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Abstract

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative condi-

tion in the brain that affects memory, thinking, and behaviour. To overcome this

problem, which according to the World Health Organization, is on the rise, creating

strategies is essential to identify and predict the disease in its early stages before clin-

ical manifestation. In addition to cognitive and mental tests, neuroimaging is promis-

ing in this field, especially in assessing brain matter loss. Therefore, computer-aided

diagnosis systems have been imposed as fundamental tools to help imaging techni-

cians as the diagnosis becomes less subjective and time-consuming. Thus, machine

learning and deep learning (DL) techniques have come into play. In recent years, arti-

cles addressing the topic of Alzheimer's diagnosis through DL models are increasingly

popular, with an exponential increase from year to year with increasingly higher accu-

racy values. However, the disease classification remains a challenging and pro-

gressing issue, not only in distinguishing between healthy controls and AD patients

but mainly in differentiating intermediate stages such as mild cognitive impairment.

Therefore, there is a need to develop more valuable and innovative techniques. This

article presents an up-to-date systematic review of deep models to detect AD and its

intermediate phase by evaluating magnetic resonance images. The DL models chosen

by different authors are analysed, as well as their approaches regarding the used

dataset and the data pre-processing and analysis techniques.
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1 | INTRODUCTION

One of the most common causes of dementia in the world today is Alzheimer's disease (AD), which can be defined as a progressive and irrevers-

ible neurodegenerative disease characterized by abnormal deposition of neurofibrillary tangles and amyloid plaques in the brain, causing issues

with memory, thinking, and behaviour (Lee et al., 2019).

According to the World Alzheimer Report (2018), the illness impacted around 50 million individuals in 2018, expected to triple by 2050

(Tanveer et al., 2020). Currently, no treatment can cure a patient who already has AD, but there are drugs and methods to slow down the progres-

sion of the disease (Lee et al., 2019).

The brain suffers structural and functional changes because of AD. Alzheimer's disease usually manifests its symptoms beyond the age of 60.

Yet, some AD forms develop relatively early (30–50 years) for persons with a genetic mutation. As a result, developing techniques to identify AD

before clinical manifestation is critical for timely treatment and slowed progression (Lee et al., 2019).
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Patients first have mild cognitive impairment (MCI), progressing to the illness over time. Not all individuals with MCI convert into Alzheimer's

patients, though. Therefore, it is necessary to understand the progressive alterations that take place in the brain when AD develops. It is also

urgent to find treatments and/or solutions to slow down, stop, reduce the risk of or completely prevent the onset of this disease (Tanveer

et al., 2020).

In recent years, several computer-aided diagnosis (CAD) systems have been created to aid in disease diagnosis and follow-up. Between 1970

and 1990, the first rule-based models were created, and subsequently, supervised models were designed. To create these supervised models, it

was necessary to extract pertinent features from the input data, which required the intervention of human experts, which is a tedious and very

time-consuming task. Nevertheless, with the emergence of deep learning (DL) models, drawing out the used features directly from the data with-

out recourse to human interaction became possible. Therefore, researchers have focused on creating DL models to accurately diagnose several

diseases, including AD (Sethi et al., 2022).

Mainly as to AD, neuroimaging has proved to be extremely important in identifying early changes in brain tissue that may be related to the

disease. A wide range of brain imaging measurements continues to be developed for the scientific research and clinical evaluation of Alzheimer's

disease. Structural magnetic resonance imaging (sMRI) is one of the best-established procedures for early identification and monitoring of AD, as

can be seen in Figure 1 (Reiman & Jagust, 2012).

This review is focused on investigating DL-based CAD systems for Alzheimer's disease detection in MRI, which has been a growing research

and technological sector in recent years, as can be realized from Figure 2. Accordingly, the DL models that different authors have proposed are

analysed, as well as the used database(s), the applied pre-processing steps, and the chosen methodology to handle the input data and its computa-

tional classification.

Several literature reviews targeting the same problem have been published recently, such as Goyal et al. (2022), Sharma et al. (2023), and

Shukla et al. (2023). However, the current review is up-to-date and aims at the following contributions:

1. Introduces DL algorithms to detect AD from magnetic resonance (MR) images;

2. Discusses datasets that have been used to diagnose AD;

3. Analyses current state-of-the-art approaches for classifying AD in MR images;

4. Compares existing DL algorithms as to their efficiency.

F IGURE 1 Examples of MRI images of the brain of an Alzheimer's patient and a healthy person taken from the Alzheimer's disease
neuroimaging initiative (ADNI) database (ADNI (n.d.). These images have morphological differences, which are identified in each of the images,
between normal controls and Alzheimer's patients that can be perceived by magnetic resonance imaging.
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This article is organized according to the following structure: Section 2 includes a contextualization of the existing DL techniques; the meth-

odology used for articles gathering and selection is described in Section 3; then, Section 4 is divided into four subsections, according to the topics

usually involved in the development of a project of this type, namely: used dataset(s), data pre-processing, data analysis, DL models, data augmen-

tation, and transfer learning; finally, Section 5 presents a discussion and conclusions in Section 6.

2 | DEEP LEARNING

DL is a topic of great interest in many scientific fields, particularly in medical image analysis. Currently, DL is the most effective machine-learning

method in many medical applications. The concept of ‘deep learning’ refers to using a deep neural network, which accepts multiple signals as

input, linearly combines them using weights, and then these combined values undergo non-linear processes to produce the final result (Razzak

et al., 2018). A DL network generally has two characteristics: several layers of nonlinear processing units and supervised or unsupervised learning

of feature presentations on each layer. The first DL framework was developed on top of an artificial neural network in the 1980s, yet it was not

until 2006 that neural networks started to have a meaningful influence (Cao et al., 2018). Researchers use various types of DL models such as

convolutional neural network (CNN), deep neural network (DNN), recurrent neural network (RNN), deep conventional extreme learning machines

(DCELM), deep Boltzmann machine (DBM), deep belief network (DBN), deep autoencoder (dA), and their variants. A summary (Cao et al., 2018;

Razzak et al., 2018) of the current DL models for AD diagnosis as to their main characteristics and advantages and disadvantages is given in

Table 1.

3 | ARTICLES SELECTION METHODOLOGY

In the Scopus database, a systematic literature search was performed, Figure 3, using the following query: ‘ALL (‘Alzheimer's Disease’) AND

(‘image’ OR ‘imaging’) AND (‘MR’ OR ‘Magnetic Resonance’) AND (‘T1’) AND (‘Deep Learning’) AND (‘MCI’ OR ‘mild cognitive impairment’)
AND (‘3D’ OR ‘3 dimensional’) AND (‘classification’) AND (TITLE (‘Alzheimer’)) AND (LIMIT-TO (DOCTYPE, ‘ar’)) AND (LIMIT-TO (PUBYEAR,

2023) OR LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR

LIMIT-TO (PUBYEAR, 2018)) AND (LIMIT-TO (LANGUAGE, ‘English’))’. A search using the same criteria was performed in the PUBMED data-

base, but no additional articles were found.

In the performed search, a total of 94 articles were obtained; of these, 51 were found useful for the topic under review. The remaining were

excluded for the following reasons: the proposed method does not classify the input data, does not include DL techniques, or does not use 3D

MR T1 images.

F IGURE 2 Articles gathered from the Scopus database published within the previous 5 years, according to Section 3.
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4 | REVIEW RESULTS

4.1 | Used datasets

The data used in any machine learning algorithm is fundamental to the final solution. The quantity of data and its quality, in terms of annotations

and the way it is organized, must be evaluated with special attention before applying any model to it. This section presents a description of the

datasets used in the reviewed articles.

4.1.1 | Alzheimer's disease neuroimaging initiative

The purpose of the Alzheimer's disease neuroimaging initiative (ADNI) study is to analyse the brain's structure and function across the course of

different disease states using biomarkers and clinical measurements to track the progression of the disease. The project was created in 2004 and

consists of four studies: ADNI1, ADNIGO, ADNI2, and ADNI3, in each of which new participants are being added while the original participants

continue to be monitored. This dataset also has a wide variety of data types, namely: clinical information as to demographics, physical examina-

tions, and cognitive assessment data, genetic information, MR images, including structural MRI, functional MRI (fMRI), and diffusion tensor imag-

ing (DTI) images, positron emission tomography (PET) images, including amyloid PET, fluorodeoxyglucose (FDG) PET, and Tau PET, and

biospecimens, that is, blood, urine, and cerebrospinal fluid (CSF), images (ADNI, n.d.).

4.1.2 | Open Access Imaging Studies series

The Open Access Imaging Studies series (OASIS) project makes brain neuroimaging datasets available to help researchers develop this field. Four

studies have already been developed in this initiative: OASIS-1, OASIS-2, OASIS-3, and OASIS-4, and being a neuroimaging database, three imag-

ing modalities are available: MRI, PET, and computed tomography (CT) (OASIS, n.d.).

4.1.3 | Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing

The Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) is a study whose major aim is to investigate which biomarkers,

mental characteristics, and health and lifestyle aspects are determinants in the development of Alzheimer's disease. This dataset includes neuroim-

aging data such as MRI and PET data, lifestyle data, that is, questionnaires on diet, sleeping habits and so forth cognitive testing, family history,

and biomarkers: blood samples and CSF (AIBL, n.d.).

F IGURE 3 PRISMA diagram showing the performed literature search in the Scopus database.
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Table 2 presents complementary information of these datasets, which are mostly referenced in the reviewed articles and have the greatest

variety of information. Still, it is a common practice to use several datasets, as can be perceived from Figure 4. The datasets and related articles

are identified in Table 3.

4.2 | Data pre-processing

After acquiring the neuroimages, using the respective imaging modality, to be analyzed, it is necessary to understand how these will be inputted

into the DL architecture employed for diagnosing AD. However, before this process, the used images are usually submitted to several data pre-

processing steps. Particularly, the pre-processing aims to enhance the input data by ensuring that all the images have a degree of parity that, in

turn, makes the following steps, for example, as to image segmentation and feature extraction, more effective. It entails removing artifacts, chang-

ing image resolution, and correcting contrast disparities caused by differing imaging acquisition hardware and parameters (Vadmal et al., 2020).

4.2.1 | Bias field correction

The bias field, often known as intensity inhomogeneity, is a low-frequency spatially changing of MRI artifacts that results in smooth fluctuations

in signal intensity within tissues with similar physical qualities. The magnetic field strength is directly proportional to the bias field. The produced

TABLE 2 Main characteristics of the datasets mostly referenced in the reviewed articles.

Dataset

No. of

patients

Type of

images Availability URL Articles

ADNI 1821 MRI;

PET

Public https://adni.

loni.usc.edu/

Agarwal et al. (2022), Asl et al. (2018), Angkoso et al. (2022), Bae et al. (2020,

2021), Basaia et al. (2019), Basheera and Ram (2020), Bi et al. (2021),

Cobbinah et al. (2022), Cui and Liu (2019a, 2019b), Dyrba et al. (2021), Faisal

and Kwon (2022), Fan et al. (2021), Folego et al. (2020), Goenka and Tiwari

(2022), Guan et al. (2022), Hazarika et al. (2021), Huang et al. (2019), Jiang

et al. (2022), Khagi et al. (2021), Li and Liu (2018, 2019), Li, Wei, et al. (2022),

Liu et al. (2019), Liang et al. (2022), Lim et al. (2022), Liu et al. (2020, 2022),

Mendoza-Léon et al. (2020), Nanni et al. (2020), Ocasio and Duong (2021),

Qasim Abbas et al. (2023), Raghavaiah and Varadarajan (2021, 2022), Razzak

et al. (2022), Sampath and Baskar (2022), Shaji et al. (2021), Suh et al. (2020),

Wang et al. (2022), Wen et al. (2020), Yan et al. (2022), Zhang et al. (2019),

Zhao et al. (2021)

OASIS 3059 MRI;

PET;

CT

Public https://aibl.

csiro.au/

Folego et al. (2020), Sampath and Baskar (2022), Saratxaga et al. (2021), Suh

et al. (2020), Wen et al. (2020), Yi�git and Işik (2020), Zhao et al. (2021)

AIBL 1000+ MRI;

PET

Public https://www.

oasis-brains.

org/

Dyrba et al. (2021), Fan et al. (2021), Folego et al. (2020), Sampath and Baskar

(2022), Wen et al. (2020)

F IGURE 4 Prevalence of the used datasets in the reviewed articles.
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bias field is almost invisible when images are acquired at 0.5T and can be discarded. However, the bias field is powerful enough to cause issues

and significantly impact the MRI analysis when images are scanned with a field of 1.5T, 3T, or greater (Despotovi�c et al., 2015). So, the bias filed

correction is a technique that has been usually used in this field (Agarwal et al., 2022; Basheera & Ram, 2020; Cui & Liu, 2019a, 2019b; Folego

et al., 2020; Goenka & Tiwari, 2022; Guan et al., 2022; Jiang et al., 2022; Li & Liu, 2018, 2019; Liu et al., 2019; Mendoza-Léon et al., 2020;

Ocasio & Duong, 2021; Qasim Abbas et al., 2023; Raghavaiah & Varadarajan, 2021; Wang et al., 2022; Wen et al., 2020).

4.2.2 | Normalization

Another method of pre-processing that has been commonly used in this field is normalization (Asl et al., 2018; Basaia et al., 2019; Basher et al., 2021;

Fan et al., 2021; Folego et al., 2020; Guan et al., 2022; Jiang et al., 2022; Khagi et al., 2021; Liu et al., 2019; Ocasio & Duong, 2021; Raghavaiah &

Varadarajan, 2021, 2022; Saratxaga et al., 2021; Wang et al., 2022; Yan et al., 2022), which aims to reduce the grey (or colour) values in an image to a

single set of relative grey (or colour) values. This guarantees that differences in imaging acquisition parameters across different imaging scanners do not

strongly affect the further results since similar tissues show up in a consistent range of values throughout all image scans (Vadmal et al., 2020).

4.2.3 | Skull stripping

Skull stripping, also called brain extraction, is a computational approach for removing non-essential tissues from a brain image, such as skull, fat, or

skin. In this way, the amount of non-interesting information can be reduced, and the subsequent feature extraction step can be easier (Vadmal

et al., 2020). This method is one of the most widely used in this field (Agarwal et al., 2022; Angkoso et al., 2022; Asl et al., 2018; Bae et al., 2020;

Basheera & Ram, 2020; Bi et al., 2021; Cui & Liu, 2019a, 2019b; Fan et al., 2021; Folego et al., 2020; Goenka & Tiwari, 2022; Guan et al., 2022;

Hazarika et al., 2021; Li & Liu, 2018, 2019; Li, Wang, et al., 2022; Li, Wei, et al., 2022; Lim et al., 2022; Liu et al., 2019, 2020; Mendoza-Léon

et al., 2020; Nanni et al., 2020; Ocasio & Duong, 2021; Qasim Abbas et al., 2023; Raghavaiah & Varadarajan, 2022; Shaji et al., 2021; Wang

et al., 2022; Yan et al., 2022; Yi�git & Işik, 2020).

4.2.4 | Spatial smoothing

This technique increases the signal-to-noise ratio by removing the high-frequency spatial noise components and is applied in several imaging

modalities, including MRI. Averaging data pixels (or voxels in 3D) with their neighbours is called spatial smoothing. Sharp ‘edges’ of the images

are blurred as a result, and spatial correlation within the data becomes more prominent (Mansour et al., 2022). It should be noted that, although

this technique is commonly used in medical image processing, in the field under study, it has not shown a great advantage, and, therefore, it is only

referred to in one of the reviewed articles.

4.2.5 | Registration

Image registration is characterized by a process of overlaying two or more images containing the same object of study but taken at various times,

from different perspectives, and/or by different imaging modalities. This step has been commonly used in this field (Agarwal et al., 2022; Angkoso

et al., 2022; Asl et al., 2018; Bae et al., 2020, 2021; Basaia et al., 2019; Cui & Liu, 2019a; Dyrba et al., 2021; Folego et al., 2020; Goenka &

Tiwari, 2022; Li & Liu, 2018, 2019; Li, Wang, et al., 2022; Li, Wei, et al., 2022; Liu et al., 2020; Ocasio & Duong, 2021; Razzak et al., 2022; Shaji

et al., 2021; Zhao et al., 2021), and implies discovering the transformation between the images to be registered so that their main characteristics

are spatially aligned. Mainly, this alignment can be rigid or affine. A rigid transformation is composed of six parameters with translation and rota-

tion and is usually used in intrasubject registration when the object of attention is not relatively deformed, for example, for images at the same

stage of brain development. The affine transformation is often used if scaling and skewing are involved, such as in the case of different subjects

or different developmental brain stages (Despotovi�c et al., 2015).

4.3 | Data analysis

From the pre-processed brain images, to classify subjects into different categories, such as AD or cognitively normal (CN), it is usually necessary

to extract and analyse features from the pre-processed images. Thus, this process commonly includes several steps like feature extraction, selec-

tion, and classification. Yet, for most researchers, the challenge is to know how to tackle and input the neuroimages into the classifier, and for
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that, different data processing approaches can be used, such as whole image, slice, region of interest (ROI), and patch-based, as described in the

following sections and summarized in Figure 5.

• Whole 3D image

This kind of approach uses as input the whole 3D image, which allows preserving all the spatial information of the original image as well as all

the details in the image, and has been commonly adopted by most researchers (Agarwal et al., 2022; Asl et al., 2018; Bae et al., 2021; Basaia

et al., 2019; Cobbinah et al., 2022; Fan et al., 2021; Folego et al., 2020; Guan et al., 2022; Huang et al., 2019; Li, Wei, et al., 2022; Liang

et al., 2022; Liu et al., 2019; Ocasio & Duong, 2021; Qasim Abbas et al., 2023; Sampath & Baskar, 2022; Suh et al., 2020), however, it entails high

computational costs.

• Slice-based

The slice-based approach extracts 2D images from the original 3D image to obtain data features. This enables the removal of background

areas that act as interference; however, part of the information in the original 3D image is lost. The authors in Hazarika et al. (2021), Li, Wang,

et al. (2022), Suh et al. (2020) selected slices in the coronal plane that contained the hippocampus region, as it is very relevant in diagnosing

AD. In Yi�git and Işik (2020), the same strategy was used; however, instead of one plane, the original 3D image is sliced according to three planes:

coronal, axial, and sagittal planes.

To not lose so much relevant information, the author in Faisal and Kwon (2022) only removes the first and last slices, as they usually do not

contain any useful detail.

Two completely different approaches were adopted by Shaji et al. (2021) and Angkoso et al. (2022). The first authors, of the 182 slices of

each image, only used the mid-axial slice in their study, while the second authors, for each plane, used the slice with the largest area and the ones

immediately before (�1) and after (+1) it.

• ROI-based

The approach based on regions of interest involves segmenting particular anatomical structures from the original images, such as white mat-

ter (WM), grey matter (GM), cerebrospinal fluid, and/or hippocampus. This technique allows focusing the DL model on the most relevant areas

F IGURE 5 Prevalence of the used data processing approaches in the reviewed articles: Number of works where the techniques are used
individually (whole 3D image, ROI-based, patch-based, and slice-based), of works where they are used in combination (slice-based + ROI-based,
slice-based + patch-based, ROI-based + patch-based, and patch-based + slice-based + ROI-based), and of works that tested more than one
approach individually (multiple).

14 of 23 COELHO ET AL.

 14680394, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13463 by Joao R

ibeiro D
a Silva T

avares - U
niversidade do Porto , W

iley O
nline L

ibrary on [12/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



linked to the disease; however, other relevant structures cannot be considered in the model. Multiple authors have used this technique (Cui &

Liu, 2019b; Dyrba et al., 2021; Khagi et al., 2021; Raghavaiah & Varadarajan, 2021; Raghavaiah & Varadarajan, 2022; Razzak et al., 2022; Wang

et al., 2022).

• Patch-based

As the designation implies, the patch-based approach splits the original image into small patches that are used as input to extract features.

Like the two previous approaches, this one also allows reducing the amount of performed calculations required by the used DL classifier; how-

ever, there is a loss of spatial information between the patches. The authors of Li and Liu (2018), Yan et al. (2022) applied this technique in their

study.

• Combination

It is also possible to use more than one of the previous approaches simultaneously, for example, ROI-based + Patch-based, Slice-based +

ROI-based, or Slice-based + Patch-based. As to the first option, three works (Cui & Liu, 2019a; Li & Liu, 2019; Liu et al., 2020; Zhao et al., 2021)

used it and extracted patches centred in the ROI of the hippocampus. On the other hand, as in the second case, basically, the regions of interest

are extracted from 2D images instead of the original 3D image. Examples of this approach can be found in Huang et al. (2019), Lim et al. (2022),

and Mendoza-Léon et al. (2020). The latter option was found in article (Mendoza-Léon et al., 2020), which divided the slices into multiple patches.

In addition, article (Basher et al., 2021) tested the combination of the Patch-, Slice-, and ROI-based approaches.

4.4 | Deep learning based approaches

The construction of the AD classification pipeline, namely the selection of the type of neural network to be implemented, the definition of its

hyperparameters, and the method for its validation and evaluation, are the usual last steps in the development of computational systems to diag-

nose AD, and the researchers have adopted many different approaches. Nevertheless, two major paths can be taken in this process: either classify

directly or perform a feature extraction process before the classification step. Both paths were found in the performed review. In addition to clas-

sification approaches, prediction approaches were also found in a much smaller number.

4.4.1 | Classification approaches

Most researchers directly applied a classifier to the original or pre-processed images. In the field of image analysis, CNNs have attracted most of

the attention due to being specially designed to recognize patterns. Basheera and Ram (2020), Faisal and Kwon (2022) and Yi�git and Işik (2020)

applied 2D CNNs, while Basaia et al. (2019) and Dyrba et al. (2021) opted for a 3D CNN. An interesting study was taken by Wen et al. (2020),

who used a CNN to compare the influence of different data processing approaches. The authors conclude that the results show the superiority of

3D approaches over 2D approaches, but there was little difference in the outcomes of the different 3D approaches. In addition to CNNs, their

variants have also been applied in this field, namely U-net (Fan et al., 2021; Li, Wei, et al., 2022), DenseNet (Agarwal et al., 2022; Cui &

Liu, 2019a; Li & Liu, 2018; Liu et al., 2020; Razzak et al., 2022), ConvNet (Goenka & Tiwari, 2022), ResNet (Bae et al., 2021; Folego et al., 2020;

Li, Wang, et al., 2022; Lim et al., 2022; Nanni et al., 2020; Saratxaga et al., 2021; Shaji et al., 2021), LeNet (Folego et al., 2020; Hazarika

et al., 2021), AlexNet (Nanni et al., 2020), GoogleNet (Folego et al., 2020; Nanni et al., 2020), Inception (Bae et al., 2020; Nanni et al., 2020; Shaji

et al., 2021), EfficientNet (Agarwal et al., 2022), VGG (Folego et al., 2020; Huang et al., 2019; Ocasio & Duong, 2021; Zhang et al., 2019), and

MSCNet (Liu et al., 2022).

Accordingly, Liu et al. (2022) applied an MSCNet to segment WM and GM in images and proved that WM is more effective in AD diagnosing.

On the other hand, Goenka and Tiwari (2022) applied a ConvNet to different types of data processing approaches, concluding that the whole 3D

image approach, in contrast to the patch and slice-based approaches, led to the maximum accuracy. Folego et al. (2020) compared multiple DL

architectures, namely LeNet-5, VGG 512, GoogLeNet, and ResNet, and obtained better results using the VGG 512 architecture. Another type of

approach was adopted by some authors who, instead of implementing only one DL network, used a combination of two or more networks to

obtain better results. An example of this is the case of Cui and Liu (2019b) who combined a CNN with an RNN: the first model is used to extract

the spatial features of each time point and obtain a single time classification result; then, the RNN model, which is based on a cascaded bidirec-

tional gated recurrent unit (BGRU), is used to tackle the temporal fluctuations and produce the longitudinal features used to enhance the final

classification. Liu et al. (2020) also chose to combine two CNNs, using a multi-task deep CNN model to capture the multi-level features for hippo-

campal joint segmentation and disease classification, while the 3D deep DenseNet model picks up the characteristics from hippocampal image
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patches for the disease classification. Both the multi-task and the DenseNet models were trained individually, and the final classification was car-

ried out by a fully connected layer followed by a softmax layer that was carefully calibrated. In Li and Liu (2019), Li et al. used a very similar rea-

soning: constructed hybrid convolutional and recurrent neural networks based on DenseNets and BGRU networks for the inner and outer hippo

patches separately. 3D DenseNets were built on the patches to learn more specific image and shape features of the hippocampus for classifica-

tion, while stacked BGRUs were utilized to record the high-level correlation and asymmetry features between the right and left hippocampus. In

the end, two fully connected layers were attached to merge the features that the hybrid neural networks had learned from the inner and outer

patches of the hippocampus to improve the final classification.

Additionally to the common use of CNNs and RNNs, Mendoza-Léon et al. (2020) developed supervised switching autoencoders (SSAs) to

conduct AD classification using just a sMRI slice.

4.4.2 | Feature extraction + classification approaches

The other path taken by the reviewed articles consisted in applying a network that extracted features from the images and then applying a classi-

fier that allowed obtaining a diagnosis for AD.

In this sense, several researchers have chosen to use DL models to extract the features that are then linked to simpler machine learning algo-

rithms to perform the final classification. For example, Wang et al. (2022) implemented a DenseNet with self-attention (SA) and auto-encoding

(AE) to obtain the features that served as input to a linear support vector machine (SVM) classifier that performed the classification. Suh et al.

(2020) employed a deep CNN model, which divides each brain image into 82 areas. The used approach combines a target section with nearby

slices in the channel dimension and feeds this information into the XGBoost module that classifies the patients. Finally, Jiang et al. (2022)

implemented a deep learning radiomics (DLR) model to extract features from MR images that are then combined with clinical information and

classified using an SVM. Several architectures were tested for the DRL model: AlexNet, ZFNet, ResNet18, ResNet34, InceptionV3, and ResNet34

proved to be the best.

DNN also proved to be a widely used model as a classifier followed by a feature extractor. Raghavaiah and Varadarajan (2021) applied a

Gabor filter, Raghavaiah and Varadarajan (2022) developed a hybrid texture, edge, colour, and density (TECD) feature extraction approach paired

with clinical data, and Basher et al. (2021) built a discrete volume estimator CNN model to identify positions of the left and right hippocampus.

Two groups of authors chose to use a deep Siamese neural network (DSNN): Liu et al. (2019) mapped several atlases using a large dip-

homorphic deformation metric mapping (LDDMM) and then got the atlas plot labels for each imaging scan through the multi-atlas likelihood

fusion (MALF) algorithm before applying the neural network; while Sampath and Baskar (2022) utilized grey-level co-occurrence matrices (GLCM),

Gabor, and wavelet features to extract the MR image's biomarker data and a Hilbert Schmidt independence criteria lasso (HSICL) algorithm to

select the most preponderant features.

Cobbinah et al. (2022) implemented a convolutional adversity autoencoder (CAAE) to lessen the existing variations in multi-centre raw scans

by storing them in an aligned common space. Subsequently, a convolutional residual soft attention network (CRAT) was also intended for AD clas-

sification. While in Asl et al. (2018), a 3D convolutional autoencoder (3D-CAE) was developed to extract features followed by the application of a

3D deeply supervised adaptive CNN (3D-DSA-CNN) to perform task-specific classification.

In Yan et al. (2022), chose to implement attention mechanisms to enhance the performance of CNNs significantly. Thus, the authors added

squeeze and excitation (SE) and pyramid squeeze attention (PSA) mechanisms to the fully convolutional network (FCN) model to obtain the infor-

mation from each image regarding the disease probability map. In addition, they also built a multi-layer perceptron (MLP) classifier, combining a

disease probability map's feature information with the age, gender, and mini-mental state examination (MMSE) of each sample to obtain the final

classification. Finally, Odusami et al. (2022) suggested concatenating deep and random weight features taken from the ResNet18 and Den-

seNet121 networks, which simultaneously learned DL features from MR images.

4.4.3 | Time-to-event prognostic approaches

In addition to the classification from MR images at the different AD phases, some works are focused on predicting the evolution of the disease. In

this regard, Zhao et al. (2021) proposed a new paradigm for predicting disease progression that embraces five cases of evolution: MCI-AD, MCI-

MCI, MCI-CN, CN-MCI, and CN-CN. In the process, a patch-based 3D mi-GAN model was developed to produce high-quality images at future

time points with two innovations: implementing a 3D U-Net based network conditioning on image patches and additional knowledge, that is, age,

academic level, gender, and APOE, in BL; modifying the final objective function by adding a gradient difference loss (GDL loss) and a mean square

error loss in image space and frequency domain. The 3D U-Net based model can utilize the multi-scale characteristics of input image patches and

the additional data. The generator can create less blurry and more reliable images due to the GDL loss. Then, the created whole-brain 3D images

are fed into a trained 3D ternary classification model to identify their phases and better track the development of the disease within four years.
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In Ocasio and Duong (2021), a prediction model was developed with two alternatives. A single time point CNN that, for classification, a single

3D MRI with a full-time point of patients diagnosed with AD or CN served as the input and had as the output the CN versus AD binary classifica-

tion, and for prediction, a single 3D MRI with a full-time point of patients diagnosed with MCI was served as the input, and the outcome was a

forecast of whether the patient had advanced (pMCI) or stayed stable (sMCI) 3 years later. A second approach was a dual time point CNN, where

the input consisted of 3D MRI scans taken at both baseline and 12 months later, utilizing the same study group, and output classes used at a sin-

gle time point for classification and prediction. Both types of models started with a sequence of convolutional blocks, flattened into at least one

fully connected layer, concluding with a decision of classification or prediction.

4.5 | Data augmentation and transfer learning

Big data is widely used by deep neural networks to prevent overfitting. Regrettably, common neuroimaging datasets of AD patients are not so

big. To overcome this problem, two strategies can be applied to imaging datasets with small samples: data augmentation and transfer learning (Al-

Qerem et al., 2021).

Data augmentation is an effective strategy to enhance the performance of learning algorithms by increasing the samples. This strategy is char-

acterized by performing transformations on already existing images, such as rotation, flipping, and cropping (Al-Qerem et al., 2021). About 32% of

the reviewed studies implement this strategies, namely Basaia et al. (2019), Basheera and Ram (2020), Basher et al. (2021), Cobbinah et al. (2022),

Cui and Liu (2019a, 2019b), Dyrba et al. (2021), Guan et al. (2022), Li and Liu (2019), Lim et al. (2022), Liu et al. (2020), Ocasio and Duong (2021),

Razzak et al. (2022), Saratxaga et al. (2021), Shaji et al. (2021), Wang et al. (2022), and Yi�git and Işik (2020). As an example, this strategy was

implemented by Dyrba et al. (2021) who, by applying flipping along the coronal (R/L) axis and also a translation of +/� 10 voxels in each direction

(x/y/z) to all original images, obtaining about fourteen times more samples.

Transfer learning is an ML technique where a model already created for one task is used as a baseline for another task. In other words, this

technique proposes storing information learned from solving one problem and using it to solve another related challenge (Al-Qerem et al., 2021).

Multiple studies have opted for this procedure, namely, the ones in Bae et al. (2021), Basher et al. (2021), Faisal and Kwon (2022), Folego et al.

(2020), Guan et al. (2022), Hazarika et al. (2021), Li and Liu (2018), Lim et al. (2022), Nanni et al. (2020), Ocasio and Duong (2021), Saratxaga et al.

(2021), and Wen et al. (2020). A study demonstrating this method's importance was developed by Nanni et al. (2020), who investigated the effect

of the transfer learning technique on several DL models. Briefly, the study assessed the efficacy of transfer learning techniques on DL models

trained on common images and then applied to sMR images of the brain. The models used were AlexNet, GoogleNet, ResNet50, ResNet101, and

InceptionV3. As opposed to a 3D CNN model trained from scratch on MRI volumes, the results showed a performance increase of at least 4.7%

in terms of accuracy.

5 | DISCUSSION

Aiming to classify/distinguish between the various Alzheimer's disease phases using MR imaging modality, 49 different approaches were found,

which are summarized in Table 3.

It is very difficult to define which methods are best, given the different nuances that it is possible to create across the computational pipeline

as described in Section 3. However, different evaluation metrics were used in the reviewed articles, such as accuracy (Acc), sensitivity, F1 score,

specificity, precision, recall, and under the receiver operating characteristic curve (AUC). To have a better view of the whole procedure adopted

by the solutions with the best results in terms of accuracy, since it is the metric adopted by all researchers, a more detailed description of the pro-

cess applied by the authors of all articles found in this review whose prediction was higher than 95.00% is presented and summarized in Table 4.

Sampath and Baskar (2022) used 3D T1 weighted images acquired from 3 different databases: ADNI, OASIS, and AIBL, which at the

processing level underwent resizing to improve the classification performance while using less memory, adaptive filtering to remove noise, adap-

tive histogram equalization for image enhancement and Voxel-based morphometry for segmentation of the ROI region, namely in terms of grey

matter, white matter, and cerebrospinal fluid. In this solution, the authors applied several feature extraction methods after the pre-processing

phase, namely grey-level co-occurrence matrices, which extract the numerical features using spatial correlations of similar grey levels, Gabor filter-

ing to extract energy-based texture features, and Wavelet to extract the time-frequency representation. After that, a Hilbert-Schmidt indepen-

dence criteria loop method was introduced to reduce more irrelevant features among those extracted from the MR images. Finally, the new

investigation feature concerned the food source direction of the fish shoal optimizer (FSO) that was incorporated into the classification phase of

the DSNN. The results obtained concerning Acc were very promising, with 99.89% for the ADNI database.

Raghavaiah and Varadarajan (2022) started from MR images and applied the following pre-processing techniques: skull removal, normaliza-

tion, and GM, WM, and CSF segmentation using a clustering method that combines a temporally consistent black widow optimization (BWO) with

a fuzzy C-means clustering (FCM). Regarding feature extraction, the authors implemented a hybrid TECD approach merged with clinical data to
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add information concerning the patient's emotional condition. The TECD method characterizes the input image features based on statistical prop-

erties of image colours, grey level run length matrix, local discriminative powerful binary patterns, and tube density features by calculating each

pixel's modified probability depending on its neighbours, and the clinical features including as to functional activities questionnaire, neuropsychiat-

ric inventory and geriatric depression scale. This feature vector is given as input for the proposed deep rotation forest neural network to perform

the classification task. Thus, the rotation forest creates the training data for the deep enhanced stacked autoencoder with a backpropagation

learning classification algorithm. This HRF-DNN based solution obtained the following results in the binary classification tasks: AD vs. CN—

98.68%, MCI vs. AD—95.88%, and MCI vs. CN—97.23%.

Goenka and Tiwari (2022) used 3D T1 sMRI images, on which the authors applied bias correction, skull-stripping, and rigid registration. Given

the reduced size of the dataset, data augmentation techniques were used, namely: �5 and 5 degree angle rotations. Next, three ConvNets were

created for three different input data processing approaches: hole 3D image, 3D patches, and slices. In the context of three-class categorization, a

14-layer architecture was employed with seven convolutional layers, four max-pooling layers, batch normalization, one global average pooling

layer, and two dense layers. The same architecture with 14 layers was used in the 3D-Patch-based model, with a 72�72�72 patch. The torch

unfold function, which extracts sliding blocks from a batched input array, was employed to create these patches through a non-overlapping strat-

egy. And finally, the 3D-Slice level ConvNet uses only 13 layers, with slight differences from as other two networks. The best results were

achieved for the methodology applied to the whole image, with an accuracy of 99.10%

Hazarika et al. (2021) converted the 3D T1 weighted MR images into a group of 2D slices and identified the most suitable slices that can pro-

vide the regions of the hippocampus. Since the skull part is ignorable, skull-stripping and size scaling were applied. In this way, these images

served as input for a LeNet network; however, instead of the traditional MaxPooling layer, the authors implemented a MinPooling layer in order

also to evaluate the low-intensity pixels. This allowed the model to perform well, with an average accuracy of 96.64%.

Faisal and Kwon (2022) started by decreasing the size of the 3D T1 weighted MR images. The images were then divided into three slices:

axial, coronal, and sagittal, with those at the beginning and end omitted as they contained no useful information. In addition, the slices were nor-

malized with a mean and standard deviation of 0 (zero) and 1 (one), respectively. Consequently, the authors proposed a straightforward but pow-

erful convolutional method (2D-CNN) that simultaneously carries out standard convolution, deep convolution, and point convolution, followed by

a jumping convolution layer to learn multi-level characteristics from brain MRI data. The great feature of this model is the reduced amount of

parameters and, consequently, the computational cost and speed of the model while achieving good results, namely 96.12% of classification accu-

racy between the CN, MCI, and AD classes.

Qasim Abbas et al. (2023) adopted four standard operations for pre-processing: ACPC alignment correction for identical orientation, skull

removal to eliminate non-brain tissue, intensity correction for uniform homogeneity and image registration for geometric alignment in 3D T1

weighted sMRI. The Jacobian domain is then applied to the previously pre-processed images to create a Jacobian determinant map, which is then

used to train a CNN model. The proposed architecture uses a sequential model consisting of one input, three convolutional, three max-pooling,

one flattened, one fully connected, and one output layer(s). The effectiveness of the validation process determines the number of layers. The

result obtained by this domain Jacobean convolutional neural network (JD-CNN), in terms of accuracy, was equal to 96.61% in the binary classifi-

cation between CN and AD.

Yan et al. (2022) used MR-weighted 3D T1 weighted images, which in the processing underwent an affine transformation, skull removal, and

filter denoising, including median filtering, Gaussian blur filtering, and anisotropic diffusion filtering, which was the one that showed the best

results, and intensity normalization. After that, SE and PSA mechanisms were added to improve the used CNN's performance significantly. The SE

mechanism obtains global data for each feature map by clustering the global average, and then a fully connected layer is implemented to identify

the feature maps' global dependencies. At the same time, the PSA mechanism can manipulate spatial data of the input multi-scale feature maps

and can successfully create long-term dependence among multi-scale channels' attention. Next, a FCN model was implemented, which consists of

four convolutional blocks and two fully connected layers. A 3D convolutional layer, 3D maxpool layer, 3D batch normalization, Leaky ReLU, and

Dropout are the convolutional block components. The final fully connected layers play a vital part in increasing the model's effectiveness, and the

model is trained by random initialization of weights. The authors adopt a patch (of size equal to 47�47�47) random sampling method from MRI

scans to train the FCN model. In addition, the authors also construct the MLP model structure, which consists of two fully connected layers, batch

normalization, Leaky ReLU, and Dropout. In the MLP model's image classification test, the authors pick the probability value of AD from disease

probability map data, choose the ROI according to the MCC heat map of the FCN model, and match it with age, MMSE, and gender of the

patients. The accuracy obtained by the used pipeline was 98.85% for the distinction between CN and AD.

5.1 | Reviews

Two systematic reviews were also taken into account in this review. Sethi et al. (2022) explored different AD classification methods based on

CNNs. In this study, topics such as data pre-processing, data processing, 2D and 3D CNNs and their variants, and data augmentation and transfer

learning, were addressed and compared. On the other hand, Tanveer et al. (2020) discussed machine learning techniques used in AD diagnosis,
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namely support vector machine, artificial neural network, DL, and ensemble models. Within their study, they also evaluated different imaging

modalities, feature extraction and selection techniques, and transfer learning. This information is summarized in Table 5.

6 | CONCLUSION

This literature review shows that the AD classification with neuroimaging is the subject of many studies based on different DL approaches. This

review was focused on studies that at least used MRI data, which led to the exclusion of some studies obtained in the initial search. Nonetheless,

other imaging techniques are less common in the clinical environment owing to the associated high costs.

As it was possible to perceive, several brain image datasets exist for studying Alzheimer's disease. Still, the ADNI dataset is the most used

almost unanimously, providing a greater variety and quantity of samples.

It is undisputed that classification between AD and NC is the most straightforward task, leading to high accuracies, reaching almost 100% in

some studies. However, it is not so clinically relevant as the predictions of sMCI to CN and pMCI to AD, which are more desirable but further

challenging to reach good results. Regarding the implemented models, the results obtained in 2D or 3D approaches are similar, so it is impossible

to conclude which is better. Both present limitations and advantages: 3D models represent more arduous challenges due to the increased number

of parameters and computational cost, while in 2D approaches, not all information cannot be used as spatial relations are discarded.

Regarding the data approach adopted, most researchers opted for direct classification, with CNNs being the most predominant architecture.

However, other methodologies that show potential to be explored, such as the RNN, are used in longitudinal data processing to extract the mini-

mal differences between consecutive image scans on the same subject. When comparing this approach with feature extraction plus classification,

it is difficult to draw many conclusions. However, it is possible to realize that it does not depend so much on the approach adopted but rather on

the used models, parameters, and data processing. Time-to-event prognostic approaches are still little explored, with very few studies on the sub-

ject, but they have a promising future since they work in prediction.

Researchers widely use data augmentation and transfer learning techniques, which allow them to obtain promising performances even using

small amounts of data.

Finally, by evaluating the best results presented in the reviewed articles, it was impossible to find a common characteristic to all, proving that

several paths can be adopted in this area and still produce promising results.

In conclusion, this work essentially reviewed DL techniques to detect Alzheimer's disease in sMR images; however, as a possible future work,

it would be interesting to extend this review by including other imaging modalities, such as fMRI or even PET.
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TABLE 5 Summary of the reviews found in the current study.

A. Years covered Number of articles Description

Sethi et al. (2022) 2012–2021 48 Analyse the efficacy of CNN classification approaches in AD using

different datasets, neuroimaging modalities, and data pre-processing and

processing techniques.

Tanveer et al. (2020) 2005–2019 165 The analysed machine learning methods are categorized into three main

groups: support vector machine, artificial neural network, and deep

learning and ensemble models.
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