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A B S T R A C T

Ionic liquids (ILs) have been deeply investigated as possible substitutes or hazardous organic solvents, but their

recently acknowledged ionicity, together with their generally high viscosity, has been hampering their urther

application. The ionicity (or degree o dissociation) o electrolytes aects properties such as viscosity, solubility

and density, so it is o the utmost importance or the proper thermodynamic description o systems containing

electrolytes. However, the experimental quantications o this property are dicult to perorm, which creates

the need or more predictive approaches. In this work, the ionicity o 12 ionic liquids in binary mixtures

composed o water, ethanol, 1-propanol or 1-butanol was predicted based on solubility data available in liter-

ature by the Pitzer-Debye-Hückel (PDH) equation combined with the UNIversal QUAsi-Chemical (UNIQUAC)

model, which is oten reerred as PDH+UNIQUAC. The ionicity o the ionic liquids was modelled as unction o
mole composition or a total o 17 binary systems, comprising ILs o three chemical amilies: hexa-

fuorophosphates, tetrafuoroborates, and bis(trifuoromethylsulonyl)imides, continuing a previous work. This

novel methodology provided a useul tool to estimate the ionicity o ionic liquids containing imidazolium cations

without undergoing long experimental determinations, which could be applied in the design o separation

processes.

1. Introduction

Ionic liquids (ILs) or liquid salts are a very broad chemical amily o

electrolytes with melting point below 100
◦
C at atmospheric pressure.

Generally, they present high thermal stability, high polarity, high elec-

trical conductivity, and a wide electrochemical window [1,2]. More-

over, it is possible to tune their intrinsic thermo-physical properties by

selecting the ionic liquid counterions, or which they are known as

’designer solvents“�[3].
In the last years, the research or eco-riendlier solvents has been

expanding, and ionic liquids are expected to play a signicant role in the

chemical industry as replacements or more traditional solvents such as

the volatile organic compounds (VOCs), which may compromise the

human and animal health [4]. This way, even though the general

non-volatility o ionic liquids at room temperature hampers solvent

recycling, it also made them emerge as important substitutes or VOCs as

reaction media or organic and inorganic synthesis [3,5] and as sepa-

ration solvents [1,6–8]. For example, ionic liquids have been used with

success in the extraction o active pharmaceutical ingredients (APIs)

such as anti-infammatory drugs and antibiotics rom polluted water

streams [9–11], and their oten high biological activity makes them

strong candidates or uture use in drug delivery and biomedical ana-

lytics [12]. Furthermore, other applications o ionic liquids include

electrochemical devices such as lithium-ion batteries [13,14], catalysis

[15,16] and novel electrolytes [2,17].

Since the application o ionic liquids in the industry is relatively

recent, some o their physical and chemical properties were not yet

extensively studied, or which, or example, viscosity and ionicity data

are hard to nd. The ionicity o ionic liquids, which corresponds to the

raction o IL molecules which is dissociated, was proven to greatly in-

fuence thermophysical properties such as density, viscosity and surace

tension, so it is essential to characterise electrolyte-containing systems

[18]. For example, Peng et al. [19] reported that IL-ionicity was key to

enhance the intestinal absorption o macromolecular drugs such as in-

sulin and immunoglobulin, improving API delivery in the skin, buccal

membrane, and small intestine [20].
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So ar, some works have already delved into the determination o IL-

ionicity as unction o temperature and composition rom Nuclear

Magnetic Resonance (NMR) measurements [21–23], molar conductivity
and viscosity measurements (Walden plot) [24–27], and also combining
conductivity, density and viscosity measurements with the

Stokes-Einstein equation [18,28].

Noda et al. [21] quantied pure IL-ionicity using the Nernst-Einstein

equation, the molar conductivity rom ionic conductivity measurements

and the molar conductivity determined using sel-diusion coecients

rom NMRmeasurements. Even though this technique is regarded as one

o the most trustworthy or IL-ionicity determinations, the experimental

measurements are time-consuming, the method can only be applied to

NMR-active nuclei, and the laboratory apparel is expensive.

An easy methodology to estimate IL-ionicity as unction o temper-

ature can be achieved with a graphical method: the Walden plot, which

represents the logarithm o the molar conductivity as unction o the

logarithm o viscosity [24]. In this approach, which is requently ol-

lowed in literature [24–27], IL-ionicity is calculated by measuring the
distance between the experimental data and a reerence line, as Eq. (1)

shows, which is obtained rom a 0.01 M aqueous solution o potassium

chloride (KCl) and which represents ull dissociation [24]. The main

disadvantages o this methodology are being an approximate method,

only having in regard two thermophysical properties (molar conduc-

tivity and viscosity) and not considering the dierent shapes and sizes o

the IL-counterions.

x = 0 �zV (1)

where x� is IL-ionicity and zW reers to the vertical distance o the

experimental data points rom the reerence line.

Nordness et al. [18] suggested a method to quantitatively estimate

the ionicity o ILs in binary mixtures as unction o temperature and

composition. For this purpose, experimental data o electrical conduc-

tivity, density and viscosity were used with the Stokes-Einstein equation.

Nevertheless, although this method is simple and reliable, it requires the

use o expensive equipment and the undertaking o long laboratory

experiments.

Due to the broadness o the ionic liquids–� chemical amily and to
their wide range o applications, the thermodynamic modelling o

mixtures containing ionic liquids is important to direct experimental

determinations towards the most likely successul systems or a specic

application. This way, by building up computational algorithms on top

o easily measurable thermophysical properties, it is possible to estimate

properties and parameters which would have been more expensive to

determine in the laboratory. For the case o IL-ionicity in binary mix-

tures, previous works o the research group [29,30] have shown that it

can be estimated by modelling experimental solubility data, which is

commonly reported in literature, with the PDH+UNIQUAC model, i.e.,
the Pitzer�Debye�Hückel (PDH) equation [31] coupled with the UNI-
versal QUAsiChemical (UNIQUAC) model [32].

The Pitzer�Debye�Hückel (PDH) equation [31] is one o the most
popular terms used to describe ion-ion and ion-solvent interactions

(long-range orces) and assumes the solvent as a dielectric medium [31,

33]. This equation was based on the Debye-Hückel equation [34], which

was proposed around 100 years ago, and is known or accurately pre-

dicting non-ideality in the low IL-concentration region [35]. Its modi-

cation allowed to expand the validity o application to higher ionic

strengths and to calculate thermodynamic properties or strong elec-

trolytes and respective mixtures with unparalleled accuracy across a

wide range o temperature and pressure [36]. For this reason, the PDH

equation was incorporated in well-known non-electrolyte thermody-

namic models, such as UNIQUAC [32], Non-Random Two-Liquid

(NRTL) [37] and Conductor-like Screening Model or Segment Activity

Coecient (COSMO-SAC) [38].

The UNIQUAC model [32] is an extension o the Guggenheim

quasi-chemical theory derived rom a statistical-mechanical basis [32].

UNIQUAC is a local composition and excess Gibbs energy model and

accounts or short-range interactions, i.e., the ones established between

contacting neutral species, by considering two contributions to the

excess Gibbs energy: a combinatorial term or asymmetries in size and

shape and a residual term or energetic dierences [39]. Thereore, in

contrast to the Guggenheim–s theory, the UNIQUAC model can be

applied to mixtures whose molecules have high asymmetry [40], i.e.,

dierent sizes and shapes, such as ionic liquids, since it considers the

intermolecular orces which make the mixing o molecules not random.

So, even though UNIQUAC was not originally developed or

electrolyte-containing systems, it has been used to correlate multicom-

ponent liquid-liquid equilibria (LLE) and vapour-liquid equilibria (VLE)

data with great success [41–44]. Its main drawbacks are being consid-
ered semiempirical, the questionable validity o Wilson–s local compo-
sition model [45] and the overestimation o the eect o shape by the

Staverman-Guggenheim combinatorial contribution [46,47].

In this work, by applying the computational algorithm developed in

a previous work [29], the ionicity o 12 ionic liquids containing the

imidazolium cation in 17 binary mixtures composed o water, ethanol,

1-propanol or 1-butanol was predicted based on solubility (liquid-liquid

equilibria, LLE) data available in literature by the Pitzer-Debye-Hückel

(PDH) equation combined with the UNIversal QUAsi-Chemical (UNI-

QUAC) model (PDH+UNIQUAC).

2. Thermodynamic modelling

2.1. PDH+UNIQUAC

The combination o the Pitzer-Debye-Hückel (PDH) equation with

the UNIversal QUAsi-Chemical (UNIQUAC) model implies that the

molar excess Gibbs ree energy is given by:

AD = AD,RLHPR7B + AD,OCF
(2)

where G
D�
is the molar excess Gibbs ree energy, and G

D,UNIQUAC
and

G
D,PDH

are the contributions romUNIQUAC and rom PDH, respectively.

Then, the activity coecient o species i (γ
i
) can be derived based on

equation:

km γg = km γRLHPR7Bg + km γOCFg (3)

where γUNIQUAC
i

and γPDH
i

are the activity coecient contributions o

UNIQUAC and PDH, respectively.

The long-range electrostatic contributions to the activity coecient

(γPDH
i

) are calculated rom the Pitzer-Debye-Hückel (PDH) equation,

which states that [48]:

bD,OCF

QN
= �

3 CF,uGu
ρ km

(
0+ ρG0/1u

0+ ρ
�
G u

0/1

)

(4)

where ADH,x is the Debye-Hückel parameter, ρ� is the closest approach
parameter, Ix reers to the ionic strength and I

0

x
to the ionic strength o

the pure salt (which is 0.5 or singly-charged ions).

Thereore, the dierentiation o the previous equation yields the

mean activity coecient o an ionic component or the innitely dilute

reerence state (unsymmetric convention) [48]:

km γOCFg = �x1g ” CF,u

⎡

⎢⎢⎣
1
ρ km


0+ ρ

̅̅̅̅
Gu

 
+

̅̅̅̅
Gu

 0 � 1 Gu
x1g

0+ ρ
̅̅̅̅
Gu

√

⎤

⎥⎥⎦ (5)

where zi is the electric charge o species i.

However, to make possible the joint application o the PDH equation

(in the unsymmetric convention) and UNIQUAC (in the symmetric

convention), Eq. (5) can be converted into Eq. (6), which allows to

determine the mean activity coecient o an ionic component or the

P. Velho et al.
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pure used salt reerence state (symmetric convention) [29,31,49]:

km γOCFg = �x1g ” CF,u

⎡

⎢⎢⎣
1
ρ km

⎛

⎜⎜⎝
0+ ρ

̅̅̅̅
Gu

√

0+ ρ
̅̅̅
x1g
1



⎞

⎟⎟⎠+
̅̅̅̅
Gu

 0 � 1 Gu
x1g

0+ ρ
̅̅̅̅
Gu

√

⎤

⎥⎥⎦ (6)

where the ionic strength on a mole raction basis (Ix) is dened as:

Gu =
0
1
∑

g=0
x1g ug (7)

where xi is the mole raction o species i.

The Debye-Hückel parameter (ADH,x) is calculated by:

 CF,u =
0
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1π
L7ρlr,u

Ilr

 
d1

3π ε εlr jAN

0�4

(8)

where L7� is the Avogadro–s constant, ρ
ms,x is the molar density o the

mixed solvent, Mms is the molecular mass o the mixed solvent, d�is the
electric charge o an electron, ε0 is the vacuum permittivity, jA� is the
Boltzmann constant, εms is the dielectric constant o the mixed solvent
and T is the absolute temperature.

To allow or a better description o the electrolytes–�behaviour, the
molar density and the molecular mass o the mixed solvent (ρ

ms,x and

Mms, respectively) were considered in the thermodynamic modelling.

These properties were calculated by the weighted arithmetic means

given by Eqs. (9) and (10), respectively [29].

0
ρlr,u

=
∑

g

u′ g
ρg,u

(9)

Ilr =
∑

g
u′ gIg (10)

where x
′
i is the salt-ree mole raction, ρ

i,x is the molar density andMi is

the molecular mass. All reer to the neutral species i.

In this work, solubility (liquid-liquid equilibria, LLE) data o binary

mixtures containing 1 ionic liquid and 1 solvent (water, ethanol, 1-prop-

anol or 1-butanol), at atmospheric pressure, were used to estimate IL-

ionicity, so the only neutral species present in each system were the

molecular ionic liquid and the solvent. Moreover, the dielectric constant

o the mixed solvent (εms) can also be calculated using a similar mole
raction-based weighted arithmetic mean [33], but, in this work, Oster–s
mixing rule [50] was employed, which is given by Eq. (11) [51].

εlr = ε0 +

(ε1 � 0)(1ε1 � 0)

1ε1
� (ε0 � 0)


u′ 1
ρ1,u

ρlr,u (11)

where ε1 and ε2 reer to the dielectric constants o the neutral species 1
and 2, x

′
2 is the salt-ree mole raction o neutral species 2, ρ

ms
is the

density o the mixed solvent and ρ
2,x is the molar density o neutral

species 2. The UNIQUAC van der Waals molecular volumes (r) [52–60],
molecular masses (M) and dielectric constants (ε) [61–65] can be ound
in Table S1, in the Supplementary Materials, or all species. On the other

hand, the densities (ρ
i
) [66–78] o all species can be observed in

Table S2, in the Supplementary Materials.

The closest approach parameter (ρ), rom the PDH equation, is a

dimensionless parameter related to the distance between the centres o

the counterions o the ionic liquid [79]. In this study, this parameter was

calculated using an equation developed by Pitzer and Simonson [80]

and ollowing considerations o a previous work [29], as Eq. (12) shows.

The most classical approach or this parameter is an adjustment between

8 and 15 [48] and considering it independent o composition, but doing

so commonly overestimates the distance between unlike charges or

IL-concentrated solutions, as a previous work has shown [29].

ρ = W


1 d1 L7 ρlr

Ilr ε jA εlr N

 �4

(12)

where a is the hard-core collision diameter, i.e., it is the sum o cation

and anion radii without solvation.

To calculate the hard-core collision diameter (a), the van der Waals
volume (Vv) was used since it represents ions as hard spheres. Other

alternatives could involve, or example, the Stokes radii, but this option

considers the eect o solvation on the radii, which would probably

overestimate the hard-core collision diameter in the low IL-

concentration region. Thereore, the van der Waals radius (rv) was

calculated rom the UNIQUAC van der Waals volume parameter (r) by

Eqs. (13) and (14).

Tv = j”04�06”0 5 (13)

where Vv� is the van der Waals volume and r is the UNIQUAC van der

Waals volume parameter.

Tv =
3
2

π j2v (14)

where rv� is the van der Waals radius.

2.2. Algorithm

The thermodynamic modelling or the estimation o IL-ionicity was

based on solubility (liquid-liquid equilibria, LLE) data o binarymixtures

containing 1 ionic liquid and 1 solvent (water, ethanol, 1-propanol or 1-

butanol), at atmospheric pressure, and was carried out using the algo-

rithm summarised in Fig. 1, which was proposed in a previous work o

the research group [29].

The developed algorithm started by using the mole ractions o ionic

liquid taken rom solubility data ound in literature (x
0

IL
) as upper

boundaries to iterate dierent compositions o molecular ionic liquid

(xIL), using Eqs. (15-17), and yielding the to-be-tested IL-ionicities (x),
ranging rom 0 to 1.

urnks =
u rnks

0+ x u HK
(15)

where x
0

solv
and x

0

IL
are the mole ractions o the solvent and ionic liquid

reported in the literature (when no dissociation o the ionic liquids is

considered), respectively, x�reers to IL-ionicity and xsolv to the solvent–s
mole raction when the IL-dissociation is taken into consideration.

uHK =
u HK(0� x)
0+ x u HK

(16)

where xIL is the mole raction o molecular (neutral) ionic liquid when

the IL-dissociation is taken into account.

uB = u7 =
u HKx

0+ x u HK
(17)

Then, the calculated values o mole composition and IL-ionicity were

used to predict the solubility data or the binary system under study,

using the PDH+UNIQUAC model, by optimising the UNIQUAC binary
interaction parameters (a

∗
ij
and b

∗
ij
), minimising Eq. (18) and using a

quasi-Newtonian convergence method (iteration cycle I). To conrm the

validity o the obtained binary interaction parameters, the ullment o

the isoactivity criterium between the liquid phases was checked or all

results.

N�E� =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0  

(MrodUedr�0
g=0

M
i=0

�
uO,dwog,i � uO,opdcg,i

1
+

�
uQ,dwog,i � uQ,opdcg,i

1

1M”MrodUedr

)√
(18)

where N reers to the number o equilibrium points, Nspecies to the
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number o species present in solution, x
O
i,j and x

Q
i,j are the mole ractions

o species i or the j LLE point or the IL-poor and IL-rich phases,

respectively, and the superscripts exp and pred reer to the experimental

and predicted mole compositions.

It must be noted that, in this work, a linear dependence o the zuij
parameter with temperature was considered, ollowing other works [29,

81]:

zrgi = W∗gi + a∗ei”N (19)

where a
∗
ij
and b

∗
ij
are adjustable parameters tted in the intervals

[�50,50] and [�5,5], respectively.
Aterwards, new IL-ionicities (iteration cycle II) and new starting

mole compositions (iteration cycle III) were tested, repeating the

innermost iteration cycles and searching or a minimum o the objective

unction (O.F.) which respected the isoactivity criterion. When both

conditions were achieved, the most appropriate distribution o charged

and neutral species was ound, allowing to determine IL-ionicity with

composition.

3. Collected experimental data

In this work, 12 ionic liquids o three dierent chemical amilies

were studied, including hexafuorophosphates ([PF6]
�
), bis(tri-

fuoromethylsulonyl)imides ([NT2]
�
) and tetrafuoroborates ([BF4]

�
).

These particular ILs were chosen to assess IL-ionicity in fuorinated and

imidazolium cation-based ionic liquids using LLE data available in

literature. Table 1 shows the ionic liquids and binary systems studied in

this work and the ones already studied in a previous work [29], which

will be used or comparison purposes.

To predict the ionicity o ionic liquids in binary mixtures, the pro-

posed methodology requires solubility (or liquid-liquid equilibria, LLE)

data, which were collected rom literature. Table 2 shows the number o

available solubility data points, the respective ranges o IL mole raction,

as well as the temperature range o both phases. The used solubility data

[73,82–89] can be ound in Table S3, in the Supplementary Materials.

4. Results and discussion

Succeeding a previous work [29], in which the prediction o

IL-ionicity using the PDH+UNIQUAC model was validated, IL-ionicity
was determined as unction o mole composition or 17 binary mix-

tures, comprising 12 dierent ionic liquids and 4 dierent solvents

(water, ethanol, 1-propanol and 1-butanol). Moreover, the infuences o

the solvent, IL-cation and IL-anion on IL-ionicity were investigated. The

optimised UNIQUAC binary interaction parameters (a
∗
ij
and b

∗
ij
), the

predicted IL-ionicities (x), and the calculated closest approach param-
eters (ρ) can be ound, respectively, in Tables S4, S5 and S6, in the
Supplementary Materials, or all systems.

4.1. Infuence o the solvent on IL-ionicity

Following the algorithm explained earlier, the ionicity as unction o

composition was determined or all the mentioned ionic liquids, based

on the solubility data available in literature, and the infuence o the

solvent on IL-ionicity was analysed. Figs. 2 and 3 show that the ionicity

o ILs is generally higher or lower concentrations o ionic liquid (IL-poor

phase) and or more polar solvents, or the systems containing [C4Mim]

[PF6] and [C6Mim][BF4]. For this reason, water promotes a higher IL-

ionicity than the studied alcohols, and a larger alkyl–s chain length o
the alcohols leads to a smaller IL-ionicity due to the lessening o the

dielectric constant. Thereore, IL–s dissociation mostly depends on the
solvent–s ability to separate the IL-ions, which can be evaluated through
the dielectric constant o the mixed solvent, determined in this work by

the Oster–s mixing rule [50]. Solvents with high dielectric constants

(and, consequently, high polarity) easily establish hydrogen bonds

Fig. 1. Applied algorithm in the estimation o the ionicity o ionic liquids, reported in a previous work [29].

Table 1

Binary systems studied in this work (●) and in a previous project ollowing the same methodology (○) [29], together with the abbreviation and International Union o

Pure and Applied Chemistry (IUPAC) name o the ionic liquids.

Ionic liquids Solvents

IUPAC name Abbreviation Water Ethanol Propanol Butanol

1-hexyl-3-methylimidazolium tetrafuoroborate [C6Mim][BF4] ●��� ●�
1-octyl-3-methylimidazolium tetrafuoroborate [C8Mim][BF4] ●��� ●�
1-ethyl-3-methylimidazolium hexafuorophosphate [C2Mim][PF6] ●� ●� ○�

1-propyl-3-methylimidazolium hexafuorophosphate [C3Mim][PF6] ●����
1‑butyl‑3-methylimidazolium hexafuorophosphate [C4Mim][PF6] ○� ●� ●� ○�

1-pentyl-3-methylimidazolium hexafuorophosphate [C5Mim][PF6] ●�
1-hexyl-3-methylimidazolium hexafuorophosphate [C6Mim][PF6] ○� ●� ●� ○�

1-octyl-3-methylimidazolium hexafuorophosphate [C8Mim][PF6] ○�� ●� ○�

1-ethyl-3-methylimidazolium bis(trifuoromethylsulonyl)imide [C2Mim][NT2] ○�� ●� ○�

1-propyl-3-methylimidazolium bis(trifuoromethylsulonyl)imide [C3Mim][NT2] ●����
1‑butyl‑3-methylimidazolium bis(trifuoromethylsulonyl)imide [C4Mim][NT2] ○��� ○�

1-pentyl-3-methylimidazolium bis(trifuoromethylsulonyl)imide [C5Mim][NT2] ●����
1-hexyl-3-methylimidazolium bis(trifuoromethylsulonyl)imide [C6Mim][NT2] ○��� ○�

1-heptyl-3-methylimidazolium bis(trifuoromethylsulonyl)imide [C7Mim][NT2] ●����
1-octyl-3-methylimidazolium bis(trifuoromethylsulonyl)imide [C8Mim][NT2] ○�����
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(association) between the solvent and the IL-ions, weakening the

chemical bonds between the IL-counterions. These same trends were

ound or [C2Mim][NT2] and [C2Mim][PF6], which can be observed in

Fig. S1, in the Supplementary Materials, and the overall conclusions

agree with previous studies available in literature [18,27,90,91].

As Fig. 2 shows or the [C4Mim][PF6] + water binary system, IL-

ionicity signicantly increases with growing IL-mole raction (IL-rich

phase), and this phenomenon can be explained by the solvation o the

ree ions (cation (C
+
) and anion (A

�
)) by the ion-ion pair (CA), which

leads to the ormation o triplets / triple ions (e.g., [ACA]
�
and [CAC]

+
).

The ormation o these structures was also reported by some authors or

high IL-content [18,28,92]. Moreover, other works reported a larger

IL-ionicity or protic solvents since they contain at least one hydrogen

which can connect to an electronegative atom (or example, to the

IL-anion). Thereore, these solvents have a greater capacity o estab-

lishing hydrogen bonds and, consequently, to dissociate the neutral IL,

increasing the IL-ionicity. However, no aprotic solvents were studied in

this work, so this conclusion could not be drawn.

4.2. Infuence o the IL-cation on IL-ionicity

Furthermore, the infuence o the IL-cation on the ionicity o ionic

liquids was also studied. Figs. 4–6 show that the higher the IL-cation–s
alkyl chain length, the smaller the IL-ionicity (x) in the tested range o
composition. This can be due to the stronger electrostatic attraction

between the IL-anion and the IL-cation (van der Waals orces) or longer

alkyl chains, which hinders IL-dissociation. In Fig. S2, in the Supple-

mentary Materials, the same behaviour was observed or [CnMim][PF6]

+ 1-butanol, with n = 2, 4, 5, 6 and 8.

Table 2

Solubility (or liquid-liquid equilibria, LLE) data or the 17 studied binary systems.

Binary system No. o points x
0

IL
range o IL-poor phase x

0

IL
range o IL-rich phase T range o IL-poor phase /I� T range o IL-rich phase /I� Re.

[C6Mim][BF4] + water 26 (6�2 � 23�0)”10�3 0�15� 0�38 278�15� 333�15 278�15� 333�15
[87]

[C6Mim][BF4] + 1-butanol 32 (8�5 � 58�2)”10�3 0�13� 0�45 288�45� 301�41 282�77� 301�70
[82]

[C8Mim][BF4] + water 30 (1�6 � 30�5)”10�3 0�13� 0�37 278�15� 340�15 278�15� 340�15
[87]

[C8Mim][BF4] + 1-butanol 26 (1�58 � 4�53)”10�2 0�07� 0�16 276�98� 279�49 276�97� 279�47
[82]

[C2Mim][PF6] + ethanol 32 (4�4 � 44�1)”10�3 0�22� 0�49 321�27� 350�23 321�80� 351�43
[83]

[C2Mim][PF6] + 1-propanol 16 (4�8 � 11�6)”10�3 0�42� 0�71 342�65� 364�65 325�45� 368�03
[83]

[C3Mim][PF6] + water 14 (1�2 � 3�3)”10�3 0�60� 0�76 288�15� 318�15 288�15� 318�15
[73]

[C4Mim][PF6] + ethanol 22 (0�3 � 4�7)”10�2 0�18� 0�59 278�15� 325�15 278�15� 325�15
[84]

[C4Mim][PF6] + 1-propanol 28 (0�4 � 10�1)”10�3 0�47� 0�79 278�15� 343�15 278�15� 343�15
[85]

[C5Mim][PF6] + 1-butanol 25 0�209� 0�859 0�88� 1�00 280�09� 366�15 329�90� 366�23
[89]

[C6Mim][PF6] + ethanol 8 (1�0 � 3�6)”10�2 0�18� 0�37 278�15� 293�15 278�15� 293�15
[84]

[C6Mim][PF6] + 1-propanol 22 (1�8 � 78�5)”10�3 0�38� 0�70 278�15� 328�15 278�15� 328�15
[85]

[C8Mim][PF6] + 1-propanol 16 (2�4 � 26�9)”10�3 0�16� 0�46 278�15� 307�15 278�15� 307�15
[85]

[C2Mim][NT2] + 1-propanol 60 (2�3 � 12�1)”10�2 0�14� 0�38 283�65� 295�20 283�65� 295�20
[88]

[C3Mim][NT2] + water 14 (5�15 � 7�01)”10�4 0�67� 0�75 288�15� 318�15 288�15� 318�15
[86]

[C5Mim][NT2] + water 14 (1�84 � 2�53)”10�4 0�76� 0�82 288�15� 318�15 288�15� 318�15
[86]

[C7Mim][NT2] + water 14 (4�85 � 7�93)”10�4 0�76� 0�82 288�15� 318�15 288�15� 318�15
[86]

Fig. 2. Predicted ionicity (α) as a unction o the IL mole raction (�0�I), at at-
mospheric pressure, or [C4Mim][PF6] with: water [29], ethanol, 1-propanol or

1-butanol [29].

Fig. 3. Predicted ionicity (α) as a unction o the IL mole raction (�0�I), at at-
mospheric pressure, or [C6Mim][BF4] with water or 1-butanol.
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Moreover, the dielectric constants or the pure ILs are lower or

longer alkyl chains, which imply less polar ILs, making the solvation

process harder and lowering IL-ionicity. Analogously, a higher dielectric

constant o the mixed solvent implies a higher IL-ionicity. These con-

clusions were also achieved by other authors using dierent experi-

mental techniques, such as Pulsed-Field Gradient –�Nuclear Magnetic
Resonance (PFG-NMR) [93], solvatochromic measurements on ET

30

scale [27], and density, viscosity and conductivity measurements [18,

28].

4.3. Infuence o the IL-anion on IL-ionicity

Furthermore, the IL-anion–s infuence on the predicted IL-ionicity
was examined and it was noticed that it was generally lower or ionic

liquids containing the [NT2]
�
anion, as Fig. 7 and 8 illustrate or the

particular cases o [C8Mim]
+
-based ionic liquids with water and

[C6Mim]
+
-based ionic liquids with 1-butanol, respectively. However, it

is important to highlight that the prediction o IL-ionicity was based on

solubility (liquid-liquid equilibria, LLE) data, i.e., the developed algo-

rithm relied on the existence o two liquid phases in equilibrium, so it

was not always possible to compare the three IL-anions simultaneously

due to dierences in the IL mole raction dominia, which limits the

validity o the interpretations. In the uture, this drawback may be

solved by the addition o vapour-liquid equilibria (VLE) and solid-liquid

equilibria (SLE) data and by the eventual inclusion o equations o state.

Moreover, given the signicant hydrolysis o ionic liquids containing

the tetrafuoroborate (BF4
�
) and hexafuorophosphate (PF6

�
) ions [94,

95], it must be noted that their LLE data is subject to higher uncertainties

compared to, or example, ILs based on the bis(trifuoromethylsulonyl)

imide (NT2
�
) ion. Hence, the observed LLE may be the result o a

combination o IL-dissociation and hydrolysis, which is traduced by an

accumulated IL-ionicity.

Once again, the polarity o the IL-anion (observable by the dielectric

constants presented in Table S1, in the Supplementary Materials) can be

used to explain the ionicity o the studied ionic liquids since a more polar

IL-anion is more eciently solvated by a polar solvent (1-butanol),

enlarging the IL-ionicity. These conclusions agree with other authors,

who determined the dissociation extent based on Nuclear Magnetic

Resonance (NMR) measurements [96].

4.4. Closest approach parameter

The closest approach parameter (ρ) is a dimensionless parameter
related to the distance between the centres o the IL-cation and IL-anion

Fig. 4. Predicted IL-ionicity (α) as unction o the IL mole raction (x0HK), at
atmospheric pressure, or the [CnMim][NT2] + water systems, where n = 2, 4,

6, 8 [29] and n = 3, 5, 7 (this work).

Fig. 5. Predicted IL-ionicity (α) as unction o the IL mole raction (x0HK), at
atmospheric pressure, or the [CnMim][NT2] + water systems, where n = 3

(this work) and n = 4, 6, 8 [29].

Fig. 6. Comparison o the predicted ionicity (α) as unction o IL mole raction
(L0�I) or [CnMim][BF4] + water or 1-butanol, with n = 6 and 8, at atmo-

spheric pressure.

Fig. 7. Predicted IL-ionicity (α) as a unction o the IL mole raction (x0HK), at
atmospheric pressure, or [C6Mim][BF4] (this work), [C6Mim][PF6] [29] and

[C6Mim][NT2] [29] with water.
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which has been mostly considered an adjustable parameter in the PDH

equation, ranging rom 8 to 15 [43], as suggested by Pitzer [31], or

dened as 14.9 [97,98]. However, a previous work o the research group

[29] demonstrated that a more accurate description o electrolyte sys-

tems could be achieved i this parameter was calculated using the

approach developed by Pitzer and Simonson [80], i.e., i this parameter

was considered to be composition-dependant. In Fig. 9, the calculated

closest approach parameter is shown or the [CnMim][NT2] + water

systems, and it can be observed that the closest approach parameter is

generally higher or the IL-poor phase. This act can be justied by the

presence o more molecules o solvent between the IL-counterions,

increasing the distance between them and enlarging the closest

approach parameter. Moreover, the standard range recommended by

Pitzer [31] or the closest approach parameter, i.e., between 8 and 15, is

generally veried in this work, as can be checked or all binary systems

in Table S6, in the Supplementary Materials. However, as noted in a

previous work o the research group [29], i the closest approach

parameter (ρ) was used as an adjustable parameter, as is commonly done
in literature, the distance between species o opposite charges or high

IL-content would probably be overestimated, modiying the contribu-

tion o the Pitzer-Debye-Hückel (PDH) equation or the activity co-

ecients and orcing the UNIQUAC to accommodate the dierence,

which would cause the model to yield less specic binary interaction

parameters or these systems, compromising their description.

Moreover, in Fig. S3, in the Supplementary Materials, the infuence

o the IL-cation–s alkyl chain length on the closest approach parameter
was also studied. In Figs. 9 and S3, in the Supplementary Materials, it

was veried that, as expected, larger alkyl chains led to higher values o

the closest approach parameter, preserving its physical meaning, which

is related to the distance between the IL-counterions. Furthermore, in

Fig. S4, in the Supplementary Materials, the infuence o the solvent on

the closest approach parameter is explored or [C4Mim][PF6], and it was

concluded that solvents with higher dielectric constant, and consequent

larger solvation power, promoted larger closest approach parameters.

5. Conclusions

The ionicity o 12 ionic liquids with imidazolium cations in 17 binary

systems containing water or ethanol or 1-propanol or 1-butanol was

predicted as unction o the system–s mole composition with the

PDH+UNIQUAC model and based on solubility data (liquid-liquid

equilibria, LLE) rom literature.

The predicted IL-ionicity was higher or more diluted solutions in

ionic liquid, which is probably due to a more signicant solvation o the

IL-ions. Moreover, in some binary systems, it was observed that IL-

ionicity signicantly increased with the IL-content or the IL-rich

phase, which was explained by the ormation o triplets. Furthermore,

the infuence o the solvent, IL-cation and IL-anion on IL-ionicity was

studied and it was ound that this property presented higher values or

water than or the alcohols, which can be justied by the higher

dielectric constant o the ormer. Hence, the increased polarity o sol-

vent or IL-anions (and o the mixed solvent in general) eases ion sol-

vation and contributes to a higher extent o dissociation o the ionic

liquids. Moreover, it was observed that, the longer the length o the IL-

cation–s alkyl chain, the stronger the van der Waals orces between IL-
counterions, which led to smaller IL-ionicities. Finally, the validity o

the mentioned conclusions or other amilies o ionic liquids (e.g., ILs

without imidazolium cations or fuorine atoms) still requires evaluation.
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