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Abstract. The multivariate skew normal distribution is very useful for modeling
asymmetric data in many practical applications, and in particular in Statistical Qua-
lity Control for monitoring several quality characteristics. In this study in order to
monitor the covariance matrix of a multivariate skew normal process, we consider a
control chart based on the Statis methodology. More precisely, the chart is based on
a similarity measure between two data tables, the RV coefficient. The performance
of this chart is evaluated for several skew-normal processes.
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1 Introduction

In Statistical Quality Control it is crucial to monitor simultaneously several
quality characteristics. Often these characteristics are correlated and thus,
multivariate techniques of quality control are more appropriate than univari-
ate methods for monitoring the individual characteristics. Many multivariate
techniques of quality control have been proposed in the literature, in particular
many control charts have appeared for monitoring processes.
Control charts are the tools most used for process monitoring in Statistical
Quality Control (SQC) and were introduced by Shewhart at Bell Laboratories
in 1924. Control charts help us to decide if the process that is being monitored
is in-control or out-of-control. When a control chart triggers an out-of-control
signal, which may be eventually a false alarm, it is important to investigate
what are the causes responsible for the emission of such signal, so that appro-
priate actions may be taken.

Several multivariate schemes have been proposed for monitoring the mean
vector or the covariance matrix of a multivariate process. In particular, control
charts based on the Hotelling T 2 statistic, among others, have been imple-
mented for monitoring the mean vector, and control charts based on the gene-
ralised variance (Alt, 1985) and based on the maximum of the sample variances
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or on the maximum of the ranges (Costa and Machado, 2008a, 2008b), among
other charts have been proposed for monitoring the covariance matrix.
Additionally, several control schemes have appeared in the literature to monitor
simultaneously the mean vector and the covariance matrix of a process (Chen
et al., 2005, Zhang and Chang, 2008, etc).

Figueiredo and Figueiredo (2014) proposed a control scheme for controlling
the variability of a multivariate process based on Statis methodology. More
precisely, this scheme is based on a similarity measure between two positive
semi-definite matrices, the RV coefficient proposed by Escoufier (1973).
In this study we consider the previous control scheme for monitoring the co-
variance matrix of a multivariate skew normal process.

The STATIS (Structuration des Tableaux a Trois Indices de la Statistique)
methodology was introduced by L′Hermier des Plantes (1976) and later deve-
loped by Lavit (1988) and Lavit et al. (1994). This methodology enables us to
analyse simultaneously several data tables measured on the same individuals
or variables for different circumstances or time instants.
We’ll use this methodology for comparing several data tables. More precisely,
we’ll compare the relations between the variables along the data tables through
the covariance matrices and we’ll determine the compromise covariance matrix.
Statis methodology has been applied in Statistical Quality Control to monitor
batch processes (see for instance, Scepi, 2002, Gourvénec et al., 2005 and Niang
et al., 2009).

The multivariate skew normal distribution was proposed by Azzalini and
Dalla Valle (1996), and further discussed by Azzalini and Capitanio (1999) and
others. This distribution is an extension of the univariate skew normal distri-
bution, such that the marginal densities are scalar skew-normal. It also extends
the multivariate normal distribution, by the addition of a shape parameter.

In Section 2 we briefly refer the multivariate skew normal distribution, in
Section 3 we describe the control chart based on RV coefficient between the
compromise covariance matrix obtained from a set of reference samples and the
covariance matrix of a new sample. In Section 4 we evaluate the performance
of the chart for monitoring the covariance matrix of a multivariate skew normal
process.

2 The multivariate skew normal distribution

A k-dimensional random variable Z is said to have a multivariate skew normal
distribution if it has density function

f(z) = 2 φk(z ; Ωz) Φ (α′z) , z ∈ R
k, (1)

where φk(z; Ωz) is k-dimensional normal density with zero mean and correlation
matrix Ωz, Φ (.) is the N(0, 1) distribution function and α is a k-dimensional
vector.

When α = 0, density (1) reduces to the multivariate normal distribution
Nk(0,Ωz) density. The parameter α is then referred as a shape parameter.
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Next, we introduce location and scale parameters, which are not allowed in
density (1). Let

Y = ξ + ω z,

where ξ = (ξ1, ..., ξk)
′

and ω = diag (w1, ..., wk) are location and scale parame-
ters respectively, being wi > 0, i = 1, ..., k. The density function of Y is

g(y) = 2 φk(y − ξ; Ω) Φ
(

α′ω−1 (y − ξ)
)

, y ∈ R
k, (2)

where Ω = ω Ωz ω is a covariance matrix. We will use the notationY∼SNk (ξ,Ω,α)
to indicate that Y has density function (2).
For more details about this distribution, see Azzalini and Dalla Valle (1996)
and Azzalini and Capitanio (1999).

3 Control chart for monitoring the covariance matrix

We consider K reference samples of size n measured on p variables taken in K

different time instants, when the process is in the in-control state, and we repre-
sent these matrices by their covariance matrices Vk

′s. See the following scheme.

K reference samples

p variables p variables p variables
1 1 1
... X1

... X2 · · ·
... XK

n n n

⇓ ⇓ ⇓

1 · · · p 1 · · · p 1 · · · p

1 1 1
... V1

... V2 · · ·
... VK

p p p

We determine the compromise covariance matrix, V , as defined in the Statis
methodology, a weighted mean of the K covariance matrices Vk

′s:

V =
K
∑

k=1

αkVk,

where the weights αk represent the agreement between the K tables and the
compromise, and are obtained from the RV coefficients.
The RV coefficient (Escoufier, 1973) between Vk and Vk′ is defined by

RV (Vk, Vk′) =
Tr(VkQVk′Q)

√

Tr (VkQ)
2
Tr (Vk′Q)

2

,

where Tr denotes the trace operator of a matrix and Q is the metric in the
individuals space, defined by the identity matrix or by a diagonal matrix whose
main elements are equal to the reciprocal of the variances of the variables. The
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RV coefficient varies between 0 and 1. The closer the RV coefficient is to 1,
the more similar the two covariance matrices Vk and Vk′ are.
More precisely, the weights αk are the elements of the eigenvector associated
with the largest eigenvalue of the following matrix Z containing the RV coef-
ficients between the Vk

′s:

Z =











1 RV (V1, V2) · · · RV (V1, VK)
RV (V2, V1) 1 · · · RV (V2, VK)

...
...

. . .
...

RV (VK , V1) RV (VK , V2) · · · 1











The control chart, which we denote RV -chart, is implemented as follows.
For a new time instant k + 1, we compare its covariance matrix Vk+1 with the
compromise covariance matrix V through the RV coefficient. Denoting CL the
control limit of the chart, we consider the following decision criterion:

• If RV (V, Vk+1) ≥ CL we consider that the process is in-control.
• Otherwise, we decide that the process is out-of-control. In this case it is
important to identify which variables are responsible for this situation.

The exact distribution of the RV coefficient is unknown, and thus we fix CL
at an empirical percentile of the sampling distribution of the RV coefficient.

4 Performance of the control chart for a skew normal

process

For evaluating the efficiency of the RV -chart, we computed by simulation the
Average Run Length (ARL), the most commonly used measure of performance
of control charts.
We generated multivariate skew normal processes SNp (ξ,Ω,α), for p=2,3 as-
suming different structures for the covariance matrices when the process is
in-control and out-of-control and different shape parameters. In each case, we
obtained the compromise covariance matrix based on 4 reference samples ge-
nerated when the process is in-control. For a false alarm rate α=0.005, we
determined the control limit of the chart, i.e., the percentile 0.5% of the dis-
tribution of the RV coefficient, obtained through a Monte Carlo simulation
experiment of size 100000 and we calculated the in-control and out-of-control
ARL values through 10000 replicates for different shape parameters and struc-
tures of the covariance matrix.
More precisely, we generated samples from a bivariate skew normal distribu-
tion SN2 (ξ,Ω,α) with location vector ξ = (0, 0)

′

, covariance matrix Ω =
(

1 σ12

σ12 1

)

and shape parameter α. Note that we could consider another lo-

cation vector because we will work with centered data. The unit variances in
Ω imply that the covariance is equal to the linear correlation coefficient. Some
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obtained results are presented in Tables 1, 2 and 3. We also generated samples
from a multivariate skew normal distribution SN3 (ξ,Ω,α) with location vec-

tor ξ = (0, 0, 0)
′

, covariance matrix Ω =





1 σ12 σ13

σ12 1 σ23

σ13 σ23 1



 and shape parameter

α. As previously we could use another location vector and the unit variances
imply covariances equal to the correlation coefficients. Some obtained results
are indicated in Tables 4 and 5.

σ12= 0 in-control

α
′ (0,0) (2,2) (6,6) (-2,-2) (-6,-6) (0,0) (2,2) (6,6) (-2,-2) (-6,-6)

n 5 15
CL 0.359 0.331 0.324 0.333 0.323 0.696 0.704 0.707 0.698 0.708
σ12 ARL ARL
0 198.1 206.2 201.8 193.4 203.3 196.3 186.2 204.1 209.3 197.4

0.4 89.0 60.4 54.1 58.3 54.5 39.5 12.3 11.3 13.0 10.9
0.75 69.8 15.2 12.9 15.0 13.0 6.2 1.7 1.6 1.8 1.6
0.95 32.1 4.3 3.5 4.3 3.5 2.5 1.0 1.0 1.0 1.0

Table 1. Control limit and ARL for several shape parameters α and n=5,15, being
σ12= 0 when the process is in-control. The in-control ARL values are in bold.

σ12= 0 in-control

α
′ (0,0) (-2,6) (2,-6) (0,2) (0,-2) (0,0) (-2,6) (2,-6) (0,2) (0,-2)

n 5 15
CL 0.359 0.325 0.323 0.337 0.340 0.696 0.705 0.705 0.698 0.696
σ12 ARL ARL
0 198.1 198.4 205.6 205.2 196.3 196.3 201.9 204.1 193.1 201.5

-0.4 143.7 84.7 88.8 181.1 170.7 40.2 22.7 23.1 7.9 82.0
-0.75 69.1 29.7 29.6 114.9 109.4 6.1 2.7 2.7 11.2 11.5
-0.95 32.3 9.3 9.5 57.2 53.7 2.5 1.1 1.1 2.3 2.3

Table 2. Control limit and ARL for several shape parameters α and n=5,15, being
σ12= 0 when the process is in-control. The in-control ARL values are in bold.

The control limit and the ARL depend on the sample size (see Tables 1-3)
and in general, depend on the shape parameter and on the structure of covari-
ance of covariance matrix. See Tables 1-5.
From these tables, we observe that the in-control ARL is large and approxi-
mately equal to the expected value 200. When the process is out-of-control,
the ARL quickly decreases as the sample size increases.
For a bivariate process with correlation matrix equal to the identity matrix,
the chart detects easily a positive correlation when both components of the
shape vector are null or have the same sign (positive or negative). Moreover,
the detection is as fast as larger is the value of the correlation. See Table 1.
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σ12= 0.9 in-control

α
′ (0,0) (2,2) (6,6) (-2,-2) (-6,-6) (0,0) (2,2) (6,6) (-2,-2) (-6,-6)

n 5 15
CL 0.596 0.357 0.328 0.368 0.336 0.949 0.855 0.836 0.855 0.835
σ12 ARL ARL
0.9 191.6 202.6 208.5 184.1 189.2 204.2 201.9 190.6 201.0 197.9

0.75 32.0 36.3 37.9 32.7 35.2 9.6 7.6 7.3 7.4 7.5
0.5 8.5 10.2 10.8 8 10.5 1.9 1.7 1.7 1.7 1.7
0 2.4 3.1 3.3 2.9 3.1 1.0 1.0 1.0 1.0 1.0

-0.9 1.0 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0

Table 3. Control limit and ARL for several shape parameters α and n=5,15, being
σ12= 0.9 when the process is in-control. The in-control ARL values are in bold.

σij= 0, i 6= j, in-control

α
′ (0,0,0) (2,2,2) (6,6,6) (-2,-2,-2) (-6,-6,-6)

CL 0.671 0.676 0.678 0.676 0.678

σ12, σ13, σ23 ARL

0,0,0 201.4 201.2 195.8 195.8 194.1

0.4,0.4,0.4 13.9 10.4 10.1 10.6 9.8
0.75,0.75,0.75 1.9 1.3 1.3 1.3 1.3
0.95,0.95,0.95 1.2 1.0 1.0 1.0 1.0

0.5,0.2,0.9 3.5 1.8 1.7 1.8 1.7
0.9,0.75,0.9 1.4 1.0 1.0 1.0 1.0

Table 4. Control limit and ARL for several shape parameters α and n=15, being
σij= 0, i 6= j when the process is in-control. The in-control ARL values are in bold.

σij= 0.9, i 6= j, in-control

α
′ (0,0,0) (2,2,2) (6,6,6) (-2,-2,-2) (-6,-6,-6)

CL 0.951 0.845 0.833 0.844 0.834

σ12, σ13, σ23 ARL

0.9,0.9,0.9 200.0 201.1 202.4 202.7 196.6

0.75,0.75,0.75 6.7 5.8 5.9 6.0 5.9
0.5,0.5,0.5 1.4 1.3 1.3 1.3 1.3

0,0,0 1.0 1.0 1.0 1.0 1.0

0.9,0.5,0.1 1.2 1.2 1.2 1.2 1.2
0.1,0.5,0.3 1.0 1.0 1.0 1.0 1.0

Table 5. Control limit and ARL for several shape parameters α and n=15, being
σij= 0.9, i 6= j when the process is in-control. The in-control ARL values are in bold.

If the process is normal (α = 0) or when one component of the shape vector
is positive and the other is negative, the chart easily detects a negative corre-
lation, being more sensitive to large negative correlations. See Table 2.
In a 3-dimensional framework with data from a normal or a skew normal process
with a shape parameter, having all components positive or negative and when
the correlation matrix is equal to the identity matrix or has all off-diagonal
elements equal to 0.9, the chart detects changes in the correlations as fast as
we move away from the in-control correlation structure. See Tables 4 and 5.
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To conclude, the analysed cases suggest that the RV -control chart enables us
to detect easily changes in the correlations between variables when the process
has a normal or a skew normal multivariate distribution, being therefore a very
useful monitoring tool in a large variety of industrial applications.
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