NALC-CdSe Multi-emitter 
nanoplatform 

discrimination OCPLS Quenching 2 % (w/w) [65] 

Herbal honey adulteration NALC-ZnCdSe@NALC-CdSe Multi-emitter 
nanoplatform 

discrimination OCPLS Quenching 1 % (w/w) [66] 

Dimethoate, dichlorvos and 
demeton 

NALC-CdTe@ NALC-ZnCdSe Multi-emitter 
nanoplatform 

discrimination PLSDA RGB colour 
change 

n.a. [67] 

amikacin 
chloramphenicol 
sulfamethoxazole 
pyracetam 

Schiff base@ Rhod/ 
SiO2@Fluor/SiO2@- MNDC- 
CdSe/CdS/ZnS 

Multi-emitter 
nanoplatform 

discrimination PCA, MDA Both 
quenching and 
enhancing 

n.a. [68] 

Adenine, Guanine, Cytosine, 
Uracil and Thymine 

CA-CdTe 
NALC-CdTe 
DMAE-CdTe 
TGA-CdTe 

Cross-reactive 
sensing array 

discrimination LDA and HCA Quenching 0.34–0.67 
mmol/L 

[51] 

Cu2+, Hg2+, Ag+ and Cd2+ NALC-Mn-ZnS 
Cit-Mn-ZnS 
MPA-Mn-ZnS 
(NH4)3L-Mn-ZnS 

Cross-reactive 
sensing array 

discrimination PCA and LDA Quenching 0.3–2.7 pg 
mL− 1 

[69] 

22 Baijiu liquors MPA-CdTe, MPA-CdSe and 
GSH-Cu:CdS 

Cross-reactive 
sensing array 

discrimination PCA, LDA, HCA 
and RBFN 

Both 
quenching and 
enhancing 

n.a. [70] 

Liquors of Baijiu NALC-CdTe 
NALC-ZnSe 
NALC-ZnCdSe 

Cross-reactive 
sensing array 

discrimination PCA, PLS-DA RGB colour 
change 

n.a. [71] 

Cu2+, Fe3+ and Hg2+ 3 distinctly synthesized CDs 
with different N precursors 
(GlyCDs, LysCDs and 
SerCDs) 

Cross-reactive 
sensing array 

discrimination LDA, HCA Quenching 10 µmol L− 1 [72] 

Ag+, Cd2+, Cr2+, Fe3+, Hg2+

and Pb2+
7 distinctly synthesized CDs 
with different C and N 
precursors 

Cross-reactive 
sensing array 

discrimination PCA, MDA Both 
quenching and 
enhancing 

>16 µmol L− 1 [73] 

Al3+, Cu2+, Co2+, Ni2+, Mg2+, 
Pb2+, Ba2+ and Ca2+

Pdots 
DG- Pdots 
NPG-Pdots 
MG- Pdots 

Cross-reactive 
sensing array 

discrimination LDA Both 
quenching and 
enhancing 

1 mg mL− 1 [75] 

Ag+, Hg2+, Cu2+, Pb2+, Cr3+, 
Mn2+ and Cd2+

MPA-CdTe 
GSH-CdTe 
PMAA-AgNCs 
BSA-AuNCs 
RHD 
CB 

Cross-reactive 
sensing array 

discrimination LDA Both 
quenching and 
enhancing 

n.a. [76] 

Fe2+, Fe3+, Cu2+, Co2+, Ni2+, 
Mn2+, Cd2+, Ca2+ and Ag+

MPA-Mn-ZnS 
TG-Mn-ZnS 

Cross-reactive 
sensing array 

discrimination LDA, HCA Both 
quenching and 
enhancing 

<0.5 µmol L− 1 [77] 

GSSG, GSH, CYS and CA Rhodamine B@NALC-CdTe 
CDs@NALC-CdTe 

Cross-reactive 
sensing array of 
multi-emitter 
nanoplatform 

discrimination HCA and LDA Colour 
modulation 

0.021, 0.028, 
0.018 and 0.08 
µmol L− 1 

[78] 

Hg2+, Pb2+, Cd2+, Fe3+ and 
Cu2+

Rhodamine B@EDA-CDs 
Rhodamine B@urea-CDs 
Rhodamine B@Gly-CDs 

Cross-reactive 
sensing array of 
multi-emitter 
nanoplatform 

discrimination HCA and LDA Colour 
modulation 

n.a. [79] 

TNT, TNP, DNT CDs@g-TMA-CdTe 
CDs@r-TMA-CdTe 

Cross-reactive 
sensing array of 
multi-emitter 
nanoplatform 

discrimination LDA Quenching 5.0 μmol/L [52] 

Metolcarb, carbofuran and 
carbaryl 

NALC-CdTe Single emitter probe discrimination 
and quantification 

PLS-DA, PLS RGB colour 
data 

0.97 μg L− 1 

0.89 μg L− 1 

0.78 μg L− 1 

[80] 

(continued on next page) 
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(bPEI) as acceptors [57]. The sensing scheme relied on the displacement 
of the pesticides by the positive and negative surface-charged AgNPs, 
affecting the CDs photoluminescence. Combining this sensing strategy 
with the use of LDA for data analysis allowed to maximize pesticides 
discrimination because of the different fluorescence response patterns 
that each pesticide individually provided [57]. 

The second work was based on the interaction of a single emitter CDs 
sensing platform with different additives (ascorbic acid, lactic acid, 
citric acid, potassium sorbate and sodium benzoate), being the gener-
ated fluorescent data subsequently analysed through LDA [58]. Since 
the nanocrystals exhibited a distinct reactivity towards each target an-
alyte, their respective PL response was unique (fingerprinting). This fact 
generated different response patterns for each analyte which were suc-
cessively discriminated by applying LDA [58]. 

When using single-emitter QDs for discrimination purposes it is 
important to guarantee that the probe reactivity differs significantly for 
each of the analyte/sample under evaluation. The CDs reactivity 
depended on their surface chemistry, which can be fine-tuned by using 
distinct solvents or co-dopers during the synthetic route. In effect, CDs 
doping with heteroatoms is an efficient strategy to improve their optical 
and physicochemical properties, as well as to modify their electronic 
structures, tailor-making their reactivity to allow their application as 
suitable sensing platforms [59]. Additionally, the use of different sol-
vents in the CD’s synthesis affects the dehydration and carbonization 
process, which also influences the quantum size, oxidation degree and 
concentration of the nanomaterials, and, consequently, their reactivity 
[60]. 

By exploring the later example, Liu et al. used four different solvents 
(water, dimethylformamide, ethanol and formamide) for the CDs’ syn-
thesis. Distinctly coloured carbon-based nanomaterials were obtained 
which were later used for the discrimination of distinct jujube species 
[60]. The authors verified that in the presence of different metal ions, 
the PL intensity of all distinctly coloured CDs was progressively weak-
ened, and that the highest quenching effect was observed in the presence 
of Fe3+. Moreover, they also estimated that the highest values for clas-
sification accuracy and cross-validation accuracy were obtained when 
using red-emitting CDs. Consequently, Bayesian discriminant analysis 
was employed for processing the analyte-induced CDs PL modulation 
data. Bayesian discriminant analysis (BDA) is similar to LDA: in LDA, the 
test samples are classified according to the lowest distance to each 
category, while in BDA the test samples are classified according to the 
lowest probability of misclassification. This means that BDA assumes a 
prior probability for each group, which is calculated using a probability 
density function [61]. The obtained results demonstrated that it was 
possible to distinguish and accurately predict jujube species according to 
their metal ions contents. 

CDs were also used, along with BDA, in another analytical method 

for the discrimination of 8 different Dianhong black tea grades [62]. The 
authors compared the discrimination efficiency resulting from doping N- 
CDs with Fe3+ and Co2+, and by using two different solvent extracts 
(water and ethanol). It was observed that the Co2+-modified CDs 
allowed to obtain higher values of classification accuracy when 
compared to Fe3+-modified CDs. In terms of the extraction solvent, 
ethanol yielded the best results. A total of 95 % of correct predictions 
were attained through cross-validation using Co2+-modified CDs and 
ethanol as solvent. The discrimination of the different teas was based on 
their polyphenols content. As polyphenols caused the PL quenching of 
the CDs, distinct responses were obtained for each Dianhong black tea 
grade depending on their composition [62]. 

As above discussed, one can expect that by increasing the amount of 
data collected per sample the qualitative and quantitative performance 
of the analysis would be also improved. The advantage of employing a 
multi-emitter probe, as an alternative of a single emitter, could be 
illustrated with two distinct works which aimed at the identification of 
green teas using binary and ternary QDs as PL probes and PLS-DA as 
chemometric model for data analysis [49,63]. When using N-Acetyl-L- 
cysteine (NALC)-CdTe as a single emitter, it was possible to discriminate 
29 different green teas [49] while when using NALC-capped ZnCdSe and 
CdTe QDs, as a combined dual-emitter nanoprobe, the number of 
differentiated teas increased to 53 [63]. Due to the distinct composition 
and concentration of the diverse constituents of each green tea (namely 
amino acids, flavonoids and catechins), a different PL quenching 
magnitude was observed. In this sense, the addition of a second PL 
nanoprobe (NALC-ZnCdSe QDs) provided additional spectral informa-
tion, due to their different reactivity, thus improving the classification 
accuracy of the used chemometric model. 

3.1.1.2. Multi-emitter nanoplatform as sensing strategy. The amount of 
collected data can be also increased by designing multi-emitter sensing 
probes, combining multiple QDs, or QDs and other fluorophores, that 
show maximum PL emission at complementary wavelengths covering a 
broad spectrum. 

Effectively, two, three, or, at most, four spectrally resolved QDs can 
be combined in the same sensing platform without spectral overlapping. 
This way, the selection of QDs with distinct sizes, compositions, ar-
rangements, and/or surface chemistry may confer to each combined 
nanoprobe a specific pattern response towards a selected analyte. The 
same research team developed three similar works in which one-class 
partial least squares (OCPLS) was used as chemometric model and 
NALC-ZnCdSe and NALC-CdSe QDs were combined in a multi-emitter 
nanoprobe. The OCPLS is similar to SIMCA, as it is considered as a 
class modelling technique, although based on PLS, instead of PCA, for 
data reduction. Moreover, the components on OCPLS are not ascribed on 
explaining data variances, as in SIMCA. In terms of performance, it is 

Table 2 (continued ) 

Analyte Sensing platform Sensing strategy Objective Chemometric 
model 

PL signal LOD Ref 

Dipterex, dursban, paraquat, 
methyl thiophanate and 
cartap 

NALC-ZnCdSe@NALC-CdSe Multi-emitter 
nanoplatform 

discrimination 
and quantification 

MWPLSDA and 
PSO-OWLS-SVM 

Quenching 2 × 10− 8 mol/L [81] 

Chinese baijiu 
5 organic acids 

TGA-CdTe 
GSH-CdTe 
NALC-CdTe 
CA-CdTe 

Cross-reactive 
sensing array 

discrimination 
and quantification 

LDA 
PLS 

Both 
quenching and 
enhancing 

n.a. [86] 

Hg2+

Cu2+
MPA-CdTe@MPA-CdTe 
MPA-CdTe@MPA-CdTe 

Multi-emitter 
nanoplatform 

quantification PLS Quenching n.a. [87] 

Cu2+, Hg2+, Pb2+ MPA-CdTe@MPA-CdTe Multi-emitter 
nanoplatform 

quantification PLS Quenching n.a. [88] 

FA, Fe2+ CYS-CdTe@MPA-AgInS2 Multi-emitter 
nanoplatform 

quantification ANN and PLS Quenching 1.9 µmol L− 1 

and 4.1 µmol 
L− 1 

[50] 

TNT, 4-NP CDs@CYS-CdTe Multi-emitter 
nanoplatform 

quantification ANN and PLS Quenching 2.01 and 1.88 
µmol L− 1 

[89]  
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similar to SIMCA [34]. The dual-emission sensing platform was applied 
in the authentication of orange [64], kiwifruit juice [65] and honey [66] 
demonstrating to have huge potential for a sensitive and rapid screening 
of adulterants in complex samples (Table 2). In fact, for the authenti-
cation of orange juice regarding the presence of two adulterants (sucrose 
syrup 5 % w/w, and artificial fruit powder 2 %, w/w), a sensitivity and 
specificity of 97.8 % and 77 %, respectively, were obtained considering 
the best model. For the authentication of kiwi juice regarding the same 
adulterants (but both at 2 %, w/w), a sensitivity and specificity of 92.9 
% and 83 %, respectively, were obtained. For the authentication of 
honey regarding the presence of four adulterants (glucose, sucrose and 
fructose syrups, and glucose-fructose syrup, all at 1 % w/w), a sensitivity 
and specificity of 94.9 % and 88.7 %, respectively, were obtained. 

Wang et al. [67] explored a dual-emission sensing nanoplatform to 
discriminate the presence of three organophosphorus pesticides, deme-
ton, dichlorvos and dimethoate. NALC-capped CdTe and ZnCdSe QDs 
were used as PL nanoprobes in combination with Zn- nanoporphyrin 
(nano-ZnTPyP), implementing a “turn-off-on” detection scheme. In the 
presence of nano-ZnTPyP, the PL intensity of the combined nanoprobe 
decreased via FRET process. Upon addition of the three pesticides, the 
PL emission was recovered, due to the affinity of the electron-rich group 
of these pesticides towards the positively charged dodecyl trimethyl 
ammonium bromide (DTAB), at the surface of nanoporphyrins, estab-
lishing electrostatic interactions that detached the nano-ZnTPyP from 
QDs surface, impairing the FRET process with the consequent PL re-
covery. The presence of the three pesticides generated different colour 
changes. The modulation of the RGB values was then analysed by PLS- 
DA, which allowed an accurate discrimination of the pesticides (100 
% of correct predictions considering the test set) in complex sample 
matrices (apple and cabbage) [67]. The use of QDs-based visual sensing 
approaches has emerged, in the last years, as a promising and highly 
attractive alternative since it enables to monitor a sample, faster and in- 
situ, while avoiding expensive and complex instrumentation [11]. The 
use of a smartphone allows not only the acquisition of high-quality 
images but also the use of processing software (APPs) capable of con-
verting the captured colour into RGB values. In addition, the use of the 
most suitable chemometric model enables the discrimination and 
quantification of chemical species with high accuracy and sensitivity, 
maintaining the portability of the naked-eye determination [10,11]. 

Divyanin et al. [68] developed a multi-emitter nanoprobe made of 
different combinations of up to five emitters (organic dyes and quantum 
dots), which were applied in the identification of mixtures of active 
pharmaceutical ingredients (amikacin, sulfamethoxazole, piracetam 
and chloramphenicol) through PCA. The most efficient nanoprobe was a 
four-emitter probe comprising a Schiff base, rhodamine (Rhod/SiO2) 
and fluorescein (Fluor/SiO2) attached to SiO2 and mercapto-n- 
dodecanoate (MNDC)-capped CdSe/CdS/ZnS. With this four-emitter 
combined probe, the synthetic mixtures of 2 or 3 compounds clustered 
accordingly, demonstrating the possibility of applying this strategy in 
multiplexed detections in complex real samples [68]. 

3.1.1.3. Cross-reactive sensing array as sensing strategy. As mentioned 
before, when increasing the amount of PL data acquired, the analytes 
can be identified and discriminated with enhanced figures of merit. A 
strategy to enhance the available PL data information is through the use 
of multiple non-selective PL probes, assembled in a cross-reactive sensor 
array, and showing different responses towards the distinct analytical 
targets. In most cases, the sensing elements consisted of a combination of 
nanomaterials of the same nature, usually semiconductor QDs, but 
differing on composition, size, and surface chemistry. The latter is 
usually fine-tuned by using distinct thiol-based ligands containing car-
boxylic and amine functional moieties, which provide them with a 
distinguishable reactivity. To illustrate this strategy, two similar works 
can be highlighted [51,69] (Table 2). In the first work [51], four CdTe 
QDs passivated with different capping ligands, including NALC, 

thioglycolic acid (TGA), cysteamine (CA) and 2-dimethyl-aminoethane-
thiol (DMAE) were used to distinguish among different nucleobases 
(cytosine, adenine, uracil, guanine and thymine) resorting to LDA and 
hierarchical cluster analysis (HCA) as chemometric methods for PL data 
analysis. In the presence of the nucleobases, an exciton energy transfer 
effect (EET) occurs leading to PL quenching via QDs aggregation. 
Moreover, the authors showed that the same sensing array could be used 
to discriminate other five rare bases, demonstrating the higher versa-
tility of these sensing strategies [51]. In the second work, Mn-doped ZnS 
QDs passivated with NALC, triammonium-N- 
dithiocarboxyiminodiacetate ((NH4)3L), mercaptopropionic acid 
(MPA) and citric acid (Cit) were also used as a cross-reactive sensing 
array to differentiate 4 distinct metal ions in different mixtures [69]. The 
cross-reactive responses of the sensing array were analysed by LDA 
allowing to distinguish the metal ions at different concentration levels, 
in binary, ternary and quaternary mixtures [69]. 

Likewise different cappings were used to assure different reactivities, 
the combination of nanomaterials with distinct core compositions was 
also investigated. A cross-reactive sensing array composed of MPA- 
CdTe, MPA-CdSe and glutathione (GSH)-Cu:CdS QDs, was developed 
for the differentiation of 22 Baijiu liquors [70]. Upon interaction with 
the distinct liquors, the QDs exhibited dissimilar responses (either PL 
quenching or enhancing) due to the varied composition of the Baijiu 
samples, namely in terms of ethanol, ethyl acetate, organic acids, ni-
trogen and sulfur compounds content. The diverse PL responses were 
ascribed not only to the different terminal functional groups of the 
capping ligand at the QDs’ surface (carboxylic acid and amines) but also 
to the distinct chemical composition of their core. The use of this cross- 
reactive sensing array allowed the correct discrimination of 22 Baijiu 
liquors through LDA, with 91 % of correct predictions considering the 
validation set [70]. 

In another sensing strategy, tricolour QDs with different core com-
positions, which include blue-emission ZnCdSe QDs, yellow-emission 
CdSe QDs and red-emission CdTe QDs, all passivated with the same 
capping ligand (NALC), were employed in the design of a paper sensor 
array [71]. By using this colorimetric array, the resultant RGB values 
were processed by PCA and PLS-DA models, enabling a successful visual 
discrimination of the evaluated samples. The authors observed that the 
higher the number of sensing elements of the cross-reactive sensing 
array, the higher the classification accuracy for the training and pre-
diction samples. In fact, classification values (%) for the training/pre-
diction sets of 96.85/85.71, 98.85/88.89 and 100/100 were obtained 
when using one, two and three sensing elements, respectively [71]. 

Cross-reactive sensing arrays that combined CDs with distinct sur-
face chemistry were also investigated. CDs’ surface chemistry can be 
tailored by resorting to different precursors during the synthesis. In two 
different works, CDs synthesized with distinct C and N precursors were 
used as PL sensing platforms for the differentiation of metal ions 
[72,73]. In the first work, nitrogen-doped carbon dots synthesized with 
different nitrogen precursors, namely L-lysine (Lys), L-glycine (Gly) and 
L-serine (Ser), and Cit as carbon precursor, were used in a sensing array 
that provided a fingerprinting pattern response for each metal ion [72], 
as a consequence of specific PL quenching magnitudes. The array 
response for each metal ion, at different concentrations, was analysed by 
HCA and by LDA, enabling the discrimination with 100 % of accuracy 
for three distinct metal ions (Cu2+, Fe3+ and Hg2+) in a ternary mixture 
considering the validation set [72]. In the other example [73], seven CDs 
synthesized with distinct C and N precursors were combined in a sensing 
array for the discrimination of six metal ions resorting to Mahalanobis 
distance analysis (MDA) and PCA. The authors observed that with the 
use of PCA, the initial array could be simplified to just a two-probe array 
without decreasing accuracy. This means that using only two sensing 
elements with dissimilar reactivities was enough to obtain fingerprints 
(response patterns) for the metal ions under evaluation, allowing an 
efficient discrimination. This CDs-based array was able to distinguish 
the metal ions even in the analysis of complex sample matrices such as 
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fetal calf serum or tap water [73]. 
Another organic water-dispersed nanoparticle that recently emerged 

due to its high photostability and brightness is the semiconducting 
polymer dots (Pdots), which can also be used as efficient analytical 
sensing elements [74]. Li et al. explored four Pdots sensing elements in a 
cross-reactive array for the discrimination of various metal ions (Al3+, 
Ba2+, Ca2+, Co2+, Cu2+, Mg2+, Ni2+ and Pb2+) and brands of commercial 
water [75]. Pdots with and without the doping by three different gallates 
(methyl gallate – MG, dodecyl gallate – DG and n-propyl gallate – NPG) 
were assayed. The gallates generated different binding abilities towards 
the metal ions, yielding mixed fluorescence responses. These PL results 
allowed, by using LDA, to accurately discriminate eight metal ions, as 
well as a validation set of 24 samples of bottled water, with an accuracy 
of 100 % [75]. 

Other sensing schemes to enhance the cross-reactive array’s sensi-
tivity and discriminative capacity, could be explored. A possible strategy 
is to combine not only QDs with different reactivities towards the ana-
lytes but also to include fluorophores of a different nature, such as 
conventional organic dyes and their derivatives, or even plasmonic 
nanoparticles (i.e., fluorescent gold and silver nanoparticles). Kang et al. 
[76] developed a cross-reactive sensing platform wherein MPA and GSH 
capped CdTe QDs, bovine serum albumin (BSA) modified gold nano-
clusters (AuNCs), calcein blue (CB), polymethacrylic acid (PMAA) 
modified silver nanoclusters (AgNCs) and a rhodamine derivative (RHD) 
were applied as PL sensing platforms [76]. The combination of different 
types of fluorophores, which were also functionalized with various 
reactive groups, allowed to obtain a wider assortment of PL responses. 
Effectively, the observed PL enhancing or quenching was analysed 

through LDA, allowing the discrimination of seven heavy metal ions 
(Cd2+, Mn2+, Cr3+, Ag+, Cu2+, Pb2+ and Hg2+) demonstrating the su-
perior distinguishing capability of the proposed sensor array, except for 
Pb2+ and Cr3+ which were not differentiated [76]. 

An expeditious strategy to increase the available data information 
and, consequently, to enhance the cross-reactive array performance, is 
the use of selected molecules as modulators. Jing et al. [77] developed a 
sensing array using arginine (Arg) and glutamine (Gln) as modulators to 
increase the diversity of PL responses obtained for each analyte. MPA 
and alpha-thioglycerol (TG)-capped Mn-ZnS QDs were mixed with the 
amino acids to implement an array comprising six sensing elements (two 
QDs + [two QDs × two amino acids]) (Fig. 4a). Due to the dissimilar 
affinity of the metal ions (Ag+, Ca2+, Cd2+, Cu2+, Co2+, Fe2+, Fe3+, Mn2+

and Ni2+) to Gln, Arg and QDs surface, different chelates were formed, 
allowing to obtain a specific response for each metal (Fig. 4b). The PL 
data were analysed through LDA (Fig. 4c) and HCA, (Fig. 4d) which 
allowed their discrimination. A classification rate of 100 % was obtained 
through LDA considering 15 unknown samples of spiked tap water. 
Together with the differentiation of nine metal ions at nanomolar con-
centrations, the oxidation states of ferrous (Fe2+) and ferric (Fe3+) 
species were also distinguished [77]. 

3.1.1.4. Cross-reactive sensing array based on multi-emitter nanoplatforms 
as sensing strategy. The amount of data collected during analysis can be 
significantly increased upon the combination of various multi-emitter 
probes assembled on a cross-reactive array, which would therefore 
allow the discrimination of a panoply of analytes. This strategy 

Fig. 4. Six across-reactive sensing element encompassing the combination of QDs capped with different capping ligands and two amino acids a); distinct response 
patterns produced from the sensor array in the presence of different metal ions b); three-dimensional canonical score plot obtained from LDA c) and the dendrogram 
obtained from HCA for 9 metal ions d). Adapted with permission from [77]. Copyright 2017 Elsevier. 
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simultaneously increases the cross-reactive selectivity and simplifies the 
implementation of visual sensing approaches, since it enables visual 
detection relying on colour tonality modulation. In effect, changes in 
colour tonality are easier to identify than changes in colour brightness 
typical of QDs-based visual detections. The previously referred research 
group developed two visual and ratiometric-based sensors arrays for the 
differentiation of biothiols [78] and metal ions [79] (Table 2). In the first 
work [78], GSH, glutathione disulphide (GSSG), CA and cysteine (CYS) 
were identified and discriminated through HCA and LDA, respectively, 
using two ratiometric probes (blue-emitting CDs with red-emitting 
NALC-capped CdTe QDs and orange-emitting rhodamine B with green- 
emitting NALC-capped CdTe QDs). These two ratiometric probes were 
analysed in the absence and presence of 5 mol L− 1 NaOH, originating a 
four-element ratiometric sensor array. By adding the target analytes, 
and due to the high affinity of SH groups to the surface of CdTe QDs, the 
PL emission of these QDs was modulated, acting as analyte-dependent 
fluorophore (ADF), while the emission of the CDs and rhodamine per-
sisted unchanged (reference fluorophore - RF). HCA and LDA were used 
for the identification and differentiation of these biothiols, and their 
mixtures, in human plasma [78] with a cross-validation accuracy of 89 
%. The same research group, implemented a ratiometric sensor array for 
the identification and discrimination of five metal ions (Cd2+, Cu2+, 
Fe3+, Hg2+ and Pb2+) in spiked river water and digested salmon fish 
samples, through HCA and LDA, respectively [79]. Three distinct 
ratiometric probes composed of blue-emitting CDs stabilized with 
different capping agents (Gly, ethylenediamine (EDA) and urea) were 
used as ADF, while orange-emitting rhodamine B was used as RF. The 
metal ions were well-distinguished throughout RGB analysis by HCA 
and discriminated by LDA, which permitted the identification of a 
characteristic colour fingerprint-response pattern for each metal [79]. In 
fact, cross-validation accuracies of 91 % and 93 % were obtained for 
spiked fish and water samples, respectively. Results also showed a linear 
response regarding all metals’ concentration, and a total Euclidean 
distance over a range of 10 to 100 µM. In a similar work, Ghasemi et al. 
[52] developed a two-emitter sensor array that was coupled to LDA data 
processing for the differentiation of widely-used nitroaromatics, namely 
2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and 2,4,6-trini-
trophenol (TNP), in spiked well waters and soil samples. The sensor 
elements were composed of CDs combined with distinctly sized thio-
malaic (TMA)-CdTe QDs. This cross-reactive sensing array comprising 
several multi-emitter nanoplatforms allowed the discrimination of 
mixtures of structurally similar nitroaromatics in soil and groundwater 
samples, with a 100 % accuracy [52]. 

3.1.2. First-order data for quantification purposes 
While some analyses only require a qualitative sample assessment, 

most of the time it is imperative to obtain quantitative information 
regarding sample contents. In these circumstances, chemometric tools 
other than the previously referred could provide a valuable service. An 
illustrative methodology exploring chemometric models for qualitative 
and quantitative analysis of PL data resorts to a CdTe/nano ZnTPyP 
sensing system for the discrimination and quantification, through PLS- 
DA and PLS, respectively, of carbamate pesticides (carbaryl, carbo-
furan and metolcarb) in spiked food matrices (tea, cabbage and apple) 
[80] (Table 2). The carbamate pesticides impaired the FRET process 
leading to a recovery of the CdTe QDs PL. An accuracy of 100 % of 
correct predictions was obtained with PLS-DA for all pesticides consid-
ering the testing set. Regarding PLS results, the authors claimed R2

P 
higher than 0.999 for all the pesticides over a liner range of 1 to 20 µg 
L− 1 and LOD of 0.91, 0.89 and 0.78 µg L− 1 for metolcarb, carbaryl and 
carbofuran, respectively, considering the testing set [80]. Another 
interesting work by Fan et al. [81] used NALC-capped CdTe and ZnCdSe 
QDs for the analysis of five pesticides (cartap, dipterex, dursban, methyl 
thiophar and paraquat) using moving window partial least squares 
discriminant analysis (MWPLS-DA) and optimized sample-weighted 
least-squares support vector machine based on particle swarm 

optimization (PSO-OSWLS-SVM) model for qualitative and quantitative 
analysis, respectively [81]. MWPLS-DA is similar to the working prin-
ciple of PLS-DA but instead of using the entire spectra, it selects just 
some useful spectral intervals through a moving window that is user- 
adjusted [82]. This way, not only the complexity and size of the cali-
bration set is reduced, but also the influence of uninformative spectral 
variables in the final model, which contributes to a lack of accuracy, is 
minimized. The uninformative spectral variables result from the need of 
using a high number of latent variables (LV) to maintain model accu-
racy, when compared to informative spectral variables [82]. The PSO- 
OSWLS-SVM uses the PSO algorithm which calculates the samples 
weights of the training samples and hyper-parameters in SVM model, 
considering both the training and validation performances. This model 
is claimed to deal with nonlinearity data more effectively than PLS and 
to withstand overfitting more effectively than least-squares support 
vector machine (LS-SVM) [83]. In fact, when compared to PLS and LS- 
SVM, the obtained results are much lower in terms of root mean 
square error of calibration (RMSEC) or prediction (RMSEP) [83]. The 
SVM has been firstly proposed for classification problems, but its use has 
been extended to regression problems through the use of loss functions 
[84,85]. This type of chemometric model is able to deal with non-linear 
data through the use of a kernel function but the selection of the best 
kernel function requires the tuning of hyper-parameters, which is 
considered cumbersome and prone to overfitting, as aforementioned 
[83,84]. The LS-SVM reduces the computation time of SVM because it 
only requires to solve a few linear equations, in opposition to SVM that 
needs to solve quadratic problems, making the characterization of the 
optimal conditions much simpler [83–85]. Considering the obtained 
results, the use of MWPLS-DA model with a moving window of 60 data 
points yielded 100 % of correct classifications for all pesticides 
regarding the testing set. These results were better than those obtained 
with PLS-DA, considering the entire spectra (80 % of correct pre-
dictions). With respect to the use of PSO-OSWLS-SVM for the quantifi-
cation of the pesticides, a R2

P higher than 0.999 was obtained for all 
pesticides, considering the testing set. Additionally, the authors per-
formed a recovery assay with wastewater and tea samples and claimed 
recoveries percentages between 95 % and 104 % for all pesticides, which 
demonstrates the suitability and accuracy of the developed 
methodology. 

In another work [86], a four-channel sensor array composed of 
distinctly passivated CdTe QDs was used to distinguish between com-
mercial baijiu samples with different brands, aroma types, storage years 
and qualities, by using LDA. A classification rate of 100 % of correct 
predictions (cross-validation) was obtained for all parameters, except 
for the different types of brands, where a classification rate of 99.8 was 
claimed by the authors (one sample was misclassified). In addition, five 
organic acids (acetic acid, butyric acid, caproic acid, heptanoic acid and 
lactic acid), generally present in baijiu, were accurately discriminated 
through LDA and quantified by resorting to PLS [86]. A classification 
rate of 100 % (cross-validation) was obtained. For the PLS results, the 
authors claimed accurate results for all the acids within the linear range 
of 10 to 80 µmol L− 1. The results regarding the coefficient of determi-
nation (R2) and root mean square error (RMSE) for calibration and cross- 
validation, as well as LOD and LOQ, were not mentioned by the authors. 

Aiming at guaranteeing the quality of some samples (i.e., pharma-
ceutical and environmental), several analytical approaches for quanti-
fication purposes have also been carried out. Contrary to univariate 
calibration procedures wherein only the maximum emission wavelength 
is analysed (commonly through the Stern-Volmer equation that de-
scribes the PL quenching), the use of the full PL spectrum allows to 
obtain first-order data advantage, as mentioned previously. Again, the 
selection of the most appropriate chemometric model needs to consider 
not only the objective of the work, namely classification/discrimination 
or quantification, but also if the obtained data is linear or nonlinear. 

Some multi-emitter nanoprobes have been developed for quantita-
tive analysis, maximizing the extracted information from a single PL 
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spectrum. Our research group developed two works in which CdTe QDs 
emitting at complementary wavelengths and with dissimilar reactivities 
were combined for the determination of some metal ions [87,88]. In one 
of these works [87], distinct thiol-based ligands (MPA, GSH and 2-mer-
captoethanesulfonate – MES) were employed to adjust reactivity thus 
obtaining a higher assortment of PL responses. As the different thiol- 
based capping ligands contain dissimilar terminal functional moieties, 
a characteristic response to each metal ion was observed. This way, the 
use of a dual-emission probe allowed to obtain a distinctive emission 
spectrum profile. By resorting to PLS, Cu2+ and Hg2+ metal ions were 
accurately quantified yielding R2

CV higher than 0.98 for both metal ions 
and RMSEC and root mean square errors of cross-validation (RMSECV) 
ranging from 0.0094 to 0.15 and 0.013–0.19 mg L− 1 for Cu2+ and Hg2+, 
respectively. Additionally, considering the sensitivity of the developed 
models, the authors concluded that the selection of dual-emitting 
nanoprobes composed of QDs with distinct capping ligands could be 

useful to achieve a more sensitive quantification of the target analytes 
[87]. In the second work [88], a dual emission nanoprobe composed of 
two differently-sized CdTe QDs (both capped with the same capping 
ligand -MPA) was used to simultaneously quantify mutually interfering 
metal ions (Cu2+, Hg2+ and Pb2+). By applying PLS, it was possible to 
quantify the three metal ions in binary mixtures, with R2

CV ranging from 
0.74 to 0.89 for all ions. However, when considering the three metal ions 
altogether in the same ternary mixture, the model was not able to 
quantify them accurately. Pb2+ and Hg2+ metal ions yielded R2

CV of 0.87 
and 0.73, respectively, while for Cu2+ a R2

CV of 0.51 was obtained 
(revealing that it was not possible to perform an accurate quantification 
of this ion) [88]. 

Adjustment of QDs reactivity and selection of the most suitable 
chemometric model is crucial for the success of the analytical method-
ology. The combination of QDs with distinct reactivities allows obtain-
ing a specific response profile for each analyte, making possible the 

Fig. 5. Implementation of a dual-emission combined nanoprobe seeking to obtain specific analyte-response profiles which were analysed by PLS and ANN for the 
simultaneous determination of FA and Fe2+ in pharmaceutical formulations. Adapted with permission from [50]. Copyright 2020 Elsevier. 
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simultaneous determination of multiple analytes in one sample. In this 
sense, our research group employed a dual-emission nanoprobe 
encompassing CYS-CdTe and MPA-AgInS2 QDs for the monitoring of 
folic acid (FA) and Fe2+ in a binary mixture (Fig. 5) [50] while Barati 
et al. combined CYS-CdTe QDs with CDs for the simultaneous determi-
nation of TNT and 4-nitrophenol (4-NP) [89]. In both works, one of the 
analytes (Fe2+ or 4-NP) led to a PL inhibition of both QDs PL while the 
remaining analytes did not cause a significative variation in the PL in-
tensity of one of the QDs (FA to CYS-CdTe and TNT to CDs, respectively). 
Their characteristic emission spectra profiles were analysed through PLS 
and ANN models. In the first work [50], authors claimed R2

P of 0.91 and 
0.98 when using PLS and R2

P of 0.95 and 0.99 when using ANN for the 
quantification of FA and Fe2+, respectively. Moreover, the authors tested 
the best developed model, in this case ANN, in two commercial samples 
obtaining standard errors of prediction below 9 %. In the second work 
[89], the quantification of TNT and 4-NP in test samples yielded errors 
below 10 % for both parameters and both chemometric models. How-
ever, the authors claimed lower results when using ANN. In conclusion, 
ANN exhibited a superior efficacy for the simultaneous determination of 
the analytes in binary mixtures, since a non-linear relationship between 
the obtained fluorometric data and the analytes concentration were 
observed [50,89]. 

The use of suitable chemometric models for processing PL first-order 
data enables the qualitative and quantitative analysis of real samples, 
even without the use of a specific surface functionalization procedure. 
However, some samples have a complex matrix with unknown inter-
fering species, impairing an accurate and selective discrimination and/ 
or quantification of the target analytes. In the next section, the acqui-
sition of second and higher-order data that could allow circumventing 
the occurrence of uncalibrated interfering components, will be 
discussed. 

3.2. QDs-based methodologies exploring second- and higher-order data 
analysis 

Despite the advantages of using first-order data to circumvent 
selectivity issues, it should be emphasised that the target analyte 
determination in the occurrence of interfering substances can only be 
performed if these interferents are comprised in the calibration samples. 
In this case, the composition of the sample matrix must be previously 
known to guarantee an accurate quantification of the analyte. Other-
wise, the first-order advantage cannot be availed. However, it is possible 
to determine analytes in samples with complex matrices and unknown 
composition by means of the use of second- or higher-order data, due to 
the second-order advantage in combination with suitable chemometric 
models [90,91]. 

In fact, when second-order data, such as three-dimensional data sets 
(e.g., EEM), is processed by suitable chemometric models they enable 
obtaining the second-order advantage which allows circumventing the 
occurrence of unpredicted sample components not included in the 
calibration step. This is a situation that occurs frequently when handling 
with samples of a more complex nature and with unknown constituents, 
such as food, environmental or biological samples, where it is very 
difficult to distinguish between the different components or anticipate 
the occurrence of interferences that can affect the quality of the 
analytical results. In these circumstances, second- or even higher-order 
data can be acquired to overcome the referred interferents’ effects 
[46,47]. However, there are limitations that should be taken into 
consideration. For example, if the presence of uncalibrated species 
(interferents) suppresses the fluorescence signal or, in a different 
manner, enhances the fluorescence signal as to saturate the detector, it 
won’t be possible to determine the analyte under study. In these extreme 
cases alternative strategies, such as a sample dilution, can be used to 
circumvent this problem. 

3.2.1. Second-order data analysis exploring EEM 
Second-order data in QDs-based methodologies can be obtained by 

recording the evolution of the PL spectrum throughout time (kinetic 
measurement of QDs-analyte interaction) (Fig. 6a), or by registering 
EEM of the QDs-analyte interaction, using a suitable fluorometer 
(Fig. 6b), which is by far the most used approach as it assures abundant 
spectral information. Indeed, EEMs can increase the specificity of fluo-
rescence spectroscopy by accumulating PL emission spectra at several 
excitation wavelengths, thus providing a matrix of PL intensities [92]. 

Before discussing the most adequate chemometric models to deal 
with second-order QDs-based methodologies, it is important to clarify 
the concept of data trilinearity, which plays an important role in terms of 
data analysis. Trilinear second-order data implies that the data can be 
decomposed into three independent factors, being each factor a linear 
combination of two variables. Therefore, second-order data can only be 
considered trilinear if complies with the following three assumptions: i) 
the obtained signal for any sample is bilinear; ii) linearity correlated 
with the analyte concentration; and iii) the components profiles in all 
the samples are constant [95]. The first assumption requires that the 
obtained signal is proportional to the product of the two dimensions of 
the obtained matrix [90,91]. An example of bilinear data is the EEM 
signals in which the intensity of the obtained signal at a specific wave-
length of excitation and emission is a function of the respective excita-
tion and emission wavelengths [90,91]. Differently, the absorbance 
signals of the dissociation of weak acids at different pH values (as weak 
acids concentration is affected by pH), can be considered as non- 
bilinear. Therefore, if the dimensions of the obtained matrix are mutu-
ally dependent, the data are non-bilinear [90,91]. The second assump-
tion signifies that the maximum signal measured at both data 
dimensions is directly proportional to the analyte concentration [95]. 
The last assumption states that the shape of the samples’ profiles is the 
same in all the dimensions, only varying in the intensity due to the 
different concentrations of the analyte [95]. 

In this sense, EEM data can be generally classified as trilinear data. 
However, some circumstances, such as the presence of Rayleigh 
dispersion, Raman dispersion, second-order harmonic Rayleigh disper-
sion, the presence of inner filter effects [90,91] and deviations of the 
maximum emission band (hypsochromic or bathochromic effect), that 
may differ from sample to sample, contribute to the non-trilinearity of 
EEM data. Nonetheless, there are some strategies, for example, pre- 
processing of the EEM data to remove the non-trilinear signals, model-
ling with non-trilinear models, replacing the data values affected Ray-
leigh dispersion by zero or missing values, subtracting blank signal from 
sample signal or by defining the excitation and emission ranges so that 
the dispersion signals are reduced improving the signal-to-noise ratio, 
that can be used to circumvent the lack of trilinearity of EEM [90,91]. 
These strategies won’t work in all situations, and therefore the non- 
trilinearity of EEM data might not be avoided. When just the excita-
tion or the emission profiles of EEM data are affected, the data is known 
as non-trilinear of type 1, when both profiles are affected, the data is 
known as non-trilinear of type 2 and when the EEM data is not bilinear is 
known as non-trilinear of type 3 [90,91]. Strategies regarding the 
identification of trilinear or non-trilinear data are comprehensively 
discussed elsewhere [96]. The knowledge of the type of the generated 
EEM data, in terms of classification as trilinear, non-trilinear of type 1 or 
non-trilinear of type 2, and the objective of the work, are crucial to select 
the best chemometric model. In fact, some of the chemometric models 
are not able to deal with the lack of data trilinearity. 

The most common chemometric models used for QDs-based meth-
odologies exploring second-order advantage are PARAFAC, MCR-ALS 
and U-PLS/RBL. It is out of the scope of this manuscript to describe in 
detail how these chemometric models work and on what assumptions 
they are based on. For more details, please see the following references 
[90,91,95–98]. About these chemometric algorithms, it is pertinent to 
refer that PARAFAC is able to model trilinear data, MCR-ALS is able to 
model trilinear and non-trilinear data of type 1 and U-PLS/RBL is able to 
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model trilinear and non-trilinear data of type 1, 2 and 3 [90,91]. 
Concluding, MCR-ALS is more adequate for non-trilinear data of type 1 
and U-PLS/RBL for non-trilinear data of type 2 and 3, although only one 
work [99] has described the suitability of U-PLS/RBL to model non- 
bilinear data. Albeit it might look appealing to apply U-PLS/RBL in all 
situations, due to its flexibility, its need for additional information 
regarding the process under analysis justifies the application of alter-
native chemometric models, like PARAFAC and MCR-ALS, that are able 
to provide more intuitive and meaningful chemical interpretations of the 
data modelled [90,91]. 

The number of works available in literature exploring second- or 
high-order data in QDs-based analytical methodologies is very reduced 
(Table 3), which clearly demands for deeper research in this field mostly 
because of the inherent benefits that it could provide, which are related, 
as previously referred, with achieving the second-order advantage. One 
of the first works evaluated the pH effect on differently-sized MPA-CdTe 
QDs [100] (Table 3). The obtained data were analysed with different 
chemometric models, namely PARAFAC, PARAFAC2 and MCR-ALS. The 
authors observed variations in the emission bands (maximum emission 

wavelength red-shift), which meant that the obtained data was of non- 
trilinear type 1. This was confirmed throughout the comparison of sin-
gular magnitude values obtained using SVD. In this regard, MCR-ALS 
and PARAFAC2 demonstrated to be the most suitable chemometric 
models to deal with the obtained data. Additionally, the use of larger 
CdTe QDs revealed a higher pH sensitivity, probably because a nano-
crystals populations with a bigger size, which consequently exhibited a 
greater size heterogeneity, was more affected in terms of PL emission as 
the pH increased [100]. The same group verified a quenching effect on 
GSH-CdTe QDs at increased concentrations of Pb2+ [101] and on DAB- 
CdS QDs at increased concentrations of nitromethane [102]. The che-
mometric model used for data analysis on both works was PARAFAC, as 
the presence of both the metal ion and the organic compound did not 
show any deviations in the obtained EEM data (which means the data 
can be considered trilinear). This chemometric model was able to esti-
mate the excitation and emission spectra, the quenching profiles, and to 
obtain the second-order advantage. Another archetypal example of the 
use of EEM matrices to obtain second-order data sets [103] explored the 
versatility of MCR-ALS to deal with trilinear and non-trilinear data of 

Fig. 6. Second-order data using QDs-based methodologies: a) PL kinetics data of TMA-AIS QDs upon the interaction with OTC throughout 30 min; and b) excitation- 
emission spectra (λex ranged from 270 to 600 nm and λem ranged from 550 nm to 700 nm) of GSH-CdSeS/ZnS QDs. Adapted with permission from [93,94]. Copyright 
2021 Springer and 2021 Elsevier. 

Table 3 
QDs-based PL approaches using second or higher-order data analysed resorting to chemometric analysis.  

Analytes Sensing platform Chemometric tool Data set LOD Ref. 

pH MPA-CdTe PARAFAC 
PARAFAC2 
MCR-ALS 

EEM n.a. [100] 

Pb2+ GSH-CdTe PARAFAC EEM n.a. [101] 
Nitromethane DAB-CdS PARAFAC EEM n.a. [102] 
Hg2+

Ionic strength 
PEG-CDs 
DAB-CdS 

MCR-ALS EEM n.a. [103] 

Act D CdSe/ZnS Restricted Tucker3 
HTD 

EEM n.a. [104] 

6 neurotransmitters GSH-CdSeS/ZnS U-PLS 
U-PLS-DA 

EEM n.a. [93] 

Amino acids, oligopeptides, neurotransmitters CdSe/ZnS U-PLS-DA EEM n.a. [111] 
Cu2+ CYS-CdS MCR-ALS 

PLS 
kinetic 13 nmol L− 1 [113] 

OTC TMA-AgInS2 U-PLS kinetic 0.144 μmol L− 1 [94] 
AFB1 MPA-AgInS2 U-PLS kinetic 1.2 µg L− 1 [114] 
ASA MES-CdTe@MPA-AgInS2 U-PLS 

N-PLS 
MLF-NNs 
RBF-NNs 

kinetic 2.82 mg L− 1 

3.10 mg L− 1 

3.38 mg L− 1 

3.26 mg L− 1 

[48] 

Histamine CDs@MPA-AgInS2 U-PLS 
N-PLS 

kinetic 1.26 mg L− 1 [115] 

pesticide residues Mn-ZnS and COFs PCA multi-block data from instrument hyphenation 0.15 μg mL− 1 [116]  
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type 1. In this work, CDs passivated with NALC and functionalized with 
Poly(ethylene glycol) (PEG), which were sensible to increasing con-
centrations of Hg2+, and CdS QDs stabilized with TGA and attached to 
DAB, that were susceptible to the modification of ionic strength of the 
aqueous medium, were used as sensing platforms. The interaction be-
tween the metal ion and CDs only caused a PL decrease while, in the case 
of Cd-based nanocrystals, the increase of the ionic strength produced a 
simultaneous variation of the maximum excitation (347.9 nm to 367.8 
nm) and emission (485.7 nm to 633.4 nm) wavelengths as well as a 
quenching effect. This bathochromic effect, observed in both excitation 
and emission spectra, and probably related to the aggregation of the 
nanoparticles due to changes in the QDs surface charges caused by the 
higher ionic strength values, obviously resulted in a significant deviation 
of the trilinearity of the data structures. Although this may suggest that 
the obtained data for the ionic strength was non-trilinear of type 2, the 
variation on the excitation profile was minimal. Otherwise, MCR-ALS 
would not be the right chemometric model. The results obtained with 
this sensing probe clearly demonstrated its adequacy for the detection of 
Hg2+ and ionic strength [103]. 

A multi-way analysis of a FRET process, involving CdSe/ZnS QDs, 
was developed to assess drug–DNA interactions with drug discovery 
purposes [104]. Commercial Cd-based QDs were conjugated with a 
synthetic oligonucleotide (corresponding to a specific region of c-Myc 
gene), in order to quantitatively describe the interaction of c-Myc duplex 
with actinomycin D. Effectively, actinomycin D was used as energy 
donor while QD-dsDNA were applied as energy acceptor. The obtained 
three-way fluorescence data were analysed resorting to restricted 
Tucker3 and hard trilinear decomposition (HTD). Unlike MCR-ALS, 
which decomposes second-order data through a bilinear model after 
data augmentation, the Tucker3 model is capable of directly decom-
posing second-order data. It has also the capacity of dealing with non- 
trilinear data, defining a different number of components for each 
mode in the second-order data (unlike PARAFAC models), and allowing 
the interaction between each mode [105]. In this sense, this model be-
comes very complex in practice, as its flexibility generates non-unique 
solutions and the presence of rational and intensity ambiguities 
[96,105,106]. Nonetheless, the application of several constraints can 
reduce these ambiguities but at the same time hinders its interpretation 
[106,107]. Tucker3 is not recommended for huge data sets because a 
higher number of components will be needed increasing the possible 
interactions between these components and making the optimization 
and interpretation very troublesome [106,107]. Indeed, as the profiles 
being differentiated are usually very similar to each other, the rotational 

ambiguities increase [106,107]. More information about Tucker3 model 
can be found elsewhere [106,108]. The HTD is based on hard-modelling 
methods which take into account previous information regarding a 
possible chemical model. This is different from soft-modelling algo-
rithms, such as MCR-ALS, PARAFAC, and direct trilinear decomposition 
(DTD), which does not use any a priori knowledge for model develop-
ment. However, the use of restrictions in MCR-ALS, such as unimodality, 
non-negativity, selectivity, closure and kinetic model, demonstrated 
that this model allows to attain better results than hard-modelling 
models, being even capable of dealing with kinetic processes that have 
interfering species [109]. More information regarding HTD, can be 
found in the following reference [110]. In the abovementioned work 
[104], both chemometric models (HTD and restricted Tucker3) allowed 
the complete resolution of EEM data obtained from FRET process, as 
well as the estimation of the equilibrium constants of hybridization and 
complexation (with values similar to the ones previously present in the 
literature), despite the high spectral overlap between the absorption and 
emission bands of the acceptor and the donor, respectively [104]. It 
should be mentioned that the application of HTD model started with the 
information obtained by restricted Tucker3. 

The work performed by Głowacz et al. [93] demonstrated that 
analytical estimations with superior selectivity can be attained when the 
complexity of the obtained data is increased (Fig. 7). The authors 
showed that depending on the type of acquired data (zeroth-, first- or 
second-order), the discrimination of 6 neurotransmitters (dopamine, 
norepinephrine, epinephrine, serotonin, GABA, and acetylcholine) upon 
interaction with GSH capped CdSe/ZnS and by using U-PLS-DA, can be 
significantly improved. Moreover, the quantification of dopamine, 
norepinephrine, and epinephrine using U-PLS was also successfully re-
ported. Regarding the type of acquired data, authors concluded that 
when only a single fluorescence value of the quenching process was 
obtained at a maximum emission wavelength for a given concentration 
(zeroth-order data), the discrimination of the respective neurotrans-
mitters based on non-specific interactions was not possible, as expected. 
However, when a spectrum (emission scan at fixed excitation) was used, 
a better discrimination between the compounds that contain a catechol 
group (dopamine, norepinephrine and epinephrine) was obtained using 
PLS-DA model, with an accuracy of 78 % considering the test set. 
Finally, when using full EEMs, the discrimination was improved to 89 % 
of accuracy, considering the test set. As abovementioned, the analysis of 
the EEM data with U-PLS enabled the determination of the catechol-
amine neurotransmitters at micromolar concentration level with a R2

P 
between 0.92 and 0.99 [93]. In a previous work developed by the same 

Fig. 7. Influence of the complexity of the PL data on the discrimination and/ or quantification of five neurotransmitters. Adapted with permission of [93]. Copyright 
2021 Springer. 
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research group, EEM data were used to obtain a fluorescence finger-
printing of different analytes, allowing the discrimination of several 
neurotransmitters, amino acids and oligopeptides at different pH, 
through U-PLS-DA [111]. An accuracy of around 80 % for neurotrans-
mitters, amino acids and oligopeptides was obtained. 

3.2.2. Second-order data analysis exploring kinetic approaches and multi- 
block data 

Despite all advantages regarding second-order EEM data, its acqui-
sition requires expensive and specific instrumentation [112]. In alter-
native, the time-based recording of QDs PL spectra modulation in the 
presence of increasing analyte concentrations, which can be easily sur-
veyed by using a common fluorimeter, is a simple and expeditious way 
to also collect second-order data. Nevertheless, only a very restricted 
number of analytical methodologies has explored this possibility. 

One of the first examples using three-dimensional kinetic data was 
developed by Abdollahi et al. [113] (Table 3). In this work, the modu-
lation of the PL of CYS-capped CdS QDs in the presence of Cu2+ was 
studied throughout the time, and the obtained data were analysed 

resorting to different chemometric models, namely MCR-ALS and PLS 
after row-wise augmentation of the second-order data. MCR-ALS was 
used to extract the spectral profiles of all chemical species present (the 
number of chemical species was estimated through EFA) while PLS was 
used for the metal ion quantification. The kinetic interaction of the 
nanoprobe with other ions (Ag+, Ni2+ and Hg2+) was also studied. The 
authors observed that for each tested metal ion, a characteristic emission 
spectra profile was obtained. This fact demonstrates that different metal 
ions cause different kinetic behaviours in the CdS QDs PL, which can be 
very useful not only for the accurate quantification of Cu2+ in the 
presence of interfering species, but also for the simultaneous determi-
nation of co-existing metal ions that influence the QDs PL. 

Our research group developed two chemometric-assisted kinetic 
determinations of oxytetracycline (OTC) [94] and aflatoxin B1 (AFB1) 
[114] using ternary AgInS2 QDs as PL sensing elements and as a pho-
tocatalyst (ROS generators), respectively. In the first work, the presence 
of lactose monohydrate in commercial veterinary pharmaceutical for-
mulations impaired the ratiometric determination of OTC. Aiming to 
circumvent the selectivity issues, the behaviour of the AIS QDs PL 

Fig. 8. Kinetic approach using the behaviour of AIS QDs in the presence of OTC through 30 min. and resorting to chemometric tools which allow the OTC quan-
tification in pharmaceutical formulations. Adapted with permission from [94]. Copyright 2021 Elsevier. 
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quenching in the presence of OTC was carefully analysed throughout 
time (30 min). The implementation of a kinetic approach allowed the 
reduction of the LOD, enhancing sensitivity, as well as to acquire second- 
order data, which enabled the quantification of the drug in the presence 
of uncalibrated interferents (Fig. 8). The kinetic data was processed by 
U-PLS which assured the accurate determination of OTC on two different 
commercial formulations [94]. Indeed, a R2

P and a relative percentage 
error (RE) of 0.99 and 7.6 %, respectively, were obtained for the test set. 
In another work from our group [114], it was verified that, despite no 
perceptible variation on the QD’s optical proprieties (meaning that the 
QDs did not directly behave as sensing elements), the fluorescence in-
tensity corresponding to the AFB1 emission band gradually increased 
throughout the kinetic process. Effectively, reactive oxygen species 
(ROS) generated by the AIS QDs upon visible light irradiation led to the 
oxidation of AFB1 generating a photodegradation product with higher 
fluorescence intensity than the native fluorescence of AFB1. The ac-
quired PL data were processed resorting to U-PLS and tested in two AFB1 
commonly contaminated samples namely, maize and rice samples 
[114]. A R2

P of 0.96 and 0.99 and a RE of 8.0 and 5.9 were obtained for 
the spiked rice and maize samples, respectively, which attested the ac-
curacy and suitability of the developed methodology. Moreover, the 
developed methodology was validated against a reference method, 
specifically liquid chromatography with mass spectrometry detection 
(LC-MS/MS), which yielded relative deviation values lower than 3 %. 

Seeking the obtaining of a higher amount of data information to 
enable the development of more efficient and reliable chemometric 
models for quantitative analytical analysis, our research group proposed 
two different kinetic approaches for the determination of acetylsalicylic 
acid (ASA) [48] and histamine [115] exploring multi-emitter nanop-
robes as sensing platforms. In the first case, a dual MES-CdTe/MPA- 
AgInS2 QDs PL probe exhibiting overlapped emission bands was devel-
oped for ASA determination in which the obtained non-linear PL kinetic 
data were analysed and compared by N-way partial least-squares (N- 
PLS), U-PLS, radial basis function neural networks (RBF-NNs) and 
multilayer feed-forward neural networks (MLF-NNs) [48]. The emission 
intensity of both QDs of the combined probe was inhibited upon inter-
acting with increasing concentrations of ASA. However, they exhibited 
different sensitivities towards the analyte, showing an affinity of MES- 
CdTe QDs higher than that of MPA-AIS ones. This fact enables to 
obtain a specific ASA-response profile, which, by applying a kinetic 
approach, facilitated its discrimination in samples where this drug is 
combined with other APIs. Our research team also demonstrated that the 
overlapping profile of the emission spectra can be mathematically 
decomposed through the use of chemometric models, allowing an ac-
curate determination of ASA in pharmaceutical formulations even in the 
presence of other uncalibrated APIs. The comparison between the che-
mometric models showed no significant differences in terms of figures of 
merit, however, both PLS models required less computation time, were 
simpler to implement and the interpretation of the generated data was 
easier than those obtained by NNs [48]. In the second case, a ratiometric 
probe composed of CDs and MPA-AgInS2 QDs was used for histamine 
determination in food samples, being the kinetic-spectral data analysed 
by N-PLS and U-PLS [115]. In the proposed ratiometric nanoprobe the 
AIS QDs acted as analyte-dependent fluorophore (PL quenching effect in 
the presence of the biogenic amine) while CDs were employed as 
reference fluorophore (no PL modulation upon the interaction with the 
analyte). The results obtained in this work demonstrated that both 
chemometric models enabled to accurately quantify histamine in com-
plex samples such as tuna, hake fish and tomato. Nevertheless, the N-PLS 
model showed better results in terms of prediction than those obtained 
by the U-PLS model. A RE below 10 % with a R2

P higher than 0.9 as well 
as a LOD and LOQ of 1.26 and 3.80 mg L− 1 were obtained, respectively, 
which demonstrate that the proposed method can be successfully used to 
monitor histamine in foodstuffs even if the levels of this biogenic amine 
are below the maximum limit established in the EU and USA legislation. 

The use of kinetic data only has analytical significance if variations in 

the optical properties of the QDs are observed steadily throughout time. 
However, in some cases, upon mixing QDs and analyte, the optical 
properties of the former are almost instantly altered remaining subse-
quently unchanged for long periods of time, without analytical rele-
vance. In these cases, and in alternative to the use of EEM or kinetic data, 
information obtained from multiple hyphenated sources can be 
explored. In effect, the use of multi-block data obtained from different 
detection instruments/sensing platforms enables acquiring comple-
mentary useful information, that guarantees reliable analyte determi-
nation. Obviously, for the merging of data acquired from multiple 
instruments, it is crucial to assure that the QDs optical properties remain 
unchanged throughout the analysis, being only affected by analyte 
interaction, or that the samples are measured at stable experimental 
conditions. Only one work has explored the use of multi-block QDs data 
for analytical purposes. Yuan et al. [116] developed a sensing approach 
in which phosphorescence, fluorescence and ultraviolet–visible spec-
troscopy were used to analyse the interaction between multiple pesticide 
residues and amino-silane and ionic liquids (ILs) co-modified Mn-ZnS 
QDs and covalent organic frameworks (COFs). The hyphenized three- 
dimensional optical signal was processed by resorting to PCA which 
enabled the differentiation of a panoply of pesticide residues in complex 
food samples [116]. The information regarding the PCA application and 
how the obtained data was assembled was not made available. 

4. Conclusions and prospects 

A careful and exhaustive revision concerning QDs-based methodol-
ogies using chemometric models was performed, including the optimi-
zation of the synthesis and characterization of QDs as well as its use in 
qualitative and quantitative analysis using first- and second-order data. 
This revision included a discussion of the most used chemometric 
models as well as their advantages in QDs-based methodologies. In fact, 
the analytical potential of QDs is clearly restrained by their high reac-
tivity that result frequently in the establishment of non-specific in-
teractions with both the analyte and the interfering species. This lack of 
selectivity could be amended by functionalising their surface with 
suitable molecular recognition mechanisms, which could be a cumber-
some and expensive strategy. Alternatively, by guaranteeing the acqui-
sition of complex analytical data, with plenty of chemical information, 
even if not visible or immediately perceptible, and by resorting to 
adequate chemometric models it is possible to extract valuable quanti-
tative and qualitative information from all of the components in a 
sample, even in the presence of overlapping peaks or unpredicted 
interfering species, which would therefore assure the required 
selectivity. 

Effectively, complex data like second or higher-order data can be 
very handy when analysing complex sample matrices, such as those 
found in the food and environmental industries, in which unknown 
constituents might occur, since the second-order advantage enables 
accurate analytes quantification, even in the presence of uncalibrated 
interferents. Unfortunately, only a few scientific works have been re-
ported exploring the second- or higher-order data using QDs as a fluo-
rescent analytical nanoplatform. It is expected that in a near future, the 
acquisition of three- or higher-array data using the response of com-
bined nanoprobes (multiple QDs or fluorophores combined with QDs) 
and the subsequent PL data processing by using proper chemometric 
models might provide new possibilities and resourceful strategies for the 
simultaneous detection of multiple analytes in complex samples. Ex-
pected developments in multiplexed detection and array sensing could 
boost the application of pattern-based detection methods which, upon 
combination with multilinear pattern recognition methods would 
simplify the simultaneous analysis of multiple analytes in complex 
samples. Moreover, due to the versatility of QDs synthesis in terms of 
core composition, shells, cappings and coatings, functional groups, etc, 
it would be possible to develop small libraries of QDs probes that could 
be employed to build up sensing arrays and fingerprinting detection 
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schemes whose possible interactions, and respective outputs, are pre- 
determined. 

On this subject, the synthesis of quantum dots, and the obtaining of 
high-quality nanomaterials, is determined by many variables whose 
weight and interconnection are not always discernible. In this field, as 
well as in the subsequent QDs characterization, the collecting of high 
value informative data and their processing by suitable chemometric 
methods could represent a major improvement in the implementation of 
expeditious and easily controlled synthetic approaches as these could 
provide chemically interpretable insights of evolving multi-component 
processes. Moreover, chemometric models could be a valuable tool for 
understanding and controlling the relationship between the coordina-
tion chemistry of QDs and their fluorescence properties. For instance, 
chemometrics can help analyze how variations in ligands affect the 
fluorescence data, or how their composition, size and shape affect their 
energy levels and bandgap, or their photostability, or even be used to 
predict the QDs emission wavelength and quantum yield, etc. Chemo-
metric models can also be used to classify QDs seeking to identify and 
isolate specific populations, considered in terms of size and surface 
chemistry, for target applications. 

Despite all advantages resulting from combining high-order data 
with chemometrics, there are also some possible drawbacks related with 
the complexity of this field, which can be challenging, particularly for 
researchers without a strong background in mathematics and statistics, 
who might require time and expertise to learn how to select the most 
adequate algorithm and how to use it effectively. In addition, chemo-
metrics often requires extensive data preprocessing, including filtering, 
smoothing, and baseline correction, which can be time-consuming and 
introduce bias if not done carefully. For instance, when applying com-
plex models to high-dimensional data, there’s the risk of overfitting, 
which can lead to models that perform well on the training data but 
generalize poorly to new data leading to inaccurate results. In this re-
gard, artificial Intelligence (AI) can provide valuable assistance when 
using chemometrics with second or high-order QDs-based fluorescence 
data either in automating and optimizing data pre-processing tasks, in 
extracting relevant information from the high-dimensional fluorescence 
data, in selecting the most appropriate model for a given dataset, in 
building predictive models that can anticipate trends or behaviors based 
on historical fluorescence data, which could be a significant advantage 
when dealing with evolving QDs chemical processes where the optical 
properties of the QDs or the fluorescence data evolve over time, etc. 

In the realm of chemometric applications for quantum dot photo-
luminescence data analysis, the potential for new developments extends 
beyond the scope covered in this review. There is potential to incorpo-
rate QDs into innovative sensing platforms, exploring applications 
beyond traditional fields, such as environmental monitoring, medical 
diagnostics, or even wearable devices. Furthermore, the improvement of 
the specificity and sensitivity of sensors based on QDs through surface 
modifications or the incorporation of new materials has the potential to 
unveil new possibilities. Furthermore, the exploration of multifunctional 
QDs that not only exhibit photoluminescence but also possess other 
unique properties, like photocatalytic capabilities, also seems prom-
ising. This could lead to the development of advanced, versatile nano-
materials for a broader range of applications. Collaborations between 
researchers specializing in QDs and experts in diverse fields, such as 
biology, medicine, or environmental science, could foster interdisci-
plinary innovations. Moreover, efforts directed towards improving the 
scalability and cost-effectiveness of QD synthesis methods would be 
significant. This could facilitate the large-scale production of QDs for 
practical applications. Finally, exploring eco-friendly and sustainable 
approaches to QD synthesis aligns with the growing emphasis on green 
nanotechnology. 

In conclusion, although this area does not seem very appealing, and 
it may look intimidating due to the complexity of the involved mathe-
matics, the advantages that it provides and the increasing number of 
chemometric tools that are made available to the analytical chemist may 

change its perspectives in the incoming years. It will be important to 
make efforts to create user-friendly software tools that facilitate the 
widespread adoption of chemometric methods among researchers in 
quantum dot studies. 
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(Ed.), Chemical Analysis of Food: Techniques and Applications, Academic Press, 
Boston, 2012, pp. 25–57. 

[28] A.C. Olivieri, Introduction to Multivariate Calibration: A Practical Approach, 
Springer, 2018. 

[29] S.D. Brown, R. Tauler, B. Walczak, Comprehensive Chemometrics: Chemical and 
Biochemical Data Analysis, Elsevier, 2020. 

[30] P. Geladi, Spectrochim. Acta B Atmos. Spectrosc. 58 (2003) 767–782. 
[31] L.A. Berrueta, R.M. Alonso-Salces, K. Héberger, J. Chromatogr. A 1158 (2007) 
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