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THE CONFORMAL LIMIT AND PROJECTIVE STRUCTURES

PEDRO M. SILVA AND PETER B. GOTHEN

Abstract. The non-abelian Hodge correspondence maps a polystable SL(2,R)-Higgs bundle
on a compact Riemann surface X of genus g ≥ 2 to a connection which, in some cases, is
the holonomy of a branched hyperbolic structure. On the other hand, Gaiotto’s conformal
limit maps the same bundle to a partial oper, i.e., to a connection whose holonomy is that
of a branched complex projective structure compatible with X . In this article, we show how
these are both instances of the same phenomenon: the family of connections appearing in the
conformal limit can be understood as a family of complex projective structures, deforming the
hyperbolic ones into the ones compatible with X . We also show that, when the Higgs bundle
has zero Toledo invariant, this deformation is optimal, inducing a geodesic on Teichmüller’s
metric space.
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1. Introduction

The geometric study of representations ρ : π1(M) → G of the fundamental group of a surface

M into a Lie group G is an active topic of research. It has a long and deep-rooted history

starting perhaps with the uniformization theorem of a compact Riemann surface by a Fuchsian

group and it is intimately connected with Teichmüller’s work on the space T(M) that now bears

his name. The particular approach to the subject we will follow relies on using the non-abelian

Hodge correspondence to construct geometric structures, which are naturally associated to ρ,

in order to better understand the nature of the representation.

The use of Higgs bundles to understand geometric structures on surfaces originates with

Hitchin’s parametrization of Teichmüller spaces in his seminal paper [Hit87]. More recently

several authors have used Higgs bundles to study other geometric structures; see, e.g., [Bar10,

BBDH21, Col20, CT23, Lab07] and, for the case of complex projective structures [Ale19,

ADL21].

Let X be a closed Riemann surface of genus g ≥ 2 with underlying smooth surface M . We use

Higgs bundles to construct a family of complex projective structures which interpolates between

the hyperbolic structure corresponding to a quadratic differential q on X in Hitchin’s parametri-

sation of T(M), and the complex projective structure corresponding to the ~-conformal limit of

the Higgs bundle given by q [Gai14, DFK+21, CW19]. This family is parametrized by ~ ∈ C∗

and R > 0 such that |~R| ≤ 1. In fact, the construction works more generally for the branched

hyperbolic structures studied in [BBDH21] and produces branched projective structures.

We now explain our construction in more detail. Let G be a reductive Lie group (real

or complex). The non-abelian Hodge correspondence establishes a homeomorphism between

the moduli space MG
Dol of polystable G-Higgs bundles on X and the moduli space MG

dR of

flat reductive connections; the latter can in turn be identified with the moduli space MG
B of

semisimple representations of π1(M) in G via the holonomy representation of a flat connection.

In this paper, we focus on the rank two case. An SL(2,C)-Higgs bundle is a pair (E,Φ),

where E is a rank 2 holomorphic vector bundle on X with trivial determinant bundle and

Φ ∈ H0(End0(E)⊗K) is a traceless endomorphism valued holomorphic 1-form (we have written

K for the holomorphic cotangent bundle, which coincides with the canonical line bundle of X).

An SL(2,R)-Higgs bundle can be viewed as an SL(2,C)-Higgs bundle of the form
(
E = L⊕ L−1,Φ =

(
0 α

β 0

))
,

where L is a holomorphic line bundle; note that α ∈ H0(L2K) and β ∈ H0(L−2K). The

topological invariant d = deg(L) gives a partition of MSL(2,R) into subspaces M
SL(2,R)
d . The

invariant deg(L) is bounded by the Milnor–Wood inequality |deg(L)| ≤ g − 1 and, by sym-

metry, M
SL(2,R)
d

∼= M
SL(2,R)
−d , so we may assume d ≥ 0. The subspaces M

SL(2,R)
d are connected

components, except M
SL(2,R)
g−1 . The latter has 22g components which are identified when passing

to the quotient PSL(2,R); we refer to any such maximal component as a Hitchin component.

Since for d > 0 the polystability condition is equivalent to β 6= 0, one has L2 ∼= K for d = g−1,
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the square roots of K thus accounting for the 22g Hitchin components. Moreover, each com-

ponent is parameterized by quadratic differentials q = α ∈ H0(K2). Hitchin [Hit87] proved

that a Hitchin component parameterizes all hyperbolic structures on M and that under the

non-abelian Hodge correspondence a hyperbolic structure is sent to its holonomy. Biswas et

al. [BBDH21] generalized this to show that any SL(2,R)-Higgs bundle with div(α) ≥ div(β)

gives rise to a branched hyperbolic structure with branching divisor div(β).

On the other hand, Gaiotto’s conformal limit [Gai14], is related to complex projective struc-

tures. For each Higgs bundle it introduces a family ∇~,R of flat connections parameterised by

~ ∈ C∗ and R > 0 such that ∇1,1 is the flat connection corresponding to the Higgs bundle under

the non-abelian Hodge correspondence. For Higgs bundles in an SL(2,R)-Hitchin component,

Gaiotto conjectured that the conformal limit ∇~,0 = limR→0∇~,R exists and is an oper, i.e.,

defines a complex projective structure compatible with the Riemann surface structure of X.

The conjecture has been proven (for Hitchin components for any split real G) by Dumitrescu

et al. [DFK+21] and (for any Higgs bundle with stable C∗-limit at zero) by Collier–Wentworth

[CW19]. In particular, for β 6= 0 the conformal limit for an SL(2,C)-Higgs bundle is a partial

oper which defines a branched projective structure.

In the present specific case of G = SL(2,R), we take advantage of the symmetry of Hitchin’s

equations to identify the conformal limit explicitly (see Theorem 2.12 below) without using the

Implicit Function Theorem in Banach Spaces, in contrast to the references just cited.

Our main results on projective structures can now be summarised as follows.

Theorem. Let (E = L⊕L−1,Φ =
(
0 α
β 0

)
) be an SL(2,R)-Higgs-bundle with 0 ≤ deg(L) ≤ g−1

and β 6= 0. Assume that |~R| ≤ 1 (or |~R| < 1 when deg(L) = 0) and div(α) ≥ div(β). Then

the following results hold.

(1) There is a Riemann surface structure Xµ ∈ T(M) associated to a Beltrami differential

µ = µ(~, R) on X and a branched projective structure P(~, R) ∈ B(M) with branching

divisor div(β), compatible with Xµ.

(2) The family P(~, R) depends continuously on (~, R) and when deg(L) > 0 it interpolates

between a branched hyperbolic structure P(~, 1) and the branched projective structure

given by the partial oper (∇~,0, L).

(3) For deg(L) = 0 the curve R 7→ Xµ(~,R) in T(M) is a geodesic ray in the Teichmüller

metric.

Both µ(~, R) and P(~, R) are defined in terms of the Higgs bundle data (see Theorem 4.1) and,

in particular, the holonomy of P(~, R) is that of ∇~,R.

Statement (1) of the above theorem is given in Theorems 4.1 (in the case deg(L) > 0) and

5.4 (in the case deg(L) > 0). The continuity statement (2) is discussed in Section 6.1 (cf. 2.13).

Statement (3) is given in Theorem 6.3.

The organization and results of the paper are as follows. We begin by recalling the non-

abelian Hodge correspondence and the conformal limit in Section 2. We give a new proof of

the existence of the conformal limit for any polystable SL(2,R)-Higgs bundle with non-zero

Toledo invariant in Section 2.2, using the simple Proposition 2.9 regarding the symmetry of
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Hitchin’s equation. Section 3 is expository, collecting some known facts, which we write as

tailored by our needs. We recall the definitions of complex projective structure in Section 3.1

and of the branched case in Section 3.2. We state Gunning’s transversality criterion and its

relation with (partial) opers in Sections 3.3 and 3.4. We finally prove the conformal limit to be

a partial oper when the Toledo invariant is non-zero in Section 3.5. In Section 3.6 we recall some

facts about Beltrami differentials and classical Teichmüller theory. Section 4 presents the main

results, showing that, under some conditions determined by Brill-Noether considerations, the

family ∇~,R appearing in the conformal limit is the holonomy of a branched projective structure

which is compatible with a Riemann surface structure Xµ determined by a Beltrami differential

µ(~, R) which we explicitly calculate. The case of zero Toledo invariant is approached in

Section 5, where we restate and prove similar results, namely that the conformal limit exists

and it is a partial oper (Section 5.1) and that, under similar conditions, the connections ∇~,R

are associated to branched projective structures again compatible with Xµ(~,R), for some explicit

Beltrami differential µ(~, R) (Section 5.2). Finally, we provide some geometric understanding

of the results in Section 6. We show, in Section 6.2 that in the case of zero Toledo invariant the

curve R → Xµ(~,R), for fixed ~, is a (reparametrization) of a geodesic for the Teichmüller metric

in T(M). In Section 6.3 we also give conditions on ~ and R under which the constructions

produce branched hyperbolic structures.

Acknowledgements. We would like to thank Q. Li for useful discussions and the referee for

a careful reading of the manuscript.

2. The conformal limit

2.1. Preliminaries. In this section, we introduce the conformal limit following [DFK+21] and

[CW19]. We consider X a closed Riemann surface of genus g ≥ 2 and E a fixed (necessarily

trivial) SL(n,C)-vector bundle of rank n over X. We view an SL(n,C)-Higgs bundle as a pair

(∂E ,Φ) where ∂E is a ∂-operator defining a holomorphic structure on E, which has trivialized

determinant, and the Higgs field Φ ∈ Ω1,0(End0(E)) is a ∂E-holomorphic (1, 0)-form with values

in the traceless endomorphism bundle End0(E).

Definition 2.1. Let (∂E,Φ) be a SL(n,C)-Higgs bundle. Let H be a Hermitian metric on

E and let FAH
be the curvature of the Chern connection AH determined by H and ∂E . Fix

R ∈ R+. A metric which induces the trivial metric on det(E) is called harmonic with parameter

R if it satisfies the R-scaled version of Hitchin’s equation:

FAH
+R2 [Φ,Φ∗H ] = 0. (2.1)

Remark 2.2. If R = 1 we get the usual Hitchin equation for the Higgs bundle (∂E,Φ), and

a metric which is harmonic with parameter 1 is simply called harmonic. Thus a metric is

harmonic with parameter R if and only if it is a solution to Hitchin’s equation for the Higgs

bundle (∂E , RΦ).

The existence of such a metric when certain stability conditions on (∂E,Φ) are met is a

part of the celebrated non-abelian Hodge correspondence. Recall that a SL(n,C)-Higgs bundle
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(∂E ,Φ) is (semi)stable if every Φ-invariant holomorphic subbundle L of E has (non-positive)

negative degree. Further, it is called polystable if it is a direct sum of stable Higgs bundles (of

degree 0).

Theorem 2.3. A SL(n,C)-Higgs bundle (∂E,Φ) is polystable if and only if, for each R ∈ R+,

there is a harmonic metric with parameter R. This metric is unique if (∂E,Φ) is stable.

The existence of such a metric allows one to use R to deform the flat connection associated

to the Higgs Bundle. Given an SL(n,C)-Higgs bundle (∂E ,Φ) and a fixed ~ ∈ C∗ one has the

R+-family of flat connections

∇~,R = AHR
+ ~−1Φ + ~R2Φ∗HR (2.2)

where HR is the harmonic metric with parameter R ∈ R+ for (∂E,Φ), AHR
is the Chern

connection for ∂E and HR, and the adjoint ∗HR
is taken also with respect to the metric HR.

Definition 2.4. The ~-conformal limit of (∂E ,Φ) is the connection

∇~,0 := lim
R→0

∇~,R (2.3)

when it exists.

Remark 2.5. In the case ~ = 1 note that, if R = 1, the connection ∇1,1 is just the one given by

the usual non-abelian Hodge correspondence.

The existence of this limit was established in [DFK+21, CW19] for the stable case. In the

case of SL(2,R)-Higgs bundles, we shall give a more direct argument both in the stable case

(in Section 2.2) and in the polystable case (in Section 5.1). We do this by taking advantage of

the fact that the structure group C∗ is abelian for SL(2,R)-Higgs bundles.

2.2. Explicit limit in the SL(2,R) case. Recall that we can view an SL(2,R)-Higgs bundle

as an SL(2,C)-Higgs bundle E with a holomorphic decomposition E = L⊕ L−1, where L is a

holomorphic line bundle. Further, the Higgs field has the form Φ =
(
0 α
β 0

)
for this decomposi-

tion, where α ∈ H0(L2K) and β ∈ H0(L−2K). For such a Higgs bundle the Toledo invariant

deg(L) satisfies a Milnor-Wood type inequality 0 ≤ | deg(L)| ≤ g − 1. We can assume, by

duality, that an SL(2,R)-Higgs bundle has deg(L) ≥ 0.

The SL(2,C)-Higgs bundle stability condition for the case deg(L) > 0 is simply β 6= 0. This

is because L is the maximal destabilizing subbundle of E, which is not preserved by the Higgs

field if and only if β 6= 0. There are no strictly polystable cases. For the case deg(L) = 0 the

condition is more delicate, and it is analyzed in Section 5.

The harmonic metric H in either case is known to diagonalize ([Hit87] or [Ale19, Proposition

5.2], for example) with respect to this decomposition, so H =
(
h 0
0 h−1

)
, where h is a metric in

the line bundle L.

If we choose a holomorphic frame for L, and the induced holomorphic frame in E, h is

locally given by a positive function, still denoted by h, or h(z) if we want to make explicit

the dependence on a complex coordinate z in X. The Chern connection for H is given in this

frame by AH = d+
(
∂ log h 0

0 −∂ log h

)
=
(
∂z log h dz 0

0 −∂z log h dz

)
. Further α and β are given by 1-forms
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α = α(z)dz and β = β(z)dz. Recalling that locally Φ∗H = H−1Φ
T
H , Hitchin’s equations (2.1)

for this case (R = 1) read

0 = FAH
+ [Φ,Φ∗H ] ⇔

0 =

(
∂∂ log h 0

0 −∂∂ log h

)
+

(
0 α

β 0

)
∧

(
0 βh−2

αh2 0

)
+

(
0 βh−2

αh2 0

)
∧

(
0 α

β 0

)
.

This simplifies to the single scalar (and unscaled) vortex equation

∂z∂z log h = |α|2h2 − |β|2h−2.

The R-scaled version is given in the following definition and just says that HR =
(

hR 0

0 h−1

R

)
is

harmonic with parameter R for
(
E = L⊕ L−1,Φ =

(
0 α
β 0

))
.

Definition 2.6. Let L be a holomorphic line bundle and consider the sections α ∈ H0(L2K)

and β ∈ H0(L−2K), and R ∈ R+. A metric hR in L solves the R-scaled vortex equation for

(α, β) if locally in a holomorphic frame

∂z∂z log hR = R2
(
|α|2h2

R − |β|2h−2
R

)
.

Remark 2.7. For R = 0 this is an equation for a metric of zero curvature. If such a Hermitian

metric exists on L then deg(L) = 0.

Example 2.8. If the Higgs bundle lies in a Hitchin component then

(
E = K1/2 ⊕K−1/2,Φ =

(
0 q
1 0

))
,

for a choice K1/2 of square root of the canonical bundle K, from the 22g available, and q ∈

H0(K2) a quadratic differential. The R-scaled vortex equation is then just the R-scaled version

of the abelian vortex equation as in Hitchin [Hit87]

∂z∂z log h = R2
(
|q|2h2 − h−2

)
.

In this case g = h−2 is a metric in (K1/2)−2 ∼= K−1 ∼= TX, which satisfies

∂z∂z log g = 2R2g

(
1−

qq

g2

)
. (2.4)

For R = 1 and q = 0, this is the equation for a Riemannian metric g0 of constant negative

curvature −4.

In the case of SL(2,R)-Higgs bundles, the family of connections (2.2) that comes up in the

conformal limit is thus

∇~,R = AHR
+ ~−1Φ + ~R2Φ∗HR

= d+

(
∂ log hR 0

0 −∂ log hR

)
+ ~−1

(
0 α

β 0

)
+ ~R2

(
0 βh−2

R

αh2
R 0

)

= d+

(
∂ log hR ~−1α + ~R2βh−2

R

~−1β + ~R2αh2
R −∂ log hR

)
. (2.5)
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The calculations [DFK+21, CW19] of the conformal limit use the inverse function theorem

in infinite dimensional Banach spaces to find suitable gauge transformations acting on ∇~,R.

As we shall see next, in the case of SL(2,R)-Higgs bundles the calculation can be done directly,

using that the moduli spaces of Higgs bundles and of flat connections are homeomorphic.

The argument relates the solutions of the scaled equation with solutions of the unscaled one.

Proposition 2.9. Let L be a holomorphic line bundle, α ∈ H0(L2K), β ∈ H0(L−2K), and

R ∈ R+. A metric hR is a solution of the R-scaled vortex equation for (α, β) if and only if

h := hR

R
is a solution of the unscaled vortex equation for (R2α, β).

Proof. Let h := R−1hR be a solution of the unscaled vortex equation for (R2α, β). This happens

if and only if

∂z∂z log h = |R2α|2h2 − |β|2h−2.

Given the fact that R does not depend on z, i.e., ∂z log h = ∂z log hR − ∂z logR = ∂z log hR ,

the expression is equivalent to

∂z∂z log hR = |R2α|2R−2h2
R − |β|2R2h−2

R = R2
(
|α|2h2

R − |β|2h−2
R

)
,

and so hR solves the R-scaled vortex equation for (α, β). �

Corollary 2.10. Let deg(L) > 0. Then the pointwise limit of h := hR

R
as R → 0 exists as a

metric and it is a solution of the unscaled vortex equation for (0, β).

Proof. By Propostion 2.9 h is a solution of the unscaled vortex equations for (R2α, β). This

describes a continuous path (E = L ⊕ L−1,Φ(R)) of polystable Higgs bundles, with Φ(R) =(
0 R2α
β 0

)
. Note that it is a well-defined path since, (E,Φ(R)) is stable for all R. This happens

even for R = 0, since then the Higgs bundle is stable because deg(L) > 0. (The subbundle L

is maximally destabilizing.) Under the homeomorphism to the space of harmonic bundles, this

is mapped to a continuous path of metrics, and limR→0 h is the metric associated to Φ(0). �

Remark 2.11. If hR is a solution of the R-scaled vortex equation for a fixed (α, β), it was already

noted in [DFK+21] (for the Hitchin component) that limR→0 hR does not exist in general. In

our case this can be seen directly from the fact that a solution for the 0-scaled equation is just

a metric with curvature equal to zero (cf. Remark 2.7), and thus it can only exist in the case

deg(L) = 0, but not for general L. More precisely, in view of the Corollary, it follows that

h = hR/R tends to the solution of the unscaled vortex equations with (0, β), and so hR = hR

tends to zero as fast as R → 0 for deg(L) > 0. We note also that for deg(L) = 0 the limit

limR→0 h does not exist, since in that case (0, β) defines a non-polystable Higgs bundle (cf.

Section 5 for further details).

Using Corollary 2.10 we can now calculate the conformal limit.

Theorem 2.12. [CW19, Prop. 5.1] Let X be a closed Riemann surface of genus g ≥ 2. Consider

the vector bundle E = L ⊕ L−1, with 1 ≤ deg(L) ≤ g − 1, and induced holomorphic structure

∂E and Higgs field Φ =
(
0 α
β 0

)
, where α ∈ H0(L2K) and 0 6= β ∈ H0(L2K).

Then, the ~-conformal limit ∇~,0 of the SL(2,C)-Higgs bundle (∂E ,Φ) exists. Using the

holomorphic frame of E induced by a holomorphic frame of L, the coordinate representation of
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∇~,0 is

∇~,0 = d+

(
∂ log h0 ~−1α + ~βh−2

0

~−1β −∂ log h0

)
, (2.6)

where h0 is the solution of the unscaled vortex equations for (0, β).

Proof. By Proposition 2.9, for each R ∈ R+, we can write hR as hR = hR, where h is the

solution of the unscaled vortex equation for (R2α, β). By Corollary 2.10, the limit of h as

R → 0 exists and we have limR→0 h = h0. We also note that ∂z logR = 0.

We are now able to compute the following limits:

lim
R→0

∂z log hR = lim
R→0

∂z log (hR) = lim
R→0

(∂z log h + ∂z logR) = lim
R→0

∂z log h = ∂z log h0,

lim
R→0

R2h2
R = lim

R→0
R4h = 0,

lim
R→0

R2h−2
R = lim

R→0
h−2 = h−2

0 .

Taking R → 0 in the family ∇~,R of (2.5) we then get the existence and explicit form of the

conformal limit stated. �

Remark 2.13. Note that for R 6= 0, the family ∇~,R in 2.5, as a function of the parameters

~ and R into the configuration space of flat connections, is continuous. So, in fact, we have

shown here that this continuity extends to R = 0.

Remark 2.14. The connected components of the moduli space of SL(2,R)-Higgs bundles are

as follows [Hit87]. There are 2 · 22g Hitchin components corresponding to the maximal Toledo

invariant |deg(L)| = g − 1. Further, there are 2g − 1 non-maximal components, corresponding

to 0 ≤ |deg(L)| < g. The existence of the conformal limit is thus established for all the

components except for the minimal one, i.e., the one for which deg(L) = 0. This will be done

in Section 5.

Remark 2.15. Our argument can in fact be generalized to show the existence of the conformal

limit in the configuration space for any polystable SL(2,C)-Higgs bundle. This will be treated

elsewhere. Here we have limited ourselves to the SL(2,R)-case because our main interest lies

in the connection with branched projective structures.

3. Branched projective structures and partial SL(2,C)−opers

In this section we recall some basic facts on branched projective structures and the closely

related concept of partial SL(2,C)−opers.

3.1. Projective structures. A projective structure on a surface M is given by a maximal

atlas A = {(Uα, φα : Uα → CP1)}, whose charts are diffeomorphisms onto open sets of CP1

and whose transition functions are Möbius transformations. These are examples of locally

homogeneous structures or (G,X)-manifolds, where X = CP1 and G = PSL(2,C) ([Thu22,

Chapter 3]).

Equivalently, a projective structure is a pair (ρ, d) where ρ : π1(M) → PSL(2,C) is a rep-

resentation, called the holonomy of the structure, and d : M̃ → CP1, the developing map, is a
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ρ-equivariant local diffeomorphism with domain the universal cover M̃ → M . The pair (ρ, d)

is uniquely defined up to the action of G by conjugation on ρ and by post-composition on d.

A third description of projective structures is obtained by constructing the flat CP1-bundle

PEρ → M whose holonomy is given by ρ. The developing map is then canonically identified

with a section s of PEρ and it is a local diffeomorphism if and only if this section is transverse

to the flat connection on PEρ. The equivalence is now given by the usual action of the gauge

group simultaneously on flat connections and sections.

Each of these structures is then considered modulo diffeomorphisms which are locally in

PSL(2,C) and are isotopic to the identity, in a construction similar to Teichmüller space. Any

incarnation of this space is denoted by P(M).

We note that, since PSL(2,C) acts holomorphically on CP1, every projective structure P seen

as maximal atlas on a surface M , induces a Riemann surface structure X, because this maximal

atlas is, in particular, an atlas for a complex manifold in the usual sense. It is of course possible

that projective structures P and P ′ define the same complex structure X even though they are

not equivalent as projective structures. We then say that P (and P ′) are compatible with X.

One can rephrase this statement by saying that the projective structure P is a stiffening of the

fixed complex structure X ([Thu97, page 112]). In this case, the local charts φα : Uα → CP1

are holomorphic as local functions in X and can be written in holomorphic coordinates as the

identity map z 7→ z. Further, the universal cover M̃ can be made into a Riemann surface X̃.

The developing map of P becomes a local biholomorphism for X̃. Also the total space PEρ

becomes a complex manifold and the section s becomes a holomorphic section. We denote by

P(X) the space of projective structures which are a stiffening of X modulo the same action of

diffeomorphisms which are locally in PSL(2,C) and are isotopic to the identity. Observe that

we have a map

P(M) → T(M)

sending a projective structure P to its induced Riemann surface structure X, and for which the

fiber over X is P(X).

3.2. The branched case. We are going to describe branched projective structures following

Mandelbaum [Man72, Man73] and Simpson [Sim10] (see also [BDH23]). As usual, the idea

of branching involves considering geometric structures on M\S, where S is a discrete set of

points on M . Furthermore, one imposes regularity conditions around these points, so that the

structures obtained are still controlled by the geometry of M .

A branched projective structure is a maximal atlas A = {(Uα, φα : Uα → CP1)} whose charts

are topological singly-branched r-coverings from topological disks Uα of M onto open sets of

CP1, and whose transition functions are Möbius transformations. This is to say that the charts

φα are r-coverings, r ≥ 1 an integer, except possibly at a single point of their domain pα.

Further we require that pα is the only point on its φα-pre-image, i.e., φ−1
α (φα(pα)) = {pα}. The

set of points pα is well defined and discrete. For compact M it is thus finite and we denote it

by S = {pk}
n
k=1; the points pk are called the branching points of A.

Under these conditions, the atlas A will induce a Riemann surface structure X. We say that

the branched projective structure A is compatible with X. Using the complex coordinates of
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X, the condition on the charts is equivalent to φα being written as the map z 7→ zr, with r > 1

only at the branching points pk. The integer r− 1 is independent of coordinates and thus well

defined for A. It is called the order of A at pk, and denoted by ordA(pk). Each branched

projective structure compatible with X comes together with the so-called branching divisor D.

This is the effective divisor defined by

D =

n∑

k=1

ordA(pk) · pk.

It is trivial if and only if the structure is a projective structure as defined in the previous section.

To be clear we will call such structures unbranched.

Equivalently a branched projective structure can be given by a pair (ρ, d) where ρ : π1(M) →

PSL(2,C) is the holonomy of the structure, and d : M̃ → CP1 is the ρ-equivariant developing

map, which is now allowed to have vanishing derivative of order r − 1 at the lifts of pk to M̃ .

The pair (ρ, d) is again uniquely defined up to the action of PSL(2,C) by conjugation on ρ and

by post-composition on d.

Building again the flat projective bundle PEρ → M the developing map corresponds to a

section s which is generically transverse to the flat connection, in the sense that the section is

non-horizontal except at the points pk, where the flat connection annihilates s to order r − 1.

The equivalence here is again given by the usual action of the gauge group on flat connections

and sections.

We then consider any of these spaces of structures modulo the action of diffeomorphisms

locally in PSL(2,C) and isotopic to the identity, and denote them by B(M). We also denote

the space of branched projective structures compatible with X by B(X).

As in the unbranched case we have a map

B(M) → T(M)

sending a branched projective structure to its induced Riemann surface structure X, and whose

fiber over X is P(X).

3.3. Gunning’s criterion. The relation between opers and projective structures is well known.

Here we recall the relation for the branched case. We let (ρ, d) ∈ B(X) be a branched projective

structure compatible with the Riemann surface X, and with branching divisor D. We will

look only at those structures whose representation lifts to SL(2,C), that is, we assume there

is a representation ρ̃ : π1(M) → SL(2,C) which covers ρ with respect to the quotient map

Proj : SL(2,C) → PSL(2,C). This happens if and only if deg(D) is even ([Man73, Theorem 2]

and also [GKM00, Corollary 11.2.3.]), and the lift is non-unique in general. In particular, for

unbranched projective structures ρ always lifts.

In this situation we can repeat the construction of the bundle but using ρ̃ and C2 as a fiber,

thus obtaining a flat SL(2,C)-bundle E → M , with flat linear connection ∇, and holomorphic

structure ∂E := ∇0,1 as a bundle on the underlying Riemann surface X. It comes with a

holomorphic line subbundle L, corresponding to the section s or, equivalently, to the branched

developing map d. The branched transversality condition is precisely that L be a non-horizontal
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subbundle, i.e., TL * HE with HE ⊂ TE the horizontal distribution determined by the flat

connection on E, except at the branching points pk where the order of contact is giving by the

branching order.

Another way of expressing the transversality condition comes from looking at the composition

q ◦ ∇ : O(L) → O(E/L⊗K), where q : E ⊗K → E/L ⊗K is the quotient map. This is O-

linear and thus defines a holomorphic map of line bundles βL : L → E/L⊗K, called the second

fundamental form of L in E. The subbundle is non-horizontal precisely if βL is non-zero, and

the zeros of this map are the points pk where the structure branches. Note that, since detE = O

and rank(E) = 2, we have E/L ∼= L−1. Thus Hom(L,E/L ⊗K) ∼= Hom(L, L−1K) ∼= L−2K,

and so we can see βL as a section of a line bundle, βL ∈ H0(L−2K). The branching divisor is

precisely div(βL).

In conclusion, every branched projective structure compatible with X, and whose representa-

tion lifts to SL(2,C), gives rise to a flat SL(2,C)-vector bundle together with a non-horizontal

holomorphic line subbundle L, i.e., one with non-zero second fundamental form βL. Conversely,

any such data will yield a branched projective structure. These objects are again only deter-

mined up to gauge equivalence, but now the ambiguity introduced by lifting the representation

means that it is possible for different subbundles L and L′ to determine the same projective

structure. This happens if and only if L′ = L ⊗ S, for some flat line bundle S, since they

projectivize to the same section of PEρ → X. We collect these results in the following theorem

due, in the unbranched case, to Gunning [Gun67, Theorem 2].

Theorem 3.1. Let E → X be an SL(2,C)-vector bundle on a Riemann surface X with holomor-

phic structure ∇(0,1) given by a flat connection ∇. Then any holomorphic line subbundle L ⊂ E

with non-zero holomorphic second fundamental form βL, determines a branched projective struc-

ture compatible with X, with branching divisor div(βL). Moreover, any other SL(2,C)-bundle

E ′ with flat connection ∇′ and subbundle L′ determines an equivalent projective structure if and

only if there is an isomorphism Ψ : E ⊗ S → E ′ such that L′ = Ψ(L⊗ S) and ∇⊗ δ = Ψ∗(∇′)

for some holomorphic line bundle S with flat connection δ of order 2.

Remark 3.2. Note that, if Proj : SL(2,C) → PSL(2,C) is the quotient map, the holonomy of

the structure determined by (E → X,∇, L) is Proj ◦ hol(∇). Note also that, given the fact

that the connections induced on det(E) and det(E ′) are trivial and det(E ′)∼=det(E) ⊗ δ2 via

Φ we conclude that the flat connection δ squares to the trivial connection on S. Such flat

connections correspond to representations π(M) → C∗ whose elements have order 2. Since

there are only two such elements in the abelian group C∗, we conclude that there exist 22g such

possible connections.

This shows that a concept of branched projective structure compatible with X is almost

equivalent to that of a partial SL(2,C)-oper which we introduce next, following [Sim10].

3.4. Partial SL(2,C)-opers. Classical opers were introduced in [DS85] and the concept was re-

formulated in modern language in [BD05]. They are defined as a flat bundle together with a full

filtration by holomorphic subbundles, whose induced map on quotients satisfies a transversality

condition. In [Sim10] the filtration is not necessarily full, and the transversality condition is
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replaced by the gr-semistability of the associated graded Higgs bundle, giving rise to the notion

of partial oper.

Definition 3.3. [Sim10] Let X be a Riemann surface and consider an SL(2,C)-bundle E with

flat connection ∇ together with a filtration

0 ⊂ L ⊂ E

by a ∇(0,1)-holomorphic subbundle L. Let βL : L → E/L⊗K be the O-linear map induced by

∇. The associated graded is the Higgs bundle (Gr(E), θ) where

Gr(E) = L⊕E/L ∼= L⊕ L−1 and θ =

(
0 0

βL 0

)
.

If this Higgs bundle is semistable we call the filtration a partial SL(2,C)-oper. Two partial opers

are equivalent if their flat bundles are isomorphic by a gauge transformation that preserves the

filtration.

Remark 3.4. Note that if deg(L) > 0 then L is the maximal destabilizing subbundle of Gr(E).

This means that (Gr(E), θ) is (semi)stable as a Higgs bundle precisely if L is not preserved by

θ, and this happens if and only if βL 6≡ 0. In this case, the definitions of branched projective

structure compatible with X and of partial oper are the same, by Theorem 3.1, and they just

require βL to be non-zero. In the case deg(L) = 0 though, the bundle Gr(E) is semistable (as

a holomorphic bundle). Thus (Gr(E), θ) is semistable as a Higgs bundle even if βL is zero. In

this situation, the definition of partial oper includes more objects than the branched projective

structures. These structures will correspond to the partial opers with non-zero βL.

Remark 3.5. We remark that Simpson’s definition in [Sim10] allows for filtrations which are not

full. In particular, 0 ⊂ E, with E semistable as a holomorphic bundle, is considered a partial

oper structure in that paper, but not here.

Remark 3.6. The case of classical, or full, opers is obtained when βL : L → L−1K is an

isomorphism. In this case L2 ∼= K and deg(L) = g − 1, and (Gr(E), θ) is automatically stable,

since βL 6= 0. These correspond to unbranched projective structures compatible with X.

For now, we will be interested in the case of deg(L) > 0. Then, for a Riemann surface X, a

branched projective structure compatible with X is the same as a partial SL(2,C)-oper, with

the caveat that equivalence of projective structures is slightly weaker than that of opers. While

for opers the filtration must be preserved by gauge equivalence, in the situation of projective

structures the gauge equivalence is allowed to twist the subbundle. In any case, regardless

of degree, a partial SL(2,C)-oper on X, with non-zero βL, determines a branched projective

structure compatible with X.

We also recall that the structure of a partial SL(2,C)-oper on E, in particular, realizes E as

an extension of the ∇(0,1)-holomorphic line bundles, namely of L by E/L ∼= L−1 :

0 → L → E→L−1 → 0.
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These extensions are classified by an element of the cohomology group H1(Hom(L−1, L)) ∼=

H1(L2), and thus represented in Dolbeault cohomology by a (0, 1)-form with values in L2. In

any C∞ decomposition of E of the form E = L⊕L−1, the holomorphic structure ∇(0,1) can be

written as

∇(0,1) =

(
∂L ω

0 ∂L−1

)
,

since L is holomorphic, and the class [ω] ∈ H1(L2) is called is the extension class of the partial

SL(2,C)-oper (E,∇).

3.5. The conformal limit is a partial oper. We now observe that the conformal limit

calculated in Theorem 2.12 defines a partial oper. This was already proved in [CW19] in

greater generality. We include the proof for two reasons: firstly, because in the SL(2,R)-case

we can give a particularly transparent proof using our explicit argument for the existence of

the conformal limit and, secondly, because this sets the stage for the construction of branched

projective structures in Section 4.

Theorem 3.7. The ~-conformal limit ∇~,0 of the SL(2,R)-Higgs bundle E = L ⊕ L−1, with

1 ≤ deg(L) ≤ g − 1, and Higgs field Φ =
(
0 α
β 0

)
, where α ∈ H0(L2K) and 0 6= β ∈ H0(L2K) is

a partial SL(2,C)-oper

0 ⊂ L ⊂ (E,∇~,0)

with second fundamental form ~−1β.

Proof. The expression (2.6) shows that ∇
(0,1)
~,0 preserves L which is therefore a holomorphic

subbundle as required. Moreover, the second fundamental form is the lower left-hand corner of

the matrix in (2.6) which is indeed the non-zero holomorphic section ~−1β. �

Remark 3.8. This is the same as saying that the conformal limit yields a branched projective

structure compatible with X. Its branching divisor is precisely the divisor of β in the Higgs

field.

Remark 3.9. Observe also that in the case where α = 0, the Higgs field Φ lies in the nilpotent

cone. In this situation, the entire family ∇~,R in (2.5) has an explicit form similar to ∇~,0.

So the proof of the theorem actually yields that L is a holomorphic subbundle with non-zero

second fundamental form. Thus every ∇~,R, for α = 0, is a partial oper. We will see that there

are more general conditions under which ∇~,R is a branched projective structure.

Remark 3.10. The extension class of the limit partial oper is represented by the upper right-

hand corner of ∇0,1
~,0 which reads [~βh−2

0 ] ∈ H0,1(L2) ∼= H1(L2).

Remark 3.11. Since the branching divisor of the projective structure given by the conformal

limit is the divisor of zeros of β, we see that the ~-conformal limit ∇~,0 of the SL(2,C)-Higgs

bundle (∂E ,Φ) is a full oper if and only if β is nowhere vanishing, i.e., if and only if (∂E ,Φ) lies

in a Hitchin component.

It is important to note that partial opers correspond only to branched projective structures

which are compatible with a fixed Riemann surface structure X. To study what happens
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along the conformal limit, i.e., as R → 0 in ∇~,R, and to check that these connections actually

correspond to branched projective structures we need to vary the structure X. To this purpose,

we digress slightly on the theory of the Beltrami equation and Teichmüller space.

3.6. Beltrami differentials and complex structures. There are several approaches to the

description of the Teichmüller space T(M) of a closed surface M . This is the space of marked

complex structures on M and it is classically identified with the unit L1-ball in the space

of holomorphic quadratic differentials H0(K2) for some fixed Riemann surface structure via

Teichmüller’s embedding, see for example [DW07, Theorem 2.9]. Its construction relies on the

use of Beltrami differentials to change the complex structure. We follow the notation in [Leh87,

IV.1.4].

Definition 3.12. Let X be Riemann surface with canonical bundle K. A Beltrami differential

µ is a (smooth) section of K ⊗K−1 whose sup-norm is strictly bounded by 1, i.e., an element

of the set

B(X) =
{
µ ∈ Ω0(K ⊗K−1) = Ω(−1,1)(X) | ||µ||∞ < 1

}
. (3.1)

Remark 3.13. Note that the transformation law for the coordinates of µ is µ′(z′) = µ(z)dz
′/dz

dz′/dz
.

As such, the value of |µ(z)| is independent of the holomorphic coordinate chart and it is a

well-defined quantity whose supremum we denote by ||µ||∞.

A Beltrami differential can be used to build a complex atlas for a different complex structure

in the following way. Let z be a coordinate for X and let µ = µ(z)dz ⊗ ∂
∂z

∈ Ω0(K ⊗ K−1).

Consider the local Beltrami equation on a contractible open set U ⊂ X for a function v : U → C

∂zv = µ(z)∂zv. (3.2)

In this situation, µ(z) is called the parameter of the equation. The classical existence result

states that such a v exists if ||µ||∞ < 1 on U . Furthermore, such function v is a diffeomorphism

onto some open set of C. Now, we can check the condition for existence on each open set

U of X, and this happens precisely if µ is a Beltrami differential. If we collect all such local

functions v together we can check that they form a complex atlas for a new complex structure

denoted by Xµ. A contemporary description of this result can be found for example in [Hub06,

Theorem 4.8.12].

Theorem 3.14. Let X be a Riemann Surface. Then any Beltrami differential µ ∈ B(X)

determines a complex structure Xµ whose local charts are the solutions of the Beltrami equation

with parameter µ(z).

In conclusion, if X has coordinate z, then Xµ has coordinate v such that ∂zv = µ(z)∂zv.

Writing ν = ∂zv we can observe that the bases of (1, 0) and (0, 1)-forms of Xµ are given with

respect to X by

dv = ν(dz + µ(z)dz) (3.3)

dv = ν(dz + µ(z)dz), (3.4)

with ν 6= 0 since v is a local diffeomorphism.
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Remark 3.15. It is actually true that any complex structure up to biholomorphism isotopic

to the identity arises in this way. (This can be deduced, for example, from the surjectivity

statement of [DW07, Theorem 2.9], together with the fact that the map there factors through a

map out of B(X)). In particular, there is an identification of T(M) with the space of Beltrami

differentials B(X) modulo the equivalence relation where µ ∼ µ′ if there is a biholomorphism

Xµ → Xµ′ isotopic to the identity.

4. Branched projective structures coming from the conformal limit

We are now ready to carry out the main construction of branched projective structures

coming from the conformal limit. We will define an appropriate Riemann surface structure Xµ

for which ∇~,R is a partial oper, i.e., it defines a branched CP1-structure compatible with Xµ.

This construction will carry through provided the Higgs field Φ =
(

0 α
β 0

)
lies in the special locus

where the divisors of zeros satisfy div(α) ≥ div(β) and given also that |~2R2| ≤ 1. In this

section, we shall assume that deg(L) > 0. The case deg(L) = 0 will be treated in Section 5.

Theorem 4.1. Fix R ∈ R+
0 and ~ ∈ C∗ such that |~2R2| ≤ 1. Let L be a line bundle of

degree 1 ≤ deg(L) ≤ g − 1 and hR be a solution of the R-scaled vortex equation for (α, β),

where α ∈ H0(L2K) and 0 6= β ∈ H0(L2K). Assume further that div(α) ≥ div(β) and let

µ = ~2R2 α
β
h2
R. Then µ is a Beltrami differential. Further ∇~,R is a partial oper for Xµ, with

branching divisor div(β). In particular, it determines a branched projective structure compatible

with Xµ.

Remark 4.2. The case div(α) = div(β) implies that deg(L2K) = deg(L−2K) and thus deg(L) =

0, which is excluded by the hypothesis on L. Moreover, if α = 0, we consider that the condition

div(α) ≥ div(β) holds and then µ = 0. In this case, everything is compatible with the base

Riemann surface structure X since ∇~,R is a partial oper (cf. Remark 3.9).

Proof. For α = 0 there is nothing to prove in view of the preceding remark. So we treat the

case of non-zero α. Note that µ = ~2R2 α
β
h2
R is a smooth section of

L2K ⊗ (L−2K)−1 ⊗ (L−2L
−2
) ∼= K ⊗K−1.

Thus only ||µ||∞<1 needs to be checked to prove that µ is a Beltrami differential. This will be

done in Lemma 4.3 below. Now we can define a complex structure Xµ by Theorem 3.14 whose

coordinates are given by solutions v of the Beltrami equation for µ. Using equation (3.3) one

knows that dv = ν(dz+µ(z)dz), with ν = ∂zv 6= 0. Thus, writing α = α(z)dz and β = β(z)dz,

the flat connection ∇~,R can be written as in (2.5),

∇~,R − d =

(
∗ ∗

~−1β(z)
(
dz + ~2R2 α(z)

β(z)
h2
R(z)dz

)
∗

)
=

(
∗ ∗

~−1 β(z)
ν
dv ∗

)
. (4.1)

This shows in particular that the holomorphic structure ∇
(0,1)µ
~,R on E (as a bundle on Xµ)

preserves L, since

∇
(0,1)µ
~,R − ∂

µ
=

(
∗ ∗

~−1 β(z)
ν
dv ∗

)(0,1)µ

=

(
∗ ∗

0 ∗

)
.
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where ∂
µ

is the ∂ operator of Xµ.

This means that Lµ ⊂ Eµ is in fact a holomorphic subbundle, where the subscript µ indicates

that we are considering holomorphic bundles on Xµ with the holomorphic structure induced by

the flat connection ∇~,R.

It remains to show that the Xµ-holomorphic second fundamental form βµ
L is non-zero. To

this effect, we note that βµ
L is the OXµ

-localization of q ◦∇~,R : OXµ
(Lµ) → OXµ

(Eµ/Lµ ⊗Kµ),

where Kµ is the canonical bundle of Xµ. But, observing the form of ∇~,R in (4.1), this is simply

locally given by multiplication by ~−1 β(z)
ν

, which is non-zero. Further, the order of vanishing

at each point is precisely the one of β, thus implying that the branching divisor is div(β). �

Lemma 4.3. Let |~2R2| ≤ 1 then |µ(z)|2 =
∣∣∣~2R2 α(z)

β(z)
h2
R(z)

∣∣∣
2

< 1 everywhere on X.

Proof. We observe that, as div(α) ≥ div(β), µ is smooth. We consider the function

u(z) = log
|µ|2

|~2R2|2
= log

∣∣∣∣
α(z)

β(z)
h2
R(z)

∣∣∣∣
2

.

This is simply the logarithm of the norm squared of the section α
β
∈ H0(L4), where L is given the

metric hR which is a solution of the vortex equations (2.6). We will show that u < 0 everywhere

on M , thus implying |µ(z)|2 < |~2R2|2. As, by hypothesis |~2R2| ≤ 1, the conclusion that

|µ(z)|2 < 1 everywhere follows. To achieve the inequality u < 0 we use the maximum principle

for elliptic operators (as in Hitchin [Hit87, proof of Theorem (11.2)], following Li [Li19, Claim

6.1]), which we set up as follows.

Consider the set {z1, z2, · · · , zk} of zeros of α
β
, which is non-empty, because div(α) is not

everywhere equal to div(β). In this set, the function u has negative singularities, i.e., points

where limz→zj u(z) = −∞. This means we can consider small closed disks around these points

where u(z) is as negative as we want. In particular, we can get disks where u < 0 (strict

inequality). When we remove these disks from the surface M , we get a manifold with boundary

U . The function u is smooth on the interior of U and continuous up to the boundary ∂U ,

where u < 0. These are part of the conditions to apply the maximum principle. Note that we

only need to show that u < 0 on the interior of U , since in M\U the inequality already holds

(possibly with u = −∞).

Suppressing from the notation the dependence on z, we see that eu = h4
R|

α
β
|2, and thus

eu/2 = h2
R|

α
β
|. So, writing u = log αα

ββ
h4
R, we can calculate that, away from the zeros of α (in

particular in U),

∂z∂zu = ∂z∂z log
α

β
+ ∂z∂z log

α

β
+ 4∂z∂z log hR

= 0 + 0 + 4∂z∂z log hR (because α
β

is holomorphic)

= 4R2
(
|α|2h2

R − |β|2h−2
R

)
(by the vortex equation (2.6))

= 4R2|αβ|

(
|α|

|β|
h2
R −

|β|

|α|
h−2
R

)

= 4R2|αβ|
(
eu/2 − e−u/2

)
= 8R2|αβ| sinh(u/2).
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Recalling that the Laplacian of X is ∆ = 4
g0
∂z∂z, where g0 is the metric of constant negative

curvature −4 (cf. Example 2.8), we have equivalently

∆u = 32R2 |αβ|

g0
sinh(u/2).

This is a sinh-Gordon type equation, which can be written as

L[u] = ∆u− 32R2 |αβ|

g0

sinh(u/2)

u
u = 0,

since limu→0
sinh(u/2)

u
= 1

2
is finite. Here L = ∆ − c is a linear differential operator, where

c = 32R2 |αβ|
g0

sinh(u/2)
u

. In particular, c ≥ 0, since sinh(u/2) and u have the same sign. This

implies that u is a solution of a linear partial differential equation which is uniformly elliptic

on U , and has c ≥ 0. Since u ≤ 0 on the boundary ∂U , we are thus in the conditions of the

classical maximum principle [GT01, Theorem 3.5] which then implies that either u is constant

or it cannot attain a non-negative maximum in the interior of U . As u cannot be constant

(since α has zeros but it is non-zero) we conclude that u < 0 in the interior of U , which finishes

the proof. �

We can also calculate the extension class of this partial SL(2,C)-oper ∇~,R.

Proposition 4.4. The extension class of the partial SL(2,C)-oper (E,∇~,R) over Xµ, with

µ = ~2R2 α
β
h2
R, is the class in H1(Xµ, L

2
µ) represented in Dolbeault cohomology by

ω =

(
1− |µ|2/|~2R2|2

1− |µ|2

)
~R2β(z)h−2

R

dv

ν
.

Proof. We need to calculate the (0, 1)µ-part of the upper right entry of ∇~,R. Comparing with

(2.5), this is ω = (~−1α(z)dz + ~R2β(z)h−2
R dz)(0,1)µ . To calculate, we note that we can invert

equations (3.3) and (3.4) to get

dz =
1

1− |µ|2

(
dv

ν
− µ

dv

ν

)

dz =
1

1− |µ|2

(
−µ

dv

ν
+

dv

ν

)
.

This means ω has a term coming from α which is ~−1α(z) −µ
1−|µ|2

dv
ν

and another one coming from

β which is ~R2β(z)h−2
R

1
1−|µ|2

dv
ν

. This implies

ω =
(
~R2β(z)h−2

R − µ~−1α(z)
) 1

1− |µ|2
dv

ν

= ~R2β(z)h−2
R

(
1− µ

~−1α(z)

~R2β(z)h−2
R

)
1

1− |µ|2
dv

ν

= ~R2β(z)h−2
R

(
1− µ

~
2
R2

~
2
R2

α(z)h2
R

~2R2β(z)

)
1

1− |µ|2
dv

ν

= ~R2β(z)h−2
R

(
1− µ

µ

|~2R2|2

)
1

1− |µ|2
dv

ν

=

(
1− |µ|2/|~2R2|2

1− |µ|2

)
~R2β(z)h−2

R

dv

ν
.

�
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5. The case of zero degree

In this section we consider the case deg(L) = 0, where the construction has slightly different

features. In particular, as already noted in Remark 2.11, a different argument is required for

the existence of the conformal limit and we start with this.

5.1. The conformal limit. The conformal limit requires the polystability of the SL(2,R)-

Higgs bundle. So we begin by studying the stability in this case.

Proposition 5.1. Let L be a line bundle with deg(L) = 0. Consider the SL(2,R)-Higgs bundle

(E = L⊕ L−1,Φ =
(
0 α
β 0

)
), with α ∈ H0(L2K) and β ∈ H0(L−2K). Then

i) if both α = 0 and β = 0, (E,Φ = 0) is strictly polystable as an SL(2,C)-Higgs bundle;

ii) if both α 6= 0 and β 6= 0, (E,Φ) is polystable. If further α and β are not proportional,

(E,Φ) is stable;

iii) if one of α and β is zero but not the other one, (E,Φ) is unstable.

Proof. Case i) is immediate. For case iii) we note that if only one of α or β is non-zero, then

the Higgs field Φ is nilpotent. This means Φ is not diagonalizable, and so (E,Φ) is not a direct

sum of Higgs line bundles. This means it is not strictly polystable. It is also not stable, since

either L or L−1 is Φ-invariant. We are left with case ii). Since E is polystable as a bundle, only

degree zero subbundles can destabilize the Higgs bundle (E,Φ). Suppose there is a Φ-invariant

holomorphic line subbundle S of degree zero. Write s1 : S → L and s2 : S → L−1 for the maps

induced by the inclusion s : S →֒ E = L ⊕ L−1. Both of these maps are non-zero because

neither L nor L−1 is Φ-invariant. Hence (since deg(S) = deg(L) = 0) we have s1 : S−1L ∼= O

and s−1
2 : SL ∼= O. Therefore s1/s2 : L

2 ∼= O. Now, the subbundle S being Φ-invariant means

that Φ(s) = cs for a non-zero section c, i.e.,

Φ(s) =

(
0 α

β 0

)(
s1

s2

)
=

(
αs2

βs1

)
=

(
cs1

cs2

)
= cs.

Thus cαs22 = c2s1s2 = cβs21 and, in view of the isomorphism s1/s2 : L
2 ∼= O we conclude that α

and β are proportional sections of L2K ∼= L−2K ∼= K. Finally, we can include S−1 in L⊕ L−1

using
(

s−1

2

s−1

1

)
and, since

(
0 α

β 0

)(
s−1
2

s−1
1

)
=

(
αs−1

1

βs−1
2

)
=

(
cs−1

2

cs−1
1

)

by the above calculation, we conclude that S−1 is a Φ-invariant complement to S.

In conclusion, if there is a destabilizing Φ-invariant subbundle S, then the sections α and

β are proportional and (E,Φ) decomposes as the direct sum of Higgs bundles S ⊕ S−1, with

the induced Higgs fields. Thus (E,Φ) is strictly polystable. Otherwise, there are no such

subbundles and (E,Φ) is stable. �

Thus, in the case deg(L) = 0, the conformal limit can be analyzed using the solution of the

scaled vortex equations for either both α = 0 = β or both non-zero. In this special case, since

the bundle E = L⊕L−1 itself is stable, the limit of the solution hR of the scaled vortex equations

as R → 0 does exist, and it is simply a metric h0 of zero curvature on L. The conformal limit
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is then directly calculated by taking the limit in the family (2.5) and it is ∇~,0 = Ah0
+ ~−1Φ,

where Ah0
is the diagonal Chern connection associated to the Hermitian metric h0. It is a

partial oper (since E = Gr(E) and it is semistable), and, when β 6= 0, it defines a branched

complex projective structure compatible with X, just as in the previous section. In conclusion,

we have the following.

Theorem 5.2. Let (E = L ⊕ L−1,Φ =
(
0 α
β 0

)
) be a polystable SL(2,R)-Higgs bundle with

deg(L) = 0. Then the ~-conformal limit of (E,Φ) exists and it has the structure of a partial

SL(2,C)-oper.

Remark 5.3. Proposition 2.9 is no longer necessary to change the solution. This is consistent

with the fact that in this case the vortex equations for (β, 0) do not have a solution.

5.2. The projective structures coming from the conformal limit. In the zero degree

case the condition div(α) ≥ div(β) implies that α = kβ, k ∈ C∗, since both α and β must

have the same number of zeros counted with multiplicity. We are thus in the situation ii)

of Proposition 5.1, where (E = L ⊕ L−1,Φ =
(
0 kβ
β 0

)
) is a polystable Higgs bunlde. Note,

in particular, that the condition implies that L4 ∼= O since k = α
β
∈ H0(L4). The proof of

Theorem 4.1 will carry through, except now the function u will read

u = log

∣∣∣∣
α(z)

β(z)
h2
R(z)

∣∣∣∣
2

= log
∣∣kh2

R(z)
∣∣2

and it will be constant by the maximum principle. Of course in this case one can directly check

that hR = |k|−1/2 is a solution of the R scaled-vortex equations, for if α = kβ, the equation

reads

∂z∂z log hR = R2
(
|α|2h2

R − |β|2h−2
R

)
= R2

(
|k|2|β|2h2

R − |β|2h−2
R

)
.

The right hand side when hR = |k|−1/2 is R2 (|k|2|β|2|k|−1 − |β|2|k|) = 0 which is precisely

∂z∂z log |k|
−1/2 = 0. The Beltrami differential will now be µ = ~2R2k β

β
h2
R = ~2R2 k

|k|
β
β
. The

subbundle L will determine a partial oper structure and, when β 6= 0, a complex projective

structure compatible with Xµ. Thus we have the following result.

Theorem 5.4. Fix R ∈ R+ and ~, k ∈ C∗ such that |~2R2| < 1. Let L be a line bundle such

that L4 ∼= O and consider the polystable SL(2,R)-Higgs bundle (L ⊕ L−1,Φ =
(
0 kβ
β 0

)
), where

0 6= β ∈ H0(L2K). Then the family (2.5) is

∇~,R = d+

(
0 ~−1kβ + ~R2β|k|

~−1β + ~R2 k
|k|
β 0

)
.

Define µ = ~2R2 k
|k|

β
β
. Then µ is a Beltrami differential. Further ∇~,R determines a branched

projective structure compatible with Xµ with branching divisor div(β). Its extension class [ω] is

trivial.

6. Geometric interpretation of results

6.1. Curves in B(M). Let (L⊕L−1,
(
0 α
β 0

)
) be a polystable SL(2,R)-Higgs bundle with β 6= 0.

Assume that div(α) ≥ div(β)) and |R2~2| ≤ 1 (or |R2~2| < 1 if deg(L) = 0). Then, by
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Theorems 4.1 and 5.4, the partial oper structure on E given by the filtration 0 ⊂ L ⊂ E

and the flat connection ∇~,R determines a branched projective structure. For each ~ and R,

we will denote this structure by Pα
β (~, R) ∈ B(M) or just by P(~, R) whenever α and β are

fixed. By construction these branched projective structures lift to SL(2,C), so by a slight

abuse of notation we shall also write P(~, R) = (∇~,R, L), i.e., as a pair consisting of a flat

SL(2,C)-connection and a transverse line subbundle (cf. Theorem 3.1).

Note that the dependence on ~ and R is continuous, also for R = 0, since the connection

∇~,R in the configuration space of flat connections depends continuously on the parameters

(Remark 2.13). The structure P(~, R) is compatible with the Riemann surface Xµ, and thus

the forgetful map T : B(M) → T(M) takes P(~, R) 7→ [Xµ]. In all cases, regardless of the

degree of L, the Beltrami differential µ is given by the expression

µ = ~2R2α

β
h2
R = ~2R2h2

R

αβ

|β|2
|α|

|α|
= ~2R2h2

R

|α|

|β|

αβ

|αβ|
,

where hR is the solution of the scaled vortex equations for (α, β), β 6= 0 and it is understood

that µ = 0 if α = 0. Using Proposition 2.9 in the case deg(L) 6= 0, or the fact that α = kβ and

hR = |k|−1/2, when deg(L) = 0 (Proposition 5.4), for some constant k ∈ C∗ we can write µ as:

µ = ~2R2h2
R

|α|

|β|

αβ

|αβ|
=




~2R2 k

|k|
β
2

|β|2
if deg(L) = 0

~2R4h2 |α|
|β|

αβ
|αβ|

if deg(L) 6= 0
(6.1)

where h is the solution of the unscaled vortex equations for (R2α, β). In conclusion, if we fix a

pair (α, β) with div(α) ≥ div(β) and β 6= 0 and denote the subset of valid parameters ~ and R

by

D = {(~, R) ∈ C∗ × R+
0 | |~2R2| ≤ 1}, or

D = {(~, R) ∈ C∗ × R+
0 | |~2R2| < 1}, if deg(L) = 0

we get a map Pα
β : D → B(M) given by (~, R) 7→ Pα

β (~, R). Thus we have continuous maps

D → B(M) → T(M)

(~, R) 7→ Pα
β (~, R) 7→ Xµ(~,R),

where the associated complex structure Xµ(~,R) is determined by µ = µ(~, R) in equation (6.1).

We remark that the map is not injective. In particular, µ(~, R) = µ(~′, R′) if ~2R2 = ~′2R′2

for degree zero, or ~2R4 = ~′2R′4, for non-zero degree. We can also fix ~ ∈ C∗, and in that

case we obtain a curve Pα
β (R) := Pα

β (~, R) in B(M) projecting to a curve γ(R) = Xµ(~, R)

in Teichmüller space. In the next section, we study the geometry of this curve which, in the

degree zero case, we show to be a Teichmüller geodesic.

6.2. Teichmüller geodesics and disks. The Teichmüller space T(M) has several interesting

metrics. One of them is the Teichmüller metric, which is a Finsler metric, and whose distance

function is defined using the properties of quasi-conformal mappings. In particular, the distance

between Xµ, Xµ′ ∈ T(M) is the smallest possible maximal dilation of a quasi-conformal mapping

f : Xµ → Xµ′ in the isotopy class of the identity of M . It is a classical result of Teichmüller
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that each such class has a unique map that realizes this minimum, the so-called Teichmüller

mappings. These maps have complex dilations of the form

µ =
∂f

∂f
= c

q

|q|
, 0 < c < 1,

where c is a constant and q a quadratic differential. They allow one to describe the geodesic

rays through the origin X0 in T(M) (cf. [Leh87, Section V.7.7.]).

Theorem 6.1. Let µ = t q
|q|

be a Beltrami differential with q ∈ H0(X,K2) a quadratic differen-

tial, and t ∈ [0, 1). Then t 7→ Xµ(t) is a geodesic ray in the Teichmüller metric, called the ray

associated with q.

Remark 6.2. One can even show that if t is allowed to be in the hyperbolic disk D the map

t 7→ Xµ(t) is an isometry [Leh87, Theorem V.9.3.]. Maps of this form are called complex

geodesics or Teichmüller Disks.

Observing the constructed µ in equation (6.1) for the case of deg(L) = 0 we immediately

conclude that the curve γ(t) is a (reparameterization) of a Teichmüller geodesic ray.

Theorem 6.3. Let Pkβ
β (R) be the R-family of branched projective structures associated to the

conformal limit of E = L ⊕ L−1, with L4 ∼= O, and Higgs field Φ =
(
0 kβ
β 0

)
, where 0 6= β ∈

H0(L2K) and k ∈ C∗. Let γ(R) = Xµ(R), with µ(R) = ~2R2 k
|k|

β
2

|β|2
, be the curve of associated

Riemann surface structures in T(M). Assume |~2R2| < 1. Then γ(R) is (a reparameterization

of) a geodesic ray.

Remark 6.4. This geodesic ray is associated with the quadratic differential − arg(~2)kβ2 ∈

H0(K2). By allowing ~ to vary, we analogously get (a reparametrization of) the Teichmüller

disk associated with kβ2.

6.3. Reality properties. Let us now study the family Pα
β (~, R) when deg(L) > 0 for some

specific parameters. We will show that there exist values of ~ and R for which the structure

Pα
β (~, R) is a branched hyperbolic structure, a concept which we start by recalling.

A branched projective structure (ρ, d) is called branched hyperbolic if its developing map d

has image inside H2 ⊂ CP1 (up to conjugation in PSL(2,C)). Here we see CP1 as the one-

point compactification of C, and H2 as the open upper half-plane inside C. Since the image

of the developing map is preserved by ρ, branched hyperbolic structures have real holonomy

ρ : π1(M) → PSL(2,R) ⊂ PSL(2,C). The condition of having real holonomy is, however,

not enough to guarantee that the structure is hyperbolic, as there exist (even unbranched)

projective structures with real holonomy which are not hyperbolic (cf. for example [Hej75]).

The condition for the holonomy to be real can be written in gauge theoretic terms related

to the flat bundle (E,∇~,R). Recall that the holonomy of this connection lifts to SL(2,C)

the holonomy of the projective structure Pα
β (~, R). It is real if, up to gauge equivalence, it

lies in SL(2,R), and this happens if ∇~,R preserves a real structure τ . A real structure τ is

a C-antilinear automorphism of the bundle E such that τ 2 = IdE . The condition that ∇~,R

preserves τ means that ∇~,R ◦ τ = τT ∗M ◦ ∇~,R, where τT ∗M just acts as τ on the section part,
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and as complex conjugation, mapping K → K, on the form part. Equivalently τT ∗M is the

tensor product of τ and the real structure on the complex cotangent bundle T ∗M .

To write in gauge theoretic language the stronger condition that the image of d must be in

H2, we note that this is the same as asking for the image of d to avoid the real locus RP1 ⊂ CP1

which is the fixed point set of the involution z 7→ z of CP1. This translates to the condition

that the line bundle L ⊂ E induced by d should avoid the fixed point locus of τ in E, i.e., the

intersection should only be the zero section of L (cf. [Ale19]). Using this description we have

the following.

Proposition 6.5. Let deg(L) > 0 and |~|2R2 = 1. Then Pα
β (~, R) is a branched hyperbolic

structure.

Proof. The real structure τ defining the SL(2,R)-structure in E = L ⊕ L−1 is given in a

holomorphic frame by τ(v) = Cv with C =
(

0 h−1

R

hR 0

)
. It is preserved by ∇~,R = d + B if and

only if ∇~,R ◦ τ = τT ∗M ◦ ∇~,R which in this frame reads dC + BC = CB. Using expression

(2.5), one concludes that this happens if and only if

~−1αhR + ~R2βhR = ~−1βh−1
R + ~R2αhR

⇐⇒ (~−1 − ~R2)αhR = (~−1 − ~R2)βhR. (6.2)

In particular, if |~|2R2 = 1 the equality is valid. Thus the holonomy of ∇~,R is real. To check

that Pα
β (~, R) is branched hyperbolic we simply note that L avoids the fixed locus of τ . This

happens since vectors fixed by the real structure, i.e., such that τ(v) = v, are of the form (
v1
hv1 )

and the vectors in L are multiples of ( 1
0 ). �

Remark 6.6. In the particular case ~ = 1 and R = 1, this result recovers the branched hyperbolic

structures constructed [BBDH21].

6.4. Deformations of geometric structures. Using the previous results one can interpret

our construction in terms of geometric structures on X as follows. Start by fixing ~ with |~| = 1.

Then the branched projective structure Pα
β (1, R) interpolates between a branched hyperbolic

structure, at R = 1, and a partial oper, i.e., a complex projective compatible with X, at R = 0.

In the specific case of ~ = 1, the branched hyperbolic structure is exactly the one coming from

the non-abelian Hodge correspondence.

In particular, take any Higgs bundle in a Hitchin component, i.e., one of the form
(
E = K1/2 ⊕K−1/2,Φ =

(
0 q

1 0

))
,

where q ∈ H0(K2) is a quadratic differential. In the previous notation α = q and β = 1,

and the condition div(α) ≥ div(β) is satisfied, so our construction goes through. The non-

abelian Hodge correspondence produces a connection which is the holonomy of the (unbranched)

Fuchsian hyperbolic structure Pq
1(1, R = 1). Then, for ~ = 1, and by varying R, we obtain the

curve Pq
1(1, R) of complex projective structures. This curve interpolates between this Fuchsian

structure, at R = 1, and the structure of oper determined by q, at R = 0, i.e., the complex
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projective structure compatible with X and which is classically obtained from the solutions of

the Schwarz equation with quadratic differential precisely equal to q.

6.5. Further questions. The fact that the connections ∇~,R in the family (2.5) are associated

with branched projective structures comes with the restriction div(α) ≥ div(β).

The description of the set of Higgs bundles Φ for which this holds is determined in general

by Brill–Noether type considerations. Only if (L ⊕ L−1,Φ) lies in a Hitchin component the

construction works for all Φ and the structures so obtained are unbranched (cf. Example 2.8

and also Remark 3.11). Note that this restriction cannot be lifted, since then the differential

µ = ~2R2 α
β
h2
R will have points where |µ| = 1, and it will no longer be a Beltrami differential.

Another way to see this problem is precisely that the smooth second fundamental form of L,

given by ~−1β + ~R2αh2
R, will have zeros at other points, besides the zeros of α and β, namely

over the real subvariety of M of points where β(z) = ~2R2α(z)h2
R(z). One might ask what

kind of structures exist that relate to the representations in this case, for which the restriction

does not hold. Equivalently, what is the correct class of structures which are uniformized by

SL(2,R)-Higgs bundles in general? Is the family appearing in the conformal limit kept within

that class? This seems a plausible framework since the conformal limit exists regardless of the

restrictions on α and β.

It is well known that the fiber of the holonomy map P(M) → MG
B is infinite and discrete (see,

e.g., Dumas [Dum09]). It would thus be interesting to study the ambiguity in the projective

structures Pα
β (~, R) mapping to the same holonomy when varying α, β, ~ and R.
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