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Abstract

Several artists, artisans, and mathematicians described fascinating solid bodies in the
fifteenth and sixteenth centuries. The knowledge they developed on the subject was
so progressive that it is considered a milestone in the history of polyhedra. In the first
part of this study we analyze, from a chronological and comparative perspective, the
consistent studies developed between 1460 and 1583 on those that came to be recog-
nized as Archimedean Solids. The authors who engaged in such studies were Piero
della Francesca, Luca Pacioli, Leonardo da Vinci, Albrecht Diirer, Augustin Hirschvo-
gel, an Anonymous Author who accomplished remarkable studies between 1538 and
1556, Wentzel Jamnitzer, Daniele Barbaro, Lorenz Stoer, Rafael Bombelli, and Simon
Stevin. In the second part, we discuss how the revolutionary method of describing solid
bodies with planar nets contributed to the rediscovery of the Archimedean Solids. We
also present our interpretation of some of the studies by the Anonymous Author and
our conclusions on his identity and influence on other authors.

Mathematics Subject Classification 51 - 01A40 - 52B10 - 00A66

Introduction

In the fifteenth and sixteenth centuries, the enthusiasm from scholars, mathematicians,
artists, and artisans for the solid bodies that we came to identify as polyhedra was so
significant that the knowledge they developed on the subject marks the Renaissance
and Mannerism periods as a milestone in the history of polyhedra.! Much of this
interest derived from the humanist mathematicians who developed the scholarship

1 Here, we are paraphrasing Joseph Malkevitch (2013, p. 57), who identifies “Renaissance artists, architects,
artisans, and scholars “discover” and “rediscover” various Platonic and Archimedean solids, star-polyhedra,
compounds, and other polyhedral objects” as Milestone 9 (out of 23) in the history of polyhedra.
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on Archimedes, Ptolemy, and Euclid? but the publication of the Timaeus® and the
Elements also played a significant role in this matter, especially Books XIV and XV,
which were accepted in the Middle Ages as having been written by Euclid. Book XIV
comprises the studies of Hypsicles of Alexandria (c.190—c.120 BCE) on the regular
bodies. Book XV, according to Scriba and Schreiber (2015, p. 100), would have been
written by an unknown Byzantine mathematician from the fifth or sixth centuries,
and explains how to inscribe the Platonic Solids in each other.* The spurious books
were included in the translation of the Elements into Latin by Campanus of Novara
(1220-1296), first printed in 1482. The influence of this translation extended well
into the sixteenth century as Luca Pacioli revised and republished it in 1509, even
after Bartolomeo Zamberti (1473-1543), who translated the Elements from a Greek
manuscript in 1505, had exposed Books XIV and XV as not having been authored
by Euclid. Other translations of the Elements would follow but the translation into
Latin by Federico Commandino published in 1572, according to Cromwell (1997, pp.
108-109), was so important it prevailed until the nineteenth century.

A few books published in the fifteenth and sixteenth centuries illustrating solid
geometry concepts had a significant impact and their influence extended beyond their
time and country of publication. The printing press, introduced in Europe in the mid-
fifteenth century, was crucial to this evolution and developed steadily throughout the
sixteenth century, enormously affecting society and culture. Hundreds of printing
shops opened in major European cities, leading to a quicker and less expensive pro-
duction of books and allowing printed publications to be accessible to everyone or, at
least, to those who could buy and read them. With such a stimulating atmosphere, edu-
cation and literacy grew within the middle classes and democratization of knowledge
changed society for the better. Scholars and artists had an unprecedented opportunity
to learn from books and libraries and share their knowledge by publishing their stud-
ies, while printing shops turned into new centres for intellectual exchange. The cities
of Nuremberg, Venice and Antwerp became notable hubs in Europe because of their
book production.’

The development of perspective drawing was another cause for the fascination with
solid bodies during the Renaissance and Mannerism, as they provided ideal subjects

2 According to Kemp (1992, p. 76), the translations and commentaries about the Elements and the Optics
by all the major theorists of geometrical perspective in Italy after 1550 were not only crucial to better
understand the classical texts but played a critical role in the foundation of perspective science in general
and in the studies of three-dimensional geometry in particular.

3 Tormey and Tormey (1982, p. 138) state that, among the several works by Plato that were translated into
Latin, the Timaeus was the one who strengthened the prevailing theory on “an isomorphic relation between
the mathematical foundation of pictorial representation and the mathematical structure of reality.”

4 Scribaetal. (2015, p- 82) denote that the work by Hypsicles of Alexandria on the regular bodies had been
attached to Euclid’s Elements as Book XIV. The author of Book XV, however, add Scriba et al. (2015, p.
100), remains a mystery. The book consists of three parts: the first explains how to generate the Platonic
solids by inscribing them in each other; the second discusses the ratios between the edges, and the third
explains how to determine the angle between adjacent faces.

5 This paragraph synthesizes the entry about the history of printing in Encyclopedia Britannica (Lechéne,
2020) and Printing and Publishing in the Renaissance by David Wade (2012, pp. 45-46).
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Fig.1 “Still Life with a Book, a
Geometric Sphere, Dividers and
Spectacles.” Anonymous
Author, Italian (15th century).
Princeton University Art
Museum, Princeton (Source)

to practice the rules of perspective.® Drawing models of solid bodies became a regular
practice for artists. Figure 1 shows an example of a truncated icosahedron and an
octahedron drawn with a large portion of their faces hollow, much like those Leonardo
da Vinci drew in vacuum mode for Divina Proportione, the book that Luca Pacioli
published in 1509. Reciprocally, the drawing in Fig. 2, from Le Due Regole della
Prospettiva Pratica by Jacopo Barozzi da Vignola (1507-1573) and Egnazio Danti
(1536-1586), uses an octagonal prism to explain the fundamentals of perspective
drawing. The treatise by Vignola-Danti’ (1583), published a few years after La Pratica
della Perspettiva by Daniele Barbaro, was an important vehicle to disseminate the rules
of perspective drawing among artists until the seventeenth century.

Further examples revealing an extraordinary mastery of perspective drawing in the
depiction of polyhedral forms are the intarsias from the late fifteenth to the seventeenth
centuries, and additional testimonies of the interest in solid geometry in the Italian
Renaissance and Early Modern Germany.® Many intarsias depict exquisite polyhedral
forms and a few testify a direct inspiration from Leonardo’s drawings, as Hart (1998)
points out. An example is the intarsia on the left in Fig. 3, whose forms above and below
the cuboctahedron are almost exact copies of the “hexaedron elevatum vacuum” and
the “dodecaedron abscisum elevatum vacuum” that Leonardo (1509, Plates XII and
XXXII) drew for Divina Proportione. The truncated icosahedron in the intarsia on

6 According to Andersen (2009, p. 375), the objects preferred in perspective drawing treatises were “poly-
gons, circles, some polyhedra (not least the regular polyhedra), crosses, columns, arches, vaults, and simple
rooms with a few windows”. Andrews (2016b, p. 16) further denotes that “polyhedral models, most often
made from paper or wood (...), were used both as pedagogical aids for learning to understand Euclid and
as tools for learning how to draw (themselves) in perspective”.

7 According to Centofanti (2016, p. 148), Le Due Regole was fundamental to perspective science regarding
the transition from an artistic experimental approach to a rigorous scientific approach.

8 More about the intarsias in Italy and Germany in Thomas and Williams (2000); Tormey and Tormey
(1982); Huylebrouck (2015); and Andrews (2022, pp. 171-185).
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Fig. 2 Drawing from the treatise Le Due Regole della Prospettiva Pratica by Jacopo Barozzi da Vignola
and Egnazio Danti (1583, p. 55)

Fig.3 Intarsias by Fra Giovanni of Verona (1457-1525) in the Church of Santa Maria in Organo, Verona,
Italy (Source)

the right is an even more flagrant example since it copies a mistake from a manuscript
version.” Such appropriations reveal that Divina Proportione was as much a cause as
an effect on the overall fascination about polyhedra of its time, much of which derived
from Leonardo’s impressive illustrations that, to this day, remain inspirational.

9 The mistake in the drawing of the truncated icosahedron, identified by Huylebrouck (2015), is not found
in the printed version of Divina Proportione but in the Milanese manuscript. Huylebrouck (2015, p. 463)
suggests that Leonardo might not have been the author of the error but the copyists who were responsible
for editing the manuscript.
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Consistent studies on the Archimedean solids during the fifteenth and
sixteenth centuries

The Archimedean Solids are all the convex uniform polyhedra besides the Platonic
Solids'? and the infinite families of semiregular prisms and anti-prisms. There are thir-
teen Archimedean Solids, all of which are semiregular or vertex-transitive polyhedra,
meaning that each of their vertices can be transformed into any other by a symmetry
operation.!! The cuboctahedron and the icosidodecahedron are quasiregular because
they are also edge-transitive, as different faces intersect on every edge.'? The names
with which we identify the Archimedean Solids follow Wenninger (1975, pp. 20-32).

Pappus of Alexandria (c.290—c.350 CE) wrote the compendium of mathematics
Synagoge around 340 CE. In Book V, Pappus credits the thirteen solid bodies to
Archimedes (c.287—c.212 BCE) and describes the configuration and number of their
faces. Pappus’ compendium would become widely known among European mathe-
maticians after Federico Commandino translated it into Latin in 1588. The thirteen
solid bodies would be coined as Archimedean Solids because Johannes Kepler (1571—
1630) referred to them, in “XXVIII Propositio” of the Harmonices Mundi (1619, p.
19), in the following way:

As to the solids with an inferior degree of perfect proportion, there are thirteen
species; from which the thirteen bodies of Archimedes derive."?

No evidence has been found supporting the possibility that the authors who explored
these solid bodies before Kepler had any knowledge about Pappus’ compendium. In
the opinion of Jones (1986, p. 50), the fact that Piero della Francesca described only
six solid bodies suggests that he discovered them independently. Jones further notes
that there is no direct evidence of any influence of the Synagoge on Piero or any
other author who described the Archimedean Solids before Kepler.'* The authors
who rediscovered those that came to be known as Archimedean Solids did not know
who had first described them or that they existed in a finite number - in fact, most

10 Convex regular polyhedra are commonly known as the Platonic Solids, although Plato was not the first
to describe them, but Theaetetus of Athens (c.417-369 BCE), according to a scholium in Book XIII of the
Elements, which is mentioned by Taylor (1997, pp. 255-256).

11 gee Coxeter, Longuet—Higgins, and Miller (1954, p. 402), and Griinbaum (2009), who discusses a local
and a global criterion to distinguish between Archimedean and semiregular polyhedra.

12 Coxeter (1973, p- 18) establishes that a quasiregular polyhedron has regular faces, while its vertex
figures, though not regular, are cyclic and equiangular. Consequently, all the edges, vertex figures and
dihedral angles are equal. The faces are of two kinds, and each face of one kind is entirely surrounded by
faces of the other. There are only two convex quasiregular polyhedra.

13 Kepler (1619, p. 61): “Perfectae in solido congruentiae gradus inferioris, species sunt tredecim; ex
quibus tredecim oriuntur Archimedéa Corpora.”

The translation of this and other sentences from Latin in this study were accomplished with the help of
Célia Mafalda Oliveira, to whom we express our sincere gratitude.

14 Unguru (1974) reveals that Vitello Thuringopolonis (c.1230-1280/1314), a Polish friar and natural
philosopher whose writings on perspective were extensively used until the seventeenth century, knew at
least parts of the Synagoge. As Unguru notes, Propositions 22, 38, and 39 in the book Perspectiva, which
Vitello wrote, are identical to Propositions 43, 42, and 44 in the Synagoge by Pappus. Since Vitello did not
know Greek, Unguru (1974, p. 312) believes he may have adapted these from a Latin translation or other
unknown source.
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authors tell us quite the opposite. Searching for these new forms derived from the
Platonic Solids was a challenge in itself and a clear testimony to the inventiveness and
geometrical knowledge of those who explored them.

We have been searching for polyhedral forms in historical books and treatises to
understand how they were devised with the possibilities of their time. This essay brings
forth our conclusions about the Archimedean Solids described in the fifteenth and
sixteenth centuries,'> and focuses on the manuscripts and publications whose studies
revealed to be systematic and consistent: beginning with Trattato d’Abaco, which
Piero della Francesca wrote between 1460 and 1480, and finishing with Problematum
Geometricorum, which Simon Stevin published in 1583 and seems to have been the
last study to include a systematic treatment of the Archimedean Solids before Kepler’s
in 1619. Identifying with certainty who first described each of these solid bodies after
Archimedes was a difficult task, given that none of the authors acknowledges previous
sources nor (apart from one author) formally declares credit for their findings. Even
Piero della Francesca, who may have been a precursor to all, was also influenced by
others before him, so we can only take for granted that the influences that determined
the discoveries and rediscoveries of solid bodies in the fifteenth and sixteenth centuries
were complex and occasionally mutual.

Two of the first printed books that explain and illustrate solid geometry concepts had
aseminal importance in their time and beyond: the first was the Divina Proportione that
Luca Pacioli wrote between 1496 and 1498 and includes several drawings by Leonardo
da Vinci, gathered at the end of the book. The second was Underweysung der Messung
mit dem Zirckel und richtscheyt in Linien Eben un ganzen Corporen (hereon abbre-
viated to Underweysung der Messung). Written and illustrated by Albrecht Diirer,
it was first published in 1525 and posthumously in 1538!6. The following authors,
who lived in the German States!”, were strongly influenced by Pacioli/Leonardo and
Diirer. Their books include impressive drawings of polyhedral forms, but were not
necessarily intended to teach the rules of perspective drawing'®: Geometria (1543) by
Augustin Hirschvogel; Der Circles und Richtscheyts (1564) by Heinrich Lautensack
(1522-1590); Perspectiva Literaria (1567) by Hans/Johannes Lencker (1523-1585);
Perspectiva Corporum Regularium (1568) by Wentzel Jamnitzer; Geometria et Per-

15 One of the goals of this essay has been to complement essential studies on the subject authored by Judith
Field and Kim Williams. Similar to Field (1997, p. 244), we consider the six Archimedean Solids described
by Piero, the six described by Pacioli / Leonardo, the seven described by Diirer in 1525, and the eleven
by Barbaro. Similar to Williams (2021, pp. 51-52), we consider the six described by Pacioli / Leonardo,
the seven described by Diirer in 1525, and the cuboctahedron, icosidodecahedron, truncated tetrahedron,
truncated octahedron, truncated cube and rhombicuboctahedron described by Hirschvogel.

16 Kemp (1992, p. 55) refers to Underweysung der Messung as the collection of “fruits of mathematical
endeavours” that Diirer had been gathering at least since 1508. According to Peiffer (2000, p. 373), Diirer
had bought the translation of the Elements by Bartolomeo Zamberti in 1507.

17 Kemp (1992, p. 62) identifies Hirschvogel, Stoer, Jamnitzer and Lencker as the “Nuremberg Perspec-
tivists”. In addition to these, Peiffer (2000, p. 111) refers to Lautensack and Pfinzing and Andrews (2022,
p. 120) mentions Halt.

18 Wood (2003, p- 237) notes that the German perspective books published in the second half of the sixteenth
century meant to highlight the appeal of perspective drawing with illustrations of “ideal constructions of
fantastic, three-dimensional objects.” Such publications “were finer than the earlier handbooks, but they
did not necessarily teach the method of perspective, nor did they make any contributions to the theory of
perspective.”
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spectiva (1567) and Geometria et Perspectiva Corporata et Regulata (1600) by Lorenz
Stoer. Other authors were so impressed with the exquisite solid bodies in Jamnitzer’s
book that they would describe similar forms on their own: Paul Pfinzing (1554—-1599),
in Extract der Geometriae vand Perspectiuae (1599) and Optica, das ist Griindtliche
doch Kurtze Anzeigung Wie nothwendig die Lobliche Kunst der Geometriae seye inn
der Perspectiv (1616); and Peter Halt (1575-after 1635) in Perspectiuische Reiss Kunst
(1625) and Drey Wichtige newe Kunstst uck in underschidlichen (1626).

In Venice, Daniele Barbaro published the treatise La Pratica della Perspettiva
(1568), whose Terza Parte is entirely dedicated to solid geometry. Rafael Bombelli
began an interesting research on the semiregular bodies but no records exist beyond
those in manuscript B 1569 of the Archiginnasio Library in Bologna, which Ettore Bor-
tolotti (1929) edited in the twentieth century. Other remarkable works are La Pratica di
Prospettiua del Caualiere Lorenzo Sirigatti (1596) by Lorenzo Sirigatti (1557-1578),
as well as Livre de Perspective (1560) by Jehan Cousin (1490-1560) and Lecons de
Perspective Positive (1576) by Androuet du Cerceau the Younger (1515/20-1585/86).
The way in which all these artists and mathematicians graphically described polyhe-
dral forms, either convex or concave, simple or compound, intensified the curiosity
for polyhedra in their time and were determinant to subsequent research on polyhedra.

Piero della Francesca

Piero della Francesca (1415-1492) was a fundamental influence for many authors
of his time and beyond because of his knowledge of perspective drawing, explicit in
his paintings and the treatise De Prospectiva Pingendi. Piero translated and cited a
manuscript authored by Archimedes, ' and wrote two manuscripts on traditional math-
ematics: Trattato d’Abaco and Libellus de Quinque Corporibus Regularibus (heron
abbreviated to Libellus). No certainties exist as to when he began the latter but it
would have been finished, according to Andersen (2009, p. 35), between 1482 and
his death in 1492. Piero was not only an artist, but a mathematician (according to
Ciocci (2017, p. 32), one of the most important Italian mathematicians of the second
half of the fifteenth century), yet his approach to mathematics was mostly based
on the study of proportions.?? The following is an example of the relationships

19 According to Banker (2005, p. 168), “That Piero was fascinated by Greek science is demonstrated by
his transcription of the Archimedes manuscript, by the three works on the subject that he wrote, and by his
apparent frequent consultations of the works of Archimedes and Euclid”. Piero consulted the original texts
for long periods, having cited theorems in the Libellus giving precise references to propositions and books.
20" Andersen (2009, p- 35) notes that Trattato d’Abaco complies with the tradition of similar books that deal
primarily with arithmetic, some algebra and practical geometry. In the opinion of Andersen, Piero discussed
many advanced geometrical objects as polyhedra in Trattato d’Abaco and the Libellus, but his treatment of
mathematics stands on an elementary level.
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Piero?! establishes between the elements of a regular tetrahedron, which can be solved
with the “Rule of Three”2?:

A body of four equilateral triangular bases whose axis is 4.

We want to know the diameter of the sphere that contains it.

Knowing that in every equilateral body of four triangular faces, the proportion
between the axis and its edge is the same as the proportion between the edge
and the diameter of the sphere that contains it; the axis of the body of four faces
is to the diameter of the sphere that contains it as 2 is to 3.2

The two treatises written by Piero discuss the regular bodies described in the Ele-
ments and others derived from them. Given that a clear comprehension of the distances
between elements in all the drawings was essential, Piero chose the “paralleli modo”
to illustrate his studies on solid geometry. The parallel mode provided a simple repre-
sentational method with which the illusion of depth for small objects is easily created
without a perspectival construction.>* The objects are drawn as if they were being
observed from a short distance and any parallelism between the edges is preserved. In
specific situations, certain faces are drawn in true form, allowing Piero to illustrate the
relationships between measurements better. Occasionally, the parallelism is not accu-
rate but Piero adds annotations to clarify measurements and other details. Figure4
shows an example, in which the notations clarify that all the edges of the cubocta-
hedron have the same length. Scolari (2015, p. 217) explains that these numerical
indications placed near the edges are meant to “correct the viewer’s perception of the
measurements.”

Piero may have taken inspiration from the medieval version of the Elements to
describe six Archimedean Solids, as Field (1997, p. 246) suggests, by referring to
Books XIV and XV as “the likeliest source for Piero della Francesca’s rediscovery of
some of the Archimedean solids”. Piero illustrates the truncated tetrahedron and the
cuboctahedron in Trattato d’Abaco (Fig. 4), and again in the Libellus, together with
the truncated icosahedron, truncated dodecahedron and the truncated cube (Fig. 5).
Contrary to the remaining solid bodies, Piero drew the truncated tetrahedron as if it
were transparent, most likely, because this was the simplest way to illustrate how to

21 Our interpretation of the words by Piero della Francesca is based on the translation by Luca Pacioli
(1509, folio 9r, Tractatus Secundus). Likewise, the following references to the words by Piero are based
upon the (unaccredited) translation into Italian of the Libellus, which Luca Pacioli incorporated in the
Divina Proportione as Primus Tractatus (1509, folios 1-8) Secundus Tractatus (1509, folios 9-15) and
Tertius Tractatus (1509, folios 15-27).

2 According to Stover (2023), the “Rule of Three” is an historically used educational tool that verbalizes
the process of solving basic linear equations with four terms where only three are known.

23 In the words of Piero (translated by Pacioli (1509, folio 9r Tertius Tractatus)): “Il quatro base triangulare
equilatero cheil suo axis e 4. Del diametro d’la spera che il contene se vole cercare. Sappi che dogni quatro
base triangulare equilatero e quella proportione da laxis al suo lato che dallato aldiametro de la spera che
contene tale quatro base et laxis del quatro base e al diametro dela spera cheil contene como e 2 ad 3.”

24 According to Scolari (2015, p. 229), Pomponius Gauricus (1480-1528/30) explained how to draw a
parallelepiped rectangle (representing a book) in parallel mode in De Sculptura, which he wrote in 1504.
Scolari adds that the “paralleli modo”, which was widespread during the fifteenth century, is “the thread
that binds Piero, Pacioli, Leonardo, and Gauricus, and also runs through Cesariano’s extraordinary 1521
edition of Vitruvius.”
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Fig.4 Archimedean Solids drawn by Piero della Francesca (c.1460, f.107.v, £.108.v) in Trattato d’Abaco:
truncated tetrahedron and cuboctahedron

obtain it from the tetrahedron. Piero also describes the truncated octahedron in the
Libellus as one of the irregular bodies circumscribed by the sphere, yet no drawings
are shown. This is the fourth case in the Tertius Tractatus, and is described as the body
with 14 bases, 6 of them squares and 8 hexagonal or, in the translation by Pacioli
(1509, folio 21v, Tertius Tractatus), “il corpo de 14 base cioe 6 quadrate e 8 exagone”.

Piero drew a few cases in what we may interpret as orthographic projections: the
truncated tetrahedron in Fig. 4 and two of what may be construed as different plan-
views of a truncated cube in Fig. 5. A certain level of imprecision is understandable
and even if Piero had built a three-dimensional model of these solid bodies, it could not
have been easy to understand that, in the first case, the orthogonal projection of eight
vertices belongs to the circle that Piero drew, but the circle itself is not the orthogonal
projection of a great circle of the sphere that encloses the truncated tetrahedron. In the
second, the orthogonal projection of eight vertices belongs to the circle in the rightmost
drawing, yet the circle itself is not the orthogonal projection of the circumsphere of the
truncated cube. Piero’s descriptions of solid bodies are unquestionably remarkable not
only for their inventiveness, but because they introduce a conscious search for other
than Euclid’s regular bodies, paving the way for all subsequent rediscoveries of the
Archimedean solids, compounds, and other polyhedral forms.

Luca Pacioli and Leonardo da Vinci

In 1550, Giorgio Vasari tells us that Luca Pacioli (1447-1517) had copied the
manuscripts of Piero della Francesca and published them as if they were his own.
Many authors have discussed this subject> ever since, and if it were not for Pacioli’s
plagiarism, the work that Piero developed on geometry and his important legacy as a
mathematician would probably not be known today. In the opinion of Ciocci (2017,
p. 104) Pacioli did not limit himself to usurping the works of others and asserts that
it would be “historically reductive to maintain that everything Pacioli wrote on the
subject of polyhedra was pillaged from the manuscripts of Piero”.

25 Among other authors, Cromwell (1997, pp. 122-126), Williams (2002), Ciocci (2017, pp. 91-108), and
Andersen (2009, pp. 35-36).
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Fig.5 Archimedean Solids drawn by Piero della Francesca (c.1480, £.52.b, f.54.a, £.55.b, £.56.b) in Libellus
de Quinque Corporibus Regularibus: truncated icosahedron, truncated dodecahedron, truncated cube, and
truncated tetrahedron

Pacioli brought some contributions to the treatment of the regular and irregular bod-
ies proposed by Piero and imprinted his own perspective on the narrative. The names
he gave to the solid bodies derived from the Platonic Solids are one example. Pacioli
commissioned the illustrations of Pars Prima in Divina Proportione to Leonardo da
Vinci (1452-1519), a wise decision that proved to be a fitting complement to what
might have been a less interesting book. The drawings by Leonardo decisively empha-
sized the interest in polyhedral forms in the sixteenth century and contributed to the
importance given to polyhedra as a mathematical subject in its own right. Although
Luca Pacioli was not an artist but a mathematician, he praised the knowledge of per-
spective drawing and advocated for considering it a mathematical topic, according
to Andersen (2009, p. 80), although no records exist of any perspective construction
having been drawn or understood by him.

@ Springer



Archimedean solids in the fifteenth and sixteenth centuries

Replicating the deductions of Piero, Pacioli devised solid bodies from the Platonic,
truncating their vertices after dividing the edges into two or three equal parts. Assuming
that similar and sequential truncations of regular and irregular bodies would produce
an infinite number of solid bodies, Pacioli (1509, folio 16v, Pars Prima) declares that
he will not lose time in discussing them extensively, given that the forms in which
they multiply, by continuous and successive cutting of their solid angles, tend to
infinity.?® Pacioli also conceived solid bodies through augmentation, joining regular-
faced pyramids to the faces of other bodies, obtaining what we came to recognize as
concave deltahedra. In his description of the augmented tetrahedron or “tetraedron
elevatum”, Pacioli (1509, folio 14v, Pars Prima) says that the pyramid concealed
within the four pyramidal surfaces is the interior pyramid that the eye cannot see, only
the intellect: “che lochio non po veder ma solo I’intellecto la prende”. The “octaedron
elevatum” is the stella octangula that Kepler would later describe. It is also the regular
compound of two tetrahedra and the only stellation of the regular octahedron, precisely
the one which, according to Pacioli, we can only imagine.

Two of the books that Pacioli wrote, Summa de Arithmetica, Geometria, Propor-
tione et Proportionalita (1494) and Divina Proportione (1509), describe Archimedean
Solids. Those in Summa, which are shown in Fig. 6, and those in the margins of Divina
Proportione, shown in Fig. 7, were not drawn by Pacioli, but the printer to whom he
would have handed a copy of Piero’s manuscript.”’ In comparison to the drawings
by Leonardo in the last part of Divina Proportione, these drawings are very different,
even uninteresting, we might say. On the other hand, the images of the solid bodies in
solidum and vacuum display modes, shown in Fig. 8, were drawn by Leonardo from
physical models crafted in wood or cardboard that Pacioli owned. Pacioli (1509, folio
22, Pars Prima) refers to these in Divina Proportione.*®

The Divina Proportione includes the first known graphic descriptions of the icosi-
dodecahedron and the rhombicuboctahedron. In Pars Prima, the truncated tetrahedron
is described as Chapter XLIV and illustrated by Leonardo (Fig. 8) at the end of the
book. The drawing of the truncated tetrahedron (Fig. 7) in the Tertius Tractatus, how-
ever, was not done by Leonardo. Its depiction is substantially different from the one
in Summa (Fig. 6) and, for the known reasons, much closer to Piero’s drawing in
the Libellus (Fig. 5). Before introducing the truncated cube in the Tertius Tractatus,
Pacioli (1509, folio 22, Tertius Tractatus) warns the reader that it was not possible to
include figures for all the cases in the margins of the book since some were difficult
to draw. It would have been necessary someone versed in perspective drawing for this
purpose, he adds, as Leonardo da Vinci had been for Pars Prima. For this reason,
Pacioli says that some solid bodies are discussed but no drawings will be shown in

26 Pacioli (1509, folio 16v, Pars Prima): “Non me pare Excelso Duca in dicti corpi piu extenderme conciosia
chel lor processo tenda in infinito per la continua e sucessiva abscisione de mano in mano de li suoi angoli
solidi e secondo quella lor varie forme se vengano multiplicare”.

27 According to Field (1997, pp. 253-254), the illustrations in Divina Proportione that were not drawn by
Leonardo are “clumsy and in a uniformly old-fashioned (non-perspectival) style, so it seems possible that
Pacioli gave his printer a copy of the original vernacular text of Piero’s work (now lost), with Piero’s own
illustrations (or copies based on them)”.

28 References about Pacioli using such models are discussed, for instance, by Scolari (2015, p. 219), Peiffer
(2000, p. 87) and Ciocci (2017, p. 96).
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Fig. 6 Archimedean Solids by Luca Pacioli (1494, folio 69v) in Summa de Arithmetica, Geometria, Pro-
portione et Proportionalita: truncated tetrahedron and cuboctahedron
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Fig. 7 Archimedean Solids by Luca Pacioli (1509, folios 22r and 22v) in the Tertius Tractatus of Divina
Proportione: truncated cube and truncated tetrahedron

the margins of the book. However, since these tend to infinity, Pacioli adds, it will be
enough for the readers to observe the drawings that Leonardo did and picture the rest
for themselves.?”

In Pars Prima, the sequence of irregular bodies contained within a sphere is not
the same as in the Tertius Tractatus. Piero had begun with a Campanus sphere before
addressing the truncated icosahedron, the truncated dodecahedron, the truncated octa-

29 The passage in the words of Pacioli (1509, folio 22r, Tertius Tractatus) is more interesting than our
adaptation: “Lectore non te maraviliare se de simili corpi composti de diverse e varie base non te se mette
sempre in margine loro figure conciosia ch’le sieno difficilime farle in desegno pero che bisogna che sieno
facte per mano de bono perspectivo quali non si posano sempre havere a sua posta si céme per sua humanita
feci el nostro Lionardo da vinci siando a Milano ali medesuni stipendii de lo excellentissimo Signor Duca
di quello Ludovico Maria Sfor¢a. Ma quando in questo de sopra e ancora sequente se sieno posti casi alcuni
overo che sabino a ponere, basta che tu fra li ante posti dinange in principio in perspectiva de sua mano
recorra peroche da quelli comme a suo luogo denange fo dicto al capitulo. LV. lor forme procedano in
infinito e se ben guardi fra quelli non fo formato el corpo de decagoni pur in questo labiam messo al ter¢o
tractato per tergo caso e tu deglialtri potrai el simile fare.”
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Fig.8 Archimedean Solids drawn by Leonardo da Vinci (1509, Plates IV, X, XVIIL, XXIV, XXX, XXXVI)
in Divina Proportione: “Tetraedron abscisum vacuum” (truncated tetrahedron), “Hexahedron abscisum
vacuum” (cuboctahedron), “Octaedron abscisum vacuum” (truncated octahedron), “Icosaedron abscisum
vacuum” (truncated icosahedron), “Dodecaedron abscisum vacuum” (icosidodecahedron), and “Vigintisex
basium planum vacuum” (rhombicuboctahedron)

hedron, the truncated cube, and the truncated tetrahedron. We interpret this sequence
as Piero’s choice of approaching the complex cases before the simplest: after the 72-
faced, the body with 32 faces (pentagonal and hexagonal), followed by another, also
with 32 faces (triangular and decagonal); the following with fourteen (triangular and
octagonal); and the last with eight faces (triangular and hexagonal). With the excep-
tion of the truncated octahedron, Piero illustrated all of these. On the other hand, the
sequence of solid bodies in Pars Prima reveals that Pacioli chose to explain the trun-
cation of each of the convex regular. Omitting the augmented forms, Pacioli presents:
after the tetrahedron, the truncated tetrahedron; after the cube, the cuboctahedron; after
the octahedron, the truncated octahedron; after the icosahedron, the truncated icosa-
hedron; and after the dodecahedron, the icosidodecahedron. All of these are directly
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obtained by truncation of the previous, whose edges are divided either into two equal
parts (cuboctahedron and icosidodecahedron) or three equal parts (truncated tetrahe-
dron, truncated octahedron and truncated icosahedron).

In his adaptation of the Libellus, Pacioli treats the truncated dodecahedron as the
third case of the Tertius Tractatus, between the truncated icosahedron and the trun-
cated cube. It had been illustrated by Piero and even mentioned by Pacioli in our
previous footnote, yet there are no drawings of the truncated dodecahedron in Divina
Proportione. Perhaps the person who was assisting Pacioli found it difficult to copy
from Piero’s manuscript or maybe Pacioli decided that the body of the decagon was
not as important as the other bodies. It seems, however, that Leonardo found it inter-
esting because he drew it in folio 735v (Fig. 9) of the Codex Atlanticus. The Codex
Atlanticus compiles the numerous drawings and personal notes that Leonardo worked
on between 1478 and 1519 and are preserved at the Veneranda Biblioteca Ambrosiana
in Milan. Leonardo would have sketched folio 735 around 1495 precisely while he
was preparing his drawings for Divina Proportione, which he concluded by the end of
1497, according to Huylebrouck (2015, p. 463). Leonardo may have taken inspiration
for the truncated dodecahedron from Piero’s manuscript or maybe he devised it on his
own, as suggested by Huylebrouck et al. (2020, p. 63).

Based on the notes that Leonardo wrote, Huylebrouck et al. (2020, pp. 62-64)
interpret the drawing on the upper left in Fig. 9 as an unfinished sketch of a truncated
dodecahedron augmented with triangular pyramids and pentagonal cupolas. A pen-
tagonal cupola has two parallel faces, pentagonal and decagonal, with triangular and
quadrangular faces between them. Assuming that Leonardo intended all the faces to
be regular, Huylebrouck et al. conclude that he devised two polyhedra that Norman
Johnson (1966, pp. 185, 195) would describe centuries later: the pentagonal cupola
and the augmented truncated dodecahedron (respectively, Johnson Solids J5 and J68).
Huylebrouck at al. (2020, p. 64) further suggest that Leonardo could have obtained
Johnson Solids J69, J70 or J71 if he had added two or three cupolas to specific faces.
Field (1997, p. 263) notes that, in the sketch that resembles a rhombicosidodecahedron,
Leonardo would have tried to obtain a solid body analogous to the rhombicuboctahe-
dron. However, the “solid shown in his drawing is not possible in mathematical terms
(unless some faces are not regular)”. Huylebrouck et al. (2020, pp. 62—63) assert that,
as Leonardo explains in a side-note and although the sketch does not clearly show it,
the darker triangles stand for pyramids adjoined to the triangular faces.

The sketch might not have been developed because it was only a study, but it may
be interpreted as a partial representation of a concave polyhedron which, completed,
would be composed of twelve pentagonal cupolas and twenty triangular pyramids, as
interpreted in Fig. 10. In this interpretation, all the faces, apart from the rectangular,
are regular. With cupolas adjoined in this orientation, adjacent squared faces become
rectangular while the triangular faces surrounded by the rectangles are coplanar. To
circumvent this coplanarity, Leonardo adds pyramids between each triad of trian-
gles, where the lesser faces of the truncated dodecahedron were. The sketch drawn
by Leonardo cannot be taken as an attempt for a rhombicosidodecahedron because
the resulting polyhedron, without the pyramids, has 30 rectangular and 120 triangular

30 Folio 735 is traced back to the year 1495 on the Codex Atlanticus website (1495).
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Fig. 9 Detail from folio 735v (1495) of the Codex Atlanticus by Leonardo da Vinci, reproduced with
permission of Veneranda Biblioteca Ambrosiana / Mondadori Portfolio

faces. However, sketching it from the implied truncated dodecahedron is strikingly
inventive for Leonardo’s time. Decades later, Daniele Barbaro would describe a con-
cave polyhedron with six pentagonal cupolas in a partial planar net>! but the point of
departure, in his case, was the rhombitruncated icosidodecahedron.

The central sketch in the bottom row in Fig. 9 is a non-uniform version of a rhombi-
truncated icosidodecahedron with rectangular faces instead of squared. Huylebrouck
et al. (2020, p. 66) discuss the possibility that it might have been meant as an aug-
mented version of the rhombitruncated icosidodecahedron with square pyramids. Our
analysis of the sketch leads us to believe that Leonardo arrived at the convex form by
dividing the edges of an icosidodecahedron into three equal parts. If Leonardo had
developed this study or built a model or its planar net, he would have concluded that it
was possible to obtain a similar polyhedron with squares instead of rectangular faces.
Although these and numerous sketches in the Codex Atlanticus are unfinished, they

31 Chapter XXIV of La Pratica della Perspettiva by Daniele Barbaro was identified by Viana (2023b, pp.
122-125) as a rhombitruncated icosidodecahedron augmented with pentagonal cupolas.
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Fig. 10 Interpretation of
Leonardo’s sketch after
Huylebrouck and Mingarelli
(2020, p. 64)

are remarkable in reaffirming Leonardo’s creativity and drawing mastery that vastly
surpassed Pacioli’s guidance and are vivid testimonies of how Leonardo excelled in
his “ability to imagine forms in space”, to use the words of Field (1997, p. 263).

Albrecht Diirer

Albrecht Diirer (1471-1528) published the seminal treatise Underweysung der Mes-
sung in 1525. Written in German, it gained widespread recognition across various
European regions after its translation into Latin by Joachim Camerarius (1500-1574)
that was published in 1532.32 A posthumous version of the first edition was published
in 1538 by Hieronymus Andreae (c.1504-1556), the printer with which Diirer regu-
larly worked and collaborated. According to Andrews (2016a, p. 409), Diirer worked
on the revision of his treatise from 1525 until his death in 1528, and all the additions
and annotations he did to his copy of the treatise “were carried over and faithfully
reproduced” by Hieronymus Andreae.

In the 1525 edition, Diirer describes fourteen solid bodies. Each solid body is shown
with a planar net but only the ones that Diirer refers to as those that Euclid names
corpora regularia® are complemented with illustrations in plan and elevation. After
describing the sphere, Diirer briefly introduces the ungeregulirten corporen, and when
he describes them individually, he does not explain how each is obtained from which
body; he only mentions the faces’ configuration and similar details. For those with
regular faces, Diirer includes the number of vertices and edges; to those with other
than regular faces, he gives details about the edges’ length. In his personal copy, Diirer

32 Translating a German treatise into Latin was a significant risk for Camerarius, as discussed by Peiffer
(2002, p. 639), but the outcome was a success and the expertise Diirer had developed on practical geometry
became accessible not only in other countries but to scholars and academics, whom Diirer did not intend
to reach in the first place. According to Peiffer, Diirer may have assisted Camerarius in this translation,
which can be considered the first interpretation of this treatise. Camerarius entitled its translation as Alberti
Dvreri Fourth Book of Geometric Instructions: Published again, preserving the order of the figures, as
the author himself expressed them, in a free translation from “Alberti Dvreri Institvtionvm Geometricarvm
Libri Qvatvor: Nunc iteratd editi, servato ordine e figuris, sicut ab ipso authore expressae suerunt” (1532).
33 The words Durera (1532) wrote before drawing 29 were: “die der Euclides corpora regularia nennet”.
Since the treatise does not include page numbers, for each citation, we indicate the number of the nearest
drawing. Every citation from Underweysung der Messung in this study is from Book IV, which deals with
solid geometry and perspective drawing concepts.
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Fig. 11 Planar net of the truncated icosahedron (Source) and icosidodecahedron (Source) added by Albrecht
Diirer between 1525 and 1528 to his copy of Underweysung der Messung

added planar nets of two more irregular bodies: the truncated icosahedron and the
icosidodecahedron, which are shown in Fig. 11. Hieronymus Andreae would include
these two extra bodies in the 1538 edition of Underweysung der Messung (1538),
which includes a total of sixteen solid bodies. All their vertices, according to Diirer,
touch a hollow sphere: the first five are the regular bodies; nine are Archimedean Solids
(Fig. 12), and two are non-uniform. Inspiration for the cuboctahedron, the truncated
tetrahedron, the truncated cube, the truncated octahedron and the rhombicuboctahe-
dron may have derived from Piero and Pacioli/Leonardo. However, after Archimedes,
Diirer was the first to describe the snub cube and the rhombitruncated cuboctahedron.

Kemp (1992, p. 55) tells us that Diirer was introduced to visual geometry by a
mathematician or a mathematically-minded artist in the orbit of Piero whom Diirer
met in Bologna. In the opinion of Kemp, this person might have been Pacioli himself.
In his second travel to Italy in 1505-07, Diirer could have met Luca Pacioli who, by
then, had already concluded Divina Proportione and was working on his edition of the
Elements. If Pacioli ever developed any friendship with Diirer, as Kemp suggests, he
might have shared some thoughts about his upcoming book.>* Indeed, Underweysung
der Messung has many similarities with Divina Proportione but Diirer could have also

34 Andrews (2016a, p. 411) says Diirer had a “long-standing access to Euclidean geometry that predated
his engagement with Italian perspective” and that he could have met Pacioli, who, by the time Diirer was
in Bologna, “would have been working on his own annotated edition of Euclid.”
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Fig. 12 Archimedean Solids drawn by Albrecht Diirer (1538, drawings 3541, 43-43a) in Underweysung
der Messung: truncated tetrahedron, truncated cube, cuboctahedron, truncated octahedron, rhombicuboc-
tahedron, snub cube, rhombitruncated cuboctahedron, truncated icosahedron, and icosidodecahedron
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known the book from Wilibald Pirckheimer (1470-1530), whose library he had access
to, or from their occasional travels together.

If Diirer knew Divina Proportione when he was preparing his treatise (a task which,
according to Kemp (1992, p. 55), he had begun around 1508), it is strange that the
two solid bodies in Fig. 11 were only added after 1525. Would this mean that Diirer
browsed Divina Proportione in more detail only after his treatise was sent for printing?
In any case, what seems clear to us is that Diirer consciously refrained from copying
the conclusions of Pacioli/Leonardo, otherwise, he would have included planar nets
for the icosidodecahedron and the truncated icosahedron in 1525. Peiffer (2000, p.
298) notes that Diirer owned a copy of Pacioli’s Summa but, as we have seen, these
solid bodies are not included in this book. The fact that the truncated dodecahedron
(which was graphically described by Piero but not by Pacioli) was not included in the
1525 or 1538 versions of the treatise implies that Diirer was also not adapting Piero’s
findings, if he somehow had access to them.

Diirer bought Zamberti’s version of the Elements in 1507 and, in 1523, a set of books
from the library of Regiomontanus—Walther, which included a copy of the Elements
by Campanus of Novara, with comments from Johann Miiller Regiomontanus (1436—
1476)%. Much of Piero’s inspiration for the Archimedean Solids, we recall, came
from Books XIV and XV of the medieval version of the Elements. This timeline leads
us to believe that Diirer would only have had time to draw his conclusions from the
analysis of Campanus’ version of the Elements sometime between 1525 and 1528,
precisely while he was reviewing his own treatise. It is also interesting to note that
most of the changes and additions Diirer introduced in his revision were, according to
Andrews (20164, p. 416), precisely in Book IV. From the handwritten changes in the
first edition and the fact that Diirer devised two polyhedral forms that no one else in his
time described, we can deduce that Diirer was not merely copying from Piero, Pacioli
or Leonardo; he was studying polyhedral forms independently and, presumably, using
Campanus’ Elements as a primary source for his research.

Augustin Hirschvogel

Augustin Hirschvogel (1503-1553) was a highly productive artist who excelled in
etching, stained glass painting, and cartography. He was born in Nuremberg and trav-
eled abroad in 1536 for work, returning to Nuremberg in 1543. In 1544, he relocated to
Vienna, where he served as the city’s cartographer until his passing in 1553. Convinced
of the importance of knowing geometry in his line of work,>® Hirschvogel authored

35 The chronology compiled by Peiffer (2000, pp. 373-374) states that, while he visited Venice in 1507,
Diirer bought a copy of the translation of the Elements by Zamberti. In January 1523, Diirer bought ten
books from the Regiomontanus—Walter library, where the translation by Campanus of the Elements was
found. According to Andrews (2016a, p. 411), although he owned at least two editions of the Elements by
1523, “Diirer evidently maintained a lifelong fascination with Euclid and remained interested in the most
up-to-date translations”.

36 Describing the many fields of craftsmanship in which Hirschvogel worked, Andersen (2009, p. 217)
explains that, upon understanding how important was the knowledge of geometry, Hirschvogel decided to
publish his own “introduction to the discipline” in 1543.
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the book Geometria®’, which was published in 1543. The cover (Plate Al in Fig. 13)
features the motto “Spero Fortunae Regressum” that encircles a rhombicosidodecahe-
dron and was printed in a reflected version. According to Peters (2003), this sentence
appears in two self-portraits dating from 1548 and denotes that Hirschvogel hoped to
succeed in the imperial capital. Its meaning, I hope the return of fortune, tells us that
Hirschvogel hoped for a better future as his life was not easy. The cover includes the
delightful statement:

The book Geometria is my name
All free art first from me came
I bring architecture and perspective together®

Hirschvogel (1543) describes the seven Archimedean Solids shown in Figs. 13
and 14,3% using the term “Geometria” to label his drawings of solid bodies. Six are
illustrated with a planar net and plan views with shadows. The nets include auxiliary
construction lines, while other sketches explain how to draw the plan views correctly.
Five planar nets are equal to the ones Diirer included in the first edition of Underwey-
sung der Messung. All are shown in the same position, except for the truncated cube,
which is rotated 90° clockwise. However, the sequence in which the solid bodies are
shown is not the same as Diirer because the icosidodecahedron comes between the
truncated tetrahedron and the truncated cube. In the posthumous edition of Underwey-
sung der Messung, the icosidodecahedron is the last of the additional bodies. Contrary
to Diirer, Hirschvogel does not include the truncated icosahedron, the snub cube nor
the rhombitruncated cuboctahedron. The net Hirschvogel conceived for the icosido-
decahedron is very different from the one drawn by Diirer. It is also very distinctive
given the interesting advantage he takes of its fivefold symmetry, which hints at the
possibility that Hirschvogel studied it independently.

According to Friedman (2019, p. 69) and our own research, Hirschvogel was the
first to describe the rhombicosidodecahedron after Archimedes. He illustrates it on
the cover of his book (resting on what seems to be an engraved stone block) before
introducing other drawings on solid geometry but he does not provide any auxiliary
construction or net for the rhombicosidodecahedron, unlike other cases (the dodec-
ahedron, described a few pages before, was also not described with a planar net).
The three drawings in Fig. 15 are essentially accurate and very close to orthographic
projections: the first with two triangular faces in true form, while the second and third

37 Andrews (2022, p. 114) translates its full title “Ein aigentliche vnd grundtliche anweysung, in die
Geometria, sonderlich aber, wie alle Regulierte, vnd Vnregulierte Corpora, in den grundt gelegt, vnd in
das Perspecktiff gebracht, auch mit jren Linien auffzogen sollen werden”, into An authentic, thorough
instruction in geometry, especially how all the regular and irregular bodies are to be inscribed in the
ground, and brought into perspective, also illustrated with their lines.

38 Our translation of the words by Hirschvogel “Das Buch Geometria ist mein Namen / All freye Kunst
avs mir zvm ersten kamen / Ich bring Architectra und Perspectiva zusamen” combines the translations of
Andersen (2009, p. 220) and Andrews (2022, p. 116).

¥ Fi gures 13 and 14 belong to a copy in the Bayerische Staatsbibliothek in Miinchen that binds two volumes
in one book with the written part first and the drawings second. Another copy at the Staats und Stadtbibliothek
in Augsburg has the drawings before the written part. The book in Bayerische Staatsbibliothek has the graphic
descriptions alone, some with different shadowing; the pair of plan-views of the rhombicosidodecahedron
in a reflected version; and different page numbers.
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Fig. 13 Archimedean Solids drawn by Augustin Hirschvogel (1543, Plates Al, AVIIL, BVII, DVIII) in
Geometria: rhombicosidodecahedron, rhombicosidodecahedron, truncated tetrahedron, and icosidodeca-
hedron

have two pentagonal and two squared faces in true form, respectively. The rightmost
drawing in Plate A.VIII, however, contains a few errors: a trapezoid and a triangle are
positioned on each side where a triangle and a parallelogram should be, respectively.
In spite of these flaws, Hirschvogel drew the rhombicosidodecahedron in parallel per-
spective from different viewpoints with such accurate descriptions that it seems as
if he was holding the object in his own hand. This leads us to suspect that he had a
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Fig.14 Archimedean Solids drawn by Hirschvogel (1543, Plates CI, CII, CIIIL, CV) in Geometria: truncated
cube, cuboctahedron, truncated octahedron, rhombicuboctahedron

physical model crafted from a regular-faced planar net. The reason he did not include
a complete description of the rhombicosidodecahedron with that planar net, as he had
done to the remaining solid bodies, is unknown to us. Perhaps Geometria was the
introduction to a more complex project which Hirschvogel could not develop where
the rhombicosidodecahedron would be described in more detail.

Hirschvogel’s drawings of solid bodies are more detailed than those of his prede-
cessors. In comparison, Wentzel Jamnitzer’s drawings, which would be published in

@ Springer




Archimedean solids in the fifteenth and sixteenth centuries

:
- -
\\
s
v . ’
i # xoa\y »
\ X
- / Ba
x X _x7 ¥
\\
Lde ool b .
X ! x
‘ N ol
h
Ammm o

Fig. 15 Comparison between the drawings by Hirschvogel of the rhombicosidodecahedron and its ortho-
graphic projections

1568 in Perspectiva Corporum Regularium, are more visually appealing (see Fig. 24).
However, it should be noted that the purpose of Geometria was different from that of
Perspectiva Corporum Regularium, and that the pages of the latter were printed from
etched copper plates rather than engraved woodblocks. All the auxiliary lines in the
solid bodies that Hirschvogel drew were printed with the same type and line weight as
the edges, which makes some drawings difficult to understand at first sight. Printing
different line types in a single woodblock may have been a technical predicament at
the time, since the same happens in other books. In La Pratica della Perspettiva, for
instance, which was printed in 1568, Barbaro (1568, pp. 60, 65) includes only two
solid bodies with different line types: a cuboctahedron and a rhombicuboctahedron
whose edges are printed in dotted line to illustrate their relation with a bounding cube,
itself printed in continuous line. Interestingly, from the books printed in the German
States on the subject, Perspectiuische Reiss Kunst by Peter Halt (1625), which would
be published in 1625, seems to have been, if not the first, one of the firsts in which the
hidden edges of solid bodies are drawn with dashed lines.

We have found very few drawings of the rhombicosidodecahedron after those drawn
by Hirschvogel. Wentzel Jamnitzer drew the rhombicosidodecahedron which can be
seen in Fig. 24 in Perspectiva Corporum Regularium. Daniele Barbaro (1568, p. 96)
included three drawings of the rhombicosidodecahedron in La Pratica della Perspet-
tiva (one of which is shown in Fig. 26). Despite minor inaccuracies, the drawings we
found of the rhombicosidodecahedron between 1543 and 1568 are remarkably precise,
given the complexity of this polyhedron. Another rhombicosidodecahedron still is in
an etching authored by Hanns Sebald Lautensack (1520-1564/66) dating from 1553
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Fig.16 “Oswald von Eck”,
Hanns Lautensack, 1553. Acc.
Num. 41.1.143, Metropolitan
Museum of Art (Source)

and portraying the humanist Oswald von Eck (1539-1573) with a model of a rhom-
bicosidodecahedron behind him (Fig. 16). The Dictionary of Painters and Engravers,
Biographical and Critical, by Michael Bryan (1886, pp. 26-27), mentions Hanns
Sebald Lautensack and his brother, Heinrich Lautensack (1522-1568): the former as
a skilled etcher*’; the latter as a goldsmith and author of a treatise on perspective, Der
Circles und Richtscheyts (1564). The fact that Hanns included a rhombicosidodeca-
hedron in this etching may have been a contribution from his brother, who probably
knew the book Hirschvogel wrote. Given its resemblance to the book cover in Fig.
13, it might have been a direct copy from Hirschvogel’s Geometria since we have not
yet found any description of the rhombicosidodecahedron by the Lautensacks before
1553.

An Anonymous Author

In New Light on the rediscovery of the Archimedean Solids during the Renaissance,
Schreiber, Fischer and Sternath (2008) unveil the 40 printing woodblocks with planar
nets of convex uniform polyhedra, found in the Albertina Museum in Vienna. Andrews
(2016b, p. 247) shows a photograph of woodblock HO2006/693, with a planar net of
the dodecahedron with an inscribed truncated icosahedron. Three woodblocks bear
the signature of Hieronymus Andreae, the woodcutter responsible for both editions of
Underweysung der Messung. Those unsigned may have been crafted by his workers,
as suggested by Schreiber et al. (2008, p. 459), or left unfinished by Andreae himself.

40 Schmitt (1982) presents further biographic details about Hanns Sebald Lautensack.
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None of the woodblocks seems to have been used for other than test prints.*! The
Appendix of the Yearbook of the Art History Collections of the Highest Imperial
House,*> which Arpad Weixlgirtner (1910, p. 380) compiled in 1910, mentions a
set of wooden blocks with geometric figures dated no later than the last quarter of
the XVI century.*> Whoever devised the planar nets in these woodblocks would have
developed activities in Nuremberg or in close connection with the printing workshop of
Hieronymus Andreae. In the following, we will refer to this person as the Anonymous
Author.

According to Schreiber et al. (2008, pp. 459, 466), the Anonymous Author was “a
remarkable forerunner” of Kepler who could not have been Diirer because the nets
differ from those in his treatise, and because they include solid bodies that Diirer did
not describe. Andrews (2016b, p. 36) adds that, unlike any of Diirer’s nets, some have
“ornamental polygonal shapes composed of concentric lines covering portions of the
nets’ faces”. Schreiber et al. believe the woodblocks were crafted between 1538 (the
year in which the posthumous edition of Underweysung der Messung was published)
and 1556, when Hieronymus Andreae died, and add that the person who conceived
these planar nets had no knowledge of Pappus’ Synagoge because its translation into
Latin would only be published in 1588. No early version of this translation would have
been known in Europe before late 1560 since this was the year Commandino concluded
his first draft.** Schreiber et al. further suggest that Johann Tscherte (1480-1552), a
mathematician and friend of Diirer, may have been the Anonymous Author. Karl Weif3
(1894) tells us that Johann Tscherte was a master builder and an expert in fortification
technology who moved to Vienna in 1510. In 1522, he stayed in Nuremberg during
the Reichstag because of his sound knowledge of military buildings. In 1528, he was
appointed bridge master in Vienna and later master builder, having collaborated on the
defence of the city against the Turks. Tscherte was a friend of Willibald Pirckheimer
and Albrecht Diirer, who authored his coat of arms in 1522.

Other than the suggestion of Schreiber et al. (2008, p. 467) about the identity of
the Anonymous Author, we found no relevant connections between the activities of
Tscherte and the depth of geometrical knowledge necessary to conceive the nets in
these woodblocks, most of which are astounding, considering the knowledge and
technical possibilities of their time. A woodblock we will not discuss in this study
shows the nets of a triangular prism, a pentagonal prism, and a hexagonal anti-prism*
which, in itself, is interesting not only for including an anti-prism but because whoever
carved it placed the three together, as if the solid bodies differed from the remaining.

41 Schreiber et al. (2008, p. 459) state that “The wooden blocks were seemingly never used for printing
a book. The state of the blocks shows that only a few proof sheets were made, and afterwards, minor
corrections were made to some of the blocks. Hence, it is not surprising that these woodcuts never were
seen on paper.”

42 We are grateful to Dr. Christof Metzger, Curator of the Albertina Museum, for sharing information about
this and other publications that mention the printing woodblocks.

43 The title is a translation from “Jahrbuch der kunsthistorischen Sammlungen des allerhochsten Kaiser-
hauses”, whereas the reference to the woodblocks has been translated from “holzstockemit geometrischen
figuren auf rund der schriftder umschlage nicht spatee als letes viertel des xvi jarhunderts”, which is listed
under the Appendix “Plattenbestinde in einigen 6ffentlichen und privaten Sammlunge.”

44 According to Ciocci (2021, p. 138), a preliminary draft was concluded from 1568 to 1569.
45 The website of the Albertina Museum shares details about this woodblock in HO2006/704.
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In fact, they do, since they are examples of convex uniform polyhedra other than the
Platonic and Archimedean Solids. As Coxeter (1973, 14) notes, Kepler is considered
the first to have recognized the anti-prisms but these woodblocks were carved years
before Kepler was born.

Figure 17 shows the planar nets drawn by the Anonymous Author for ten
Archimedean Solids (the snub dodecahedron has an extra pentagonal face). Individual
nets of the truncated cube, the rhombitruncated cuboctahedron and the rhombitrun-
cated icosidodecahedron are missing, but their faces are shown within the planar nets of
other solids. Figure 18 shows the nets of the cube and the octahedron with an inscribed
truncated cube (left) and rhombitruncated cuboctahedron (middle and right).

In 24 woodblocks, the Anonymous Author drew the faces of the thirteen
Archimedean Solids inside the net of specific Platonic Solids. The fact that other
than the convex regular are inscribed inside the Platonic Solids is a remarkable devel-
opment of the apocryphal Book XV of the Elements. The only author we found who,
at the time, investigated (two) Archimedean Solids inside the Platonic and vice versa,
was Frangois de Foix-Candale (1512-1594). Studies on the Platonic Solids inscribed
in each other are known since at least the fifth or sixth centuries, when the author of
Book XV would have lived. In the fifteenth century, Piero discussed his conclusions
on the subject in Part III of the Libellus (and, subsequently, Pacioli, at the beginning
of the Tertius Tractatus in Divina Proportione). Nicolo Tartaglia (1560a; 1560b), an
Italian mathematician who lived between 1500 and 1557, studied the regular bodies
inscribed in each other in Parts IV and V of the General Trattato Di Numeri, Et Misure,
which were published in 1560.40

Francois de Foix-Candale, in “Liber Decimusquintus” of his Elementa Geometrica,
first published in 1566, presents twenty cases of Platonic Solids inscribed in each other,
all of which are conveniently illustrated, except for the tetrahedron and the cube inside
the icosahedron, which Foix-Candale (1578, p. 457) explains only in writing. Foix-
Candale proposes three additional books to the medieval version of the Elements.*’
“Liber Decimusseptimus” is particularly interesting because it begins with a definition
of the “exoctaedron” and the “icosidodecaédron”, after which Foix-Candale (1578,
pp- 507-536) discusses how each of the Platonic Solids can be inscribed in them and
how each can be inscribed in a Platonic Solid, as well as in each other. Figure 19 shows
the drawing with which Foix-Candale (1578, pp. 530-531) illustrates the octahedron
inside the icosidodecahedron and our interpretation on the side.

Foix-Candale does not seem to be the Anonymous Author, given that he does not
describe other Archimedean Solid besides the cuboctahedron and the icosidodecahe-
dron, nor does he display any solid body in planar nets, despite the complexity of some
perspective drawings. In a subsequent section, we share our preliminary conclusions

46 Ippolito and Bartolomei (2016, pp. 85-86) note that Tartaglia introduced, in his study of the Solids in
each other, a description on how to inscribe “the icosahedron into the cube and the octahedron into the
icosahedron.”

47 Axworthy (2021, p. 100) tells us that Foix-Candale published in 1566 “a Latin edition and commentary
of the fifteen books of Euclid’s Elements (that is, including the apocryphal Books XIV and XV), to which he
added a sixteenth book on the regular polyhedra, as well as a short treatise on mixed and composed regular
solids. (...) Foix-Candale’s commentary was reprinted in 1578. He added at this occasion a seventeenth
and an eighteenth book, where he pursued his investigation of the properties and relations of the regular
polyhedra.”
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Fig. 17 Printing woodblocks in the Albertina Museum of planar nets of the Archimedean Solids: rhom-
bicuboctahedron (HO2006/694), icosidodecahedron (HO2006/696), snub dodecahedron (HO2006/699),
truncated octahedron (HO2006/701), rhombicosidodecahedron (HO2006/705), truncated dodecahedron
(HO2006/709), truncated tetrahedron (HO2006/712), cuboctahedron (HO2006/718), truncated icosahedron
(HO2006/721), and snub cube (HO2006/722), drawn by an Anonymous Author after 1538

about the identity of the Anonymous Author, whom we believe could neither have
been Albrecht Diirer nor Johann Tscherte. We also discuss our interpretation of the
hatched patterns in some planar nets, that we believe were designed with a specific pur-
pose. The Anonymous Author determines the vertices of all the Archimedean Solids
on the faces of the Platonic Solids with precision, revealing an unparalleled depth of
geometrical knowledge that becomes all the more intriguing in the few planar nets in
which a third solid body seems to be shown inside other two.

@ Springer


https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/694]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/696]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/699]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/701]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/705]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/709]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/712]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/718]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/721]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/722]&showtype=record

V.Viana

Fig. 18 Printing woodblocks in the Albertina Museum of planar nets of the cube with an inscribed truncated
cube (HO2006/688), octahedron with a rhombitruncated cuboctahedron (HO2006/707), and cube with a
rhombitruncated cuboctahedron (HO2006/719), drawn by an Anonymous Author after 1538

c. Indatoigitur icofidodec:édro o&a-

Fig. 19 Graphic description of “Propositio XXII. Problema 21. In dato Icosidodecaédro octaédro
describere” by Foix-Candale (1578, p. 531), and our interpretation

None of the planar nets in the woodblocks display auxiliary lines to explain how the
vertices were determined, yet the procedure to obtain the more complex bodies is far
from trivial: no drawings of the snub dodecahedron were known before 1619, let alone
how to enclose it inside the dodecahedron or the icosahedron. Even if the Anonymous
Author somehow had access to Pappus’ Synagoge (which only describes the number
and configuration of the faces in the bodies discovered by Archimedes), developing
a systematic study of these solid bodies, some of which were unknown at the time,
on the nets of the Platonic Solids with such surprising accuracy and so differently
from anything else in his time, is truly remarkable. With very few exceptions, all the
solid bodies have regular faces and the vertices are accurately determined.*® These
and other brilliant conclusions are given in planar nets for us to build, taking even

48 Occasionally, the vertices do not coincide with our virtual 3D models, which is perfectly understandable
as the carvings were made in woodblocks, with all the technical predicaments that such a technique implies.
Moreover, we cannot evaluate these accomplishments by our modern standards, so the drawings need not be
absolutely precise to be accepted as legitimate. If the vertices of an enclosed body are just a short distance
from their location in our virtual environment, we assume it to be a regular-faced polyhedron.
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Fig. 20 Simulation of the planar nets in Fig. 18 after folding, showing the truncated cube and the rhombi-
truncated cuboctahedron inside the cube and the octahedron

further the new knowledge of building paper models out of planar nets that Diirer had
initiated a few years back and Hirschvogel continued.

Figure 20 shows a virtual simulation of how the models in Fig. 18 would look like
if the nets were printed in a dark paper and some faces folded. The truncated cube
on the left is one of the few exceptions in which the inscribed body is non-uniform
because the edges of the cube were divided into three equal parts instead of the ratio
1: 4/2: 1. On the remaining woodblocks, the vertices are in their exact location or very
close. Instead of obtaining models of the enclosed bodies (which had been given in
Fig. 17), these nets are meant to visually explain how the irregular bodies derive from
the regular. Although meant to be instructional, the truth is that to someone unfamiliar
with the subject, such planar nets and models are less helpful than one would think.
The bodies meant to be shown are understandable when the net of the Platonic body
is folded, but imagining a solid body inside a paper model from what could be a
projection of its edges may be difficult without an idea of the enclosed body.

Figure 21 shows the only woodblocks with Archimedean Solids inside the net of
the octahedron: the snub cube, the cuboctahedron, the rhombitruncated cuboctahedron
and the truncated octahedron. The sets of faces that share the same planes as the faces
of the octahedron are unmarked, while the remaining have different hatched patterns.
The triangles in the net at the bottom right, which become the square faces of the
truncated octahedron, have a dark hatched pattern to indicate that the corners of the
octahedron are not part of the resulting body. A new face with a specific orientation
emerges if we truncate each vertex. If we were to fold these dark triangles on a paper
model, they would have to overlap to roughly materialize the squares. The lines in the
pattern on those that become square and octagonal faces in the snub cube (upper left)
and the rhombitruncated cuboctahedron (bottom left), respectively, are not parallel
to the delimiting edges. They might have been carved this way because it was an
easier solution. However, our analysis of the gradient pattern in these and similar
cases led us to believe they may stand for augmentations or concavities performed on
the octahedron with which a different solid is obtained. On the other hand, they might
also be meant to unveil another solid body inside the other two, as we will later show.

@ Springer



V.Viana

Fig. 21 Printing woodblocks in the Albertina Museum of planar nets of the octahedron with inscribed
Archimedean Solids: snub cube (HO2006/690), cuboctahedron (HO2006/706), rhombitruncated cubocta-
hedron (HO2006/707) and truncated octahedron (HO2006/715), drawn by an Anonymous Author after
1538

Wentzel Jamnitzer
Wentzel Jamnitzer (1507/08—1585) is one of the most important representatives of
the Mannerism period in Nuremberg and was considered, in his time, one of the best

German goldsmiths, according to Flocon (2006, p. 18). He was born in Vienna and lived
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Fig.22 “Wentzel Jamnitzer”
Etching by Jost Amman in the
Metropolitan Museum of Art
(The Elisha Whittelsey
Collection, The Elisha
Whittelsey Fund, 1956) (Source)

in Nuremberg from 1543 until his death in 1585. Jamnitzer crafted several scientific
instruments, one of which turned Diirer’s window into a portable device with a mobile
pin replacing its frame. The etching by Jost Amman (1539-1591) in Fig. 22 portrays
Jamnitzer using one of such perspective devices*’. Amman was a prolific artist who
moved to Nuremberg in 1560 and worked with Jamnitzer in the reproduction of his
drawings on the copper plates®’ used for printing Perspectiva Corporum Regularium.
The book was published in 1568 and includes 164 astounding drawings of solid bodies
that Jamnitzer obtained from the Platonic Solids “by augmentation, truncation, cutting
notches into the sides or faces, or some combination of these, all done in a regular
manner” as Cromwell (1997, p. 130) denotes.

In the first part of the book, Jamnitzer includes a sub-chapter’! for each Platonic
Solid with a title page and 24 drawings: six per Plate, the first being the regular body.
Apart for the tetrahedron, all the Platonic solids (and a few others) are shown twice
in different positions. The subtitle pages bear the initials J and A, which stand for the
signature of Jost Amman.>? In the second part of the book, four other drawings for each
regular body exist, along with twelve variations of the sphere, eight variations of the
cone, and four variations of toroidal forms that may be interpreted as mazzocchi. When
Jamnitzer describes his geometrica corpora, he mentions the number of vertices, edges
and faces of the regular body without explaining how the remaining were obtained.

49 Gessner, Hashagen, Peiffer, and Tournes (2018, p. 3486) note that Jamnitzer’s perspective machine
became widely known thanks to this woodcut, being later copied and adapted by others.

50 Flocon (2006, p. 32) tells us that no documents exist about the circumstances of the collaboration between
Amman and Jamnitzer. When he approached him, Jamnitzer was already an important figure in the city,
and Amman was 31 years younger. By comparing the etchings done by Amman with the drawings by
Jamnitzer in Berlin, Flocon notes that the etchings were as truthful as possible despite subtle modifications
and misinterpretations.

ST The labelling of the Plates is unclear to us because the subtitle page presenting the tetrahedron is Plate
A1, while those introducing the octahedron, cube, icosahedron and dodecahedron are A.VI, B.V, C.IV and
D.I1I, respectively. Plate C1, for instance, is the second regarding the cube after the corresponding subtitle
page; Plate D.I is the third Plate of the icosahedron; while E.I is the fourth of the dodecahedron. Label E
continues in the second part of the book, but F.I is the label on the fifth Plate, which introduces the cube’s
variations. The Plates on the sphere, the cone and the torus are labelled G, H and I, respectively.

52 In Fig. 23, the signature “J. A.” is in the very middle at the bottom of the print.
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Fig. 23 Subtitle Plate
introducing the octahedron and
its variations by Jamnitzer
(1568, Plate A.VI) in
Perspectiva Corporum
Regularium
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Jamnitzer may have decided not to include such details because, contrary to Diirer,
Hirschvogel or Barbaro, he did not mean his book to be instructional, but a testimony of
his geometrical knowledge, exuberant creativity and mastery of perspective drawing.
The only explanation regarding how the complex forms are obtained is given when
Jamnitzer (1568, Plate A.VI) introduces the octahedron in the subtitle page, shown in
Fig. 23:

AER. The air.

OCTAEDRON.

Solidum octo basium triangularium.

A diamond point / or body made of eight triangular planes.

The other body is composed of eight equilateral triangles / has twelve edge
corners, twenty-four plane angles /which make six solid corners /from this body
as base / by cutting off and putting on [parts] to anyone’s liking / Henceforth,
23 other different solids are shaped / and drawn.>3

In the Prologue, Jamnitzer (2006, pp. 67-68) says he decided to bring forth his expe-
rience of many years investigating the art of perspective and show the advantageous
and practical method that he invented and has not found anywhere else. With perspec-
tive, he adds, any object, seen from afar, is represented according to its geometry with
such an accuracy that it will seem impossible that the drawing was made by hand.

53 Jamnitzer (1568, Plate A.VI): “AER. Der Luftt. / OCTAEDRON / Solidum octo basium triangularium,
/ Ein Diamant Punct / oder Corper von acht Trianglichten Flechen / Das ander Corpus wirt von acht
gleichseitigen Triangeln zusammen gesekt/ hat Zwolff senten ecth vierundzwainzig flacher winctel / welche
sechs Corperlicher ecth machen / aus dises Corpers grundt / durch abschnendung unnd hinnan sezung nach
eines neden gefallen / Werden hernach 23. andere unterschidliche Corpora formiret / unnd Fiirgerissen.”
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With no intention of praising his Perspectiva or himself above others or diminishing
their work, Jamnitzer (1568, Prologue, third page) adds, he will demonstrate the art of
perspective with an easy and pleasing method that, contrary to what is usually taught,
avoids all deviations and unnecessary lines or points:

So please, dear friendly reader / you may take in my cordial, good opinion, true
to my diligence / and once I feel gratitude / I am instigated / to let the other
part of my related work / come out as well. Because even though I was willing /
to loyally bring out the whole work at once / and have it printed / due to other
of my business / and work duties, it could not be prepared and ordered in the
copper this time together [with the first book] / however / the mentioned other
part / shall come to light through means of Godly grace, for the benefit of all.>*

Explanations about this method, however, are nowhere to be found>®. Jamnitzer
says he is considering publishing a second book upon the acceptance of the first since
it was impossible to include all that he had wished while the book was being produced.
Such a project, however, does not seem to have ever been accomplished. Jamnitzer
died 17 years after the publication of Perspectiva Corporum Regularium.

Kemp (1992, p. 64) tells us that Jamnitzer left no explanations about how his draw-
ings, whose parallel lines decidedly converge to distant points, were made, and notes
that “his geometrical drawings which have survived show no signs of constructional
lines of the kind necessitated by the Piero—Diirer and other methods”. In the opinion of
Kemp, this suggests that Jamnitzer used an instrumental method to describe his poly-
hedral forms. Kemp notes that it is rather unlikely that his more intricate forms were
manufactured or even studied individually as physical models. Andersen (2009, p.
228) suggests that Jamnitzer used perspective instruments to measure distances from
points on real objects to draw them in perspective. We believe such objects would have
been three-dimensional models of basic solid bodies built from planar nets introduced
by Diirer and Hirschvogel, whose work Jamnitzer definitely knew well.

Without underestimating Jamnitzer’s genius and the inventiveness of his beautiful
creations, if we compare certain drawings in the first part of the book, we see that some
vertices derive from the division of the edges in other drawings, which means that
Jamnitzer did not need to craft all of them as three-dimensional models. It would have
been enough to craft a few basic models and locate construction points in their edges
that would act as guidelines to draw different models. The rhombicosidodecahedron in

54 Jamnitzer (1568, Prologue, third page): “Bit demnach freundlicher lieber lefer / du wolft solchen meinen
flenk getrew herziger guter mainung aufnemen / und da ich die danctbartent spiirn / werde ich geursacht
/ den andern thanl beriirtfwerts / auch hinaus fomen zulassen. Dafi ob ich wol gewilt gewesen / das ganze
werth mit einander getrewlich an tag zubringen / und tructhen zulassen / so hat es doch anderer meiner
obligender geschefft / und arbeit halber dissmals nit alles zuglench disponirt und ins kupffer zusammen
geordnet werden mugen / es soll aber doch / der bemelt ander theil / durch mittel gottlicher gnad aufs
furderlichst auch dem gemainé nuk zu gur ans liecht gelangen.”

53 The edition of Perspectiva Corporum Regularium published by Siruela, prefaced by Albert Flocon and
translated by Helena del Amo includes an Appendix entitled Perspectiva Sintagma (2006, pp. 135-138)
that explains how to determine the perspective of an equilateral triangle. We have not considered such an
addendum in this study because, as the translator states in a footnote (2006, p. 138), the text is thought to
be a supplement to a later edition of the book, which Jamnitzer may not have written. It was published in
Amsterdam in 1626, 41 years after Jamnitzer’s death.
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Fig. 24 might be such an example because its pentagonal faces may be obtained with
the division into three equal parts of the edges of the dodecahedron immediately above
it. This does not mean that conceiving each of these objects gets necessarily easier,
far from it. Without the limitations of the material world, the mind is free to imagine
even more unusual and extraordinary objects. Jamnitzer proves us that he masters the
art of drawing whatever complex forms he imagines and he does it so convincingly
that, as Jamnitzer himself tells us, everyone will think they are actually there and we
can almost touch them (2006, p. 67).

Many fabulous polyhedra are beautifully illustrated in this book, but here, we restrict
our attention to the nine Archimedean Solids that Jamnitzer drew. Figure 24 shows the
truncated tetrahedron, the truncated octahedron, the cuboctahedron, the icosidodeca-
hedron and the rhombicosidodecahedron, as well as the rhombicuboctahedron and the
rhombitruncated cuboctahedron, in non-uniform versions. Most of these solid bodies
are illustrated on other Plates, whether in different positions, combined with other
forms, or serving as guidelines to others. Jamnitzer drew the truncated icosahedron in
Plate D.II, encircled by a light structure with a set of vertices coinciding with those of
a dodecahedron. A non-uniform version of the truncated cube is in the base of one of
the sculptures in Plate G.II, on the second part of Perspectiva Corporum Regularium.

Daniele Barbaro

Daniele Barbaro (1514-1570) was a humanist, diplomat, and architect born in Venice
who is mostly known for his writings on architecture, especially the translation and
commentaries on Vitruvius’ treatise. His last book, La Pratica della Perspettiva, is a
treatise on perspective drawing meant for painters, sculptors, and architects, as stated
by Barbaro (2021, p. xiii) himself. Published between December 1568 and January
1569, it was the first book on linear perspective to be printed in Italy.

Field (1997, p. 244) notes that Barbaro was the author who described more
Archimedean Solids in the sixteenth century. If our conjecture on the identity of
the author who conceived the nets in the woodblocks is confirmed (or their authorship
traced to another person who would have been active before 1568), this perception may
change. Barbaro described eleven Archimedean Solids, including the rhombitruncated
icosidodecahedron, which neither Diirer nor Hirschvogel had included in their books.
The rhombicosidodecahedron, as we have seen, had been described by Hirschvogel
in 1543. The Anonymous Author, on the other hand, determined the vertices of the
thirteen Archimedean Solids on planar nets of the Platonic Solids.

The studies that Barbaro did for his treatise are undeniably rooted in the knowledge
of his time, so much so that he recognizes the studies of Piero the painter, as well as
those of Diirer an excellent man, as bases for his own in La Pratica della Perspettiva.
The influence of Piero transpires on the occasional overlapping of Barbaro’s writings
with Piero’s, to whose manuscript Barbaro had access from the copies circulating

56 According to Vagnetti, cited by Monteleone (2019, p. 67). Monteleone further notes that Barbaro’s rush
to publish the book may have been related “to health problems, as he died about a year later” or maybe
for his awareness “that Egnazio Danti was working on Jacopo Barozzi da Vignola’s Le due regole della
prospettiva pratica (...) and Francesco Melzi was re-arranging Leonardo da Vinci’s Notes on Painting.”
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Fig. 24 Archimedean Solids drawn by Jamnitzer (1568) in Perspectiva Corporum Regularium: truncated
tetrahedron (Plate A.I), truncated octahedron (Plate B.IIII), cuboctahedron (Plate B.VI), non-uniform
rhombicuboctahedron and rhombitruncated cuboctahedron (Plate B.VI) icosidodecahedron, and rhombi-
cosidodecahedron (Plate D.IIII)
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in Venice at the time.’” Many similarities exist between the treatise of Barbaro and
Underweysung der Messung. Curiously, Barbaro did not include Diirer’s snub cube in
his treatise, and we will later discuss a possible reason for this omission. But regarding
his studies on solid geometry, Barbaro (1568, p. 3) acknowledges no influences and
even criticizes Piero for his studies on the subject while, at the same time, he praises
the findings of Diirer:

Perhaps we should not call precepts, and rules, to some light practices that
have been placed without order, and foundation, and are rudely explained: in
these are also some of Piero dal Borgo S. Stefano, and others, which for idiots
we can use.>® Few things has left us Alberto Durero, although ingenious, and
accurate.”

Barbaro may have been influenced by Hirschvogel, given the popularity of the
book Geometria that, according to Andrews (2022, p. 114), was “still in use at least
100 years after its publication”. There are evident similarities between the treatise of
Barbaro and the work of the Anonymous Author that we will later show. As to the
influence of Jamnitzer’s Perspectiva Corporum Regularium, which was published a
few months before La Pratica della Perspettiva, Field (1997, p. 271) finds it possible
“but not very likely” that Barbaro knew it in printed form, although, Field adds, he
might have known a manuscript version. The difference in their approaches leads
us to believe that, if there ever were any influences from Hirschvogel or Jamnitzer in
Barbaro, the former would have been much more significant than the latter. Jamnitzer’s
approach to polyhedral forms is more artistic, and very different from Hirschvogel, the
Anonymous Author or Barbaro. His purpose, rather than explaining how his fabulous
new forms were conceived or drawn, was to exhibit his luxuriant creativity and mastery
in perspective drawing.

Besides the mazzocchio and its variations, Barbaro describes 39 corpi sodi in La
Terza Parte of his treatise: a triangular pyramid, the convex regular polyhedra, eleven
Archimedean Solids, nine convex non-uniform polyhedra,60 and thirteen concave
polyhedra derived from the augmentation of other polyhedra (eight of which had
been described by Pacioli and Leonardo). For each case, with the exception of the first
pyramid and the mazzocchio, Barbaro presents a planar net that he names spiegatura.
Every regular body is described, as Barbaro (1568, p. 45) states, with a “pianta perfette”

57 Monteleone (2019, p. 73) notes that “There is unquestionable evidence for stating that Barbaro knew
Piero’s work on perspective but, maybe, he might not have known it was by Piero: comparing text and
images by Barbaro with the pages of De prospectiva pingendi, one notes many similarities and, in some
cases, even precise matches or overlapping details.”

58 According to Field (1997, p. 270), Barbaro’s comment that Piero wrote for “gli idioti” might have been
meant as a criticism of the “repetitious drawing instructions which form the bulk of the text in most of
Piero’s propositions.”

59 Barbaro (1568, p- 3): “Se forse non uogliamo chiamare precetti, e regole, alcune pratiche leggieri poste
senza ordine, e fondamento, e esplicate rozzamente: perche di queste ne sono pure alcune di Pietro dal
Borgo S. Stefano, e d’altri, che per gli idioti ci potriano servire. Poche cose ci ha lasciato Alberto Durero,
benche ingeniose, e sottili.”

Other translations of the word “sottile”, based on the Dizionario dei Sinonimi e dei Contrari of Corriere
della Sera (2021) would be subtle, penetrating, intricate, astute, precise, meticulous, skillful, insightful.

60" The nine non-uniform polyhedra in La Pratica della Perspettiva have been identified by Viana (2023b, ).
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or perfect plan; a “digradate” or degraded, determined from the perfect plan; and “i
dritti” and “loro adombrationi”, a drawing rendered with shadowing®'. The perfect is
a plan or orthographic projection; the degraded, an elevation in parallel perspective.5”
Apart from the “adombrationi”, every perspective drawing in La Terza Parte is shown
in wire-frame mode with all the edges in the same thickness. As mentioned earlier,
Barbaro (1568, pp. 60, 65) only uses different line types in two drawings, to distin-
guish the cuboctahedron and the rhombicuboctahedron from the cube from which they
derive. Figures 25 and 26 illustrate the spiegature of the eleven Archimedean Solids
that Barbaro describes.

Barbaro introduces Chapters VII to XIV as irregular bodies that are born from
the regular bodies, while the remaining are another body or another irregular body
born from a compound body. The expression used by Barbaro (1568, p. 88), “corpo
il quale nasce da uno corpo composto”, does not refer to a polyhedron compound, as
he could not possibly have had interpenetrated polyhedra in mind. A body born from
a composto means it has not derived from a regular body but from another one, itself
derived from aregular body. Four spiegature in Figs. 25 and 26 are not entirely accurate:
the cuboctahedron has an additional triangular face; the rhombicuboctahedron has a
rectangular face instead of squared; the truncated octahedron has a hexagonal face
where a squared one should be; and a triangular and a squared face are missing in the
rhombicosidodecahedron. In addition to the spiegature, many Archimedean Solids
are shown with two drawings in parallel perspective, each standing in a different
type of face. The truncated dodecahedron in Fig. 27 is an example. For the truncated
tetrahedron, the rhombitruncated cuboctahedron and the rhombicosidodecahedron,
only one degraded is shown. The rhombitruncated icosidodecahedron is only shown
with a partial net, probably because it never got to be built as a three-dimensional
model.

Barbaro explains how Chapters VIII to XV, XVII and XXI are obtained from suit-
able truncation of the vertices of another body, after dividing its edges into specific
parts. He also declares the cuboctahedron is derivable from the cube and the octahe-
dron, similar to the icosidodecahedron, that derives from the dodecahedron and the
icosahedron. Field (1997, p. 271) notes that Barbaro was the first to recognize this.
The Anonymous Author, presumably earlier, had reached the same conclusion not
only regarding the cuboctahedron and the icosidodecahedron but also in relation to
far more complex cases.

The operations with which Barbaro explains how the cuboctahedron, the truncated
octahedron, the icosidodecahedron, and the truncated icosahedron are obtained are
in precise alignment with the conclusions by Piero, Pacioli/Leonardo and Diirer. The
truncated tetrahedron, however, is succinctly explained as the body formed of four sur-
faces of six sides and four triangles with equal sides being born from the pyramidal

61 In the edition we analysed, only Chapters II-VI have shadowing but Williams and Monteleone (2021, pp.
206, 201) reveal that other versions include shadowing in the truncated tetrahedron and the cuboctahedron.
62 Having analysed the plan and elevation constructions of the pentagonal dodecahedron by Barbaro,
Andersen (2009, pp. 156-158) concludes that, although several procedures that Barbaro applied were not
obvious, the perspective had been correctly determined. Monteleone (2019, 76) shares a similar opinion in
his analysis of the drawing presented by Barbaro.
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Fig.25 Archimedean Solids by Daniele Barbaro (1568, pp. 57, 58, 61, 64, 68, 71) in La Pratica della Per-
spettiva: Spiegature of the truncated tetrahedron (Chapter VII), cuboctahedron (Chapter VIII), truncated
cube (Chapter IX), rhombicuboctahedron (Chapter X), truncated octahedron (Chapter XI), and icosidodec-

ahedron (Chapter XII)
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Fig. 26 Archimedean Solids by Daniele Barbaro (1568, pp. 76, 82, 88, 94, 100): in La Pratica della
Perspettiva: Spiegature of the truncated dodecahedron (Chapter XIII), truncated icosahedron (Chapter XIV),
rhombitruncated cuboctahedron (Chapter XV), rhombicosidodecahedron (Chapter XVII), rhombitruncated
icosidodecahedron (Chapter XXI)
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Fig. 27 Degraded of another body that is born from the dodecahedron standing on a decagonal and a
triangular face by Barbaro (1568, pp. 78, 81), and an axonometric representation similar to the latter

body.%® The procedures for the truncated cube and rhombicuboctahedron are correctly
explained. Regarding the truncated dodecahedron, the explanation Barbaro (1568, p.
76) gives is not fully correct because the division of the edges of the dodecahedron into
three equal parts, “partendo i lati del dodecaedro in tre parti eguali”, does not produce
regular faces alone. The same concerning the explanations on the rhombicosidodecahe-
dron, rhombitruncated cuboctahedron and rhombitruncated icosidodecahedron. Even
so, the two perspective drawings of the truncated dodecahedron are mostly precise, as
Fig. 27 shows. From these and similar drawings, we conclude that Barbaro deduced
his conclusions while observing three-dimensional models that had been crafted from
planar nets with regular faces. If he had used planar nets derived from the incorrect
division of regular faces, the perspective drawings would not have been as precise as
they are.

An interesting case is the truncated cube in Fig. 28. To draw its perfect, Barbaro
explains how an octagonal face is obtained: two squares with their angles at equal
distances, bede, fghi, form the said surface of eight sides.®* Regardless of a missing
edge and two vertical faces that do not quite seem to be octagonal, the degraded of the
second body born from the cube is very close to our axonometric representation on
the right. Barbaro also shows the truncated cube standing on a triangular face, but the
degraded in Fig. 29 has many inconsistencies compared with a similar axonometric
representation. In the perfect, Barbaro assumes the outline is a dodecagon with vertices
on the two surfaces of six unequal sides bcdlkp and ghimef, equidistant from each
other.9> Williams and Monteleone (2021, p. 212) have interpreted this perfect as an
adaptation of the “construction from the design of the Roman Theatre based on 4
squares in the circle” that the authors assert Barbaro certainly knew.

Figure 30 illustrates that each set of vertices that Barbaro assumed to outline a
square, in fact, outline a rectangle. The difference, however, is practically insignificant:

63 Barbaro (1568, p. 56): “dal corpo piramidale nasce il corpo formato di quattro soperficie di sei lati, e di
quattro trianguli di lati eguali.”

64 Barbaro (1568, p. 61): “due quadrati con gli anguli loro egualmente distanti, bede, fghi, questi formano
la detta soperficie di otto lati.”

65 Barbaro (1568, p. 62): “Ma se il detto corpo si posera nel piano con la figura triangulare, sia sopra’l
centro a, fatto uno circulo di tanta circonferenza, che descritte in quello due sopreficie di sei lati ineguali
bedlkp, e ghimef, egualmente distanti una dall’ altra.”
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Fig.28 Perfect and degraded of another irregular body that is born from the cube standing on an octagonal
face by Barbaro (1568, pp. 62, 63), and a similar axonometric representation

Fig.29 Perfect and degraded of another irregular body that is born from the cube standing on a triangular
face by Barbaro (1568, p. 63), and a similar axonometric representation

in a truncated cube with edge 10 and two triangular faces in the orientation of plane
xy, each set of 4 vertices outline a rectangle 26,131 x 24,142 that projects in xy as
25,485 x 24,142. This detail alone, of course, does not justify the problems in the
degraded, but examining a model of the truncated cube in such an unusual and difficult
to draw position and arriving at these conclusions is revealing of Barbaro’s originality
and insightful curiosity.

Regarding the inaccuracies in the graphic descriptions of La Pratica della Perspet-
tiva, it should be emphasized that Barbaro may not have been directly responsible for
all, even if, according to Field (1997, p. 271), the draughtsman who was assisting him
in the production of his treatise “simply made faithful copies of the drawings he was
given”. Barbaro was aware that it might not always be so, and a clear sign of this is
when, having understood how imprecise the degraded of the second irregular body
that is born from the cube (Fig. 29) would be, Barbaro warns the reader at the end of its
explanation by mentioning the person who was assisting him, denoting that “the error
of the engraver in figure 12 will be corrected with the rules that have been given”.%®

With the noteworthy exception of the Anonymous Author, the way in which Barbaro
discusses solid geometry concepts is different and more complex than his predecessors
since he meticulously explains (although not without flaws) how to obtain each ortho-

66 This citation is the translation by Williams and Monteleone (2021, p. 214) of the words that Barbaro
(1568, p. 63) wrote: “e si acconciera I’errore dello intagliatore nella figura 12 con le regole dette.”
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Fig. 30 Comparison of the perfect in Fig. 29 with the orthographic projection of the truncated cube in a
similar position and corresponding axonometric representation

graphic projection and perspective drawing on most of the solid bodies he describes.
Barbaro shows many of these in different positions, some recognizably difficult to
draw in perspective, and introduces nine non-uniform polyhedra, most of which were
unkown before 1568. His contribution to the history of polyhedra is coherent and
systematic and one of the most significant in the sixteenth century.

Lorenz Stoer

Lorenz Stéer was a highly productive artist who drew numerous polyhedral forms,
many inside others and others still in strange architectural settings. Jamnitzer’s influ-
ence is evident in many solid bodies. Still, those unknown at the time and different
from Perspectiva Corporum Regularium may have been adapted from Jamnitzer’s
drawings that had not been included in his book or from another author. Stéer himself
may have also discovered these new forms.

Stoer was born in Nuremberg before 1555 and moved to Augsburgin 1557, where he
came to die sometime after 1599. In 1567, Stoer (1567) published eleven prints under
the title Geometria et Perspectiva. According to Wood (2003, 249), all seem to have
been drawn freehand before printing. No Archimedean Solids are described in these
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Fig.31 Cover for an edition of
Geometria et Perspectiva by
Lorenz Stoer (Source)

prints, only on the title page, in a form composed of a cube and a cuboctahedron. Stoer
also drew a cuboctahedron, in Leonardo’s style, on the cover page®’ for Geometria et
Perspectiva that is shown in Fig. 31.

In the upper right corner of Fig. 31, Stoer drew a rectified truncated octahedron,
which is obtained by truncating the vertices of the truncated octahedron in the edges’
midpoints. There are drawings of a similar solid body in two books published the
year after Geometria et Perspectiva: Perspectiva Corporum Regularium and La Prat-
ica della Perspettiva. Jamnitzer (1568) shows the rectified truncated octahedron in
Plates B.II and B.IV, while Barbaro (1568) describes the “corpo di sei quadrati, e otto
hexagoni” in pages 90-93, with a spiegatura, a perfect, and a degraded. Assuming
the cover in Fig. 31 was printed before 1568, Stéer would have described the rectified
truncated octahedron before Jamnitzer. However, we do not know much about how the
artists that were active in Nuremberg worked with each other. Stoer could have known
Jamnitzer’s book while it was still in a manuscript version or vice-versa, Jamnitzer
could have known Stder’s works®.

From around 1562 to 1599, Stoer explored the Platonic and Archimedean Solids
and many other polyhedral forms in 336 exuberant watercolours, that, according to
Wood (2003, p. 276), could have been designed as intarsia motifs. They were never
published in printed form and were compiled in a specific sequence by someone who

67 According to Wood (2003, pp. 243), six single-leaf woodcut prints appeared in a print market in Munich
in 1997 that were “completely unknown to the scholarly literature”. Figure 31 is similar to one of the six
woodcuts, specifically the one Wood (2003, p. 245) shows as Fig. 13, entitled “Geometric Solids and Figures
among Architectural Ruins”.

68 Andrews (2022, p. 196) says that “Stder (...) was an active participant in a learned community of artisans
who were all following each others’ experiments with geometry, owned each other’s books, and executed
copies of geometries they found interesting or visually appealing”.
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has not been identified. Bound together around 1600 under the title Geometria et
Perspectiva Corporata et Regulata, the watercolours were in the possession of the
library of the bishop of Freising in 1696, coming to the University Library of Munich
in 1826.7°

There are eleven Archimedean Solids in these watercolours,”! some of which in
non-uniform versions, drawn individually or in peculiar arrangements with or within
other solid bodies. Figure 32 shows the truncated cube, cuboctahedron, rhombicuboc-
tahedron, truncated tetrahedron, truncated octahedron, icosidodecahedron, truncated
dodecahedron, rhombitruncated icosidodecahedron, rhombicosidodecahedron, and
truncated icosahedron. The last watercolour in Fig. 32 shows a solid body with aug-
mentations on the hexagonal and rectangular faces of a non-uniform rhombitruncated
cuboctahedron. In many watercolours, certain solid bodies might have been intended
as regular-faced, but their drawings do not depict them as such.

Stoer announced in 1555 that he would publish a second book, but he never accom-
plished such a project. Possible reasons may have been the impossibility of finding
a noble patron to support the publication, Stoer concluding that his work was not
original enough, or that he was not sufficiently organized to accomplish the project,
as suggested by Wood (2003, p. 246), who adds that Stoer may never have “intended
any such thing.” Even if we never get to discover Stder’s intentions, his inventiveness
certainly deserves a closer look.

1

Rafael Bombelli and Simon Stevin

Our survey on the systematic treatments of Archimedean Solids in the sixteenth century
would not be complete without the mathematicians Rafael Bombelli and Simon Stevin,
who strongly influenced the academic development of mathematics. Stevin, according
to Andersen (2009, pp. 269-289), was also important to the development of perspective
theory in the Netherlands.

69 Wood (2003, p. 242) notes that “various drawings in the album bear the dates 1562, 1564, 1584, and
1599. They seem to have been bound together about 1600.

70 According to Gluch (2008, p. 842), who adds that the “drawings of geometric solids in seemingly endless
variety, (...) can largely be grouped into four series. The first and second series mainly present the Platonic
solids in different positions and combinations, with closed and diaphanous surfaces. In comparison, the
third group shows advanced designs and an increased playfulness. Here Stoer depicts triangles, wreaths,
pyramids, and cones in a multitude of variations.” On the other hand, Andrews (2022, p. 193) suggests that
“the drawings were compiled by someone with an awareness of the underlying structure ordering Stoer’s
geometrical investigations, but without the patience to make sure the bound volume consistently reflected
it.”

71 Stoer (1600) drew the following Archimedean Solids (some in clearly non-uniform versions) in the
following pages of Geometria et Perspectiva Corporata et Regulata: cuboctahedron (title page, and pp. 18,
32, 39, 87, 140, 150, 156, 187, 188, 238, 242, 250, 258, 288, 290, 308, 312, 332), icosidodecahedron (title
page, and pp. 118, 133, 183, 184, 185, 190, 191, 293, 332, 333), truncated tetrahedron (pp. 53, 55, 56, 62,
102), truncated cube (pp. 17, 33, 38, 149, 230, 234, 248, 266, 289, 291, 324, 334), truncated octahedron (pp.
79, 81, 83, 86, 87, 175, 198, 201, 248, 259, 276, 300, 314, 334), truncated dodecahedron (p. 119), truncated
icosahedron (pp. 134, 318), rhombicuboctahedron (title page, and pp. 24, 34, 39, 151, 188, 253, 287, 295,
299, 312, 332), rhombicosidodecahedron (pp. 171, 178, 197, 200), rhombitruncated cuboctahedron (p. 10),
and the rhombitruncated icosidodecahedron (pp. 120 and 167).
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Fig. 32 Archimedean Solids drawn by Stder (1600, folios 38, 39, 62, 87, 118, 119, 120, 197, 134, 10)
in Geometria et Perspectiva Corporata et Regulata: truncated cube, cuboctahedron, rhombicuboctahedron
(non-uniform), truncated tetrahedron, truncated octahedron, icosidodecahedron, truncated dodecahedron,
rhombitruncated icosidodecahedron, rhombicosidodecahedron, truncated icosahedron, and rhombitrun-
cated cuboctahedron
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Rafael Bombelli (1526—1572) wrote the treatise L’ Algebra, which was published in
1572. Bombelli intended to publish other volumes in addition to Books I, IT and III, but
that would not occur during his lifetime. In 1923, the historian of mathematics Ettore
Bortolotti (1866—1947) discovered the manuscript B 1569, with additional studies that
Bombelli had developed, in the Archiginnasio Library in Bologna. In 1929, Bortolotti
(1929) edited and published these as L’ Algebra Opera di Rafael Bombelli da Bologna
Libri 1V e V Comprendenti “La Parte Geometrica” Inedita. The part that Bortolotti
(1929, p. 23) names Libro Quinto deals with the application of algebra to geometric
problems and finishes with a description of the five regular and three semiregular
bodies, all of which are illustrated with planar nets. Figure 33 shows the nets of the
octahedron, as well as those of the truncated tetrahedron, cuboctahedron and truncated
cube, which Bombelli/Bortolotti (1929, pp. 293, 296) respectively name as “Tetraedro
Tronco”, “Cubottaedro” and “Cubo Tronco”. The nets of the cuboctahedron and the
truncated cube are strikingly different from others we have seen until now. The net of
the truncated tetrahedron, on the other hand, is the same as the Anonymous Author
and Barbaro. The same happens with the net of the octahedron, as we will later show.

Before explaining how the octahedron and the truncated tetrahedron are obtainable
from the tetrahedron, Bombelli/Bortolotti (1929, p. 293) note that other bodies with
equal edges are obtainable from the regular ones, the majority of which have different
faces, depending on how the edges are divided:

Of'the above five bodies, an infinite number of equal sides are born and of equal
solid angles, but not of similar surfaces, because (...) those which have similar
surfaces cannot be other than five. Of these five, by cutting their angles in two
ways, other bodies of equal sides will be born, and the majority with dissimilar
surfaces.”

Bortolotti (1929, p. 302) says there is no certainty whether Bombelli ever developed
any other studies on the semiregular solids or if these were lost. Given his different con-
tribution to the subject, it would have been interesting to know any other conclusions
Bombelli might have arrived at.

Simon Stevin (1548-1620) wrote Problematum Geometricorum’ that was pub-
lished in 1583 and includes the ten Archimedean Solids shown in Fig. 34. The subtitle
in which they are presented is Third Book on the description of the five Regulars,
five augmented Regulars and nine Truncated regular bodies, inscribed in the same
sphere.”* We have translated the word “auctorum” in the subtitle to augmented, even
though a direct translation would be author because, in Medieval Latin, it would also

have meant the one who gives increase’.

72 Bombelli/Bortolotti (1929, p- 293): “Delli soprascritti cinque corpi ne nascano infiniti de lati eguali, et
d’ angoli solidi pari, ma non di superfici simile, perché come si e detto quelli che hanno le superfici simili
non possono essere se non cinque; de quali cinque, tagliando li lor angoli in due modi, ne nasceranno altri
corpi de lati eguali, et la maggior parte di superfici dissimili.”

73 We are grateful to Dirk Huylebrouck for sharing information about the books Simon Stevin wrote.

74 Stevin (1583, p. 46): “Liber Tertivs de qvinqve regvlarium, qvinque auctorum Regularium & nouem
Truncatorum regularium corporum eidem sphaerae inscriptibilium descriptione.”

75 According to the WordSense Online Dictionary (2023).
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Fig.33 Planar nets of the octahedron and three Archimedean Solids by Rafael Bombelli (1929, pp. 285, 294,
297,299) in Manuscript B 1569 of Archiginnasio Library di Bologna: truncated tetrahedron, cuboctahedron,
and truncated cube

In “Definitiones quinque auctorum corporum regularium”, Stevin (1583, p. 49)
explains that adding a tetrahedron to the faces of a regular body produces five aug-
mented new ones. Similar to Diirer, whose treatise Stevin knew, he does not illustrate
them. In 1509, Pacioli introduced these concave deltahedra in Divina Proportione and
Leonardo drew them in solidum and vacuum modes. If Stevin knew Divina Propor-
tione, he may have decided to name them “auctorum” to distinguish his studies from
Luca Pacioli, who used the term “elevatum”.”® These augmented bodies are not men-
tioned collectively by any name in Underweysung der Messung nor in its translation

76 Pacioli (1509) describes the “Tetraedrum elevatum”, “Hexaedrum elevatum”, “Octaedrum elevatum”,
“Icosaedrum elevatum”, and “Dodecaedrum elevatum” in Chapters XLVIIIL, XLIX, L, LI, LII of Pars Prima;
Leonardo illustrates them in Plates V, VI, XI, XII, XIX, XX, XXV, XXVI, XXXI, XXXII. Stevin (1583,
p- 49) names the same solid bodies as “tetraedrum auctum”, “Hexaedrum auctum”, “octoedrum auctum”,
“dodecaedrum auctum”, and “icosaedrum auctum”.
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into Latin by Joachim Camerarius.”” In 1568, Barbaro (1568, pp. 105-107) includes
planar nets for these augmented bodies in La Pratica della Perspettiva, also without
giving them names. Since the nets were difficult to interpret, Barbaro numbers every
face to explain how to assemble each model.

Of all the sources Stevin might have had for his studies on solid geometry’8, the
first edition of Underweysung der Messung or its translation into Latin are the most
evident since the augmented and truncated bodies are the same as Diirer, as well as
their planar nets (Cf. Figure 12 with 34). The one missing is the solid body that Diirer
did not describe in 1525, the truncated dodecahedron. The net that Stevin presents is
an adaptation of the net Diirer had drawn for the dodecahedron. In Definitiones 12—
22, Stevin (1583, 50-54, 73-83) describes nine Archimedean Solids as “truncatorum
corporum regularium”, the truncated version of the regular bodies adding, in some
cases, short notes. Their planar nets are shown in Distinctiones 11-19. After Definitio
22, Stevin presents a series of problems discussing the circumsphere that contains the
vertices of the bodies he described, after which he summarizes his conclusions with
a list of names and line segments to compare the diameter of the “circumscriptibilis
sphera” with the edge length of each solid body. Similar to the augmented bodies,
Stevin (1583, p. 46) proposes names for the truncated bodies because he has found no
one who had done it before:

...we could not find the origin or the names of such bodies in anyone, but we
thought they should not stand without a certain foundation, then we saw that
those derived from the regular bodies were many, for one of them was a trun-
cated tetrahedron, another three, were truncated cubes, and the fifth, a truncated
octahedron: the truncation of the sixth body was unknown to us who write this,
but we do not doubt that it had its origin in the truncated cube.”

The sixth body that Stevin mentions is the snub cube, which Diirer also had named
“Sechste Corpus”. Stevin treats it separately from the other truncated bodies. More
complex than the names Kepler would choose decades later, Stevin’s terminology for
the truncated bodies® is meant to explain how each is obtained from another. The

77 Camerarius (1532, p. 150) translates the words of Diirer into: “In his etiam corporibus super singulas
superficies planas poteris statuere punctum acutum, altum, aut depressum facere, tot quidem angulorum
quot fuerint anguli in siperficie super quam steterit punctus.”. We translated these into: In these bodies, too,
you will be able to turn each flat surface into a sharp point, adding height or introducing a depression, with
as many angles as there are angles in the surface on which the point rests.

78 According to Crone, Dijksterhuis, Forbes, Minnaert and Pannekoek (1955, pp. 124-125), “All Stevin
had to go by was Euclid’s Elements, Book XIII, the so-called X1Vth, XVth, and XVIth books, which Clavius
also had translated, and Diirer’s Underweysung der Rechnung mit dem Zirckel und Richtscheyt of 1525”.

79 Stevin (1583, p.46): “...sed cum talium corporum originem vel nomina apud neminem inveniremus tamen
existimaremus non sine aliquo certo fundamento consistere, vidimus tandem regularia corpora ipsorum esse
scatebram, nam illorum vnum, erat tetraedrum truncatum, altera tria, truncate cubi, et quintum, truncatum
octoedrum: Sexti vero corporis truncatio haec scribentibus nobis erat ignota, quamvis ex truncato cubo
originem habere non dubitamus.”

80 Stevin names the first nine bodies in Fig. 34 as: “truncatum tetraedrum per laterum tertias” (truncated
tetrahedron), “truncatus cubus per laterum divisiones in tres partes” (truncated cube), “bitruncatus cubus
primus” (rhombicuboctahedron), “bitruncatus cubus secundus” (rhombitruncated cuboctahedron), “Trun-
catus cubus per laterum media”, also named “truncatum octoedrum per laterum media” (cuboctahedron),
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Fig. 34 Archimedean Solids by Simon Stevin (1583, pp. 73-83) in Problematum Geometricorum: trun-

cated tetrahedron, truncated cube, rhombicuboctahedron, rhombitruncated cuboctahedron, cuboctahedron,
truncated octahedron, truncated dodecahedron, icosidodecahedron, truncated icosahedron, and snub cube

@ Springer



V.Viana

last words in those resulting from the division of the edges of a regular body into
two equal parts are “per laterum media”, which means the vertices were truncated
in the edges’ midpoints. Those in which the edges are divided into three equal parts
finish with “per laterum tertias” because the edges were split into thirds. For those
in which the edges were divided into three unequal parts, the last words are “per
laterum divisiones in tres partes”. Stevin names the rhombicuboctahedron and the
rhombitruncated cuboctahedron as “bitruncatus cubus primus” and “bitruncatus cubus
secundus”, and explains how to obtain them in Definitiones 15 and 16, respectively,
from the division of the edges of the cube into three and five unequal parts. Stevin (1583,
p. 47) declares to have discovered three new bodies in Definitiones 20, 21, and 22: the
truncated dodecahedron, the icosidodecahedron (obtained from the icosahedron), and
the truncated icosahedron, yet denoting that:

If by chance they had been discovered by another one before us (of which we
almost have no doubts, owing to the great diligence of the ancients in the search
for forms), let us declare that we were ignorant about this. As such, we announce
such facts in defence of our invention.8!

The “truncatum dodecaedrum per laterum media” and the “truncatum icosaedrum
per laterum media”, respectively treated in Definitiones 19 and 21, are icosidodecahe-
dra. In additional notes, Stevin recognizes that Definitiones 19 and 21,32 are the same
(as well as the cuboctahedra, treated in Definitiones 13 and 17). The fact that Stevin
declares the [truncatum] “icosaedrum per laterum tertias” or truncated icosahedron as
his discovery, confirms that he was not studying the posthumous edition of Under-
weysung der Messung. Otherwise, he would have known that Diirer had described it,
as well as the icosidodecahedron. Before Diirer, we recall, Pacioli had described the
icosidodecahedron and Piero, the truncated icosahedron. Leonardo and Barbaro also
described the truncated dodecahedron. Stevin devises the icosidodecahedron from the
icosahedron but Barbaro, in La Pratica della Perspettiva, which Stevin does not seem
to know, had mentioned this 15 years earlier and, before him, the Anonymous Author.
In the Appendix, Stevin (1583, pp. 82—-83) addresses the snub cube a second time:

In reality, the arrangement of the planes of the truncated body (of which mention
was made at the beginning of this Book 3), of whose method of truncating I was
not aware when writing these facts, is as follows: Let be arranged, as shown

Footnote 80 continued

“octoedrum truncatum per laterum tertias” (truncated octahedron), “truncatum dodecaedrum per laterum
divisiones in tres partes” (truncated dodecahedron), “truncatum dodecaedrum per laterum media” also
named “truncatum icosaedrum per laterum media” (icosidodecahedron), and [truncatum] “icosaedrum per
laterum tertias” (truncated icosahedron).

81 Stevin (1583, p- 47): “Si forte ab alio ante nos sunt inventa (de quo feré non dubitarem propter magnam
diligentiam veterum in formarum inquisitione) fatemur hoc nos ignorare. Quare vt pro nostro invento talia
edimus.”

82 Stevin (1583, p. 53) says that This body is similar to the icosahedron truncated in the edges’ midpoints
treated in the subsequent Definitio 21 which we translated from: “Hoc corpus simile est truncato icosaedro
per laterum media sequentis 21 definitionis”. In the other note, Stevin (1583, p. 54) says that This body
is similar to the dodecahedron truncated in the edges’ midpoints in the precedent Definitio 19, translated
from: “Hoc corpus simile est truncato dodecaedro per laterum media precedentis 19 definitionis.”
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below, six squares and 36 triangles. But because of our unawareness of how the
truncation occurred and its true origin, we could not build this geometric body
inside a sphere as we did to the other bodies.3?

Stevin mentions the sixth solid body, but he admits that he could not determine the
diameter of its circumsphere and that he does not know how this solid body is obtained.
This was also probably why Barbaro did not include the snub cube in his treatise.

Summarizing consistent studies on the Archimedean Solids of the fifteenth and
sixteenth centuries

Table 1 summarizes our analysis of the studies on the Archimedean Solids in the
fifteenth and sixteenth centuries that were more consistent and systematic. This anal-
ysis is not exhaustive since our survey for historical descriptions of the Archimedean
Solids (and polyhedra in general) is ongoing. Some drawings in these studies depict
non-uniform versions of Archimedean Solids, but the Table does not identify which
ones, as this was mentioned before. The horizontal sequence in which the Archimedean
Solids are listed in the Table matches the degree of complexity in obtaining them.?*

83 Stevin (1583, pp- 82-83): “Planorum vero dispositio corporis truncati (cuius est facta mentio in principio
huius 3. lib.) cuius truncandi modus haec scribentem me latebat talis est: Disponantur, vt infra, sex quadrata
& 36 trianguli. Sed propter ipsius truncationis, seu verae originis ignorantiam non potuimus hoc Geometrice
antedictae sphaerae inscriptibile cum ceteris construere.”

84 The following synthesizes the most common procedures to model the Archimedean Solids, which are
detailed in Wenninger (1975, pp. 20-32), Pugh (1976, pp. 15-20), Gheorghiu and Dragomir (1978, 207—
220), and Ostermann and Wanner (2014, pp. 282-287)

e Cuboctahedron: truncating the vertices of the cube or octahedron in the edges’ midpoints;

e Icosidodecahedron: truncating the vertices of the dodecahedron or icosahedron in the edges’ midpoints;

e Truncated Tetrahedron: dividing the edges of the tetrahedron into three equal parts and truncating its
vertices;

e Truncated Octahedron: dividing the edges of the octahedron into three equal parts and truncating its
vertices;

e Truncated Icosahedron: dividing the edges of the icosahedron into three equal parts and truncating its
vertices;

e Truncated Cube: dividing the edges of the cube into three unequal parts and truncating its vertices;

e Truncated Dodecahedron: dividing the edges of the dodecahedron into three unequal parts and trun-
cating its vertices;

e Rhombicuboctahedron: dividing the edges of the cuboctahedron into two equal parts, truncating its
vertices, and modifying the rectangular faces into squares;

e Rhombicosidodecahedron: dividing the edges of the icosidodecahedron into two equal parts, truncating
its vertices, and modifying the rectangular faces into squares;

e Rhombitruncated cuboctahedron: dividing the edges of the cuboctahedron into three equal parts, trun-
cating its vertices, and modifying the irregular faces into regular;

e Rhombitruncated icosidodecahedron: dividing the edges of the icosidodecahedron into three equal
parts, truncating its vertices, and modifying the irregular faces into regular;

e Snub cube: rotating the faces of the cube (clockwise/counterclockwise) and expanding them (or vice-
versa) until regular triangular faces fill the space between them;

o Snub dodecahedron: rotating the faces of the dodecahedron (clockwise/counterclockwise) and expand-
ing them (or vice-versa) until regular triangular faces fill the space between them.
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Archimedean solids in the fifteenth and sixteenth centuries

Authors of the fifteenth and sixteenth centuries who described only a few or no
Archimedean Solids have not been included.®> We also did not include La Prat-
ica di Prospettiua by Lorenzo Sirigatti (1596, pp. 61, 64 Libro Secondo) in our
study (although Sirigatti drew the truncated octahedron, the cuboctahedron, the rhom-
bicuboctahedron, the icosidodecahedron and a non-uniform truncated icosahedron),
because the book was published near the end of the sixteenth century. We also omitted
De varia commensuracion para la esculptura y architectura (1585, 33—42) by Juan
de Arfe y Villafafie (1535-1603), because the drawings of the Archimedean Solids
are copies of Hirschvogel’s drawings without most of the auxiliary lines.% Villafafie
did not include the rhombicosidodecahedron in his book, probably because he only
focused on the solid bodies to which Hirschvogel presented complete descriptions.

In 1619, Johannes Kepler (1619, pp. 47-66) published a description of the thirteen
Archimedean Solids in Book II of the Harmonices Mundi.?” In the opinion of Field
(1997, p. 269), the fact that Kepler does not credit any sources for his findings may
derive from his recognition that Diirer would have described them all if he could.®®
Kepler knew Underweysung der Messung and even cited it (1619, p. 39) but not in
relation to solid geometry. Kepler may have also known Divina Proportione and La
Pratica della Perspettiva, but if he did, he probably underestimated them.?® Regarding
Hirschvogel and Stoer, Andrews (2022, p. 209) tells us that the University of Tiibingen,
Kepler’s alma mater, acquired Geometria and Geometria et Perspectiva, but we do not
know if Kepler knew any of these books. Johannes Kepler was an absolute pioneer in
his scientific creativity, and his work is essential to the history of polyhedra, but while
most of the authors we discussed were rediscovering the irregular bodies by themselves
or with very little background material to work on, Kepler based his conclusions on

85 Examples of the former are: Rafael Bombelli, who described three Archimedean Solids; Heinrich
Vogtherr the younger (1490-1556) whose collection of portraits c. 1545 depicts a truncated cube and a
cuboctahedron, as noted by Williams (2021, p. 29); and Heinrich Lautensack, whose Des Circkels unnd
Richtscheyts, auch der Perspectiva (1564) only includes a cuboctahedron. Examples of the latter are:
Hieronymus Rodler (1531), Wolfgang Schmid (1539), Erhard Schon (1538-1542), Nicolo Tartaglia (1560a;
1560b) and Jehan Cousin (1560). Andersen (2009, pp. 739-746), Friedman (2019, pp. 67-77) and Wade
(2012, p. 274) mention other authors still who published several studies on perspective and solid geometry,
such as Jean de Aefe, Henry Billingsley, John Dee, Jean Dubreill, Francesco Maurolico, Erhard Ratdolt,
Peter Ramus, and Michael Stifel. They have not been included in this study, either because they published
their works after 1600 or because we were not able to access them.

86 According to Andrews (2016a, p. 420), “In the first book of his “De Varia commensuracion para L.a
escultura y arquitectura (1585), Juan de Arfe (1535-1603) copies Hirschvogel’s polyhedral drawings but
chooses to temper the overabundance of construction lines by stripping away half of them to reveal the net
on its own.”

87 In the table of contents, Kepler (1619) names Book II as the Architectonic: “Secundus Architectonicvs,
seu ex Geometria Figvrata, De Figurarum Regularium Congruentia in plano vel solido.”

88 Field (1997, p. 269): “We are free to imagine that he [Diirer] in fact knew all the Archimedeans, for
judicious replacement of squares by pentagons in the nets he provides will give us all thirteen uniform
polyhedra. Kepler, who certainly knew Diirer’s work, may have recognized this - which would help to
explain why he claims no originality for his own work on the Archimedeans.”

89 Field (1997, p-273) notes that “Kepler seems to have had little esteem for most of his own and immediately
preceding generations”, especially those he criticized for “their lack of sustained mathematical argument,
and their neglect of precise definitions,” and adds that Kepler might have underestimated, or even disregarded
the studies by Piero, Pacioli, Leonardo and Barbaro.
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the Archimedean Solids on their configuration described by Pappus in the Synagoge,
whose translation into Latin was published in 1588.

Drawing from models and modelling from nets

Many images of solid bodies from the late fifteenth and early sixteenth centuries
were undoubtedly drawn from observing three-dimensional models® but due to their
fragility, none arrived at our age. Pacioli (1509, folio 22, Pars Prima) speaks about
such three-dimensional models when he tells us that his poverty does not allow him
to use other than materials of inferior quality, de vil materia, to make the models
he believes would be worthy of the most precious metal and gemstones, de pretioso
metallo e fine gemme.

In the Portrait of Luca Pacioli attributed to Jacopo de Barbari, Pacioli is portrayed
with another person®! and, among other items, a glass model of arhombicuboctahedron
drawn in parallel perspective, finely painted and reflecting a nearby window (Fig. 35).
Comparing it with Fig. 8, we notice that the position in which the rhombicuboctahedron
was drawn is substantially different from the one in Divina Proportione. Moreover,
it does not show an evident relation, in terms of perspective, with the rest of the
picture. According to Séquin and Shiau (2018, p. 28), the depiction of what would be
reflected on the surface of this rhombicuboctahedron has several flaws that indicate the
artist may not have been observing a glass container of such dimensions, suspended
and half-filled with liquid. The authors suggest that this rhombicuboctahedron was
sketched separately from the painting, perhaps from a smaller model or a geometrical
construction, before being copied onto the canvas, which strengthens our perception
that the original drawing was done while observing a physical model from above and
very close to the observer, most likely in the artist’s own hands.

If Pacioli and Leonardo studied solid bodies from physical models, there had to
be a method to craft them; otherwise, making new ones would not have been possi-
ble. Some of the bodies Leonardo drew would have been extremely difficult (if not
impossible) to carve or sculpt directly from wood or a block of stone without a model
to follow. Conceiving solid bodies that were unknown at the time would also have
been complicated. Pacioli, we recall, was the first to describe the rhombicuboctahe-
dron after Archimedes.®? The act of assembling polygonal-shaped paper or cardboard
panels to materialize a three-dimensional form in the late fifteenth and early sixteenth
centuries, even if unstable or imprecise, may not have been unknown to those who
studied solid geometry more seriously. References to adjoining polygonal shapes can

90 The following authors discuss the possibility that Pacioli, Leonardo, Diirer, and other authors used
material models of polyhedra: Malkevitch (2013, p. 57), Kemp (1992, p. 62), Field (1997, p. 262), Peiffer
(2000, p. 87), Friedman (2019, pp. 37-38, 84), Scolari (2015, p. 219), and Andrews (2022, pp. 47-48).
Field (1997, p. 268) notes that “Kepler, who was a very good mathematician indeed, made actual models
of geometrical solids he was investigating.”

91 The identity of this person as Guidobaldo da Montefeltro, the Duke of Urbino, according to Baldasso
(2010, pp. 97-98), seems to be the most plausible.

92 Coxeter et al. (1954, p. 402) note that Pacioli added the icosihexahedron, which we know as rhom-
bicuboctahedron, to his translation of Piero’s Libellus into Italian.
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Fig.35 Detail of “Portrait of
Luca Pacioli” (c. 1500)
attributed to Jacopo de Barbari
(c. 1460/70-before 1516)
(Source)

be recognized as early as in the Timaeus, when Plato describes how the cube is formed
by assembling six squares from four isosceles right triangles:

Now the first of the elemental triangles ceased acting when it had generated these
three solids, the substance of the fourth kind being generated by the isosceles
triangle. Four of these combined, with their right angles drawn together to the
center, produced one equilateral quadrangle; and six such quadrangles, when
Jjoined together, formed eight solid angles, each composed of three plane right
angles; and the shape of the body thus constructed was cubic, having six plane
equilateral quadrangular bases.”>

According to Friedman (2019, pp. 83-85), Pacioli was the first known author to
explore folding paper as a mathematical procedure in De Viribus Quantitatis, an unfin-
ished manuscript on recreational mathematics that he wrote with Leonardo.®* But if
Pacioli ever folded pieces of paper or assembled polygonal-shaped plaques in wood
or cardboard to build three-dimensional models, he abstained from mentioning it in
Divina Proportione. Friedman (2019, pp. 49—50) mentions a net of the regular dodeca-
hedron from the book Diirers Gestaltlehre der Mathematik und der Bildenden Kiinste.
According to Max Steck, the author of this book, Leonardo drew the net shown in
Fig. 36 (which he identifies with the caption Pacioli. Dodecahedron net from “Divina
Proportione” Venice 1509. Drawing by Leonardo da Vinci®?) for a later edition of
Divina Proportione.®® This image is no other than a test print from the woodblock
in the Albertina Museum shown in Fig. 36. The smaller pentagons inside the larger
are the faces of a snub dodecahedron inscribed in the dodecahedron. This test print

93 This paragraph joins Sections 55b and 55c¢ of Plato (1925), translated by Lamb.

94 Friedman (2019, pp. 83-85) identifies the act of Pacioli folding a rectangular piece of paper to explain
“how to make immediately a material set square accurately without a compass” as “the first clearly expressed
reference to folding, which conceptualizes it in a geometrical context.”

95 Max Steck (1948, Tafel XVIII): “Abb. 67. Pacioli. Dodekaeder-Netz aus “Divina Proportione” Venedig
1509. Zeichnung von Leonardo da Vinci”.

96 Andrews (2016b, p- 37) notes that Steck did not provide evidence of the location of this drawing, adding
that “If it exists at all, the drawing was more likely drawn or inserted into the margins of a copy of Divina
Proportione sometime after the publishing of the Underweysung”.
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Fig.36 Printing woodblock in the Albertina Museum (HO2006/723), drawn by an Anonymous Author after
1538. Reproduction of Tafel X VIII of “Diirers Gestaltlehre der Mathematik und der bildenden Kiinste” by
Max Steck (1948)

could not have been known to Pacioli or Leonardo, who, respectively, died in 1517
and 1519, since the woodblocks in the Albertina Museum were carved sometime after
1538.

Diirer was the first to consistently introduce planar nets in Underweysung der Mes-
sung, the treatise that he meant, first and foremost, to be instructional and that he wrote,
as Peiffer (2004, p. 245) asserts, with “constructive, concrete and material geometry”
in mind. Hermann Staigmiiller, cited by Friedman (2019, pp. 37-38), notes that Diirer
devised solid bodies by studying physical models without necessarily unfolding them
and by simply sketching their nets, as Diirer’s notebooks reveal. Remarkable perspec-
tive drawings of several solid bodies are found in Diirer’s sketchbooks, yet he does
not include any of these in Underweysung der Messung. Instead, he gives the reader
the task of crafting models from their nets. Beginning with the tetrahedron, which is
shown in plan and elevation and also in a planar net, Diirer (1525, before drawing 29)
explains how the latter is to be used, in a sentence that we interpret as follows:

This is how I opened it / after laying it on the ground / and after that, I have
raised what was torn open®’

Diirer adapts this sentence with slight variations for the other regular bodies often
referring to the body being shown laid down on the ground (“zugetan nieder in grund
gelegt”), torn open (“‘aufgerissen”), and to the act of raising it or putting it together
(“’so man die zusamen leget”). As Friedman (2019, p. 34) notes, Diirer never uses
the verb to fold or its derivatives and only mentions the act of cutting or tearing apart

97 We are grateful to Cornelie Leopold, Dénes Nagy and Marta Oliveira for their contribution to the
translation of the words of Diirer (1525, before drawing 29): “Wie ich das hernach aufgethan / zugettan in
grund gelegt / und darnach aufgezogen alles hab aufgerissen.”
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(“zerschneyden”) when referring to the sphere. Before introducing the “ungeregulirten
corporen”, Diirer (1525, after drawing 34) explains:

One can also make many beautiful corpora/that also touch a hollow sphere with
their corners, / but have unequal surfaces /I want to draw these in the following
/ completely open / so that one can put them together with precision. / Whoever
wishes to make them neatly, must draw them larger in a double-thick paper”®
/ and cut all the traces with a sharp knife, in one of the sides of the reinforced
paper/so that the surfaces may be detached from the remaining paper / and then
the whole corpus can be put together / bending where the lines were traced. /
Pay attention to what will be explained, / because, from this, one can make many
useful things.”®

Regarding the planar nets in Underweysung der Messung, Friedman (2019, p. 50)
discusses the possibility that Diirer might have followed the example of Pacioli and
Leonardo and that of the French mathematician and philosopher Charles de Bovelles
(1479-1567). Bovelles included planar nets of the Platonic Solids and other bodies
in De Geometricis Corporibus. Figure 37 shows the net of a solid body that Boveles
(1510, p. 377) describes and our interpretation on the right. If we assume that all the
faces are regular, Bovelles conceived the elongated pentagonal bipyramid or Johnson
Solid J16, which the mathematician Norman Johnson (1966, p. 86) would describe
in 1966. The image on the right illustrates five great semicircles of the sphere that
circumscribes the prismatic surface. The apexes of the pyramids, however, do not
belong to the same sphere.'%

Diirer could have known Bovelles’ book because he had access to the personal
library of Wilibald Pirckheimer, a prominent humanist to whom he affectionately
dedicates his treatise.!’! One reason to believe he did is the net shown in Fig. 38, of
an elongated hexagonal bipyramid!?? from Underweysung der Messung, comparable
to the one Bovelles had described in 1510. Curiously, in folio 451.r and folio 501.r of
the Codex Atlanticus, which Leonardo would have drawn in 1516 and 1517, there are
a few sketches of an elongated hexagonal bipyramid similar to the one Diirer drew.

98 We chose to translate “zwifach gepabt papier” into double-thick paper, assuming it might be a paper
reinforced by gluing two sheets of paper. According to Diirer’s instructions, only one of the sides of the
reinforced paper is to be cut with a sharp knife to allow adjacent faces to be bent.

99 We are immensely grateful to Marta Oliveira for her precious help on the difficult translation of the
words of Diirer (1525, after drawing 34): “Auch sind noch vill hiibscher corpora ziimachen / die auch in
einer holen kugel mit all jren ecken an riiren / aber sie haben vngleyche felder / der selben wil jch eins
teyls hernach auf reyssen / vnd gantz aufgethan / auf das sie ein netlicher selbs zamen miig legen / welicher
sie aber machen will der reyB sie grosser auf ein zwifach gepabt papier / vii schneyd mit einem scharpfen
messer auf der einen seyten all ryB durch den einen pogen papiers / vnd so dan all ding aul dem vbrigeil
papier geledigt wirt / als dan legt man das corpus ziisamen / so lest es sich geren in den rissen piegen /
darumb nym des nachfolgeten auf reyssens acht / dan soliche ding sind zii vill sachen niiz.”

100 1f the square faces have edge length 10, for the sphere to contain the apexes of the pyramids, the
triangular faces, would have to be isosceles, with two edges equal to 9.8005.

101 Dijrer (2000, 129-130) vividly mentions their friendship in the first pages of his treatise. Kemp (1992,
p- 55) refers to Pirckheimer as Diirer’s closest confident.

102 1y the first edition of his treatise, Diirer mistakenly identifies this drawing as number 34 instead of
43. He renumbered it by hand in the copy he was reviewing for a second edition, as shown in Fig. 38.
Hieronymus Andreae would correct this detail in the posthumous edition.
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Fig. 37 Planar net of the elongated pentagonal bipyramid by Charles de Bovelles (1510, p. 377), and our
interpretation
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Fig.38 Planar net of the elongated hexagonal bipyramid by Albrecht Diirer (Source), and our interpretation

This coincidence hints at the possibility that Leonardo and Diirer studied the same
solid body or that Diirer, at some point, would have known Leonardo’s drawings or
vice-versa. In our interpretation of the elongated hexagonal bipyramid in Fig. 38, we
took into account Diirer’s remark that all the vertices should touch a hollow sphere
(1525, after drawing 34) and that the triangular faces of the solid body in drawing 43
are isosceles with the same height as the longer edges of the six rectangular faces:

If you put six quadrangles with right angles one after the other/and 12 triangles,
each of which is exactly as high as one of the six parts / and then join everything
together, you can make a body out of it, that is shown here torn open.

Regardless of the possibility that other authors influenced Diirer, his decision to
include polyhedral nets in Underweysung der Messung was groundbreaking. To begin
with, because of the level of abstraction involved with independently devising planar

103 We are very grateful to Marta Oliveira for her help in translating Diirer (1525, after drawing 42): “So
du sechs recht fierung an einander sezt / und zwelf Driangel da ein netlicher so hoch ist als ein seyten der
fierung und dann dif alles ziisamen legest / wirt ein corpus / darauf solichs ist hernach offen aufgerisssen.”
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nets from models of solid bodies and vice-versa and, even more importantly, because,
by doing so, Diirer intended to share with his readers the possibility of experiencing
solid geometry in a tangible form that can thus be, in the words of Andrews (2016b,
p. 45), “touched, handled, manipulated and experimented with”. Practically a novelty
in the literature of his time, this method of graphically describing solid bodies would
shape our understanding of mathematical models and all subsequent developments of
polyhedral theory. It would also pave the way, as Friedman and Rougetet (2017, p.
7) sustain, to the German mathematical tradition of describing polyhedra with edge
unfolding.'%

Augustin Hirschvogel names the revolutionary method introduced by Diirer as
“rete” or “netz” and uses it to graphically describe ten solid bodies in his book, so
that his readers can turn each into what Hirschvogel (1543, Part 2 of Chapter 4)
identifies as “ein materlich Corpus” or a material Corpus. Thanks to the success of
Geometria, Hirschvogel became the author in Early Modern Germany who, following
in Diirer’s footsteps, best disseminated this new form of understanding mathematical
concepts. In a manuscript version of La Pratica della Perspettiva,'?> Barbaro refers to
manipulating physical models of solid bodies as the act of studying the material body
in hand, which gives us an interesting insight into his reasoning. Before Hirschvogel
and Barbaro, Pacioli (1509) had used the expression “corpi materiali” to describe
Chapter LV in the table of contents and spoken about “material forma” in Chapters
LII and LII and “figura material” in Chapter LII of Pars Prima.

Barbaro describes 32 solid bodies with a planar net that he names spiegatura, a term
which, according to Monteleone (2019, p. 77), can be interpreted as an unfolding. It
is possible that Barbaro chose this term because of its double meaning, as it seems
to derive from the verbs spiegare (to explain) and piegare (to fold). Barbaro (1568,
p. 45) further explains that a spiegatura consists of an open figure and that a three-
dimensional model can be used to explain how the plan views are obtained:

To describe the bodies, we will follow this order, which, in the first place, will
present their unfolding and after, their perfect plan, degraded, and finally, cor-
rect, their shadowing. By unfolding, I mean the description of the open figure,
from which is made the whole body folding it together to demonstrate the true
form, a thing that is truly practical and delightful to transform many bodies into
lanterns and other uses of pleasure.'%

104 According to Polthier (2003), unfolding is the process of cutting a polyhedral surface along certain
curves and flattening the surface onto the plane without overlapping, while edge unfolding only allows cuts
along edges, and not through the interiors of faces.

105 Williams (2021, p. 32) translates Barbaro’s words in the manuscript Ms. It. IV, 39 = 5446, fol. 30r
“perspettive estender di qualunque corpo la supeficie sua in piano... che la si possa poi da quella dilatazione
redur in forma corporale: accioche poi con il corpo materiale in mano apertamente di che ordine sia esso
corpo veder si possa, et intender la sue altitudine per poter poi metter il perfetto suo nel quandrato, e da
quello nel piano” into “Perspective is extending the surfaces of any [regular] body onto planes... so that
it can then be reduced from that dilatation into corporal form. Then, with the material body in hand it is
possible to plainly see of what order this body is and understand its heights, to then be able to place its
perfect in the square, and from that into the plane.”

106 Barbaro (1568, p. 45): “Nel descrivere i corpi si servera quest’ordine, che nel primo luoco poneremo
le loro spiegature, dapoi le loro piante perfette, e digradate, e finalmente i dritti, e le loro adombrationi.
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In fifteen solid bodies that were probably too complex to describe with plan views
or perspective drawings, Barbaro only presents spiegature. The fact that the written
description is short in most and only a partial planar net is included, and also that
many of these solid bodies were unknown in Barbaro’s time lead us to believe that
they never got to be built as three-dimensional models and were only devised as planar
nets. In the following, we discuss how planar nets might have been determinant for
Albrecht Diirer devising the snub cube and for the Anonymous Author to conceive
several complex situations.

Das Sechste Corpus of Albrecht Diirer

The description of the snub cube by Diirer (and Archimedes long before him) is
a remarkable achievement in itself since it is far more complex to obtain than any
other Archimedean Solid derived from the cube. After Diirer, the Anonymous Author
would describe the planar nets of the cube and the octahedron with a snub cube on the
inside (as well as a snub dodecahedron inside the dodecahedron and the icosahedron).
We have seen two of these woodblocks in Figs. 18 and 36. In 1619, Kepler would
describe the snub cube and the snub dodecahedron in a time when the configuration
of the thirteen solid bodies was already known throughout Europe. The snub cube
is obtained from the cube by uniformly expanding its faces outwards to a specific
distance, and rotating them clockwise or counter-clockwise at an exact angle (or vice-
versa, first rotating and then expanding) until the distance between the closest vertices
equals the edge length of the squares. The space between the squares is then filled with
32 regular triangular faces. The fact that the snub cube cannot be obtained through
a compass and straightedge construction alone!"” hints at the possibility that Diirer
could have devised the sixth of his ungeregulirten corporen from a planar net.

We have concluded in Table 1 that Diirer was the first author to describe the snub
cube and the rhombitruncated cuboctahedron. This is somewhat revealing since a non-
uniform version of the former is obtainable from the latter through a procedure that,
many centuries later, came to be known as alternation.'%® With this operation, a new
polyhedron is outlined by picking up alternate vertices from the even-sided faces of
another polyhedron. If Diirer devised solid bodies from planar nets, as suggested by
Staigmiiller, cited by Friedman (2019, pp. 37-38), he might have studied a planar net,

Footnote 106 continued

Spiegature io intendo le descrittioni delle figure aperte, dellequali si fanno i corpi sodi piegandole infieme
per dimostratione del vero, cosa veramente commoda per la pratica, e dilettevole per formare molti corpi
in lanterne, e altri usi di piacere.”

107 According to Ostermann e Wanner (2014, p. 286), to obtain the vertices of the snub cube inside a cube,
the faces of the cube must be scaled in the factor 0,43759 and rotated in the angle 16°28’ (16, 46667°),
clockwise or counter-clockwise (respectively yielding the laevo or dextro versions of the snub cube). With
this procedure, the shortest distance between each vertex of the snub cube and the closest edge of the sur-
rounding cube is 0.352201128739 and 0.228155493654. In the model we built with algorithmic modelling
software, the edge length of the cube is 10.0, while the edge length of the snub cube is 0.437593286001.
108 Coxeter (1973, p. 11) notes that “alternate vertices of any even-faced simply-connected map can be
picked outin a consistent manner” as, for instance, picking alternate vertices of a cube defines two tetrahedra.
Coxeter (1973, p. 154) explains that this partial truncation can be done to any simply connected polytope
or honeycomb by alternating their vertices, as long as every face has an even number of sides.
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Fig.39 Alternation of a planar net of the rhombitruncated cuboctahedron into a non-uniform version of the
snub cube and its subsequent modification into a uniform version

or even a model of the rhombitruncated cuboctahedron, and drawn six squares from
the octagonal faces and eight equilateral triangles from the hexagonal. Even if the
space between them is not filled with regular faces, the fact they are triangular may
have given Diirer the idea of trying out another net with the same type and number of
faces in which the triangular are equilateral instead of scalene.

We illustrate this procedure in Fig. 39: in the first and second steps, squared and
triangular new faces are respectively obtained from alternation of the octagonal and
hexagonal faces. In the third step, one diagonal of each square is an edge common to
two scalene triangles. The last image is a modification of the previous, in which the
scalene triangles are perfected and converted into equilateral. Diirer would have thus
obtained a planar net for the snub cube, as the last image shows. Figure 40 simulates the
same procedure in three-dimensional space: in the first and second steps, the octagonal
and hexagonal faces of the rhombitruncated cuboctahedron are replaced by regular
faces, respectively square and triangular; in the third, a diagonal of each square is a
common edge to a pair of scalene triangular faces. The last step shows how the snub
cube is obtained by changing the 24 irregular faces into regular ones and joining these
with the previous squared and triangular faces.
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Fig.40 Alternation of a model
of the rhombitruncated
cuboctahedron into a
non-uniform version of the snub
cube and its subsequent
modification into a uniform
version

Diirer may have devised the snub cube from the rhombitruncated cuboctahedron,
but he described the latter after the former in Underweysung der Messung. In his
description of the irregular bodies, Diirer mentions the number of vertices and edges
in each solid with regular faces. The sixth body is the last of a set of three with 24
vertices that include squared faces: the truncated octahedron (drawing number 38), the
rhombicuboctahedron (drawing number 39), and the snub cube (drawing number 40).
Given that the rhombitruncated cuboctahedron is the only solid body with 48 vertices,
72 edges and three different types of faces, its complexity might have been the reason
why Diirer placed it as the last of the solid bodies with regular faces, and after the
snub cube.

To obtain the rhombitruncated cuboctahedron, Diirer could have divided the edges
of the cuboctahedron into three equal parts and drawn the resulting faces either in a
planar net, as suggested in Fig. 41 or, directly, in a physical model, as Fig. 42 simulates.
He would have thus obtained eight regular hexagons, six irregular octagons, and twelve
rectangles, yielding a non-uniform rhombitruncated cuboctahedron (similar to the one
Jamnitzer drew in Fig. 24). Diirer would have then changed the resulting net, converting
the irregular octagons into regular and the rectangles into squares to obtain the uniform
rhombitruncated cuboctahedron. If Diirer ever got to describe the rhombitruncated
icosidodecahedron in 1525, we may speculate that he would have also tried out its
alternation and obtain the snub dodecahedron.

There are two descriptions of the rhombitruncated icosidodecahedron in wood-
blocks of the Albertina Museum, drawn by the Anonymous Author: in HO2006/703,
the decagonal faces of the rhombitruncated icosidodecahedron share the same planes
as those of the dodecahedron; in HO2006/711, the hexagonal faces share the same
planes as those of the icosahedron. Stoer (1600, folios 120 and 167) drew the rhom-
bitruncated icosidodecahedron in two watercolours but we do not know when they
were painted. In La Pratica della Perspettiva, Barbaro (1568, p. 100) described the
rhombitruncated icosidodecahedron with a partial spiegatura (Fig. 26).
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Fig. 41 Converting a planar net of the cuboctahedron into a non-uniform version of the rhombitruncated
cuboctahedron and subsequent modification into a uniform version

Fig.42 Converting a model of
the cuboctahedron into a
non-uniform version of the
rhombitruncated cuboctahedron
and subsequent modification
into a uniform version

Returning to the sixth body, it is interesting to note that Barbaro knew Underweysung
der Messung well but refrained from including the snub cube in his treatise. This might
have been so because, similar to Pacioli, Barbaro was devising solids primarily by
truncation and augmentation, not by alternation.'” A different approach that Diirer
would have used to devise the snub cube might explain why it never became a Chapter
in La Pratica della Perspettiva: Barbaro only chose to describe the solid bodies he knew

109 14 Pratica della Perspettiva includes solid bodies devised from other procedures. Viana (2023a, 318—
319) discusses a possible procedure to convert triangular faces into hexagonal ones in a solid body that
Barbaro briefly describes in Chapter XXXIV.
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Fig. 43 Printing woodblocks in the Albertina Museum of planar nets of the tetrahedron with truncated
tetrahedra and an octahedron on the inside (HO2006/724) (left); with a truncated tetrahedron (HO2006/708)
(right) drawn by an Anonymous Author after 1538

how to obtain. As we have seen, Simon Stevin included its planar net in Problematum
Geometricorum but said he did not know how to obtain the solid body.

Solid bodies within the tetrahedron and the octahedron described by the
Anonymous Author

An analysis of every planar net from which the Anonymous Author devised solid bod-
ies is beyond the scope of this study, but we will examine a few. The only woodblocks
that involve the net of the tetrahedron are shown in Fig. 43. The one on the right is
not meant as a net for the truncated tetrahedron since it had been given in Fig. 17. Its
purpose is to illustrate how, by dividing the edges of the regular tetrahedron into three
equal parts, we obtain the truncated tetrahedron, the same way Piero had explained
it in Fig. 5. The unmarked, white hexagonal faces share the same planes as those of
the tetrahedron, while the parts to be left out are covered with a dark-hatched pattern.
Hence, this woodblock does not offer a solid body but one inside another: a truncated
tetrahedron inside the tetrahedron. A different interpretation of the dark patterns would
be that they stand for inverted pyramids or dimples. Although Jamnitzer drew solid
bodies with comparable concavities (for instance, in 1568, Plate B.I), we do not think
the Anonymous Author, in this case, had such concavities in mind.

The woodblock on the left shows another truncated tetrahedron whose triangular
faces and those of the tetrahedron are coplanar. The first image in Fig. 44 shows a
possible procedure to determine its vertices: by dividing the edges into three equal
parts and drawing six cevians, we determine triangles with vertices in the specific
intersections mentioned by Gheorghiu and Dragomir (1978, p. 213). The second image
shows that the (orthogonal) projections of this truncated tetrahedron do not match the
hatched pattern that surrounds the small, white triangles. However, they might have
been perceived as such by someone holding a three-dimensional model in their hands.
The white triangles are coplanar with the tetrahedron and also with the larger truncated
tetrahedron, as the middle row in Fig. 44 shows. We thus have three solid bodies: a small
truncated tetrahedron inside the larger and both inside the tetrahedron. Their relations
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would only be evident to someone who knew the truncated tetrahedron firsthand, as
the lesser one never gets to be seen but is only implied.

The penultimate image shows an interpretation of the hatched patterns in Fig. 43
as augmentations, which yields a solution that vaguely resembles certain drawings
in Perspectiva Corporum Regularium (for instance, in Plates A.Il and A.IIl) and in
Geometria et Perspectiva: Corpora Regulata et Irregulata (watercolour 252). For the
protruding triangles to match the planar net, the truncated tetrahedra joined face-to-face
with the inner truncated tetrahedron are not uniform. One cannot help but recognize
that explaining this solid body from such a planar net and making a model from it is
highly impractical. On the other hand, based on the analysis of other situations, the
Anonymous Author might have intended to show something else: another solid body
laying inside the tetrahedron. The final image in Fig. 44 suggests what the Anonymous
Author could have envisaged: a regular octahedron inside the other bodies. The edge
length is the same as the small truncated tetrahedron. Our analysis of other planar
nets with similar patterns has led us to a significant conclusion: the hatched patterns
surrounding the smaller, unmarked faces might not be meant as projections of any
face, but rather a representation of the empty space around the smaller body on the
inside.

We begin our analysis of the woodblocks involving the octahedron with the sim-
plest case: the truncated octahedron inscribed on the octahedron in Fig. 45 with our
interpretation on the right. The vertices of the latter have been truncated after the
edges were divided into three equal parts. The resulting unmarked faces and those
of the octahedron are coplanar, while the dark-hatched pattern emphasizes how its
vertices must be cut off to obtain the truncated body. Figure 46 is meant to show, in
the first place, a rhombitruncated cuboctahedron inside the octahedron. On the right is
our interpretation of a possible construction the Anonymous Author could have used
to determine its vertices: the edges of the octahedron are divided into five equal parts,
after which six lines are drawn to obtain a regular hexagon. By replicating the proce-
dure in every face and connecting the closest vertices, we obtain a rhombitruncated
cuboctahedron, albeit not uniform, since the edge length of the hexagons is slightly
different from other edges.!!”

The pattern in the triangular patches that became octagonal faces after the model
is folded becomes larger and evolves into small squares around the vertices of the
octahedron. The edges are parallel to those of the hexagonal faces. Although this
gradient pattern might simply indicate that the resulting octagons and the faces of the
octahedron do not share the same plane, the fact that the same pattern occurs in specific
planar nets, indicates that the Anonymous Author meant to show other solid bodies
besides the most obvious. To understand what the gradient pattern might correspond
to, we determined squares approximately the size of those whose edges, in a folded
model, are closer to the vertices of the octahedron. The first image in Fig. 47 illustrates
a procedure the Anonymous Author could have adopted to obtain the vertices of the
small squares, by intersecting the minor diagonals of the octagonal faces.

10 For an octahedron with an edge length of 10.0, the edge length of the hexagons thus obtained is 2.0
while, in the uniform rhombitruncated cuboctahedron, it is 1.9526.
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Fig. 44 Interpretations of the planar net on the left in Fig. 43

The second image shows that the resulting squares share the same planes as those of
the rhombitruncated cuboctahedron, but their convex hull is a non-uniform truncated
octahedron. If the Anonymous Author only had regular faces in mind, the squares
in the gradient pattern would not have been conceived for this particular truncated
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Fig. 45 Printing woodblock in The Albertina Museum of a planar net of the octahedron with truncated
octahedron on the inside (HO2006/715), and our interpretation

Fig.46 Printing woodblock in The Albertina Museum of a planar net of the octahedron with rhombitruncated
cuboctahedron on the inside (HO2006/707), and our interpretation

octahedron but perhaps for its uniform version shown in the middle row.'!! In the
fourth image, there are three prisms connecting the squares in parallel faces which
yield the uniform cuboctahedron illustrated in the fifth image. In this case, as well as
in the uniform truncated octahedron, the gradient pattern would simply indicate the
empty space between the exterior and interior bodies.

11 1 the opinion of Schreiber et al. (2008, p. 463), this woodblock, which the authors identify as number
14, illustrates the net of the octahedron with marks showing how to get the net of the rhombitruncated
cuboctahedron and the truncated octahedron from it.
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Fig. 47 Different interpretations of the planar net in Fig. 46

The last image in Fig. 47 is another interpretation in which the small squares
stand for augmentations of the rhombitruncated cuboctahedron with square cupolas.
The gradient pattern suggests the surface between the squares and hexagons of the
rhombitruncated cuboctahedron and the protruding squares, rather than the existing
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Fig. 48 Perspective drawings of a non-uniform rhombitruncated cuboctahedron augmented with cupolas
by Wentzel Jamnitzer (1568, Plate B.II) and a partial planar net of a similar body with equal edge length
by Daniele Barbaro (1568, p. 103)

edges. Curiously, this interpretation resembles the drawings in Fig. 48 that would
be published in 1568. Jamnitzer (1568, Plate B.II) drew the first two in Perspectiva
Corporum Regularium although with edge lengths different from ours. The last one
is a partial planar net of a concave body with regular faces that Barbaro (1568, p.
103) included in La Pratica della Perspettiva and was identified by Viana (2023b, pp.
122-123) as a rhombitruncated cuboctahedron augmented with square cupolas.

Moving to the woodblock in Fig. 49, our first interpretation of the planar net shows a
cuboctahedron enclosed by an octahedron whose vertices were truncated in the edges’
midpoints. Similar to the previous case, the hatched pattern in the square faces evolves
into smaller squares, so another solid body seems to be implied. Interpreting the smaller
polygons is simpler than before because their configuration is the same as the faces
from which they derive. As to the cuboctahedron in Fig. 50, we divided the edges of a
squared face into three equal parts in the first image, and drew auxiliary lines to obtain a
square roughly the same size as those in the planar net. By conveniently extruding this
and other squares, we obtain the smaller cuboctahedron shown in the second and third
image. The last image in Fig. 50 shows another interpretation, a concave polyhedron
with trapezoidal faces connecting the triangles of the larger cuboctahedron with the
squares of the smaller.!!?

According to our conjecture in a previous section, Diirer could have conceived the
snub cube by studying a planar net or a model of the rhombitruncated cuboctahedron.
If he lived longer, we have no doubt Diirer would have described the rhombitruncated
icosidodecahedron and, subsequently, the snub dodecahedron. But it was up to the
Anonymous Author to continue the investigations initiated by Diirer and describe
these two solid bodies. In addition, he accurately deduced how every Archimedean
Solid (with the obvious exception of the truncated tetrahedron), derives from a pair of
Platonic solids. Knowing, at the time, how the cube and the dodecahedron respectively
enclose the snub cube and the snub dodecahedron is remarkable in itself. Deducing how
these can be respectively inscribed inside the octahedron and the icosahedron would not

12 Although very different from our interpretation, Stéer (1600, folios 266, 269 and 287) drew examples
of solid bodies with concavities derived from extrusions.
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have been possible without three-dimensional models, and determining their vertices
with such precise approximation is absolutely groundbreaking. No contemporary of
the Anonymous Author (or even Kepler, who would be born in 1571) achieved such
brilliant conclusions. If circumstances had been favourable, the Anonymous Author
would have published a book with these and other results, the complexity of which
would still surprise us today, undoubtedly setting yet another milestone in the history
of polyhedra in the sixteenth century.

Figure 51 shows an interpretation of the planar net the Anonymous Author devised
to show how to inscribe the snub cube in the octahedron. The snub cube and the
snub dodecahedron are chiral polyhedra, meaning that they lack mirror symmetry and
that each exists in two versions, one being the mirror image of the other, as our left
and right hands. Their mirror images cannot be superimposed onto another unless
the mirror plane is “turned over”, as Cundy and Rollet (1989, p. 63) note. Weissbach
and Martini (2002) have demonstrated that, given the diameter of the circumsphere
of the snub cube and the snub dodecahedron, the edge length cannot be determined
with compass and straightedge alone. Pugh (1976, p. 18) notes that if we divide the
edges of the tetrahedron in (1 + +/5) / 2 (the golden ratio) and define specific cevians,
their intersections determine the vertices of the regular icosahedron. The icosahedron
can thus be considered a snub tetrahedron, a conclusion to which, according to Pugh
(1976, p. 18), Kepler had also arrived. Using a similar procedure in the octahedron
and icosahedron, Rotgé obtains the snub cube and the snub dodecahedron.'!3 Dividing
the edges of an equilateral triangle into specific ratios, Rotgé (1984, 17-19) obtains
similar triangles with equal centre of rotation. By applying the procedure to polyhedra
with triangular faces, he obtains other polyhedra still.

Assuming that the Anonymous Author determined the vertices of solid bodies only
with geometric constructions, we illustrate in Fig. 52 a possible procedure to obtain
a snub cube, in a fair approximation to the uniform version (Cf. Figures 51 and 52).
The vertices are close to their exact location but only specific sets of edges have the
same length.!'* The first image in Fig. 52 shows how, by dividing the edges of the
octahedron into six equal parts and tracing six cevians, we obtain a triangular face
(other attempts we made with a different number of cevians were much less precise).
Replicating the procedure in the remaining faces yields the non-uniform snub cube
shown in the second image, which has two sets of faces with different edge lengths
(six squares and eight equilateral triangles) and 24 scalene triangles. In addition to the
snub cube inside the octahedron, the Anonymous Author could have been showing the
cuboctahedron laying inside it, as the hatched pattern in the planar net indicates. The
last images in Fig. 52 illustrate a possible procedure to determine the small squares
in the gradient pattern. The edge length of these squares was determined from the
previous division of the edges of the octahedron into six equal parts. By extruding

113 Rotgé (1984, 22) explains that the vertices of the snub cube and the snub dodecahedron are respec-
tively obtained by dividing the edges of the octahedron and icosahedron in the ratios 1.839286755 and
1.943151259.

114 For an octahedron with an edge length of 10.0, the triangular faces coplanar to the octahedron have
an edge length of 3.214. In contrast, the square faces have 3.431, and the edge connecting each pair of
triangular faces has an edge length of 3.316 (the first edge length is 3.2145502537; the second and third,
3.4318767137 and 3.3166247903).
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Fig.51 Printing woodblock in The Albertina Museum of a planar net of the octahedron with uniform snub
cube on the inside (HO2006/690), and our interpretation

these squares, we determine the square faces of the cuboctahedron shown in the last
image.

Who might the Anonymous Author be?

The information we gathered about the printing woodblocks in the Albertina Museum,
as well as the graphic quality and inventiveness of the planar nets, lead us to believe
that the Anonymous Author was an artist versed in solid geometry, most likely, from
the circle of people working in Nuremberg. Arts and mathematics flourished to an
unprecedented level in Early Modern Germany. Jean—Etienne Montucla (1725-1799),
cited by Flocon (2006, p. 16), says that nowhere in the world were so many geometers
gathered but in Germany in the sixteenth century. Nuremberg was a vibrant cultural
city central to Europe, one of the greatest of the Northern Renaissance' !> where several
geometers, artists and artisans worked under the enduring influence of Diirer.

Given the woodblocks’ association with Hieronymus Andreae, whoever devised the
planar nets was someone who lived in Nuremberg, another city in the German states,
or even another country, but with a solid connection to Nuremberg. Furthermore, the
Anonymous Author has proven to have a sound knowledge of compass and straight-
edge constructions and an evident intention of making complex concepts clear and
visually understandable. These nets were undoubtedly part of a larger project which,
for some reason, the author could not develop into a published form. Perhaps external
funding was impossible, or the author lost interest in the project due to its complexity
(or impracticability). He may have also died before being able to continue it. Any

15 Andrews (2022, p- 67) notes that Nuremberg was at the heart of German humanism and its level of
wealth rivalled that of Florence: “Flush with celebrated thinkers artists, astronomers, instrument makers,
printers, and a rapaciously wealthy and entrepreneurial merchant class, Nuremberg’s prosperity and prestige
made it an exceptional proving ground for the synthesis of science and art.”
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Fig. 52 The first image shows a possible procedure to determine the vertices of a non-uniform snub cube
inside the octahedron. The bottom row is our interpretation of the planar net in Fig. 51

author corresponding to such a description had to have shown some prior research
about the Archimedean Solids - the more consistent, the better. Further research is
necessary, but none of the authors we have studied has shown anything that might
suggest the complexity of the Anonymous Author’s studies, which are undoubtedly a
development of previous work.

With the death of Hieronymus Andrea, it is safe to assume that his workshop stopped
labouring, if not immediately, shortly after 1556. Diirer had died 28 years before and
Hirschvogel 3 years earlier, in 1553. Johannes Kepler is excluded from the possibility
of being the Anonymous Author, not only because his treatment of the Archimedean
Solids is different, but more importantly, because he would only be born 15 years later.
The same about Simon Stevin, who was 8 years old by then. The year of birth of Lorenz
Stoer is unknown, so we do not know his age in 1556, but he was active at least until
1599, the last date registered in his watercolours. Even so, we do not think Stder could
have been the Anonymous Author: no planar nets are found in his works nor records
of the entire set of Archimedean Solids. A few of his watercolours resemble possible
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interpretations of certain woodblocks, but his studies do not seem as systematic and
consistent as the ones we infer from the Anonymous Author. Wade (2012, pp. 208,
222-227) mentions an Anonymous Author who would have lived around 1565 and
1600 and whose watercolours depict exquisite solid bodies, most of which similar to
Jamnitzer and Stéer.!'® For reasons similar to Stder and the author’s young age at the
time, nothing suggests that this person could have created the nets in the woodblocks.

Jamnitzer was 49 in 1556, but he did not address planar nets in his book, which
would be published 12 years later. Jamnitzer depicted a few solid bodies inside others
in Perspectiva Corporum Regularium and mentioned a vague intention of working on
a second volume. However, as we have seen, Jamnitzer did not intend his [first] book
to be genuinely instructional or, at least, to the extent to which a systematic study such
as these nets would comply. Moreover, if he had devised the entire set of Archimedean
Solids before 1568, he would undoubtedly have included them in his book. Jamnitzer
died 17 years after publishing Perspectiva Corporum Regularium and no records
about a second book project have been found. If he conceived planar nets after 1568,
Hieronymus Andreae was already dead by then. Furthermore, Perspectiva Corporum
Regularium succeeded not only because of its inventiveness but also because of the
delicate drawings that Jost Amman had prepared from copper plates, and that many
authors would replicate in Jamnitzer’s time and beyond. Returning to woodblock
printing would surely mean a retrocess in the quality of his work. For these reasons,
we do not believe the Anonymous Author could have been Jamnitzer.

In our search for the Anonymous Author, we compared the nets in Fig. 17 with
those that were drawn by Hirschvogel and Barbaro, the only authors who, after
Diirer, developed original and systematic studies about the Archimedean Solids in
the sixteenth-century and included planar nets in their publications. We have not con-
sidered Diirer for the reasons mentioned earlier, and also because, so far, we have
not found any studies he had developed which might be comparable to those of the
Anonymous Author. The nets drawn by Hirschvogel in Geometria are the same as the
ones Diirer drew in Underweysung der Messung, with the exception of the icosidodec-
ahedron. As to the nets in the woodblocks, no indication exists about how each would
have to be placed on the page before printing. Therefore, we are not considering the
orientation in which the Albertina Museum chose to photograph the woodblocks as an
imposition. Two nets are considered the same even if one is rotated when compared
to another. Moreover, to compare nets in printing woodblocks with nets printed on
paper, we analysed the former in their reflected versions.

Since the planar net drawn by Hirschvogel for the icosidodecahedron differs sub-
stantially from Diirer’s (Cf. Figs. 12 and 13), we compared it with the reflected version
of the net in Fig. 17, with which the Anonymous Author describes the icosidodec-
ahedron. We also compared the latter with the net of Barbaro in Fig. 25. The three
planar nets are shown in Fig. 53. There are evident similarities between the nets on
the left and the net on the right. Hirschvogel highlights the rotational symmetry of the
icosidodecahedron, and so does the Anonymous Author. The coincidence between
the vertical line, the circle and the vertex of the upmost pentagon is not exact but

116 Wwade (2012, p. 208) notes that only 36 watercolours are known from this author whose work, similar
to the later work by Stder, “seem to have been more private productions (...) more likely (...) simply drawn
for personal satisfaction.”
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Fig. 53 Planar nets of the icosidodecahedron: on the upper left, by Augustin Hirschvogel (1543, Plate
D.VIII); on the bottom left, by Daniele Barbaro (1568, p. 71). The planar net on the right, from the
Anonymous Author, is a reflected version of woodblock HO2006/696

very close. Both nets were developed according to the same principle, the difference
being the disposition of the third row of pentagons and subsequent layers. The net that
Barbaro included in La Pratica della Perspettiva, on the other hand, is precisely the
same as the Anonymous Author.

For the sake of completion, we compared the nets of the Platonic Solids drawn
by Hirschvogel, the Anonymous Author, and Barbaro (excluding the cube). The nets
that Hirschvogel drew for the tetrahedron, octahedron and icosahedron, shown in
Fig. 54, are the same as Diirer. The woodblocks for the octahedron, dodecahedron,
tetrahedron, and icosahedron, shown in Fig. 55, are different from any other we have
seen until 1568. Figure 56 shows the planar nets of the octahedron, dodecahedron and
icosahedron that Barbaro included in manuscript It. IV, 39 (= 5446), which belongs
to Biblioteca Naziolane Marciana in Venice. The perfect that Barbaro (1568, p. 45)
includes in La Pratica della Perspettiva is similar to the woodblock with the net of
the tetrahedron. It is also the same as the net Bombelli (1929, p. 279) includes in
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Fig.54 Planar nets of the tetrahedron, octahedron and icosahedron, drawn by Augustin Hirschvogel (1543,
Plates B.I and B.II) in Geometria

manuscript B 1569 of the Archiginnasio Library in Bologna; and that of Stevin (1583,
p. 68) in Problematum Geometricorum. Since only two possible nets exist for the
tetrahedron, this coincidence does not imply any relation between the authors.

The net of the dodecahedron that Barbaro includes in the manuscript is the reflected
version of the woodblock in Fig. 55. The net of the octahedron, which is very dis-
tinctive, is also the same in both authors. Comparing the net of the icosahedron by
the Anonymous Author and the net in Barbaro’s Manuscript It. IV, 39 (= 5446), the
difference resides in the placement of a few faces. The Anonymous Author has two
linear sequences of eight triangles and one linear sequence of nine (here, faces that
belong to different sequences are counted more than once). Barbaro has three linear
sequences of seven triangles (likewise, some faces are counted more than once). Apart
from this detail, they are fundamentally the same and yield the icosahedron. Barbaro
has nine planar nets in common with the Anonymous Author.

The following summarizes our comparison between the nets of the Platonic and
Archimedean Solids of the Anonymous Author with those by Diirer in Underweysung
der Messung, Hirschvogel in Geometria, and Barbaro in La Pratica della Perspettiva
and manuscript It. IV, 39 (= 5446):

e The tetrahedron is similar to the perfect in La Pratica della Perspettiva;

e The cube is the same as all the authors;

e The octahedron is the same as La Pratica della Perspettiva and manuscript It. IV,
39 (= 5446);

e The dodecahedron is the same as La Pratica della Perspettiva and manuscript It.
IV, 39 (= 5446);

e The icosahedron is the same as in Manuscript It. IV, 39 (= 5446);

e The cuboctahedron is the same as all the authors (minus the extra triangular face
in Barbaro’s net);

e The icosidodecahedron is similar to the one in Geometria and equal to La Pratica
della Perspettiva;
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Fig. 55 Printing woodblocks in the Albertina Museum with planar nets of the octahedron (HO2006/686),
dodecahedron (HO2006/693), tetrahedron (HO2006/695) and icosidodecahedron (HO2006/720), drawn by
an Anonymous Author after 1538

e The truncated tetrahedron is the same as in La Pratica della Perspettiva;

The truncated octahedron is the same as in Underweysung der Messung and
Geometria;

The truncated dodecahedron is original;

The truncated icosahedron is original;

The rhombicuboctahedron is similar to the one in La Pratica della Perspettiva,
The rhombicosidodecahedron is original;

The snub cube is the same as in Underweysung der Messung;

The snub dodecahedron is original.

Barbaro would have been 42 when Andreae died, but we have not found records of
Barbaro visits to the German States or any reference to him sending his work for print-
ing in Nuremberg. We do not believe the Anonymous Author could have been Barbaro
because his treatise does not include any systematic research on Archimedean Solids
inside the Platonic (other than the truncated cube and the rhombicuboctahedron inside
the cube). Besides, Barbaro did not include the snub cube and the snub dodecahedron
in his treatise. It was not unusual at the time for authors to take inspiration from others

@ Springer


https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/686]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/693]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/695]&showtype=record
https://sammlungenonline.albertina.at/?query=search=/record/objectnumbersearch=[HO2006/720]&showtype=record

V.Viana

Fig.56 Planar nets of the
octahedron, dodecahedron and
icosahedron by Daniele Barbaro
in Manuscript It. IV, 39 (= 5446),
ff. 33v, 35v and 39v. Su
concessione del Ministero della
Cultura - Biblioteca Nazionale
Marciana. Divieto di
riproduzione

without crediting their sources, and Barbaro taking inspiration from the works of Piero
della Francesca, Albrecht Diirer, Sebastiano Serlio and other authors has been docu-
mented.!!7 Since the woodblocks were never used for other than test prints, Barbaro
may, at some point, have had access to the nets in a manuscript version or test prints.
Perhaps the Anonymous Author shared his ideas with Barbaro, whether by visiting
him in Italy or exchanging correspondence. Italy and Germany have always had a

17 For instance, Andersen (2009, pp. 152-155) and Monteleone (2019, pp. 69-71).
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special relationship.''® As early as the thirteenth century, the Republic of Venice had
welcomed Germans in Fondaco dei Tedeschi (2023) including merchants from Nurem-
berg, Judenburg and Augsburg, who stored their goods in the palace. Our Anonymous
Author was probably not a merchant, but he might have visited Venice and met Bar-
baro. We are inclined to believe that Barbaro drew inspiration from the Anonymous
Author, but the possibility that both authors independently described the same planar
nets should not be excluded.

Comparing the nets of the Anonymous Author with those by Bombelli (1929, pp.
279,285, 294), we conclude that the tetrahedron is identical, as well as the octahedron
and truncated tetrahedron we have shown in Fig. 33. Still, we do not think Bombelli
could have been the Anonymous Author because he described only three Archimedean
Solids. Moreover, the approach of Bombelli to solid geometry, from what the com-
parison of the nets and his writings allow us to comprehend, differs significantly from
the Anonymous Author. It is more the perspective of a mathematician than that of an
artist. On the other hand, Bombelli might have known these nets from Barbaro.

After analyzing these and other authors, the strongest hypothesis about the Anony-
mous Author’s identity remains that of Augustin Hirschvogel, who authored and
illustrated the book Geometria. Not much is known about Hirschvogel, who was
born in Nuremberg and left the city in 1536 to work abroad. He returned to Nurem-
berg in 1543 when his book was published, but moved to Vienna the year after, where
he was appointed as the city cartographer and came to settle until his death in 1553.
Hirschvogel, we recall, was the first to describe the rhombicosidodecahedron after
Archimedes. Given his knowledge of the subject and the graphic quality of his work,
Hirschvogel may have wished to continue combining his expertise in geometry and
planar nets with the description of the irregular bodies he had introduced in 1543. The
planar nets in his book would have been adequate developments for someone who
had begun studying Underweysung der Messung and planned to expand his studies to
another level. The net the Anonymous Author drew for the icosidodecahedron on the
upper right in Fig. 53 may be seen as a different version of the one on the left that
Hirschvogel drew in 1543. A short note at the end of the second part of Geometria
indicates that Hirschvogel (1543, Beschluf3 des zweiten Teils) did intend to develop
his research further and, better still, that his findings would soon be printed:

I still have a lot of related beautiful Corpora / but / not all of them are made / So
God willing / these will soon come into print / along with other beautiful hidden
pieces.M?

Pfaff (1996, p. 43) interprets Hirschvogel’s sentence as referring to two of his
monogrammed etchings from 1549. However, it is entirely possible that Hirschvogel
meant to suggest the existence of more drawings of solid bodies, such as planar nets,
that he could not include in his book. The fact that Hirschvogel mentions hidden pieces

118 we express our gratitude to Kim Williams and Cosimo Monteleone for the discussion on the Italian
and German connections in the sixteenth century.

119 we express our immense gratitude to Marta Oliveira for her help in translating the words of Hirschvogel
(1543, Beschluf} des zweiten Teils): “Wiewol ich noch vil schoner Corpora darzugehorig / hab / seind aber
nicht alle gefertigt / So aber Gott will / so sollen solche in kiirz auch in Druck kummen / mitsampt anderen
schonen verborgen stiicken”.
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to be shown within other bodies, hints at the possibility that our interpretation of the
planar nets depicting a third solid body inside two others is valid.

The “Niirnberger Kiinstlerlexikon”, edited by Manfred Grieb (2007, pp. 665-666),
tells us that, after moving to Vienna, Hirschvogel remained so attached to his home-
town that he sent his maps to Hans Weigel the Elder to be printed in Nuremberg. If
Hirschvogel had plans for a book project, he may have sent his preliminary studies
to be printed in Nuremberg. The workshop of Hieronymus Andreae, who had twice
published Diirer’s treatise, would have been a good choice. The important position
Hirschvogel held in Vienna from 1544 onwards may have prevented him from contin-
uing his studies on solid geometry, so a successor for Geometria was never published.
The timeline complies with the activities of the printing workshop of Hieronymus
Andreae, which would have ceased around 1556. Hirschvogel would have sent his
work for printing between 1543, when Geometria was published, and before 1553 the
year in which he died. With Hirschvogel’s passing, few people (if any) would have the
knowledge and skills necessary to continue his work, so the woodblocks were never
used for extensive printing and were eventually forgotten. Although our hypothesis is
still a conjecture, we hope to confirm it soon or that information about another artist
or mathematician that we may identify as the Anonymous Author is found.

Conclusion

After a discussion about the historical and cultural context that motivated the fasci-
nation with solid bodies of so many artists and mathematicians in the fifteenth and
sixteenth centuries, we analyzed the studies developed at the time that revealed to be
more consistent on the Archimedean Solids and discussed their contribution to the
early history of polyhedra. Such studies were authored by Piero della Francesca, Luca
Pacioli and Leonardo da Vinci, Albrecht Diirer, Augustin Hirschvogel, an unidentified
Author whose remarkable accomplishments were never published, Wentzel Jamnitzer,
Daniele Barbaro, Lorenz Stoer, Rafael Bombelli and Simon Stevin. A chronological
summary of this detailed analysis allowed us to trace which authors first described
each Archimedean Solid after Archimedes and understand how the authors would
have devised the solid bodies that were not found in preceding works.

Understanding how Albrecht Diirer, Augustin Hirschvogel and Daniele Barbaro
explored three-dimensional models and polyhedral nets to conceive new solid bodies
was a fundamental point of departure for the second part of our research in which we
present a conjecture on how Albrecht Diirer could have conceived the snub cube. In
addition, we discussed and interpreted six woodblocks with polyhedral nets from the
Albertina Museum in Vienna. These extraordinary woodblocks are a materialization of
an advanced and unprecedented research on the Archimedean Solids from an unknown
author who was active decades before Kepler. We also analyzed the impact of these
remarkable studies on other authors who delved into solid geometry in the sixteenth
century and pondered the possibility that the Anonymous Author might have been
Augustin Hirschvogel. Further research is crucial to substantiate our initial hypothesis
or point to another artist with strong connections to the city of Nuremberg as a potential
author.
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