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Abstract: Wildfires are affecting natural ecosystems worldwide, causing economic and human
losses and exacerbated by climate change. Models of fire severity and fire susceptibility are crucial
tools for fire monitoring. This case study analyses a fire event on 3 September 2019 in Vilcabamba
parish, Loja province, Ecuador. This article aims to assess the severity and susceptibility of a fire
through spectral indices and multi-criteria methods for establishing a fire action plan proposal. The
methodology comprises the following: (i) the acquisition of Sentinel-2A products for the calculation
of spectral indices; (ii) a fire severity model using differentiated indices (ANBR and dNDVI) and a fire
susceptibility model using the Analytic Hierarchy Process (AHP) method; (iii) model validation using
Logistic Regression (LR) and Non-metric Multidimensional Scaling (NMDS) algorithms; (iv) the
proposal of an action plan for fire management. The Normalised Burn Ratio (NBR) index revealed
that 10.98% of the fire perimeter has burned areas with moderate-high severity in post-fire scenes
(2019) and decreased to 0.01% for post-fire scenes in 2021. The Normalised Difference Vegetation
Index (NDVI) identified 67.28% of the fire perimeter with null photosynthetic activity in the post-fire
scene (2019) and 5.88% in the post-fire scene (2021). The Normalised Difference Moisture Index
(NDMI) applied in the pre-fire scene identified that 52.62% has low and dry vegetation (northeast),
and 8.27% has high vegetation cover (southwest). The dNDVI identified 10.11% of unburned areas
and 7.91% using the dNBR. The fire susceptibility model identified 11.44% of the fire perimeter with
null fire susceptibility. These results evidence the vegetation recovery after two years of the fire event.
The models demonstrated excellent performance for fire severity models and were a good fit for the
AHP model. We used the Root Mean Square Error (RMSE) and area under the curve (AUC); dNBR
and dNDVI have an RMSE of 0.006, and the AHP model has an RMSE of 0.032. The AUC = 1.0 for
fire severity models and AUC = 0.6 for fire susceptibility. This study represents a holistic approach by
combining Google Earth Engine (GEE), Geographic Information System (GIS), and remote sensing
tools for proposing a fire action plan that supports decision making. This study provides escape
routes that considered the most significant fire triggers, the AHP, and fire severity approaches for
monitoring wildfires in Andean regions.

Keywords: remote sensing; forest fire susceptibility; decision making; Google Earth Engine;
Geographic Information System; wildfires
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1. Introduction

Global change includes increased temperatures and prolonged droughts, which cre-
ate the ideal conditions for increasing the likelihood of spreading extreme forest fires [1].
Forests present microclimates that strongly contrast with the climate outside them. In-
tegrating microclimates in ecological research will promote the better understanding of
forests’ biodiversity and functions related to climate and climate change [2]. A challenge in
understanding the fire-prone landscapes is their approach as coupled human and natural
systems [3]. Anthropic activities, such as those in the recreational and agricultural sectors
and human settlements, are associated with high wildfire risk [4]. For example, farmers
consider burning essential for clearing vegetation or weeds, reducing acidity, and nutrient
availability [5]. However, in high-intensity fires, these burning practises in agriculture
affect microfauna, evapotranspiration, the reproduction of plant species, nutrients, and soil
fertility [6].

Extreme wildfires are highly destructive agents within the ecosystem that impact the
environment, wildlife habitats, and surrounding communities [7]. Moreover, wildfires
destroy trees, shrubs, and other vegetation types, leaving the area barren, and chang-
ing hydrological processes (i.e., infiltration, interception) [8]. Wildfires can release large
amounts of smoke and other pollutants into the air, causing health problems for humans
and animals [9]. The intense heat caused by wildfires alters the chemical and physical
properties of the soil, making it less fertile and unable to support plant growth [10].

Worldwide, recorded fires over time affect numerous ecosystems. For instance, in 2018,
Washington, Oregon, Idaho, Nevada, and California recorded a burned area of 4000 hectares
(ha) and 100 deaths [11]. Meanwhile, the Australian mega-fires in 2019 originated from
natural conditions, consumed 70,000 ha. and affected regions such as Queensland, New
South Wales, Victoria, and Tasmania [12]. The mega-fires of 2017 occurred in Pedrogao
Grande (Portugal) and Gois, causing 64 deaths, with 200 individuals sustaining injuries
and leaving a burned area of 45,000 ha [13]. In a local context, the Loja canton in Ecuador
has experienced several forest fires, with a burned area of 12,848 ha from 2010 to 2022 [14].

In Ecuador, fires are mainly widespread during the dry season (from June to Septem-
ber), because solar radiation increases and produces hydric stress in vegetation and dried
soil and lowers precipitation [15]. The leading causes of wildfires in this country are human
activities, such as agricultural burning, campfires, and discarded cigarette butts, as well as
the effects of climate change, which are leading to drier and hotter conditions [16]. The case
study of this article comprises Vilcabamba parish in Loja Province in Ecuador, an Andean
region in altitudes over the 1400 m.a.s.l. [17].

Remote sensing tools are widely used to understand wildfire dynamics. However,
these techniques present some limitations due to weather conditions associated with
cloud cover, which are challenges with observations on terrestrial surfaces [18]. However,
multi-temporal analysis and machine learning based on remote sensing and statistical
analysis (i.e., Logistic Regression, Multivariate Adaptive Regression Spline, Random Forest)
facilitates the understanding of spatial, social dynamics and the temporality of fire events
on the land surface [19]. The time series data of spectral indices could be inconvenienced
due to cloudiness, aerosols, sun, ozone, and dust [20]. In this way, the application of the
Cloud-gap-filled (CGF) method through Google Earth Engine (GEE) allows for efficient
cloud removal, especially in Andean regions with high cloud cover [21].

Spectral indices qualify the phenological behaviour of plant species, showing their
vigour, development, and dynamics [22]. The Normalised Difference Vegetation Index
(NDVI) is used for the analysis of vegetation recovery, photosynthetic activity, mapping
fire severity, crop yields, climate change, drought mapping, and the impact of flooding
on crops [23,24]. The Normalised Burn Ratio (NBR) is one of the most used indices to
assess fire severity, and its primary function is the detection of burned areas and vegetation
status [25].

This study focuses on the need to understand and prevent the effects of forest fires,
a phenomenon that represents a critical threat to ecosystems, biodiversity and human
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communities. Fire severity levels provide a fundamental perspective for assessing en-
vironmental impact while developing susceptibility models to identify fire-prone areas.
However, in Vilcabamba parish, there is no evidence of studies that analyse the severity of
fires or government reports documenting the scars these events left. Likewise, no multi-
criteria model has been developed to identify areas susceptible to forest fires. The available
scientific literature is limited to quantifying fire frequency [14]. Additionally, forest fire
monitoring usually includes the application of quantitative techniques based on remote
sensing tools, statistical algorithms or machine learning methods. However, a holistic
approach considering both qualitative and quantitative approaches is needed for a better
explanation of fire events and successfully establishing an action plan oriented to support
decision-making processes. Therefore, the research question of this study is as follows:
How does assessing fire severity and susceptibility contribute to establishing a proposed
action plan for fire monitoring and prevention?

The aim of this study is to assess the severity and the susceptibility of a fire event in
Vilcabamba parish by calculating spectral indices such as the NDVI, NBR, and Normalised
Difference Moisture Index (NDMI) and applying the Analytic Hierarchy Process (AHP)
method. We developed fire severity models with the delta Normalised Burn Ratio (ANBR),
the delta Normalised Difference Vegetation Index (ANDVI), and a wildfire susceptibility
model using the AHP approach. The integration of these remote sensing tools and the GIS-
based approach allowed, as the development of the proposal of a fire action plan and the
establishment of a conceptual model, for wildfire management and prevention to support
decision making in Vilcabamba parish. To accomplish this aim, we used geoprocessing
tools such as the Geographic Information System (GIS) and GEE. We used the AHP method
for the fire susceptibility model, selecting the most representative fire triggers in the
study area. We chose this method because it allows us to include experts and community
criteria for decision making and has been widely applied for fire susceptibility analysis.
The versatility of the AHP method lies in integrating multiple layers of environmental
information, meteorological conditions, and even local socio-economic conditions for forest
management in hard-to-reach areas [26]. However, there are other methods, such as the
Analytic Network Process (ANP), that are mainly applied for risk evaluations rather than
susceptibility [27]. Finally, we validated the models with the field data of fires recorded in
2019 in the fire perimeter and statistical algorithms.

We selected the fire event of 3 September 2019, which occurred southwest of the parish,
and it is considered the most representative background of fire dynamics in the region.
By including the entire parish in this study, we can establish escape routes, considering
the proximity to health centres, water bodies, fire stations, and fires that occurred in the
sector in the last decade. Human activities provoked the fire of 3 September 2019, and it is
recognised as the most representative in this region because it spread across 1837.64 ha and
was extinguished in three days by firefighters [28]. Additionally, the Podocarpus National
Park is located northeast of Vilcabamba parish, which has been declared a protected area of
Ecuador according to the Ministry of Environmental, Water and Ecological Transition in
Ecuador (MAE, Spanish acronym), a biodiversity hotspot in southern Ecuador with more
than 560 bird species recorded [29].

This article is of great relevance for both environmental management and territorial
planning because it provides a solid scientific basis for understanding the patterns and
effects of forest fires, allowing the identification of the most vulnerable areas and the
factors that contribute to their occurrence. Furthermore, implementing an action plan
promotes effective preventive strategies, reduces the risks of future fires, and promotes the
sustainable management of natural resources, especially in regions of high ecological value
and vulnerability, such as Vilcabamba parish.

2. Study Area

In this case study, we analysed the severity of the wildfire that occurred on 3 September
2019, in the southwest part of Vilcabamba parish in the Andean region of Ecuador (Figure 1a) [30].
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This parish belongs to Loja Province (79°15'38.31” W and 4°13/8.38" S), which is located
in the west part of the Catamayo-Chira basin (see Figure 1b). The Podocarpus National
Park lies in the northeastern part of Vilcabamba parish, and, at the southwest area, there
is the wildfire perimeter (Figure 1b. According to the National Secretary of Risks and
Emergencies (SNGRE, Spanish acronym), 79 fires were recorded in Vilcabamba parish
during the period 2011-2019 (pre-fire scene) [31].
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Figure 1. Location of the study zone: (a) Representation on a macro-scale (Ecuador); (b) Vilcabamba
parish including the delineation of the wildfire perimeter analysed, weather stations, and the wildfires
recorded in the year 2019 (pre-fire scene) by the SNGRE and VIIRS.

The Vilcabamba parish has a population of 5516 inhabitants [32] and an area of
15,932.61 ha. In this parish, there are outcrop cineritic volcanic rocks. An amount of
46.53% of the territory has a mountainous relief with slopes ranging from 70% to 100%.
On the other hand, 56% of the parish has entisol soils, 36% inceptisol soils, and only
1.86% alfisol soils [33]. Vilcabamba parish has a temperate semiarid climate and distinct
seasonal variations in altitudes from 1400 to 3750 m.a.s.l. [17]. According to Koppen
climate classification [34], this sector has a mesothermal environment with a dry winter,
considered a variety of the mesothermal humid climate type. This area experiences two
main climate seasons (rainy and dry season). The rainy season typically occurs from
October to May, while the dry season spans from June to September. According to the local
weather stations (Malacatos (code M143), Quinara (code M145), Yangana (code M137), San
Jose, and Porvenir stations), the average annual precipitation is around 875 mm, and the
average yearly temperature is 19 °C. Finally, evapotranspiration is around 2268.1 mm/year.

The study area is characterised by its economy based mainly on agriculture and
tourism. Agriculture is centred on cultivating coffee, sugar cane, fruits, vegetables, and
products for local consumption and nearby markets. About 87% of the population is
engaged in agriculture, forestry, hunting and fishing [33]. However, these agricultural
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activities involve the removal of vegetation through the traditional use of fire, which, on
numerous occasions, triggers forest fires [35]. During the period 22-25 August 2024, a
fire was recorded in Quilanga canton, Loja province. In this fire, 738 ha of pine forest and
grassland was affected, adding to the 8600 ha recorded in 2024 in Loja [36]. On the other
hand, the tourism boom has encouraged the creation of inns, restaurants, and wellness
centres, generating employment and, at the same time, contributing to changes in land use
in the sector [37].

3. Materials and Methods

We conducted a bi-temporal analysis of Sentinel-2A imagery that might have some
gaps in the collection due to the high levels of cloudiness typical in Andean regions.
Therefore, we implemented a cloud-masking technique through the Google Earth Engine
(GEE) environment to remove clouds in the satellite images. This study also allowed us to
reduce interpretation errors in calculating spectral indices. This method is especially useful
in Andean regions with high cloud cover, improving the usability of the image for terrain
monitoring and analysis. We used GEE to process the selected remote sensing products.

The methodological approach includes four phases as shown in Figure 2: First, remote
sensing methods (spectral indices for fire severity analysis) and geoprocessing tools (i.e.,
Geographic Information System (GIS) and GEE). Second, fire severity models using dif-
ferentiated indices (ANDVI and dNBR) and a fire susceptibility model using the Analytic
Hierarchy Process (AHP) method that considers variables such as slope angle, elevation,
slope aspect, isohyets, isotherms, land use, distance to water bodies, and distance to roads.
Third, the validation process for fire severity models and the fire susceptibility model.
Fourth, the proposal of an action plan for fire management. This action plan includes
the establishment of refuge areas, escape routes, and a conceptual model that evidences
the fire triggers in the sector as a tool for decision-makers (governmental bodies and
the community).

3.1. Remote Sensing Tools for Fire Severity
3.1.1. Remote Sensing Products

In this section, we used satellite imagery from Sentinel-2A [38], with the Multi-Spectral
Instrument (MSI) that incorporates an atmospheric correction. This instrument has a
radiometric resolution of 12 bits and 12 spectral bands. We developed a script code
for the retrieval of a mosaic of the Sentinel-2A imagery using the cloud-based platform
Google Earth Engine (GEE, Version: 2010, Google LLC, Mountain View, CA, USA) [39].
Subsequently, we applied the cloud-masking technique on the Seninel-2A images selected
in this study to remove areas with cloudiness greater than 30%. This method used the
‘maskClouds’ function of GEE, which refers to cloud probability values. We also set a
cloudiness threshold to filter out pixels with high cloud probability, and those with a cloud
probability below the selected threshold were retained.

The dates of the pre-fire and post-fire scenes were selected based on the following
criteria: (i) dates before and after the fire on 3 September 2019, (ii) low cloud cover (less
than 30%), and (iii) the availability of Sentinel-2A images during the dry season, which
are the months with the highest occurrence of fires in the Vilcabamba parish (from June to
September), as shown in Table 1.
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Figure 2. Methodological approach.
Table 1. Satellite data used for analysis in the study area.
Scene Acquisition Satellite Cloudiness Spatla.l Source
Date Resolution
Pre-fire 25 August 2019
Fire-day 3 September 2019 ) <30% 10 m [40]
Sentinel-2A
Post-fire 9 September 2019
Post-fire 4 August 2021

3.1.2. Spectral Indices

In this stage, we implemented a GEE script to calculate spectral indices for the assess-

ment of fire severity. We calculated vegetation indices that use the normalised difference
expressions derived from Sentinel-2A products. The selection of the most appropriate
index was based on the following criteria: (1) clarify the presence or absence of burned
areas within the Vilcabamba parish delimitation, comparing satellite data pre and post-fire,
excluding water bodies, bare soil, and agricultural lands; (2) calculate vegetation indices
from satellite data pre-fire (31 August 2019) and post-fire scenes (7 September 2019 and
5 August 2021). The spectral indices used in pre-fire and post-fire scenes are the Nor-
malised Difference Vegetation Index (NDVI) and Normalised Burn Ratio (NBR). Finally, we
calculated the Normalised Difference Moisture Index (NDMI) for the pre-fire scene. The
equations and spectral bands used for these indices are shown in Table 2.
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Table 2. Vegetation indices calculated for the case study.
Index Equation Spectral Bands Source
_ Near-Infrared (NIR)
_ NIR—Red

NDVI NDVI = Nirre Red [41]

_ Near-Infrared (NIR)

_ NIR-SWIR2

NBR NBR = NTRTSWIR2 Short-Wave Infra-Red (SWIR) 2 [42]
NDMI NDMI = NIR—SWIR1 Near-Infrared (NIR) [43]

NIR+SWIR1 Short-Wave Infra-Red (SWIR) 1

The NDVI indicates vegetation health and is used in environmental studies, monitor-
ing crop conditions, and enhancing yield through precision farming practises [44]. The
NDVI uses the Near-Infrared (NIR) band, which measures the amount of near-infrared
light reflected by vegetation, and the Red band, which measures the amount of red light
reflected. Otherwise, the NBR maps fire severity from high severity to unburned areas and
tracks vegetation changes in post-fire environments, providing a quantitative measure of
the severity and extent of fire damage [45]. This analysis enhances the contrast between
burned and unburned areas, reducing the impact of topography and soil moisture [42].
Finally, the NDMl is a proxy for vegetation stress that measures the levels of moisture in
vegetation and is useful for monitoring drought conditions, crop health, and assessing the
overall moisture status of vegetation [43].

The use of vegetation indices in remote sensing and environmental monitoring is
valuable. Still, it has several limitations, such as its sensitivity to atmospheric conditions
(e.g., clouds, aerosols, and water vapour), which can distort reflectance values and lead
to inaccurate assessments [46]. In addition, these indices usually affect measurements
in mixed pixels that are less accurate when non-plant elements such as soil or water are
present [47]. Therefore, vegetation indices should be complemented by other methods,
such as the cloud-gap-filled (CGF) method, that will allow a comprehensive understanding
of vegetation health and dynamics [22]. For instance, the CGF method has been applied
in India for the removal of clouds in the calculation of the Normalised Difference Snow
Index [48]. In this study, we applied the CGF method through the GEE random forest
algorithm. In addition, we analysed the resulting values of vegetation indices with GIS
information layers of water bodies, land use and urban areas to remove these interpretation
limitations in Andean regions.

We implemented the cloud-gap-filled method as a masking technique to enhance the
accuracy of the NDVI' time series [49]. This method also reduces the effects of cloudiness
with the application of filters to remove clouds and shadows. Subsequently, we generated
a continuous NDVI time series from 2016 to 2022 in a way that we can monitor vegetation
dynamics in pre-fire and post-fire scenes as shown in Figure S1. This technique fills
the missing data using the best estimation neighbouring points from earlier and later
observations through interpolation. The gaps were filled with the joint function from GEE,
applied to imagery mosaics. This technique is primarily applied in vegetation indices,
climatological data, high-resolution multispectral images, and time series [50]. Finally, the
GEE code used in this study is as follows: https://code.earthengine.google.com /66719338
3cfacacefdd0bd1486f3accf [51].

3.2. Fire Modelling
3.2.1. Fire Severity Models
In this section, we used the differentiated indices, delta Normalised Difference Vege-

tation (ANDVI), and delta Normalised Burn Ratio (ANBR) using the pre-fire scene (2019)
and post-fire scene (2021), as shown in Equations (1) and (2), respectively. We implemented
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these fire severity models to assess the severity of the event in Vilcabamba parish and the
amount of burned areas after two years of the fire event of 3 September 2019.

dNDVI = pre-fire NDVI — post-fire NDVI (1)
dNBR = pre-fire NBR — post-fire NBR (2

3.2.2. Fire Susceptibility Model Using AHP Multi-Criteria Method

In this section, we applied the GIS-based multi-criteria analysis that uses the Analytic
Hierarchy Process (AHP) method for the generation of a wildfire susceptibility model in
Vilcabamba parish. Thomas L. Saaty developed the AHP method in the 1970s [52], a multi-
criteria decision-making tool for dealing with complex problems. The AHP is considered
one of the most effective models for risk assessment [53] and has been widely used in
Geographic Information Systems (GISs). This model benefits spatial analysis, although it
does not focus on problem conceptualisation. It uses geographic data and map algebra
to identify areas susceptible to wildfire, assigning a weight to each criterion according
to its relevance based on available experience, information and skills [54]. This method
uses geographic information to ascertain the probability of wildfires, which requires a
comprehensive database for storing all the variables. Therefore, we use QGIS (version 3.16.0,
ESRI, Boston, MA, USA) and ArcGIS Pro (version 3.1, QGIS Development Team, Redlands,
CA, USA) software for spatial analysis. Decision theory represents a multidisciplinary
theory that uses different methods (e.g., the Analytic Hierarchy Process (AHP) method) to
guarantee the quality of a decision in management processes. The AHP guarantees quality
because it has a robust mathematical base and is to be used in evaluating and selecting
the best alternatives to explain a phenomenon [55], in this case, triggers for fire severity.
There are other methods such as the Decision Matrix Method (DMM) [56] and the Forced
Decision Matrix Method (FDMM) [57] that effectively assess the selection of factors for
decision-making approaches. However, the AHP method was selected due to the simplicity
of sharing with community and receiving their opinions in the best selection of triggers for
fire severity in Vilcabamba parish, considering climate and socio-ecological conditions.

Predicting forest fires is challenging because these events could have natural or an-
thropic origins. Therefore, we selected eight variables (C1 to C8) that better represent
fire susceptibility in Vilcabamba parish as a guideline for decision-makers. The variables
are the most significant triggers in the study area according to the literature review and
analysis of the baseline data in the study area.

e  Distance to roads (C8): The fire analysed was provoked by human activities. Therefore,
knowing the distance to roads is a reference to the proximity to urban zones that
are the main triggers for fire-starting events in Vilcabamba parish, considering that
humans generate 99% of forest fires in Ecuador [58].

e Distance to water bodies (C7): This includes superficial water sources such as rivers,
streams, lakes, and lagoons that can provide water in case of fire events. The AHP
method uses the weighted overlay tool that incorporates surface restrictions based on
this variable, providing clues for understanding wildfire events [59]. We determined
these variables using the Euclidean distance technique that calculates the distance to
every single point of the geographic space.

e Land use (C6): This is crucial in the probability of forest fires in this sector because
humans generate forest fires through poor farming practises such as burning grass-
lands that change the land use dynamics and affect fire intensity. For this variable, we
used data from the geoportal of the Ministry of Environmental, Water and Ecological
Transition in Ecuador (MAE, Spanish acronym) from 2018 for pre-fire and 2022 for
post-fire scenes [60].

e  Temperature (C5), and precipitation (C4): These create the necessary conditions for
fires to burn with a certain magnitude. For precipitation (isohyets) and temperature
(isotherms), we used data from five meteorological stations (Malacatos, Quinara,
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Yangana, Porvenir, and San Jose stations), located 15 km from Vilcabamba parish
(Figure 1b). Yanacocha and San Jose stations are monitored by the National University
of Loja (UNL, Spanish acronym) from 2016 to the present [61] and measure variables
such as the following: temperature, precipitation, wind speed, wind direction, and
relative humidity on a daily scale with a frequency of 15 min. Meanwhile, Malacatos,
Quinara, and Yangana stations are monitored by the National Institute of Meteorology
and Hydrology (INAHMI, Spanish acronym) [62].

Slope angle (C1): This parameter is vital because it influences the spread of fire, with
steeper slopes allowing fire to move faster uphill, as gravity helps spread flames [63].
It also affects wind patterns and fuel availability, as steeper terrains can concentrate
heat and increase fire intensity.

Elevation (C2), and slope aspect (C3): These variables are essential but not determi-
nants for starting a forest fire in Vilcabamba parish. For these variables, we used the
Digital Elevation Model (DEM) of the Military Geographical Institute (IGM, Spanish
acronym) [64]. For the calculation of the slope angle and aspect, we use the GIS-based
geodesic method and the QGIS software. This method is also known as Earth Centred,
Earth Fixed (ECEF), as it considers the earth as an ellipsoid and shapes the slope in 3D
through Cartesian coordinates [65].

Table 3 includes the source for the eight variables selected, their spatial resolutions,

and the importance of each variable using a scale of importance from 1 to 4, where 1 = null
susceptibility, 2-3 = Low-Moderate, and 4 = High. For the weights of the variables, the
AHP method assigns them according to their relative importance. These weights were
adapted from the multi-criteria matrix proposed by Saaty [52], considering the scientific
literature from studies with similar climatic conditions to Vilcabamba parish. For example,
Ibarra (Ecuador) [65] and Bolivia [66] have an intrinsic connection in the composition of
the different altitudinal floors, which allows us to rank the variables with greater precision.

Table 3. Variables for the wildfire susceptibility analysis for Vilcabamba parish.

Resolution

Preparation

Variable

Variables (m) Period Method Weight Score Importance Source
Cl1: geodesic :1),3 ; [64]
Slope angle 30 x 30 2020 (ECEF 15%
(%) method) ot 3
o etho 60 4
Co: 1400-1500 1
g o . 15002250 2 [64]
E(leVatl(i;‘l 30 x 30 2020 Classification 5% 2250-3000 3
4.8, 3000-3750 4
Flat 1
C3: geodesic South 2
) 30 x 30 2020 (ECEF 4% West 4 [64]
Slope aspect method) East 3
North 1
C4: 500-750 1
Mean annual IDW o 750-1000 2
trecipitation 30 x 30 2016-2023 Interpolation 8% 1000-1250 3 [61]
(mm) 1250-1500 4
C5: 8-10 1
Mean annual IDW o 12-14 2
temperature 30 %30 2016-2023 Interpolation 12% 16-18 3 [61]
(°O) 20-22 4
Forest 4
. Water bodies 1
Clipped from
co: 1:250,000 2018-2022 MAE 17% Other lands 2
Land use coportal Agriculture lands 3 [60]
seop Shrub and herbaceous vegetation 4
Urban zone 1
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Table 3. Cont.

. Resolution . Preparation . Variable
Variables (m) Period Method Weight Score Importance Source
C7: 140 4
Distance to Euclidean o 280 3
water bodies 3030 2020 distance 18% 420 2 [67]
(m) 560 1
Cs: 300 4
Distance to Euclidean o 600 3
roads 30 %30 2020 distance 21% 900 2 [67]
1200 1

(m)

Note: ECEF: Earth Centred, Earth Fixed; IDW: Inverse Distance Weighting; MAE: Ministry of Environmental,
Water and Ecological Transition in Ecuador, Water and Ecological Transition in Ecuador; variable importance: 1 =
null susceptibility, 2-3 = Low-Moderate, and 4 = High.

We applied the GIS-based tool named “Weighted overlay” that performs the algebra
of maps and weights for each predictor selected (C1 to C8) based on the multi-criteria AHP

method (Figure 3).

}/// C1: Slope angle \ Spatial
.x .
g ' C2: Elevation Analysis
"x C3: Slope aspect ‘ ‘
-Clip
-Polygon to raster
C4: Isohyets “Reclassify o
-Surface restriction
C5: Isotherms ‘

Database

&3

Cé6: Land use 7‘ ‘
Weighted
overlay

C7: Distance to Bl

water bodies \ 4

Map of wildfire
C8: Distance to susceptibility
roads )

Figure 3. Framework of the wildfire susceptibility analysis using the AHP method.

Equations (3) and (4) allow the calculation of the Eigenvector (Vp) and the coeffi-
cient of the weights (C;,), where “W” represents the weights, and “k” is the number of
variables. Subsequently, to calculate the coherence coefficient (CR), we use Equation (5)
that validates the calculated weighted weights and Equation (6) for the coefficient of the
weights for each variable (CI). Finally, we calculated the random consistency index (Rci),
which varies according to the number of elements compared, where “Amax” represents the
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maximum eigenvalue of the matrix, and “n” corresponds to the number of variables used
(Equation (7)).

Vp = VW1 % W2 % W3 % Wk 3)
\%
Cp=——PF (4)
PV 4+ Vp,

CI

R=—
Rci ®)

Amax — n

Cl= 1) (6)
Rei = 198 - rEn —2) )

Table 4 shows the level of importance for the variables considered with the AHP
criteria. We used paired comparisons and an adapted scale outlined in another Andean
region [65].

Table 4. Scale for pairwise comparisons.

Score Definition
9 Extreme importance
6;,7;8 Very strong importance
4;5 Strong importance
2;3 Moderate importance
1 Equal importance of one over the other variable

Table 5 shows the assessment of the relative importance of the wildfire susceptibility
variables by comparing two factors/variables simultaneously, as verified with a literature
review [65,66,68]. The pairwise comparison matrix places the factors in rows and columns
with a principal diagonal value of 1 and the relative weight of the comparison in each cell.

Table 5. Pairwise comparison matrix applied to variables in Vilcabamba parish.

Variables C1 C2 C3 C4 C5 Ceé C7 C8 Vp Ci Ai
C1 1.00 5.00 7.00 7.00 1/8 7.00 1/4 1/5 1.35 0.15 2.71
2 1/5 1.00 2.00 1/2 1.00 1/8 1/6 1.00 0.50 0.05 1.33
C3 1/7 1/2 1.00 1.00 1/5 1/8 1/2 1/6 0.33 0.04 0.00
C4 1/7 2.00 1.00 1.00 2.00 1.00 1/4 1.00 0.78 0.08 0.01
C5 8.00 1.00 5.00 1/2 1.00 1/4 1/2 1.00 1.12 0.12 1.37
C6 1/7 8.00 8.00 1.00 4.00 1.00 1.00 1.00 1.57 0.17 1.95
Cc7 4.00 6.00 2.00 4.00 2.00 1.00 1.00 1/6 1.68 0.18 1.76
C8 5.00 1.00 6.00 1.00 1.00 1.00 6.00 1.00 1.91 0.21 1.14

Z 18.63 24.50 32.00 16.00 11.33 11.50 9.67 5.53 9.25 1.00 10.27

Note: C1: slope angle, C2: elevation, C3: slope aspect, C4: precipitation, C5: temperature, Cé6: land cover, C7:
distance to water bodies, C8: distance to roads, Vp: characteristic vector, Ci: coefficient of the weights for each
variable, and Ai: maximum eigenvalue of the matrix.

WEF in Equation (8) represents the fire susceptibility analysis by applying the multi-
criteria AHP method through the weighted overlay tool, which performs the map algebra
and assigns weights to each of the eight predictors (C1 to C8).
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WE = (0.06 x C1) + (0.09 x C2) + (0.10 x C3) + (0.15 x C4) + (0.13 x C5) + (0.14 x C6) +

(0.08 x C7) +(0.25 x C8) 8)

The calculated CI was 0.12, and, then, it was divided by the Rci (1.48) to obtain a value
of CR = 0.027. The CR obtained is consistent because it is less than 0.10, demonstrating that
the model is good. The fire susceptibility model was based on eight variables obtained from
official mapping sources, categorising fire susceptibility as null, Low-Moderate, and High.

3.3. Model Validation

We validated the fire severity models (ANDVI and dNBR) and the fire susceptibility
model with 78 points of registered fires in the year 2019. This information was distributed
as follows: 77 points of fire hotspots were collected from the Active Fire Product of Suomi
NPP Visible Infrared Imaging Radiometer Suite (VIIRS) and 1 point from the SNGRE. These
data have a binary value of 0 and 1, where 0 represents the absence of fires, and 1 the
presence of these fire events in the pre-fire scene (year 2019). In Table 6, we present the
exploratory analysis of the data before selecting the model validation algorithms, verifying
the non-normality of the data as the kurtosis exceeds the range between —3 and +3.

Table 6. Exploratory analysis of the validation data.

Parameters dNBR dNDVI AHP Model Normality Ranges
Skewness 0.10 1.19 —3.55 [—3, +3]
Kurtosis 5.18 5.57 8.66 [-3,+3]

Once the non-normality of the data was determined, we used the software RStudio
(Version 4.2.3, Posit PBC, Boston, MA, USA) to calculate two statistical algorithms (Logistic
Regression (LR) and Non-metric Multidimensional Scaling (NMDS)). For the Logistic
Regression [69], we used the packages “ROCR”, “ggplot2” and “pROC”. For the Non-
metric Multidimensional Scaling [70], we implemented the “vegan”, “ggplot2”and “viridis”
RStudio packages and the “metaMDS” function [71].

The LR model predicts a “probability value” through a linear combination of the
given features included in a logistic function that uses a binary value of 0 and 1, where ‘0’
corresponds to the absence of fire and “1” for the presence of fire. On the other hand, the
NMDS algorithm assesses the similarity between samples (78 fire points recorded in the
year 2019 for pre-fire scene). This method is analogous to Principal Component Analysis
(PCA) in that it identifies groups based on a suite of variables. However, the NMDS
does not have the limitation of multivariate normality and multivariate homoscedasticity
assumptions (i.e., it assumes that different samples have the same variance, even if they
come from different populations) [72].

3.4. Proposal of Action Plan for Wildfire Management

In this phase, we drew up a proposal for an action plan for fire management in
Vilcabamba parish by considering factors that included the proximity to settlers, river
networks, the road infrastructure, the location of health centres, historical fire records, and
land use for the identification of regions with high probability to burn. For the historical
fire records, we used the on-site fire points in the period 2011-2019 (pre-fire conditions),
obtained from the SNGRE. Additionally, we used VIIRS fire probability points for the
period 2012-2019. We established escape routes, safety zones, and a conceptual model for
wildfire management in the study area. We used Dijkstra’s shortest path algorithm (Road
Graph plugin) to identify refuge zones within the QGIS framework. This plugin improves
the decision-making processes in the event of an unanticipated wildfire by synthesising
geospatial data, including road networks, topographic attributes, and potential obstructions,
combining advanced geospatial insights and computational algorithms [73]. This analysis
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calculates the distance between fire stations and selected fire probability points, which are
vectors strategically located according to previous analyses such as the zones with high
fire susceptibility obtained from the AHP approach (Section 3.2) and the fire severity levels
from the differentiated indices ANDVI/dNBR (Section 3.3). Finally, we selected the shortest
escape route given the road network options in the study area and considering the fire
susceptibility map.

Figure 4 summarises a conceptual model for fire management in Vilcabamba parish.
This model considers the remote sensing tools applied, the wildfire drivers identified
within the AHP approach, and the action plan’s primary results, such as the escape routes
and refuge zones. These results are vital for the effective containment and control of fire
outbreaks, thereby minimising potential damage to settlements and ensuring the safety
and well-being of the inhabitants in the parish.

Management
strategies

(1) Ground access
(2) Aerial access

Proposal for

wildfire mitigation

Environmental Podocarcpus
protection National Park

Regulate the
anthropic activities Populated area
a-| Slope angle
Morphological
Slope dspect conditions
——l Elevation

-Seasonality
-Climate type

Geographic

conditions

Vegetation recovery NDVI index
| Burned areas M NBR index ]4—

Vegetation stress m
conditions Isohyets Climatic
Multi-temporal = i i conditions
vegetation analysis Gap-filled NDVI vl:lvllil\clizlrr:
Effect of
| Fire severity models |<—| dNDVI/ dNBR |<7 anthropical

activities

GEE code for Imagery Distance to water
I ™ bodies

data extracton processing Designation of

escape routes
I Sentinel-2A |<—-| Satellite data |<— —>| Distance to roads

Figure 4. A conceptual model for wildfire management in Vilcabamba parish.

4. Results
4.1. Assessment of Wildfire Severity with Spectral Indices
4.1.1. Burned Areas Using NBR Index

The NBR index uses six categories adapted according to studies with geographical
similarities [25,60]. In the pre-fire scene (Figure 5a) of the fire perimeter, it was identified
that 52.58% corresponded to unburned areas and 7.33% to areas with high vegetation
regeneration. In the post-fire analysis performed days after the event (Figure 5b), it was
observed that 10.98% corresponded to burned areas with moderate-high severity and
64.45% to burned areas with moderate-low severity. In contrast, the NBR index calculated
two years after the event (Figure 5c) showed that 0.01% corresponded to burned areas
with moderate-high severity, while 83.82% were classified as areas with low vegetation
regeneration and 12.41% as areas with high vegetation regeneration.

The NBR results demonstrate a clear contrast between pre- and post-fire conditions.
In the pre-fire image, low levels of severity are evident, indicating that the vegetation had
not been significantly affected and that the ecosystem was in a relatively stable condition.
On the other hand, in the image captured after the fire, high recovery rates are observed.
Over time, the vegetation has regenerated noticeably, showing signs of ecological resilience.
This change reflects the ability of the ecosystem to recover after a significant disturbance.
However, the rate and magnitude of recovery may depend on several factors, such as soil
characteristics, the availability of water resources, and the absence of further disturbance.
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Figure 5. NBR index in fire perimeter with Sentinel-2A imagery: (a) Pre-fire scene (9 September 2019);
(b) Post-fire scene (9 September 2019); and (c) Post-fire scene (4 August 2021).

The application of the NBR index in the study area reveals the ecological resilience of
the post-fire ecosystem, highlighting a significant transition in vegetation conditions. In
the pre-fire scene, the low severity observed indicates relative stability. At the same time,
the post-fire scenes evidenced a progressive increase in areas of vegetation regeneration,
especially two years after the event. This finding underlines the resilience of the ecosystem,
although the predominance of low regeneration areas (83.82%) highlights the need for
management strategies to favour a more uniform and effective recovery.

4.1.2. Vegetation Recovery Using NDVI Analysis

In the pre-fire scene (2019, Figure 6a), 21.45% of the area shows high photosynthetic
activity. On the other hand, in the post-fire scene captured a few days after the event
(Figure 6b), there was a notable decrease of 45.83% in high photosynthetic productivity
in the parish of Vilcabamba. Finally, in the post-fire scene 2021 (Figure 6c), 30.50% of
low photosynthetic activity and 11.57% of high photosynthetic activity were recorded,
confirming a moderate recovery two years after the fire analysed in this study.

NDVI analysis reveals a drastic decrease in high photosynthetic activity after the fire,
followed by a moderate recovery two years later. This pattern underlines the significant
impact of fire on vegetation productivity and the ability of the ecosystem to regenerate
over time. However, the persistence of areas with low photosynthetic activity highlights
the influence of limiting factors, such as local edaphic and climatic characteristics. This
finding emphasises the importance of implementing specific management and restoration
strategies focused on the most affected areas to accelerate ecological recovery and improve
the landscape’s resilience to future disturbances. In addition, the continuous monitoring
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of photosynthetic activity can serve as a critical indicator to assess the success of such
strategies and adapt conservation policies.
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Figure 6. NDVI results of fire perimeter: (a) Pre-fire scene (25 August 2019); (b) Post-fire scene
(9 September 2019); and (c) Post-fire scene (4 August 2021).

Figure S2 presents a compelling demonstration of the long-term NDVI calculation in
Vilcabamba parish using the cloud-gap-filled method. This technique was vital to recognise
the tangible impact of the forest fire on the study area by filling in the gaps displayed in the
original time series during January 2016, July 2017, and November 2020 (Figure S1). The
impact of wildfire is borne from the reduction in the NDVI to 0.3 in October 2019, one month
after the fire analysed in this study, which indicates low vegetation productivity (Figure 5).
Remarkably, the NDVI records a sharp contrast during May 2022 (three years after the
fire day) with an NDVI value of 0.545 (high photosynthetic activity) due to the onset of
the rainy season. These results clearly diagnose the vegetation dynamics and the constant
oscillations in the NDVI caused by dry and rainy seasons in the study area. Therefore, it
is an approach that future studies can replicate in regions with similar geographical and
climate conditions.

4.1.3. Vegetation Stress Conditions Using NDMI

Figure 7 shows the NDMI calculated in the fire perimeter with Sentinel-2A imagery in
the pre-fire scene (dry season) because most fires are generated from June to September in
this region. The NDMI is a pillar for fire severity analysis because it presents the moisture
and water stress conditions of the fire perimeter zone, giving us evident patterns of the
state of the vegetation in the pre-fire scene. The NDMI ranges were adapted based on a
literature review in Andean areas with conditions similar to those of the study area, such
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as the Colombian Andes [74]. NDMI values from —0.2 to —0.4 correspond to low and dry
vegetation and represent 52.62% of the fire perimeter. Meanwhile, in the southwest zone of
the wildfire perimeter, 8.27% has high vegetation cover with low water stress.

-79.30 -79.25 -79.20
N
@ Legend
Sentinel 2A T3 Wildfire perimeter
NDMI index pre-fire scene
= Very high vegetati 06—08) |=
) ery high vegetation .6 —0. )
< [ ] cover, no water stress <
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low water stress
:I Moderate  vegetation (0.2 —0.4)
cover, no water
stress
- Medium-low vegetation (0.0 — 0.2)
cover, low water stress
Medium-low vegetation (-0.2 —0.0)
ﬂ_ high water stress 9
< <
I

[ Low and dry vegetation,  (-0.2 — —0.4)
moderate water stress

I Very reduce vegetation (0.4 —-0.6)

-79.30 -79.25 -79.20

Figure 7. NDMI results of Vilcabamba parish in pre-fire scene.

This analysis provides evidence that the environmental characteristics and conditions
before the wildfire occurred were conducive for an event of this magnitude. Prevailing
factors such as dry biomass accumulation, high temperatures, low relative humidity, and
terrain topography created an environment highly susceptible to the development and
spread of a large-scale fire. Under these circumstances, any human activity or anthro-
pogenic interaction, whether accidental or intentional, would have the potential to act
as a trigger, generating a fire that would quickly reach considerable dimensions and be
challenging to control.

4.2. Fire Severity Models Using Differentiated Indices

The dANDVI and dNBR models computed with Sentinel-2A images consider obser-
vations of pre-fire (2019) and post-fire (2021) scenes within six categories of fire severity.
We selected the severity categories with the support of a literature review [75,76]. Figure 7
shows that the high severity values from the ANDVI and dNBR were very similar despite
these indices using different spectral bands and fire severity categories for their calcula-
tion. These models allow the assessment of damage severity and vegetation regeneration
between the pre-fire (2019) and post-fire (2021) periods. In Figure 8a, unburned areas rep-
resent 10.11% of the total fire perimeter extent, while areas of very low severity represent
85.77%. This analysis suggests that most affected areas show low severity, although some
areas show high and very high severity, indicating a significant impact of the fire in certain
parts. In Figure 8b, the dNBR index highlights vegetation recovery in the post-fire phase.
Areas with high and low enhanced regeneration are shown in shades of green, indicating
positive progress in recovery, while affected areas with low to high severity are represented
in colours ranging from yellow to red. The validation points in both models corroborate the
presence of areas of enhanced recovery in the north, although recovery is heterogeneous
around the fire perimeter.
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Figure 8. Wildfire severity models with Sentinel-2A imagery. (a) dNDVI and (b) dNBR.

The combined analysis of the ANDVI and dNBR allows for a comprehensive assess-
ment of the fire’s initial impact and vegetation’s recovery over time. The results show
that, although most affected areas have low severity, the high and very high severity areas
reflect significant impacts on specific parts of the fire perimeter. As evidenced by the
dNBR, vegetation regeneration shows positive progress, especially in northern regions,
although recovery is uneven across the landscape. These findings underline the importance
of prioritising targeted restoration strategies in the most affected areas.

Table 7 presents the validation using the Logistic Regression (LR) and the Non-metric
Multidimensional Scaling (NMDS) algorithms. This analysis shows that the fire severity
models (ANBR and dNDVI) are more statistically significant than the fire susceptibility
model in explaining the fire phenomenon in Vilcabamba parish. The Logistic Regression
model used the Area Under Curve (AUC) as an accuracy representation of the LR model,
thereby presenting the highest accuracy in both the dNBR and the ANDVI with an AUC
of 1.0. For the AHP model, the AUC has a value of 0.6 that is acceptable but with lower
accuracy than the fire severity models (Figure 9).

Table 7. Validation of fire severity models using two statistical algorithms.

Algorithm 1 AUC dNBR AUC dNDVI AUC AHP AIC
LR 1.00 1.00 0.60 6
Algorithm 2 RMSE Max Residual Stress Model
NMDS 0.006 0.031 0.032 severity models
NMDS 0.031 0.093 0.094 AHP model

Note: LR: Logistic Regression; NMDS: Non-metric Multidimensional Scaling; AUC: Area Under Curve; AIC:
Akaike information criterion; RMSE: Root Mean Square Error; and Stress: number of dimensions.
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Figure 9. Area Under Curve for the Logistic Regression model: (a) the AUC for the fire severity
models and (b) the AUC for the fire susceptibility model.

The Non-metric Multidimensional Scaling model presented higher accuracy than the
LR model, which is verified with the Root Mean Square Error (RMSE), as the lower the
RMSE, the better the fit of the model of a dataset [77]. The NDMS has an RMSE value near
zero (0.006) for the severity models and the RMSE = 0.94 for the AHP model. Additionally,
the stress value that represents the specified number of dimensions explains how well
points fit the NMDS model [78]. The fire severity models have a stress value of 0.032 and
0.094 for the AHP model, which likely indicates a good fit model.
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The Receiver Operating Characteristic (ROC) is a graphical representation used to
evaluate the performance of binary classification models, showing the relationship between
the True Positive Rate (TPR) (Equation (9)) and the False Positive Rate (FPR) (Equation (10))
across different thresholds.

Sensitivity = TP/ (TP + FN) 9)
where
TP = true positives;
FN = false negatives.
Specificity = TN/ (FP + TN) (10)

where

TN = true negatives;

FP = false positives.

The ROC curve in Figure 9a plots the relationship between these two metrics as the
classification threshold is adjusted. An ascending curve is observed, indicating that, as
sensitivity increases, the false positive rate also increases, which is typical of classification
models that tend to classify more instances as positive. The shape of the curve and its
proximity to the specificity axis suggest that the model is close to optimal performance as
it approaches the upper left corner, indicating high sensitivity and specificity. Figure 9b
shows a behaviour where the curve follows an almost vertical path towards the top of the
sensitivity axis and then moves horizontally along the specificity axis. This pattern suggests
that the model performs well, with a high sensitivity (close to 1) at specific specificity
values. The curve indicates that the model has a low false positive rate (high specificity) for
the classification thresholds used. The shape of the curve also suggests that the model is
robust enough to provide a good balance between sensitivity and specificity, which could
lead to reconsidering the threshold or classification technique used.

4.3. Analysis of Variables for Wildfire Susceptibility

For the AHP analysis, we considered eight variables. First, Figure 10a (C1) shows that
60% of the slopes are concentrated in the northwest and west directions, 20% south, and
the remaining 20% (east and west) in the fire perimeter. Second, Figure 10b (C2) shows
the changes in elevation in the study area that range from 1400 to 3750 m.a.s.l. The aspect
map (C3, Figure 10c) shows that 31% of all the hillside orientations are in the north and
northwest zones of Vilcabamba parish, implying that the orientation of the slopes has a low
influence because they receive fewer daylight hours per day. The isohyets (C4 in Figure 10d)
show annual precipitation from 500 mm to 1500 mm, and the isotherms (C5 in Figure 10e)
show annual temperatures from 8 °C to 22 °C. Figure 10f—g shows the changes in land use
(C6) in the Vilcabamba parish, considering the pre-fire (2018) and post-fire (2022) scenes.
Figure 10h represents the distance to water bodies (rivers and streams), considered for
ground-based fire monitoring because they are closer to the firefighters in the event of a
wildfire. Finally, Figure 10i includes the distance to roads that range from 0 to 8 km.

The analysis of land use shows a reduction in shrub and herbaceous vegetation areas,
from 64.15% in pre-fire to 61.62% for the post-fire scene (Table 8). Similarly, the agricultural
land category located in the central part of the parish decreased by 1.43% from pre-fire to
post-fire scene. Nevertheless, the forest category behaves differently, with a growth of 3.7%
in the Vilcabamba parish during the post-fire scene. The agricultural lands decreased from
13.54% (pre-fire) to 12.11% (post-fire). Also, urban zones concentrated in the central part
of the study area increased by 0.1% from pre-fire to post-fire scene. Finally, the other land
category rose from 0.32% in pre-fire to 2.04% in post-fire. Finally, water bodies increased
from 0.33% in pre-fire to 0.49% in post-fire. The pre-fire and post-fire data for the fire
perimeter show that the shrub and herbaceous vegetation category decreased by 7.19 ha
in the post-fire scene. Additionally, the fact that there were no urban areas within the fire
perimeter allowed a gradual recovery of vegetation two years after the fire.
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Figure 10. Variables for the wildfire susceptibility map: (a) slope angle; (b) elevation; (c) slope aspect;
(d) isohyets); (e) isotherms; (f) land use in pre-fire scene; (g) land use in post-fire scene; (h) distance to
water bodies (rivers); and (i) distance to roads. Source: Adapted from [60,61,64].
Table 8. Land use in pre- and post-fire scenes in Vilcabamba Parish compared to the wildfire perimeter.
Source: Adapted from [60].
Class Land Use Categories Area in Vilcabamba Parish (ha) Area in Wildfire Perimeter (ha)
Pre-Fire (2018) Post-Fire (2022) Pre-Fire (2018) Post-Fire (2022)

1 Shrub and herbaceous vegetation 10,249.91 9846.52 1594.89 1587.70

2 Forest 3077.20 3652.00 119.04 123.35

3 Agricultural lands 2163.70 1935.83 4.81 6.79

4 Other lands 308.74 324.55 118.61 119.51

5 Urban zone 126.95 141.89 - -

6 Water bodies 52.40 78.11 0.30 0.30

This study analysed the wildfire susceptibility in Vilcabamba Parish based on the
Analytic Hierarchy Process (AHP). The principal outcomes confirmed that the wildfire
perimeter exhibits 59.83% low—moderate fire susceptibility and 27.80% high fire suscep-
tibility (Figure 11a). In general, the study area is a small area with null fire susceptibility
(12.37%), located in the northeast of the parish (near the El Palto community and the
Podocarpus National Park) and in the centre of the parish (urban areas). This section
allowed us to understand the dynamics between vegetation and climate conditions, consid-
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ering pre-fire and post-fire scenes, and to identify the influencing factors in the forest fire of
2019 in Vilcabamba parish. This analysis establishes the following: (i) the closest settlers
to water bodies (lagoons and lakes) are the Capuli and El Palto, in the northwest zone of
the study area (Figures S3 and 11b), (ii) rivers are closer to the firefighters in the event of a
wildfire (Figures 5S4 and 11c), and (iii) the Tumianuma and Chulapo settlers are in more
danger because they are a long way from lagoons and lakes.
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Figure 11. Analysis of fire susceptibility: (a) Wildfire susceptibility map through AHP method.
(b) Access to water bodies (lagoons and lakes) by aerial transport for each parcel. (c) Access to rivers
and streams by terrestrial transport.

4.4. Proposal of Action Plan for Fire Management in Vilcabamba Parish

The proposal of a fire action plan in Vilcabamba parish includes the analysis of
cartographic information to generate fire probability points and select six strategic refuge
zones, as shown in Figure 12. For the selection of the five safety zones in wildfire events, we
considered the location of health centres, fire stations, and the proximity of water bodies.
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Meanwhile, for the selection of fire probability points and refuge zones, we used Dijkstra’s
shortest path algorithm [79] through the Road Graph plugin in QGIS framework and the
location of historical fire points within the pre-fire scene, during the period 2011-2019,
obtained from the SGNRE and VIIRS data, as well as the results of the fire susceptibility map.
Furthermore, we distributed the safety zones in places close to the roads and population
centres of Vilcabamba parish, following the escape routes to prevent the spread of the fire.

[ wildfire perimeter [0 Agricultural land we== Third route

[1 Vilcabamba Parish Shrub and herbaceous vegetation ==== Fourth route

— Rivers Il Forest == Fifth route LN
---— Roads [ Other lands Refuge zones ™
® Health Centres Il Urban zone © Safety zones T
@ Settlers Podocarpus National Park

e Validation VIIRS points

@ Fire Stations ® Protected forest e Validation SGNR points

b Fire probability points Escape routes
Land use 2022 (Post Fire) === First route
Il Water bodies Second route

-79.25 -79.20 -79.15 -79.10

Figure 12. Proposal action plan in Vilcabamba parish where evacuation routes and fire refuge areas
are outlined.

For the escape routes, we considered variables such as the proximity to water bodies
(rivers, streams, lagoons and lakes), distance to roads and settlers to ensure accessibility,
and a timely response to potential fire events. We included land use data in the post-fire
scene for the representation of protected areas (Podocarpus National Park) and zones with
vegetation coverage. We used the main road layer for accessibility information in the
selection of the best escape routes. Finally, we included the settlers’ location to know the
distance to an urban zone that could be affected in case of fire. The settlers must be within a
reasonable distance of water bodies, which act as natural barriers to manage the spreading
of the wildfire. They must also enhance their capacity to avail themselves of this invaluable
resource during firefighting efforts or as a means of evacuation if required. This action
plan will allow us to comprehensively illustrate wildfire events, selecting the shortest and
optimal escape routes in the event of a fire.

5. Discussion

GIS-based models (e.g., AHP method) have been widely applied for fire susceptibil-
ity [26,80]. However, an integral approach has not been recorded to consider these models
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when developing a fire action plan. Therefore, this study highlights the importance of using
remote sensing tools (e.g., spectral indices) and the AHP method to establish a fire action
plan in the Andean region of Vilcabamba parish. The proposed fire action plan considered
fires recorded in 2019 (pre-fire scene), fire hotspots from satellite data (VIIRS) in the fire
perimeter of the study area, and a fire susceptibility model to delineate evacuation routes
for firefighters to attend fire events within the study area and refuge zones with lower
fire propagation. These methodologies allow us to establish a conceptual model for fire
management and monitoring adapted to the particularities and needs of the Vilcabamba
parish. The purpose is to contribute to decision making by the authorities and, at the same
time, to be considered a preliminary study but one that can be applied to other regions
with similar geographic—climatic conditions. Remote sensing tools are crucial in analysing
preconditions, which can lead to a significant forest fire in Vilcabamba parish. Daily satel-
lite scans also contribute to a vast dataset, enabling vegetation monitoring through time
series analysis.

This study analysed the fire severity of the event of 3 September 2019. We analysed
specifically the fire perimeter within the delineation of the Vilcabamba parish, located in
the Andean region of Ecuador for several reasons: (i) the SNGRE recorded 87 historical
events in the study area in the period 2011-2019 and 148 fire hotspots from VIIRS data,
(ii) the availability of 78 fire validation points according to the VIIRS and SNGRE data
in the year 2019 (pre-fire scene), (iii) the presence of the Podocarpus National Park and
protected forest, in the northeast region of the parish, (iv) wind patterns that influence its
mountainous topography and the prevailing regional weather patterns throughout the
southern region, and (v) the drought conditions related to the increase in urban areas and
the reduction in shrub and herbaceous vegetation evident in the post-fire scene. This area
has evidence of a dry austral rainy season (from June to September), with rainfall lasting
from December to April, extending into May:.

In Ecuador, some analyses of wildfires used remote sensing techniques. For instance,
in Imbabura province, a study provides comprehensive insights into the vegetation dy-
namics in a forest fire by applying NDVI values that show a significant decline in post-
fire scenes [81]. Meanwhile, another study developed a replicable approach for semi-
automatically detecting forest fires and evaluating vegetation recovery post-fire through
Landsat 8 (OLI) imagery in Quilanga canton (Loja province) [82]. Moreover, in Chilla
canton (El Oro province), a high performance of the NBRI (burned normalised index)
identified the scar of the forest fire. Meanwhile, the NDVI determined a mean value of
0.15 showing low vegetation productivity [83]. Finally, a study in Chimborazo found that
dNBR using Landsat imagery delimited the fire perimeter and showed a 55% similarity
with the delineation of the national database [84].

Regarding multispectral imagery, this study showed that data obtained from Sentinel-
2A are highly beneficial for identifying burned areas. For instance, a study on an island in
the Aegean Sea (Greece) demonstrated the accuracy shared by Sentinel-2A and Landsat-8
by showing the high exactitude of the Sentinel-2A to map fire scars and the excellent
performance of the NIR and mid-infrared bands of both sensors [85]. On the other hand,
Lo Conti et al. [86] found a high bias in the surface analysis concerning cloudy and water
body pixels in Sicily, Italy.

In this study, we use the cloud-gap-filled (CGF) method to fully fill data gaps in
Sentinel-2A imagery of the NDVI in the period 2016-2022. This analysis allowed a better
understanding of the dynamics of vegetation recovery in pre-fire and post-fire scenes by
considering monthly data that allow us to relate this to the sector’s climatology and fire
frequency incidence. The CGF method for NDVI time series is a widely used tool worldwide
because it provides a bi-temporal analysis using satellite data that encompass several
factors such as phenology, climate change, and geological-natural risk assessments [87].
According to Karlsen et al. [20], the time series vegetation index accurately depended on
the atmospheric conditions instead of being highly structured, as shown in their study
in Central Spitsbergen, Svalbard. Their findings showed extreme bias in 2018, where
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the algorithm had low detection. In the same way, the 2017 scene for Vilcabamba parish
showed a low detection problem due to cloudiness. Still, the rest of the time series had an
exceptional performance.

The outcomes in the vegetation recovery in the wildfire perimeter using the NDVI
showed 9.63% in the low vegetation productivity category on the post-fire scene in 2019
and 0.99% for the post-fire scene, after a two-year recovery period (2021), showing the
vegetation recovery in the region. However, the NBR index in the post-fire scene (2019)
showed that the Vilcabamba parish presented 3.48% in high vegetation regrowth and
16.58% for the post-fire scene (2021). The effects of climate change in the study area include
the predominant frequency of fires in dry periods, showing that, as precipitation decreases,
temperatures rise significantly.

The Analytic Hierarchy Process (AHP) method applied in the Vilcabamba parish
revealed that most settlers exhibit moderate fire probability, verified by SNGRE data, which
indicates that the wildfire perimeter exhibits a high susceptibility to fire. Similarly, other
regions, such as the states of Kashmir (JK), Himachal Pradesh (HP), and Uttarakhand
(UK) of India demonstrated a moderate wildfire probability [88]. On the other hand,
a study in the Andean region in Ibarra (Ecuador) delineated areas within the paramo
ecosystem exhibiting low fire severity, attributable to low temperatures and challenging
accessibility [65].

5.1. The Main Trends in the Results

This study identified the safety zones through the action plan for wildfire management
that designates strategic areas according to the proximity to rivers, streams, water bodies
(i.e., lakes, lagoons), and roads for impeding the kinetic energy of fire propagation. We
used historical records of wildfires in Vilcabamba parish from the SNGRE and VIIRS data
to define the shortest escape routes given the probability of fire occurrence. For escape
route identification, we used the Road graph plugin that uses Dijkstra’s shortest path
algorithm. The safety zones could enhance the effectiveness of fire management and
containment efforts, considering the strategic position of firefighting resources to ensure a
swift and efficient response to any wildfire within the region. Similarly, in western New
Mexico, western Wyoming, and Northern California they used a GEE tool to delineate
safety zones, allowing the users to draw a polygon of potential safety zones based on
slope, wind, and fire conditions [89]. In the same way, Debnath, P.A. [90] used the shortest
path tool to aim for the best route to respond to a medical emergency in India, indicating
that the Road graph plugin shows that the shortest route is 41.75 km long, considering
information about roads and junctions. The forest fire warning system should include
surface water and groundwater (aquifer) management. Stable isotope techniques and
the study of sociohydrology makes it possible to monitor water quality and consider the
human-environment system, which is vital for the sustainability of natural resources [91].

5.2. Methodological Limitations

We identified the following limitations: (i) the high cloudiness, due to its Andean
region, affected index results within the study area and proved to be a significant challenge,
adversely impacting the time series and vegetation index analysis; (ii) the proposal plan
focused on a specific point of wildfire probability; and (iii) practical challenges in the
proposal action plan such as land use conflicts, funding constraints, and community
engagement issues.

5.3. Implications of the Results and Avenues for Future Research

For future studies, it is recommended that automatised fire georeferenced points
are implemented and the closest escape route is drawn for the action plan. This study
also suggests effective stakeholder coordination and adaptive management approaches
for overcoming the practical challenges in the development of the action plan for fire
management. This study recognises the implementation of machine learning tools that
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exhibit significant potential as a future research topic, contributing to identifying high-
probability areas with unparalleled accuracy. However, it is crucial to note that the efficacy
of these methods is contingent upon the quality of data obtained from satellites, a factor
often hindered by cloud cover in most cases.

6. Conclusions

This study evaluated forest fire severity in Vilcabamba parish, Ecuador, on 3 September
2019, using the NBR, NDVI, dNDVI and dNBR indices, revealing that vegetation recovery
depends on fire severity and anthropogenic activities in the area. Complementarily, we
implemented a multi-criteria model for fire susceptibility, considering slope angle, slope
aspect, elevation, distance to roads, distance to rivers, land use, isotherms and isohyets.
The AHP approach compared fire severity models (ANDVI and dNBR) for mapping burned
areas and vegetation recovery, providing a robust fire prevention and planning framework.
These models were validated with statistical algorithms, proving their accuracy and func-
tioning as critical criteria for the proposed action plan for fire management. The integrated
approach of this article highlights the importance of implementing specific restoration
strategies that provide a framework for post-fire management. The methodology applied
can be replicated in regions with similar climates and socio-economic conditions.

The dNDVI and dNBR models explain wildfire dynamics over time for a more nu-
anced assessment of fire severity and its impacts on natural ecosystems by considering
bi-temporal scenarios. This study implements GEE’s cloud-based platform to calculate
spectral indices and streamline the data processing and analysis workflow. Its rapid
computation of indices facilitates timely decision making and management actions. We
combined the fire severity models and the GIS-based approach (AHP model) to establish
a fire action plan that enhances the effectiveness of wildfire management efforts. This
article provides a framework for decision making in preventing and mitigating wildfires,
facilitating stakeholder coordination, and implementing targeted interventions.

The NDVI and NBR showed a notable correlation, offering technical insights into
conditions preceding fire events and encompassing vegetation regrowth patterns. The
wildfire perimeter exhibited 25.7% of vegetation regrowth. Pixels derived from the pre-
fire NDVI covered 3076.21 ha (Figure 6), while the NBR index amounted to 1018.56 ha,
indicating burned areas characterised as moderate-to-low severity (Figure 5). For the time
series of the NDVI, we used the cloud-gap-filled method for filling gaps in data for a
more precise analysis of the wildfire dynamics (Figure 52). The NDMI showed that 55%
of Vilcabamba parish shows a high water stress and only 1.26% with a very high canopy
cover or no water stress (Figure 6).

The wildfire susceptibility model provides valuable insights into the spatial distribu-
tion of the fire, enabling targeted interventions in high-risk areas (Figure 11). The AHP
method integrates diverse factors and prioritises adaptation efforts, enhancing the resilience
of communities and ecosystems against the threat of wildfires, and it was verified with
SNGRE field data, capturing the temporal evolution of fire events and their associated
environmental variables.

The proposed action plan included the optimal escape routes and five refuge zones
that help the group of firefighters as it enables them to identify the nearest river or water
body (lake or lagoon) for decision-makers that could provide water for fire mitigation
by air or land transport (Figure 12). This analysis considered climate, topographic condi-
tions (altitudes from 1400 to 3750 m.a.s.l.), and less densely populated areas conducive to
mitigating the wildfire spread. This methodology offers governmental and institutional
authorities the preliminary conceptual model (Figure 4) to protect these designated areas,
as an approach adaptable to places with similar geographic conditions.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/f15122210/s1, Figure S1: Original NDVI time series before ap-
plying gap-filled method; Figure S2: Gap-filled NDVI Times series in Vilcabamba parish during
20162022 [73]; Figure S3: Distance to water bodies (lagoons and lakes) with respect to settlements
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located in Vilcabamba parish; Figure S4: Distance to rivers and streams (intermittent and perennial)
with respect to settlements located in Vilcabamba parish.
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