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Abstract

The network theory of psychopathology suggests that symptoms in a disorder form a net-

work and that identifying central symptoms within this network might be important for an

effective and personalized treatment. However, recent evidence has been inconclusive. We

analyzed contemporaneous idiographic networks of depression and anxiety symptoms.

Two approaches were compared: a cascade-based attack where symptoms were deacti-

vated in decreasing centrality order, and a normal attack where symptoms were deactivated

based on original centrality estimates. Results showed that centrality measures significantly

affected the attack’s magnitude, particularly the number of components and average path

length in both normal and cascade attacks. Degree centrality consistently had the highest

impact on the network properties. This study emphasizes the importance of considering

centrality measures when identifying treatment targets in psychological networks. Further

research is needed to better understand the causal relationships and predictive capabilities

of centrality measures in personalized treatments for mental disorders.

Introduction

In recent years, the field of psychology has increasingly acknowledged the necessity of person-

alized treatments [1–3]. This recognition has been facilitated by advancements in technology

and longitudinal assessment methodologies [4]. Within this context, network analysis emerged

as one of the most promising methodological approaches to study this type of data [5–7]. By

modeling mental disorders as a network of symptoms, where symptoms are viewed as nodes

and connections between them as edges [8]. From this methodological approach, the network

theory of psychopathology emerged [8–11]. The network theory of psychopathology [9, 10]

proposes that when a symptom is activated (such as by an external event) a signal diffuses

through the network, activating other symptoms. The activation of other symptoms increases

the network connectivity and the system transitions into a disease state. Thus, a symptom with
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more connections might activate several other symptoms and might have an essential role in

sustaining the disease. Due to this, these symptoms have been suggested to be preferential

treatment targets [8, 12].

In network analysis the identification of these symptoms can be performed through the esti-

mation of centrality measures, such as degree, strength, betweenness, and closeness, which

uncover each symptoms’ connectivity. With these measures, and with the proposal from the

network theory of psychopathology, several studies suggested possible treatment targets based

on network centrality measures [13–16]. However, recent evidence showed that closeness and

betweenness centrality are not adequate in psychopathological networks, given their bias in

the covariance and sampling variability [17, 18]. Dablander and Hinne [19] shown that the

most common centrality measures used in psychology are not related to causality, except for

eigenvector centrality. This is partially validated by the inconsistent results shown by studies

examining the central symptoms as psychotherapeutic targets [20–23].

Studies found central symptoms to predict changes in the remaining symptoms [24, 25]

and enable the evolution to a psychopathological condition [26]. However, Bos and colleagues

[20] have not found evidence to support the hypothesis that symptom centrality is associated

with changes in symptoms over time across cross-sectional networks. Furthermore, three

other studies used the same procedure in three different samples finding only moderate sup-

port for this hypothesis. Rodebaugh and colleagues [21] explored if a cross-sectional network

of social anxiety symptoms predicted changes in another sample of individuals who undertook

treatment for the same disorder. The authors concluded that symptom centrality was not gen-

eralized across measures and frequency of symptom endorsement also predicted change while

being generalized across measures. Spiller and colleagues [22] and Papini and colleagues [23]

have also concluded that symptom endorsement was a better predictor of change than the cen-

trality measures, with only expected influence predicting how changes in symptoms were asso-

ciated with changes in the remainder of the symptoms. In fact, deactivating symptoms

according to their centrality does not seem to significantly reduce network density more than

the random deactivation of symptoms [27].

Despite this, and in line with the studies that reported changes in the network structure

when comparing psychological networks at different stages [28–33], when symptoms are deac-

tivated according to their degree centrality there are significant changes in the number of com-

ponents of the network [27]. However, most of these studies were performed using cross-

sectional networks [20–23, 29, 30] which might have hampered their findings, due to individu-

als’ idiosyncrasy that is lost in the cross-sectional analysis [34].

As a potential framework to unveil the individual-level differences one can leverage idio-

graphic networks [35], which allow for a detailed understanding of the associations between

symptoms, their directionality, and how different processes (e.g., thoughts, feelings, and

behaviors) fluctuate over time [36]. It is based on this dynamicity that we can understand the

diversity of clinical and symptomatologic trajectories. This idiographic dynamic view, coupled

with the hypothesis of central symptoms being more efficient treatment targets, might pro-

mote the development of better personalized treatments. In fact, Levinson, and colleagues [37]

reported initial evidence that identifying treatment targets through strength centrality in idio-

graphic networks might improve treatments efficacy. However, Levinson and colleagues [37]

only identified treatment targets at a single point (i.e., third session), which disregards the

changes in the network that might occur after that point. It is expected that after an interven-

tion directed to a symptom, changes in the network structure occur [8]. If these changes occur,

a new central symptom may emerge, which should become the primary treatment target [27].

Failing to account for this possibility may result in an intervention that does not target the

most central symptom, potentially reducing the efficacy of the treatment.
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Considering this, the hypothesis that central symptoms might be valuable therapeutic tar-

gets remains open. Here we address this hypothesis by assessing the impact of symptom deacti-

vation on idiographic networks according to different centrality measures. We do it, by

comparing the impact of symptom deactivation using two different types of symptom deacti-

vation procedures, one procedure based only on a single point estimate of centrality measures

and a second procedure in which the centrality measures are re-estimated every time a symp-

tom is deactivated. As usual in network science, the impact of symptom deactivation according

to the centrality estimates is evaluated in comparison to the random deactivation of

symptoms.

Method

Data

This study involved an analysis of existing data rather than new data collection. Datasets ana-

lyzed in the current study are publicly available (available at https://osf.io/mgdp6). Data was

accessed in 9 of January of 2019 the authors did not had access to information that could iden-

tify individual participants. The ethics committee approval, the accordance of all the methods

with relevant guidelines and regulations, and the informed consent were obtained in a previ-

ous published study by different authors [6]. The authors of this manuscript had no control

over these data collection procedures. All the code used in this study is available at https://osf.

io/k2z84/.

We analyze contemporaneous idiographic networks of depression and anxiety symptoms

from 40 participants [6], which, in the original study, aimed to explore the idiographic struc-

ture of mood and anxiety symptomatology via contemporaneous and temporal networks. The

participants had to have a diagnosis of major depressive disorder (MDD) or generalized anxi-

ety disorder (GAD) and an age of 18 to 65 years, participants with a history of psychosis or

mania were excluded. Most of the participants were female (65%), and 25 participants met the

criteria for current GAD and 15 for current MDD (all the demographic data made available by

the original study is presented in the S1 Appendix), network basic features are presented in S2

Table in S1 Appendix. Participants rated their symptoms for 30 days, four times per day

through an Experience Sample Survey (ESS), which we used here to estimate temporal and

contemporaneous networks of MDD and GAD symptoms for each participant. The ESS con-

sisted of DSM-5 symptoms for MDD and GAD, where each participant rated their experience

of each symptom in the preceding hours on a 0–100 scale and provided a mean (M) of 130.43

observations with a standard deviation (SD) of 19.27.

Here we focus on the contemporaneous networks. Contemporaneous networks can identify

connections that would not be visible in temporal networks. This happens because temporal

networks model the relationships that are predicted from one window of measurement to the

next [38], which are, usually, in an interval of a few hours [39–41]. However, it is possible for

causal relationships between variables to occur within timeframes that differ from those used

to assess them but that can be identified through contemporaneous networks [38]. Thus,

within-person contemporaneous networks might provide better identification of treatment

targets. Therefore, here we focus on within-person contemporaneous networks to identify psy-

chotherapeutic targets using centrality measures.

Data analyses

For each participant, in the original study [6], a contemporaneous correlation matrix was

extracted and then a sparse partial correlation network was estimated using the Least Absolute

Shrinkage and Selection Operator (LASSO) regularization method [18]. On the original study
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[6], model fit was assessed with RMSEA, Browns chi-square goodness-of-fit test, and the CFI.

The authors considered non-significant chi-square tests, RMSEA values less than .060 and CFI

values equal or greater than .95 to reflect an excellent fit. All participants exhibited an excellent

fit on both chi-square and CFI. On RMSEA only one participant had a value of 0.062, with all

the other participants exhibiting values below 0.060.

To identify the central nodes and their effect on individual networks, we perform a two-

step analysis: i) the identification of central symptoms and ii) the exploration of the differential

impact of symptoms’ deactivation in the network. We investigate symptom deactivation as an

indirect measure of symptom improvement, operating under the assumption that a symptom’s

complete recovery would result in its removal from the network of symptoms. This is done to

simulate the effect of detecting a central symptom and then acting on it and improving it until

the symptom is not felt / reported by participants.

The network exploration of symptom deactivation is performed as a cascade-based attack

and a normal attack. In a cascade-based attack, symptoms are deactivated in their decreasing

order according to their centrality, which is iteratively calculated at every symptom removal.

In normal attack [27], symptoms were deactivated according to their original centrality. We

compare this with random attack symptom deactivation procedure, where symptoms are ran-

domly deactivated. In each type of attack a symptom is identified as a treatment target and

deactivated from the network. For the cascade-based attack, symptom networks and treatment

target selection are constantly being estimated and selected after each symptom deactivation.

In the normal attack the treatment targets order is determined based on the initial symptom

network of the participant and the attack follows that order without estimating the network

again. Fig 1 illustrates an example of each attack and their differential impact on the average

path length.

In the cascade-based attack and in the normal attack procedures’ we identified the central

symptoms through five different centrality measures: strength centrality, degree centrality,

one-step and two-step expected influence centrality, and eigenvector centrality. Strength cen-

trality, one-step and two-step expected influence were chosen due to their extensive use in

psychopathological networks [42–44]. In addition, degree and eigenvector were selected due

to being suggested as alternatives for better identification of treatment targets [19, 27]. After

each symptom deactivation, a set of network properties was measured (i.e., network density,

number of components, and average path length). The network density is the ratio between

the number of edges in the network and all the potential edges [45], while the number of com-

ponents in the network refers to the number of symptoms or groups of symptoms that are dis-

connected from the rest of the network and might be able to help us with the identification of

groups of active symptoms. Finally, the average path length concerns the mean of the shortest

paths in the networks and might identify if network symptoms activation is more likely due to

the shortest distance between network symptoms.

For each centrality measure, we assessed the differential impact of symptom deactivation by

computing the magnitude and extent of the attack in the network, where the impact magni-

tude consists of the difference between the maximum values of average path length and com-

ponents and their initial values. We next measured the attack extent by computing the

proportion of nodes that needed to be deactivated to achieve the maximum value of average

path length and number of components. To assess the impact of symptom deactivation on the

network density we computed the density of the network at 50% of the symptoms deactivated.

All these analyses were performed in the package psychNetsAttack [46] for R [47]. We did this

to each of the 40 networks (S3–S83 Figs in the S1 Appendix) and then aggregated the results

from each of the 40 networks to compare the results of each centrality measure.
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To compare each centrality measure attack magnitude and extent on the number of compo-

nents, average path length, and network density for both normal and cascade attack we used a

Friedmann’s Test, we followed by a Kendall’s coefficient of concordance to estimate the effect

and Durbin-Conover test for post-hoc test. We performed this analysis in the R [47] package

ggstatsplot [48]. These results are presented in Figs 2–4.

Results

Figs 2 through 4 visually depict the influence of the centrality measures on attack extent or

magnitude concerning both the number of components and the average path length in the 40

studied networks. Additionally, these figures present the statistical outcomes of the Friedman’s

Test and highlight significant findings obtained through the Durbin-Conover post-hoc test.

For a normal attack, the extent and magnitude of the attack on the number of components

and the average path length of each centrality measure are presented in Table 1. Normal attack

distributions for attack extent and magnitude of these properties can be seen in Fig 2, as well

Fig 1. Example representation of the 3 types of attacks and the 2 outcome measures. An example representation of the 3 types of attacks (random

attack and degree-based normal and cascade attack) and the 2 outcome measures (attack magnitude and attack extension). Attack methods are

exemplified by the colored circles, yellow circles represent the cascade attack, orange circles the random attack, and green circles the normal attack.

Colored dots represent the average path length of the network after the deactivation of the symptom identified by the attack. The X-axis represents the

proportion of nodes deactivated and the Y-axis represents the average path length after each node deactivation.

https://doi.org/10.1371/journal.pone.0297058.g001
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as the significant results from the post-hoc comparison tests. We observed a statistically signifi-

cant effect of centrality measures on the magnitude of the normal attack on the number of

components (X2
F (5) = 71.02, p < .001, Wk = 0.40, 95% CI [0.36, 0.61]) and on the average

path length (X2
F (5) = 79.14, p< .001, Wk = 0.43, 95% CI [0.34, 0.74]), post hoc comparisons

suggest that degree centrality had a significant higher attack magnitude on the number of com-

ponents and on the average path length than all the other centrality measures and the random

attack. The extent of the normal attack on the number of components (X2
F (5) = 0.47,

p = 0.993, Wk = 0.23, 95% CI [0.20, 0.71]) and on the average path (X2
F (5) = 6.26, p = 0.281,

Wk = 0.33, 95% CI [0.32, 0.63]) did not show statistically significant effects.

Fig 2. Graphical representation of normal attack magnitude and extension results across the 5 attack conditions. Graphical representation of normal attack

magnitude and extension results across the 5 attack conditions, degree, eigenvector, expected influence 1-step, expected influence 2-step. In each panel result of the

Friedman rank-sum test for differences between attack, and conditions are presented on top. The significant differences found between attack conditions, in the Durbin-

Conover post-hoc test, are represented by lines between attack conditions and with the Holm corrected p-value above. Only significant differences are represented.

Boxplots represent the interquartile range, the median and the outliers for attack magnitude or extension range for each attack condition. Violin plots display the

probability density of the data.

https://doi.org/10.1371/journal.pone.0297058.g002
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Regarding the cascade attack, the extent and magnitude of the different centrality measures

are presented in Table 2, and Fig 3 shows the distributions for the different centrality mea-

sures. Magnitude of the attack showed statistically significant effect of centrality measures on

the median attack magnitude on the number of components, X2
F (5) = 165.57, p< .001, Wk =

0.35, 95% CI [0.33, 0.59], and on the average path X2
F (5) = 129.37, p< .001, Wk = 0.40, 95%

Fig 3. Graphical representation of cascade attack magnitude and extension results across the 5 attack conditions. Graphical representation of normal attack

magnitude and extension results across the 5 attack conditions, degree, eigenvector, expected influence 1-step, expected influence 2-step. In each panel result of the

Friedman rank-sum test for differences between attack, and conditions are presented. The significant differences found between attack conditions, in the Durbin-

Conover post-hoc test, are represented by lines between attack conditions and with the Holm corrected p-value above. Only significant differences are represented.

Boxplots represent the interquartile range, the median and the outliers for attack magnitude or extension range for each attack condition. Violin plots display the

probability density of the data.

https://doi.org/10.1371/journal.pone.0297058.g003
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CI [0.32, 0.76]. Post hoc comparisons suggest that degree centrality and eigenvector centrality

yielded a significantly higher attack magnitude on the number of components than the ran-

dom attack and the remaining centrality measures. The random attack also had a statistically

higher attack magnitude on the number of components than strength centrality and expected

influence one-step and two-step. On the average path length, post hoc comparisons on the cas-

cade attack magnitude were also significantly higher for degree centrality and eigenvector cen-

trality. The remaining centrality measures did not present significant differences between

them.

Similarly, cascade attack extent on the number of components returned a statistically signif-

icant effect X2
F (5) = 101.05, p< .001, Wk = 0.22, 95% CI [0.21, 0.56] with the faster centrality

measures to achieve maximum value on the number of components being expected influence

one-step and two-step and strength centrality. However, as aforementioned, the attack exten-

sion is the proportion of symptoms that need to be deactivated to achieve the maximum value.

Thus, the lower the score in the attack extension the better. However, expected influence one-

step and two-step and strength centrality, as can be seen in the attack magnitude results, did

not promote any change in the network (Mdn = 0). Accordingly, the maximum value equals

Fig 4. Graphical representation of the results for network density with 50% of the nodes removed. Graphical representation of the results for network density with

50% of the nodes removed in normal and cascade attack across the 5 attack conditions, degree, eigenvector, expected influence 1-step, expected influence 2-step. In each

panel result of the Friedman rank-sum test for differences between attack, and conditions are presented. The significant differences found between attack conditions, in

the Durbin-Conover post-hoc test, are represented by lines between attack conditions and with the Holm corrected p-value above. Only significant differences are

represented. Boxplots represent the interquartile range, the median and the outliers for attack magnitude or extension range for each attack condition. Violin plots

display the probability density of the data.

https://doi.org/10.1371/journal.pone.0297058.g004
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the initial value of the network and, consequently, the median number of symptoms that need

to be deactivated to achieve the maximum number of components is 0. The two centrality

measures that promoted a change in the number of components (attack magnitude), degree

and eigenvector centrality, did not show any significant differences with the random attack on

the attack extent. On the average path length, the cascade attack extent presented a statistically

significant difference, X2
F (5) = 19.89, p = 0.001, Wk = 0.50, 95% CI [0.45, 0.89] with post hoc

comparisons suggesting a better performance of degree centrality over the other centrality

measures and random attack.

Concerning network density with 50% of the symptoms deactivated for normal and cascade

attacks, distributions can be found in Fig 4. Normal attack showed significant effects between

centrality measures, X2
F (5) = 89.68, p< .001, Wk = 0.70, 95% CI [0.66, 0.94]. Post hoc com-

parisons suggest that degree centrality has a significantly higher impact in reducing the net-

work density in comparison to all other centrality measures and the random attack. For the

cascade attack significant effects were also found, X2
F (5) = 139.08, p< .001, Wk = 0.69, 95%

CI [0.67, 0.88]. As observed in the post hoc comparisons, the eigenvector centrality cascade

attack promoted a higher decrease in network density than all other centrality measures,

except degree centrality, and the random attack. Degree centrality promoted the most

Table 1. Descriptive statistics for normal attack.

Network characteristic / attack condition Attack Magnitude Attack Extent

Mean (SD*) Median (MAD**) Minimum—maximum Mean (SD) Median (MAD) Minimum—maximum

Components

Degree 2.30 (1.26) 2.00 (1.48) 1–6 0.72 (0.08) 0.74 (0.04) 0.48–0.81

Strength 1.02 (0.92) 1.00 (0.00) 0–4 0.55 (0.36) 0.71 (0.21) 0–0.90

Expected Influence 1-step 1.02 (0.92) 1.00 (0.00) 0–4 0.55 (0.36) 0.71 (0.21) 0–0.90

Expected Influence 2-step 0.95 (0.85) 1.00 (0.00) 0–4 0.54 (0.37) 0.76 (0.14) 0–0.90

Eigenvector 0.88 (0.82) 1.00 (1.48) 0–3 0.49 (0.40) 0.67 (0.35) 0–0.90

Random 0.95 (0.85) 1.00 (0.00) 0–3 0.51 (0.36) 0.76 (0.14) 0–0.90

Average Path Length

Degree 0.74 (0.34) 0.65 (0.28) 0.28–1.50 0.56 (0.10) 0.57 (0.07) 0.33–0.71

Strength 0.20 (0.15) 0.17 (0.18) 0–0.50 0.52 (0.25) 0.62 (0.21) 0–0.81

Expected Influence 1-step 0.20 (0.15) 0.17 (0.18) 0–0.50 0.52 (0.25) 0.62 (0.21) 0–0.81

Expected Influence 2-step 0.16 (0.13) 0.15 (0.12) 0–0.55 0.48 (0.26) 0.50 (0.25) 0–0.81

Eigenvector 0.23 (0.23) 0.16 (0.17) 0–0.89 0.52 (0.21) 0.55 (0.25) 0.05–0.76

Random 0.28 (0.16) 0.18 (0.18) 0.01–0.68 0.59 (0.15) 0.62 (0.14) 0.19–0.81

50% of nodes deactivated

Mean (SD) Median (MAD) Minimum—Maximum

Density

Degree 0.31 (0.09) 0.32 (0.12) 0.09–0.44

Strength 0.47 (0.12) 0.48 (0.12) 0.16–0.67

Expected Influence 1-step 0.47 (0.12) 0.48 (0.12) 0.16–0.67

Expected Influence 2-step 0.48 (0.11) 0.47 (0.13) 0.20–0.67

Eigenvector 0.46 (0.11) 0.49 (0.08) 0.20–0.67

Random 0.47 (0.09) 0.50 (0.08) 0.31–0.69

Descriptive statistics for normal attack magnitude and extent on the number of components and average path length and network density with 50% of the nodes

deactivated.

* Standard deviation

**Median Absolute Deviation

https://doi.org/10.1371/journal.pone.0297058.t001
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significant reduction of the network density, outperforming all other measures, including

eigenvector centrality, and random attack.

Attending to these results, a post hoc analysis was made to compare the magnitude and

extent of the effect of degree centrality under normal and cascade attacks on the network char-

acteristics. Results suggest that the degree centrality cascade attack outperformed the normal

attack in all the network properties examined, yielding a higher magnitude, a lower extension,

and density. Results from this analysis are presented in the S1 Appendix.

Discussion

Our findings indicate that the most significant alterations in the network properties primarily

manifest through degree-based attacks. Notably a degree-based normal attack also exerts a

more substantial influence in the network properties than any other centrality measure stud-

ied, a result consistent with prior study [27]. Furthermore, in the context of cascade attacks,

eigenvector centrality emerges as the central measure with the greatest impact on the network,

surpassing all other centrality measures except for degree. This observation aligns with earlier

research by Dablander and colleagues [19], which suggested that eigenvector centrality serves

as a superior proxy for causality compared to the commonly employed centrality measures in

Table 2. Descriptive statistics for cascade attack.

Network characteristic / attack condition Attack Magnitude Attack Extent

Mean (SD*) Median (MAD**) Minimum—maximum Mean (SD) Median (MAD) Minimum—maximum

Components

Degree 4.20 (0.88) 4.00 (0.74) 2.00–6.00 0.68 (0.06) 0.71 (0.07) 0.52–0.76

Strength 0.55 (0.90) 0.00 (0.00) 0.00–4.00 0.23 (0.32) 0.00 (0.00) 0.00–0.86

Expected Influence 1-step 0.55 (0.90) 0.00 (0.00) 0.00–4.00 0.23 (0.32) 0.00 (0.00) 0.00–0.86

Expected Influence 2-step 0.55 (0.90) 0.00 (0.00) 0.00–4.00 0.23 (0.32) 0.00 (0.00) 0.00–0.86

Eigenvector 3.50 (1.24) 3.00 (1.48) 2.00–7.00 0.75 (0.06) 0.76 (0.07) 0.62–0.86

Random 0.98 (0.73) 1.00 (0.00) 0.00–3.00 0.59 (0.36) 0.76 (0.14) 0–0.90

Average Path Length

Degree 1.09 (0.35) 1.11 (0.28) 0.51–2.05 0.52 (0.08) 0.52 (0.07) 0.33–0.62

Strength 0.26 (0.21) 0.18 (0.13) 0.05–0.97 0.55 (0.17) 0.57 (0.18) 0.14–0.81

Expected Influence 1-step 0.26 (0.21) 0.18 (0.13) 0.05–0.97 0.55 (0.17) 0.57 (0.18) 0.14–0.81

Expected Influence 2-step 0.26 (0.21) 0.18 (0.13) 0.05–0.97 0.55 (0.17) 0.57 (0.18) 0.14–0.81

Eigenvector 0.66 (0.26) 0.61 (0.32) 0.26–1.23 0.60 (0.09) 0.62 (0.07) 0.33–0.76

Random 0.25 (0.24) 0.18 (0.18) 0.00–1.14 0.55 (0.19) 0.62 (0.14) 0.00–0.81

50% of nodes deactivated

Mean (SD) Median (MAD) Minimum—Maximum

Density

Degree 0.23 (0.07) 0.26 (0.05) 0.07–0.36

Strength 0.45 (0.11) 0.47 (0.10) 0.13–0.69

Expected Influence 1-step 0.45 (0.11) 0.47 (0.10) 0.13–0.69

Expected Influence 2-step 0.45 (0.11) 0.47 (0.10) 0.13–0.69

Eigenvector 0.35 (0.11) 0.38 (0.07) 0.07–0.58

Random 0.47 (0.10) 0.48 (0.12) 0.24–0.64

Descriptive statistics for cascade attack magnitude and extent on the number of components and average path length and network density with 50% of the nodes

deactivated.

* Standard deviation

**Median Absolute Deviation

https://doi.org/10.1371/journal.pone.0297058.t002
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psychological networks. These findings carry significant implications for the field of psychopa-

thology within the framework of network theory.

Network theory of psychopathology has suggested that central symptoms might be valuable

therapeutic targets, due to their proposed ability to fasten the deactivation of connections

between symptoms [8, 13–16, 25, 49–51]. This is one of the core propellers of the network the-

ory of psychopathology, that lead to its growth in recent years [52, 53]. However, evidence for

this hypothesis is still scarce with studies focusing on cross-sectional networks and grounding

the identification of possible therapeutic targets on the initial estimations of centrality mea-

sures [21–23, 27]. Due to these inconclusive results, it has been recognized that there are

changes in symptoms centrality that occur during treatment [54] and that idiographic net-

works might be more appropriate to identify treatment targets [35]. This might have important

implications for treatment personalization.

In this context, we explored the impact of deactivating symptoms in contemporaneous idio-

graphic networks through two distinct procedures. The first is based on a single time point

estimate of network centrality (normal attack), and a second procedure, where, after each

symptom deactivation, centrality measures are estimated again (cascade attack). The impact of

symptom deactivation was assessed through a set of network properties since it has been sug-

gested changes in the network density might be able to differentiate between different clinical

presentations [36, 55]. However, due to the conflicting results in previous studies regarding

the association between symptoms’ remission and networks connectivity [20, 56] and the iden-

tified changes in the network topology [28–33] we have explored the impact of symptom deac-

tivation in two more network properties, average path length and the number of components.

Globally, our results suggest that changes in psychopathological network structure are best

achieved through degree centrality. In comparison with the most common centrality metrics

in psychopathological networks (i.e., strength centrality and expected influence one-step and

two-step), the deactivation of symptoms by the absolute number of connections (i.e., degree

centrality) seems to have a higher impact on the network structure. A previous study using

cross-sectional networks [27] also found that degree centrality was the only centrality measure

that was able to produce significant changes in the network structure. However, this study [27]

only found significant changes in the number of components of the networks. In turn, the

present study suggests that for contemporaneous within-person networks all the three network

properties examined are transformed through a degree-based attack. These results suggest that

different properties might be of interest according to the nature of the network (nomothetic or

idiographic). In fact, previous research has also pointed to this need of further exploration and

clarification of the properties of interest in psychological network [57] and the impact of these

networks’ structural properties in the selection of centrality measures [58].

With the field focusing on the strength centrality and expected influence measures to identify

important symptoms in the network, it’s of relevance that neither of these measures was able to

promote significant changes in the network structure. Interestingly, the random deactivation of

symptoms revealed a significantly higher impact magnitude in the number of components than

a cascade attack through expected influence one and two-step and strength centrality. Thus, if

changes in a person’s symptomatology are identifiable by changes in the network structure, the

traditional psychopathological centrality metrics do not seem able to induce significant changes.

Consequently, this might explain the inconclusive results in previous studies that explored if

these centrality measures were related to changes in symptomatology [21–23].

It has been suggested that all centrality measures make implicit assumptions about the net-

work processes of node-to-node transmission and the type of trajectories followed [58, 59].

The case may be that common centrality metrics in psychopathological networks are not

accessing the specific processes that occur in these networks or are accessing some other
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processes that are not related to network transformation. For example, they might be identify-

ing emergent phenomena in the network that need to be addressed (e.g., a very active symp-

tom) but not phenomena related to disorder maintenance (e.g., symptoms that sustain the

disorder). However, in psychological networks, the processes within the networks that gener-

ate and maintain mental disorders are still unknown. Interestingly, with a cascade attack,

eigenvector centrality produced significant changes in the network structure. This might be

due to its suggested proximity to the causality structure of the network [19] and might mean

that this measure is tapping into a specific process in psychological networks. Understanding

these processes will advance the identification of treatment targets by enabling an enhanced

selection of centrality metrics.

Besides exploring which network centrality measure promoted changes in the network

structure, we have also tested two types of attacks, normal and cascade. Although degree cen-

trality had a better performance than any other measure in both attacks. In the cascade attack,

the magnitude and the extension were significantly higher than in a normal attack. This sug-

gests that it might be of importance to estimate symptoms’ centrality each time before an inter-

vention is deployed to act on the symptom with the highest degree at any given time point.

The dynamic fluctuations of central symptoms during a psychotherapeutic process have been

highlighted by previous studies [54] and our results suggest that assessing and intervening in

which symptom is central at any given time-point might produce faster recoveries. Conse-

quently, the estimation at a single time-point of centrality measures to establish treatment tar-

gets for intervention might not be the most effective procedure to promote changes in the

network structure.

This has important implications for treatment personalization. Our results suggest that to

promote more effective treatments the assessment of the central symptoms must be done each

time before the intervention is done. Meaning that, in the context of idiographic networks,

symptomatology needs to continuously be assessed through, for example, ecological momen-

tary assessments [60, 61] for the duration of treatment to determine, at each session, in which

symptom the treatment should focus. This has not been the current practice on open trial stud-

ies using centrality metrics for treatment target identification and intervention guidance [37,

62]. This, in addition to the positive results that these studies have shown, raises an important

question about the specificity of the psychotherapeutic strategies. Do psychotherapeutic strate-

gies and psychopharmacological treatments have the specificity needed to act on a specific cen-

tral symptom at each time? And is this a negative constraint of the treatments or is it a positive

consequence? The answers to these questions are still unknown but the first results seem

promising [63, 64]. Although targeting psychological symptoms and behaviors is inherently

distinct from targeting genes or computer networks, recent studies [63–68] have started to

reveal contrasting effects not only among different treatment modalities [65–68], but also

throughout the course of treatment [63, 64]. These early results suggest that achieving a

remarkable level of precision in psychological treatments may be attainable. This in addition

with the selection of treatment targets through network centrality measures has the potential

to position psychology on the forefront of precision medicine [69–71] with more effective, pre-

cise, and personalized treatment strategies.

Besides this, some limitations of our study should be pointed out. First, both of our proce-

dures remove the deactivated symptoms from the network. This might be a strong assumption

for some of the symptoms. For example, anxiety might always fluctuate at lower levels, without

ever being completely absent of the network. In turn, insomnia or obsessions and compulsions

might in fact be completely absent of the network if a person does not have a psychopathology.

In our study we treated all symptoms equally, assuming that all symptoms would be absent

from the network after treatment. However, this is in fact a strong assumption and future
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studies should explore this question. Moreover, our study only targets nodes and some inter-

ventions might not act on the nodes its selves but rearrange the connections between them.

With this in mind, we think future studies with frameworks like the one proposed by Blanken

and colleagues [64] might provide important insights about the specificity of psychological

interventions.

Secondly, we used only centrality measures, leaving another important concept of psycho-

pathological networks, bridge symptoms, outside of our study. Bridge symptoms have been

proposed as symptoms that connect two different disorders and that acting in these symptoms

might promote a faster disintegration of a comorbidity network [72, 73]. Our network is a

comorbidity network comprising symptoms of depression and anxiety and identifying and

deactivating bridge symptoms might had led to faster deactivation of the network. Further-

more, there are several unexplored centrality measures that can be explored in the context of

psychopathological networks, such as the recently developed hybrid centrality measure [74,

75]. Hybrid centrality measures group together several rankings of other centrality measures

[75] and can potentially yield valuable insights for the refinement of treatment target selection.

In addition, since we have used within-person contemporaneous networks our centrality

measures lack the directionality that could be obtained with the use of temporal networks.

Nevertheless, due to the strong model assumptions about the temporal effects [38], meaning

that all relevant temporal symptom dynamics can be captured in the ESM or EMA time scale,

we opted for contemporaneous networks. However, with passive data [76–80], future studies

can surpass the temporal dynamics problem that emerge from ESM and EMA methods since

passive data can be collect continuously.

Another important limitation in our work is that we assume, as has been proposed in previ-

ous studies [36, 55], that network properties identify psychological states, although this

hypothesis is currently lacking consistent evidence [20, 56]. In previous studies that focused

on the idiographic network, a relationship between network density and psychopathological

states was found [36, 55] and our results show that there are clear changes in the network den-

sity after the deactivation of 50% of the symptoms. However, we also use two network proper-

ties rarely studied in psychopathological networks and without a clear theoretical formulation,

although we think it’s important to explore these new properties, we also acknowledge that

there’s a need to theoretically frame these properties.

Finally, a sensitivity analysis based on demographic variables such as sex or age could pro-

vide further insights into the selection of treatment targets, by understanding if different cen-

trality measures are better suited for different groups of the population.

Conclusion

Our study provides the first simulation study in idiographic networks to examine symptom

deactivation through several centrality measures. The emergence of degree centrality as a mea-

sure more suitable to transform the network might be of relevance for further studies trying to

identify treatment targets through network analysis. Further exploration of network properties

is needed, but, if changes in the network structure are aligned with psychopathological and

healthy states, deactivating symptoms through a cascade attack based on degree centrality

might promote faster and more effective treatments.

Supporting information

S1 Appendix. Participants characteristics. Network Basic Features. Graphical representation

of the comparison between a degree-based normal attack and a degree-based cascade attack

for the number of components and the average path length. Graphical representation of the
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comparison between a degree-based normal attack and a degree-based cascade attack for net-

work density with 50% of the nodes removed. Plots Displaying Attack Results for Each Indi-

vidual Network.
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