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NARASIMHAN–RAMANAN BRANES AND WOBBLY HIGGS BUNDLES

EMILIO FRANCO, PETER B. GOTHEN, ANDRÉ OLIVEIRA, AND ANA PEÓN-NIETO

Abstract. Narasimhan–Ramanan branes, introduced by the authors in a previous article,
consist of a family of (BBB)-branes inside the moduli space of Higgs bundles, and a family
of complex Lagrangian subvarieties. It was conjectured that these complex Lagrangian subva-
rieties support the (BAA)-branes that are mirror dual to the Narasimhan–Ramanan (BBB)-
branes. In this article we show that the support of these branes intersects non-trivially the
locus of wobbly Higgs bundles.

To Óscar Garćıa-Prada,

on the occasion of his 60th anniversary.

1. Introduction

Let M denote the moduli space of rank r and degree d Higgs bundles over a smooth complex
projective curve X. Among the many important contributions of Óscar Garćıa-Prada’s is his
work with S. Ramanan on the description of finite order automorphisms of the moduli space M
and their fixed-point loci; see [GR1, GR2]. An important instance of such an automorphism is
obtained by tensoring a Higgs bundle by a fixed line bundle T −→ X of order r. The version
of this automorphism on the moduli space of vector bundles (without Higgs field) was first
considered by M.S. Narasimhan and S. Ramanan in [NR]. They gave a beautiful description of
the fixed point locus in the moduli space of bundles in terms of line bundles on the r-sheeted
unramified cover of the curve X corresponding to the order r line bundle T (see also [GR1, Na]).
A similar picture arises for the fixed point locusMT in the moduli space of Higgs bundles, as first
observed by T. Hausel and M. Thaddeus [HT] in their proof of topological mirror symmetry
between the SL- and the PSL-Higgs bundle moduli spaces, where the subspaces MT play a
crucial role.

With this in mind, in [FGOP] we study the fixed point subvarieties MT ⊂ M from the
point of view of mirror symmetry. The moduli space M is hyperkähler and we prove that
the subvarieties MT are hyperkähler subvarieties of M which support hyperholomorphic line
bundles. Such a gadget — a hyperholomorphic line bundle over a hyperkähler subvariety —
is usually called a (BBB)-brane on M. Now, roughly speaking, mirror symmetry predicts the
existence of a dual object, a so called (BAA)-brane, which consists of flat bundle over a complex
Lagrangian subvariety of M. Moreover, these dual branes should be related by a Fourier-Mukai
transform on M relative to the Hitchin map h : M −→ B. In [FGOP] we proved that if d = 0
(so that h admits a section) then indeed the (BBB)-branes supported on MT are transformed
under Fourier-Mukai into a sheaf supported on a suitable Lagrangian of M. As predicted by
mirror symmetry, these Lagrangians depend on the hyperholomorphic bundle over MT and
have a description in terms of spectral data of the corresponding Higgs bundles. From the point
of view of objects on X, the corresponding Higgs bundles can also be conveniently described in
terms of Hecke transformations.
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In [FGOP] the Fourier-Mukai transform is taken fiberwise with respect to h for a generic
fiber of h over the image h(MT ), and so the description of the Lagrangians in [FGOP] is not
complete. In particular their intersection with the nilpotent cone h−1(0) is not described there.
Here we aim to give a first step in that direction, by computing the limits at zero of the C∗-flows
(for the standard C

∗-action on M scaling the Higgs field) in those Lagrangians when the rank
r equals 2. These limits lie in h−1(0) and are C

∗-fixed points. In the language of T. Hausel
and N. Hitchin [HH] a stable Higgs bundle is called wobbly if it is the limit of a non-isomorphic
nilpotent Higgs bundle, and very stable otherwise.

On the other hand the intersection of the (BBB)-branes with the nilpotent cone is known
and lies in the moduli space of bundles (Higgs bundles with zero Higgs field). Here we analyse
their intersection with the components of the wobbly locus.

We show that the limits of Higgs bundles in our Lagrangians are in fact wobbly Higgs bundles
(with the obvious exception of limits which are fixed points lying at the top of the nilpotent
cone). In particular, our Lagrangians are of a complementary nature to those considered in
[HH], which arise as upward flows from very stable Higgs bundles.

This paper is organized as follows. In Section 2 we provide a short introduction to Higgs
bundles and their moduli spaces, we recall the mirror symmetry conjecture for branes and review
the definition of very stable and wobbly bundles and Higgs bundles. Section 3 is a survey of
the results obtained in [FGOP] focusing on the special case of rank two bundles. Hence, in this
section we recall the construction of the Narasimhan–Ramanan (BBB)-branes, their associated
spectral data and the complex Lagrangian subvarieties that conjecturally support the dual
Narasimhan–Ramanan (BAA)-branes. Finally, we present original results in Section 4. We
first describe, in Section 4.1, how the support of the Narasimhan–Ramanan (BBB)-branes hits
the locus of wobbly vector bundles (cf. Theorem 4.2). Secondly, in Section 4.2, we construct a
certain stratification of the generic intersection of our complex Lagrangian subvarieties with a
Hitchin fibre that will be used, in Section 4.3, to compute their C∗-fixed points. It follows from
this analysis that most of the times these complex Lagrangians intersect the C

∗-fixed points
loci only in wobbly Higgs bundles, the exception being the intersection with the C

∗-fixed point
loci corresponding to maximal degree (the “tip of the nilpotent cone”) where the wobbly locus
is empty (see Theorem 4.16 for the detailed statement).

Acknowledgement. We thank Johannes Horn for useful discussions.

2. Moduli spaces of Higgs bundles

2.1. Higgs bundles and their moduli spaces. Let X be a smooth projective complex curve
of genus g > 1. A Higgs bundle of rank r and degree d over X is a pair (E,ϕ) where E is a
rank r and degree d holomorphic vector bundle over X and the Higgs field ϕ is a holomorphic
map ϕ : E −→ E ⊗K, with K the canonical line bundle of X.

Recall that a vector bundle E is semistable (resp. stable) if the slope of any non-zero proper
subbundle is less than or equal to (resp. strictly less) to the slope of E. The (semi)stability
condition for a Higgs bundle (E,ϕ) is the same as for E, but only applied to subbundles which
are ϕ-invariant. In both cases an object which is not semistable is said to be unstable. Note
that (E,ϕ) may be semistable even if its underlying vector bundle E is unstable.

LetM(r, d) (resp.N (r, d)) be the moduli space of semistable Higgs (resp. vector) bundles over
X of rank r and degree d. The locus M(r, d)s (resp. N (r, d)s) of stable Higgs (resp. vector)
bundles is smooth. Considering a vector bundle as a Higgs bundle with zero Higgs field we
have an inclusion N (r, d) ⊂ M(r, d). Moreover, since the cotangent space H1(X,End(E))∗ at
E ∈ N (r, d)s is isomorphic to the space H0(X,End(E) ⊗ K) of Higgs fields on E by Serre
duality, it follows that the cotangent bundle T ∗N (r, d)s of the stable locus is an open dense
subspace of M(r, d).

For the remainder of the paper our main focus will be on the case of rank 2 and degree 0
(even though everything we say in Sections 2 and 3 can be done for arbitrary rank). So let now

M = M(2, 0), N = N (2, 0).
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We will need at some point to consider rank 1 Higgs bundles of degree 0. Any rank 1 Higgs
bundle is of course stable and in this case the inclusion of the cotangent bundle of the Jacobian
is an isomorphism: M(1, 0) = T ∗ Jac(X) = Jac(X)×H0(X,K).

Over the smooth locus T ∗N s carries a canonical holomorphic symplectic form Ω which ex-
tends in a natural way to the smooth locus of M, which is thus a holomorphic symplectic
manifold. Then Ω gives rise to a holomorphic volume form on M, showing that M is a (singu-
lar) non-compact Calabi-Yau.

One of the most important features of M is its structure as an integrable system. This comes
from the Hitchin map

h : M −→ B = H0(X,K)⊕H0(X,K2), h(E,ϕ) = (tr(ϕ),det(ϕ))

which is surjective and proper. We have that 2 dim(B) = dim(M), and for each c = (a, b) ∈ B
there is a corresponding spectral curve Xc lying in the surface |K| given by the total space
of K. If c = h(E,ϕ) then Xc is given by the eigenvalues of ϕ. Precisely, if π : |K| −→ X
is the canonical projection and λ the tautological section of π∗K, then Xc is the zero locus
of the section λ2 + π∗aλ + π∗b ∈ H0(|K|, π∗K2). From its very definition, one sees that any
spectral curve Xc lie in the linear system of 2X = X0 and that πc : Xc −→ X is a ramified
2-cover. For generic c ∈ B, the spectral curve Xc is smooth but it can be singular, and even
reducible or non-reduced (like X0). The locus of elements c ∈ B for which Xc is not smooth
is called the discriminant locus. For Xc integral, one can define its compactified Jacobian

Jac
2g−2

(Xc) as the moduli space of rank 1 torsion-free sheaves of degree 2g − 2 over Xc (which
by irreducibility of Xc are always stable). The compactified Jacobian contains Jac2g−2(Xc) as
a dense open subset parameterizing degree 2g − 2 line bundles on Xc. If Xc is smooth, then

Jac
2g−2

(Xc) = Jac2g−2(Xc). As proved in [BNR, Hi2], each F ∈ Jac
2g−2

(Xc) determines a
Higgs bundle in h−1(c) by taking (π∗F , π∗λ). If (E,ϕ) = (π∗F , π∗λ) ∈ h−1(c), the spectral
curve Xc encodes eigenvalues of ϕ whereas the sheaf F encodes the corresponding eigenspaces.
Hence (Xc,F) is called the spectral data of (E,ϕ). The spectral correspondence gives an

isomorphism Jac
2g−2

(Xc) ∼= h−1(c) and hence the generic fiber of h is a torsor for an abelian
variety. Moreover, being the fiber of an integrable system, it is in fact Lagrangian in M.

As proved in [Hi1] the C∞ manifold M underlying (the smooth locus of) M is hyperkähler.
Thus it has complex structures I, J and K = IJ verifying the quaternionic relations and a
Riemannian metric which is Kähler with respect to each of them. By convention I is the
complex structure of M, i.e. M = (M, I). Then (M, J) is the moduli space of flat connections
on the C∞-trivial rank 2 vector bundle over X, i.e., the moduli of rank 2 local systems. Denote
it by MdR = (M, J), the index standing for ‘de Rham moduli space’, a term coined by C.
Simpson (who also called M the Dolbeault moduli space) [Si2]. In fact M has a 2-sphere of
complex structures aI + bJ + cK with a2 + b2 + c2 = 1 and, with the exception of ±I, all these
complex structures are equivalent to J . Write ωI = g(I,−), ωJ = g(I,−) and ωK = g(K,−)
for the corresponding Kähler forms; then the holomorphic symplectic form Ω on M mentioned
above is given by Ω = ωJ + iωK .

2.2. Branes in moduli spaces of Higgs bundles and mirror symmetry. In this section
we give a brief overview of a few important mathematical ideas and concepts coming from
mirror symmetry. Our treatment is intended to motivate what follows and is neither complete
nor rigorous.

An A-brane on a Kähler manifold is an object of its Fukaya category; an example of an
A-brane is a Lagrangian with a flat bundle over it. On the other hand, a B-brane is an object
of its derived category of coherent sheaves, for instance a holomorphic vector bundle over a
complex submanifold. Since M is hyperkähler, we have branes for each complex and symplectic
structure. Thus a (BAA)-brane on M is at the same time a B-brane for I and an A-brane for
ωJ and ωK . For instance, a flat bundle supported on a complex Lagrangian of M (with respect
to Ω) is such a gadget. In turn, a (BBB)-brane is a B-brane for I, J and K, for example a
hyperholomorphic bundle over a hyperkähler subvariety of M.
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Higgs bundles can be considered for any reductive group G and R. Donagi and T. Pantev
[DP] (motivated by the previous works [HT, Hi3]) showed that the semi-classical limit of mirror
symmetry holds for pairs of Higgs bundle moduli spaces for Langlands dual groups in the
complement of the discriminant locus. This means that there is a duality of fibers of the
Hitchin maps for G and its Langlands dual, realized by a Fourier-Mukai transform. Now, the
moduli space M is the moduli space of G-Higgs bundles for G = GL(2,C). Since this group is
self-dual (or, equivalently, since the generic fiber of h is a torsor for the self-dual abelian variety
Jac(Xc)), then the semi-classical limit of mirror symmetry holds for M in the complement of
the discriminant locus.

According to the homological mirror symmetry conjecture proposed by M. Kontsevich in [Ko]
there should be an equivalence between the Fukaya category of MdR and its derived category of
coherent sheaves, and mirror symmetry should be mathematically realized by this equivalence.
This equivalence of categories should exchange, in particular, A-branes and B-branes.

Now, C. Simpson proved in [Si2] that M and MdR are, respectively, the fiber over 0 and
1 of a holomorphic family of moduli spaces over C (called the Hodge moduli space) such that
any fiber other than M is isomorphic to MdR. Hence mirror symmetry holds for any fiber over
λ ∈ C

∗. The so-called semi-classical limit is then M, the fiber over 0 and, as mentioned above,
here mirror symmetry amounts to a fiberwise Fourier-Mukai transform relative to the Hitchin
map h away from the discriminant locus. Being an algebraic map on M, this Fourier-Mukai
transform preserves B-branes on M. But according to A. Kapustin and E. Witten [KW], after
a hyperkähler rotation, it should exchange a B-brane for complex structure J (resp. K) with
an A-brane for complex structure K (resp. J). Summing up, mirror symmetry in M, outside
the discriminant locus, is supposed to be realized by a fiberwise Fourier-Mukai transform and
it should interchange (BBB)-branes and (BAA)-branes whose supports share the same image
under h.

The behavior of mirror symmetry on branes mapping under h to the discriminant locus is far
from being understood. The first example of a pair (BBB)- and (BAA)-branes on M lying over
the discriminant locus was studied in [FP]. These branes are actually supported over the locus
whose corresponding spectral curves are reducible. Hence, the compactified Jacobians are just
coarse moduli spaces rather than fine. For this reason a complete description of a Fourier-Mukai
transform is not available, even though in [FP] evidence was given that the pair of branes under
consideration should be related under a Fourier-Mukai transform. In [FGOP] (partly motivated
by [FP]) we considered another type of branes, still supported over the discriminant locus, but
such that the spectral curves are generically irreducible and reduced, i.e. integral. For such
curves the compactified Jacobian is fine, and D. Arinkin proved [Ar] the existence of a Poincaré
sheaf making it possible to perform a Fourier-Mukai transform. This allowed us to explore
further the duality the pairs of branes, and hence to provide insight on the classical limit of
mirror symmetry works over the discriminant locus. Section 3 will detail the most important
aspects of [FGOP] in the rank 2 case.

2.3. Very stable and wobbly Higgs bundles. By definition the nilpotent cone in M is the
preimage h−1(0) ⊆ M of zero under the Hitchin map. Equivalently, the nilpotent cone is the
locus of Higgs bundles with nilpotent Higgs field. Consider the C

∗-action on M scaling the
Higgs field: t · (E,ϕ) = (E, tϕ), t ∈ C

∗. It is well-known [Hi1, Si1] that the C
∗-fixed points

in M lie in the nilpotent cone and are either semistable vector bundles i.e. in N ⊂ h−1(0) or
Higgs bundles of the form

(2.1)
(
L1 ⊕ L2,

(
0 0
φ 0

))
, with 1 ≤ deg(L1) ≤ g − 1 and φ ∈ H0(L−1

1 L2K) \ {0}.

Moreover, for any semistable Higgs bundle (E,ϕ) in M, the limit limt−→0(E, tϕ) exists [Si2] in
M and is a C

∗-fixed point. It is E ∈ N ⊂ M precisely when E is itself semistable; otherwise is
of the form (2.1) with L1 ⊂ E the maximal destabilizing subbundle, L2 the quotient E/L1 and

φ the composition L1 →֒ E
ϕ

−−→ E ⊗K −→ L2 ⊗K.
We will also make use of the following notions. A semistable vector bundle E ∈ N is said

to be very stable if there are no non-zero nilpotent Higgs fields E −→ E ⊗K. In other words,
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E = (E, 0) is not the limit of a C
∗-flow contained in h−1(0). If E is not very stable, it is said

to be wobbly. Let E be wobbly, and let ϕ be a non-zero nilpotent Higgs field. Then E can be
written as an extension of line bundles

(2.2) 0 −→ F0
i

−→ E
j

−→ F1 −→ 0,

where F0 = ker(ϕ) and F1 = E/F0. Then F1 = F0K(−D) for some effective divisor D of degree
δ. Indeed, ϕ factors as

(2.3) ϕ = (i⊗ IdK) ◦ β ◦ j : E −→ E ⊗K.

for some non-zero β ∈ H0(F ∗
1F0K) whose divisor is D. Note also that

(2.4) det(E) ∼= F 2
0K(−D).

Suppose now that deg(E) = 0 and E is semistable. If degF0 = d0, it follows from (2.4) that

δ ≡ 0 mod 2,

d0 = 1− g + δ/2,

0 ≤ δ ≤ 2g − 2.

Let Wδ ⊂ N denote the locus of rank semistable vector bundles E fitting in an exact sequence
of the form (2.2) with deg(D) = δ and deg(F0) = 1 − g − δ/2. The wobbly locus W ⊂ N
decomposes [PaP] into

W = W0 ∪ · · · ∪ W2g−2.

One can prove that Wδ is birational to the projective bundle over Symδ(X) × Jacg−1−δ/2(X)
with fibre over (D,F0) equal to P(H1(O(D)K∗)). The points in this bundle are then in 1 : 1
correspondence with extensions of the form (2.2).

Denote as well δmax = g − 1 if g is odd and δmax = g − 2 otherwise. It was proven in [PaP]
that the components associated to δmax < δ ≤ 2g − 2 are embedded in Wδmax ,

Wδ ⊂ Wδmax , δ > δmax,

while for 0 < δ ≤ δmax the corresponding components Wδ have codimension 1 in the moduli
space of vector bundles N and intersect in higher codimension. Hence the wobbly locus is the
union of divisors

W = W0 ∪ · · · ∪Wδmax .

In [PPe] it was proved that E is very stable if and only if the subspace of all Higgs bundles
in M flowing to E — that is the space of Higgs bundles with underlying bundle E — is closed
in M.

These notions were generalized to all C∗-fixed points in M in [HH] as follows. Let (E,ϕ) ∈
h−1(0) be a Higgs bundle which is fixed under C

∗, so either ϕ = 0 or is of the form (2.1).
Consider the subspace W+

(E,ϕ) = {(E′, ϕ′) ∈ M| limt−→0(E
′, tϕ′) = (E,ϕ)}, usually called the

upward flow from (E,ϕ). Then (E,ϕ) is said to be very stable if (E,ϕ) is the only Higgs bundle
in W+

(E,ϕ) with nilpotent Higgs field. Otherwise (E,ϕ) is again said to be wobbly. Like in the

bundle case, (E,ϕ) is very stable if and only if W+
(E,ϕ) is closed in M.

Remark 2.1. Note that if (E,ϕ) = (L1 ⊕ L2, ϕ) is a fixed point of the form (2.1) and wob-
bly then it must be the limit limt−→0(E

′, tϕ′) of a Higgs bundle (E′, ϕ′) ∈ h−1(0) such that
limt−→∞(E′, tϕ′) = (L′

1⊕L
′
2, ψ) is still of the form (2.1) but with kernel L′

1 such thar deg(L′
1) >

deg(L1). This means that there are no wobbly Higgs bundles of the form (2.1) when deg(L1) is
maximal i.e. deg(L1) = g − 1. In all other cases, the wobbly locus is non-empty.

Upwards flowsW+
(E,ϕ) are Lagrangian in M, hence with their structure sheaf become (BAA)-

branes which were studied in [HH] in the context of mirror symmetry. In section 8.2 of
loc. cit. the authors briefly consider upward flows from wobbly Higgs bundles. We will see
below an example of Lagrangians in M whose corresponding points always flow onto wobbly
Higgs bundles except when such limits are of the form (2.1) with deg(L1) = g − 1 (which we
have seen must be very stable).
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3. Narasimhan–Ramanan branes

3.1. (BBB)-branes out of fixed point loci under tensorization. Consider the group
Jac(X)[2] = {T ∈ Jac(X) |T 2 ∼= OX} ∼= (Z/2)2g of 2-torsion line bundles on X, acting on
M by tensorization (E,ϕ) · T = (E ⊗ T, ϕ).

Fix, once and for all, a non-trivial T ∈ Jac(X)[2] \ {OX} and consider the fixed point set
under tensorization by T ,

MT = {(E,ϕ) ∈ M| (E,ϕ) ∼= (E ⊗ T, ϕ)} ⊂ M.

It is clearly a complex subvariety of M = (M, I), but since T is flat and tensorization is holo-
morphic also in complex structure J , MT is actually a hyperkähler subvariety of M. Moreover,
following the arguments of [NR] (see also [Na, GR1, HT]) one can check that MT is explic-
itly characterized using rank 1 Higgs bundles over the étale 2-cover p : XT −→ X canonically
defined by the line bundle T . Namely, pushforward under p induces an isomorphism

(3.1) MT ∼= T ∗ Jac(XT ) / Z2 ,

where Z2 denotes the Galois group of p acting by pullback; see [FGOP, Theorem 3.19] and also
[HT, Proposition 7.1].

Remark 3.1. Fix a degree m non-trivial étale cover p : C −→ X. In [FGOP] we treated the
more general case of hyperkähler subvarieties of the rank r and degree 0 Higgs bundles moduli
space which parameterize semistable Higgs bundles arising as pushforward under p of degree
0 semistable Higgs bundles of rank s over C, where sm = r. According to (3.1), MT is an
example of these subvarieties with C = XT , s = 1 and m = 2. The case of trivial coverings is
the subject of [FP].

Now, out of any degree 0 line bundle L ∈ Jac(X), we build a hyperholomorphic line bundle
on MT , using (3.1), as follows. Let ∆ : MT −→ Jac(X) be defined as ∆(E,ϕ) = Nmp(F )
where F ∈ Jac(XT ) is such that E = p∗F and Nmp is the norm map (which is invariant under
the Galois group). From the self-duality of the Jacobian of X, L uniquely determines a flat line
bundle Ľ −→ Jac(X). We then take the line bundle ∆∗Ľ over MT , which is hyperholomorphic
because it is flat (hence its curvature is trivially of type (1, 1) with respect to both I and J).
Hence, we have the following

Theorem 3.2. The line bundle ∆∗Ľ is a (BBB)-brane of M supported on MT .

In [FGOP] we called this a Narasimhan-Ramanan (BBB)-brane on M due to their pioneering
work [NR]. We are interested in knowing how ∆∗Ľ behaves under mirror symmetry. As briefly
explained above the classical limit of mirror symmetry in M is realized by a relative Fourier-
Mukai under h, so the idea is to look at the spectral data of the Higgs bundles in MT and then
perform a Fourier-Mukai transform of the sheaf ∆∗Ľ ∩ h−1(c) for c in the image of h restricted
to MT .

3.2. The corresponding spectral curves. Let BT = h(MT ) be the image of MT under h;
it is a closed subset of B. In order to obtain an explicit description of BT , consider

B̃T := H0(X,K)⊕H0(X,KT ),

which is naturally isomorphic to H0(XT ,KT ) thanks to the pushforward under p : XT −→ X.
As stated in [FGOP, (3.14)] (see also (3.1)), BT amounts to the quotient

BT = B̃T
/ Z2 ,

where the Galois group Z2 acts trivially on H0(X,K) and with negative sign on H0(X,TK).
The embedding of BT into B can be described as follows, first consider the morphism

B̃T = H0(X,K)⊕H0(X,KT ) −→ B = H0(X,K) ⊕H0(X,K2)
(a, b) 7−→ c = (2a, a2 − b2),
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noting that two points in B̃T have the same image if and only if they are related by the action
of the Galois group Z2. Then, the above morphism factors through

BT −→ B
(a,±b) 7−→ c = (2a, a2 − b2),

which is injective. Since T ∼= T ∗, observe that b ∈ H0(X,TK) can be understood as a map
between the total spaces

b : |T | −→ |K|.

The smooth curve XT arises as a spectral curve, in the total space |T |, associated to the non-
vanishing section 1 of T 2 ∼= OX . It then follows that Xc can be described as the image of XT

under b shifted by a,

(3.2) Xc = ν(a,b)(XT ),

where ν(a,b)(•) denotes b(•) + a. Observe that ν(a,b) is invariant with respect to the Galois
Z2-action. Since XT is invariant under the Galois group Z2, one has that ν(a,b) and ν(a,−b) have
the same image Xc.

It then follows that Xc is irreducible and singular so no smooth spectral curves are param-
eterized by BT . If Xc is integral and given by c = (2a, a2 − b2) then it is easy to see that its
singularities project onto the double zeros of b2 hence to the zeros of b, thus

πc (sing(Xc)) = div(b),

with div(b) the divisor of b, so that O(div(b)) ∼= KT . Notice that div(b) is a simple divisor
because the the singularites of Xc are ordinary double points.

Let BT
ni ⊂ BT denote the open dense subset parameterizing spectral curves in BT which are

nodal and integral. For c = (2a, a2 − b2) ∈ BT
ni, Xc has exactly 2g− 2 ordinary double points as

singularities and πc : Xc −→ X is ramified precisely at those points. Furthermore, since XT is
smooth and ν(a,b) : XT −→ Xc surjects onto Xc, being a generic isomorphism (namely, outside
the points projecting to div(b)), it is the normalization morphism.

All of the above is summarized in the following theorem.

Theorem 3.3. [FGOP, Theorem 3.11] Let c = (2a, a2 − b2) ∈ BT
ni and Xc the corresponding

nodal spectral curve with πc : Xc −→ X the corresponding ramified 2-cover. Then Xc is nor-
malized by XT and if ν(a,b) : XT −→ Xc is the normalization morphism, we have p = πc ◦ ν(a,b).

Moreover, the nodes of Xc project onto the simple effective divisor of b ∈ H0(X,KT ).

We have an embedding

ν̌(a,b) : Jac(XT ) →֒ Jac
2g−2

(Xc)

given by pushforward under ν(a,b) (whose image is contained in Jac
2g−2

(Xc)\Jac
2g−2(Xc)). From

this we have the spectral data parameterizing Higgs bundles in MT and also the description of
the restriction to MT ∩ h−1(c), for each c ∈ BT , of the (BBB)-brane constructed in Theorem
3.2.

Theorem 3.4. [FGOP, Propositions 3.13 and 4.6] For every c ∈ BT
ni, we have MT ∩ h−1(c) =

Im(ν̌(a,b)) ∼= Jac(XT ). Furthermore, the restriction ∆∗Ľ|MT∩h−1(c) is isomorphic to the push-

forward of Nm∗
pĽ ∈ Jac(XT ) under ν̌(a,b).

Both Theorems 3.3 and 3.4 follow by analyzing the spectral data of Higgs bundles fixed under
T , using the isomorphism (3.1).

The restriction ∆∗Ľ|MT∩h−1(c) is then the bundle we want to Fourier-Mukai, but let us before
introduce another subvariety of M, constructed in terms of the spectral correspondence.
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3.3. The Lagrangians. Fix c ∈ BT
ni and consider then the normalization ν(a,b) : XT −→ Xc.

We considered above the map induced by pushforward. Now we take the pullback map

(3.3) ν̂(a,b) : Jac
2g−2(Xc) −→ Jac2g−2(XT )

on line bundles of degree 2g−2. Under this map the generalized Jacobian Jac2g−2(Xc) becomes a
(C∗)2g−2-bundle over Jac2g−2(XT ). The morphism ν̂(a,b) does not extend to the compactification

Jac
2g−2

(Xc) but each fixed fiber of ν̂(a,b) compactifies to (P1)2g−2 in Jac
2g−2

(Xc); cf. [Bh].

The family of spectral curves parameterized by BT
ni is composed by integral singular curves

all of them normalized by XT . In order to obtain a family of spectral curves equipped with the
normalization, recall (3.2) and define

C −→ B̃T

to be the family of curves, whose fibre at (a, b) is the spectral curve ν(a,b)(XT ) = b(XT ) + a
inside |K|, which amounts to Xc. By construction, C is equipped with the normalization

n = XT × B̃T −→ C,

where n(a,b) = ν(a,b). Note that (a, b) and (a,−b) in B̃T define the same curve Xc even though
the normalization maps at these slices are not equal. Indeed, n(a,−b) = ν(a,−b) is obtained from
n(a,b) = ν(a,b) after composing with the Galois involution. While we observe that C descends to

a family of spectral curves parameterized by BT , this is not the case of the relative morphism
n.

Set Cni to be the restriction of C to B̃T
ni, the preimage of BT

ni in B̃
T . Following [AK], we can

consider the corresponding relative Jacobian (of degree 2g − 2) J 2g−2 −→ B̃T
ni over B̃

T
ni, which

can be fiberwise compactified into the corresponding family J
2g−2

of compactified Jacobians.

Let also J 2g−2
T = Jac2g−2(XT ) × B̃T

ni −→ B̃T
ni be the relative Jacobian for the constant family

XT × B̃T
ni of normalizations. Then we have a pullback map n̂ : J 2g−2 −→ J 2g−2

T induced by

each ν̂(a,b) as in (3.3). In addition, J 2g−2
T −→ B̃T

ni, being the trivial family, admits a section

associated to each degree g − 1 line bundle M ∈ Jacg−1(X), given by

(3.4) σM (a, b) = p∗M = ν∗(a,b)π
∗
cM ∈ Jac2g−2(XT ).

Note that under the spectral correspondence, one gets the map

 : J
2g−2

−→ M

which is 2 : 1 as B̃T
ni −→ BT

ni is 2 : 1. The image of  is the subspace of M mapping to BT
ni

under h. Taking preimage under n̂ of the image of σM we get a subspace of J 2g−2 (hence of
M) which maps onto BT

ni. Define then SM
T as the closure in J 2g−2 and BT

ni of this subspace.
In symbols, define

(3.5) SM
T =  (n̂−1(Im(σM ))) ⊂ M.

Note that h(SM
T ) = BT = h(MT ), for anyM ∈ Jacg−1(X). Over every point c = (2a, a2−b2) ∈

BT
ni, the restriction to the corresponding Hitchin fibre is

SM
T ∩ h−1(c) = ν̂−1

(a,b)(p
∗M) = ν̂−1

(a,−b)(p
∗M),

as p∗M over Xc is invariant under the Galois involution. When the distinction between ν(a,b)
and ν(a,−b) is irrelevant, we shorten both to νc, so that

(3.6) SM
T ∩ h−1(c) = ν̂−1

c (p∗M) ∼= (P1)2g−2 ⊂ Jac
2g−2

(Xc) = h−1(c).

Theorem 3.5. [FGOP, Theorem 5.15] The subvariety SM
T of M is complex Lagrangian.

In [FGOP], SM
T is defined in a different way, using Hecke transformations of Higgs bundles.

Theorem 3.6 below shows that both definitions yield the same subvariety SM
T . Before stating it,

let us briefly recall what is a Hecke transformation along a simple divisor, which is the setting
we are considering.
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Let U be a rank 2 vector bundle on X, p a point of X andWp a 1-dimensional vector subspace
of the fiber Up of U at p. Then, as a sheaf, Up/Wp is isomorphic to Op. Then the Hecke transform
of U at p associated to Wp is the kernel E of the sheaf projection U −→ Op

∼= Up/Wp. Now, if
D = p1 + · · · + pk is a simple effective divisor, after choosing a linear subspace Wpi ⊂ Upi for
each pi, then the Hecke transform of U along D associated to V ′

D = (Wp1 , . . . ,Wpk) is the kernel

E of the surjective sheaf map U −→ OD
∼=

⊕k
i=1 Upi/Wpi . Then we have the exact sequence of

sheaves

0 −→ E −→ U −→ OD −→ 0,

and E is locally free because it is torsion-free over the smooth curve X. Conversely, if E
is a rank 2 subsheaf of U such that U/E is supported on a simple divisor, then it is a Hecke
transformation of U along the divisor supporting the torsion sheaf U/E. A Hecke transformation
of Higgs bundles is a Hecke transformation of the underlying vector bundles which is compatible
with the corresponding Higgs fields in the obvious way.

This definition is equivalent to the one given above due to the next theorem, providing an
alternative way to characterize Higgs bundles in the dense open subset SM

T ∩ h−1(BT
ni) of S

M
T .

Theorem 3.6. [FGOP, Theorem 5.5] Let c = (2a, a2 − b2) ∈ BT
ni with a ∈ H0(K) and b ∈

H0(KT ). Recall that the effective simple divisor div(b) ∈ Sym2g−2(X) is the image under
πc : Xc −→ X of the 2g − 2 nodes of Xc. Let (E,ϕ) ∈ M and consider the rank 2 and degree
2g − 2 Higgs bundle

(3.7) (M ⊕MT,Φ), with Φ =

(
a b
b a

)

where M ∈ Jacg−1(X). Then the following are equivalent:

(1) (E,ϕ) ∈ SM
T ∩ h−1(c);

(2) (E,ϕ) is a Hecke transformation of (3.7) along the divisor div(b), that is, E fits in an
exact sequence

0 −→ E
Ψ

−−→M ⊕MT −→ Odiv(b) −→ 0

with ϕ verifying (Ψ ⊗ 1K)ϕ = ΦΨ.

Furthermore, a Higgs bundle (E,ϕ) ∈ SM
T ∩h−1(c) uniquely defines such a short exact sequence

up to rescaling Ψ and vice-versa.

Notice that KT ∼= OX(div(b)) implies in particular that the underlying bundle of all Higgs
bundles in SM

T have fixed determinant isomorphic to M2K−1.

The main motivation for introducing the complex Lagrangian subvarieties SM
T comes from

the study of the behaviour under mirror symmetry of Narasimhan–Rammanan (BBB)-branes.
This study blows down to the following theorem, which constitutes the main result of [FGOP].

Theorem 3.7. [FGOP] Over BT
ni, the Fourier-Mukai transform of the Narasimhan-Ramanan

(BBB)-brane ∆∗L̂, supported on MT , is a sheaf supported on the complex Lagrangian SM⊗L
T of

M.

4. Narasimhan–Ramanan branes and the wobbly locus

4.1. Wobbly loci of (BBB)-branes. In this section we study the intersection of the nilpotent
cone h−1(0) with MT , the support of the (BBB)-branes and give a description of the wobbly
loci therein.

First, observe that by Proposition 3.1 (ii) of [NR], any (E,ϕ) ∈ MT satisfies that E is
semistable. So the following statement holds (recall that N denotes the moduli space of rank 2
and degree 0 vector bundles on X).

Proposition 4.1. If (E,ϕ) ∈ MT then limt−→0(E, tϕ) = (E, 0) ∈ N .
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Thus
MT ∩ h−1(0) ∼= Jac(XT ) / Z2

∼= N T ⊂ N ,

where the line bundles F ∈ Jac(XT ) are sent to E = p∗F , where p : XT −→ X is the étale
2-cover defined by T , and where N T is the analogous to MT but in the action only on N .

Let us now consider WT := MT ∩W, the intersection of MT with the wobbly locus (neces-
sarily of N by the previous proposition). It intersects the different components in subschemes
denoted by

WT
δ := MT ∩Wδ ⊂ WT := MT ∩W.

In the remaining of the section we analyse WT
δ . We recall from Section 2.3 that δ ≡ 0 mod 2

and 0 ≤ δ ≤ 2g − 2, and that Wδ ⊂ Wg for δ > g.
Denote by Nm the norm map on divisors associated to p. By definition, given a divisor

∑
aixi

in XT (ai ∈ Z, xi ∈ XT ), Nm(
∑
aixi) is the divisor in X defined by Nm(

∑
aixi) =

∑
aip(xi).

Theorem 4.2. Let E ∈ N . Then E ∈ WT
δ if and only if E = p∗ (p

∗F0(R)) for some F0 ∈

Jac1−g+δ/2(X) and R ∈ Sym2g−2−δ(XT ) such that R∩σ∗R = ∅ and moreover KT (−Nm(R)) ∼=
O(D) for some effective divisor D ∈ Symδ(X). In particular, the subscheme WT

δ is non-empty
for all possible values of 0 ≤ δ ≤ 2g − 2.

Proof. Let E = p∗F for some degree 0 line bundle F over XT , so that E ∈ N T . Suppose E
is wobbly and let ψ ∈ H0(End(E) ⊗K) \ {0} be nilpotent. Let F0 ⊂ E be the line subbundle
defined by F0 = ker(ψ) and F1 = E/F0 be the quotient line bundle,

0 −→ F0 −→ E −→ F1 −→ 0,

with F1
∼= det(E)F−1

0 . Since ψ factors through ψ : F1 −→ F0K, we have that F−1
1 F0K ∼= O(D)

for the effective divisor D = div(ψ) of even degree δ with 0 ≤ δ ≤ 2g − 2. So E ∈ WT
δ .

Recall that p∗E ∼= F ⊕ σ∗F where σ : XT −→ XT is the involution exchanging the sheets of
the cover. So we have the exact sequence

(4.1) 0 −→ p∗F0 −→ F ⊕ σ∗F −→ p∗F1 −→ 0,

where p∗F1
∼= F ⊗ σ∗F ⊗ p∗F−1

0 . Now, we have that either both the compositions p∗F0 →֒
F ⊕ σ∗F ։ F and p∗F0 →֒ F ⊕ σ∗F ։ σ∗F are non zero, or p∗F0

∼= F ∼= σ∗F . In particular,

(4.2) F ∼= p∗F0 ⊗OXT
(R) = p∗F0(R)

for some effective divisor R (possibly zero). From this it follows immediately that

deg(R) = −2 deg(F0) = 2g − 2− δ

and that
E ∼= p∗(p

∗F0(R)).

Now, it is well-known that det(p∗OXT
(R)) ∼= O(Nm(R))⊗det(p∗OXT

). Using this and the fact
that p∗OXT

∼= O ⊕ T , we get, by the projection formula,

(4.3) det(E) ∼= F 2
0 det(p∗OXT

(R)) ∼= F 2
0 T (Nm(R)).

Since F0K(−D) ∼= F1
∼= det(E)F−1

0 we conclude from (4.3) that

KT (−Nm(R)) ∼= O(D)

as claimed.
In addition, (4.2) also shows that the exact sequence (4.1) can be rewritten as

0 −→ p∗F0
s

−−→ p∗F0(R)⊕ p∗F0(σ
∗R) −→ p∗F1 −→ 0,

and since p∗F1 is torsion-free, we conclude that the map s cannot vanish simultaneously over R
and σ∗R. This implies that R ∩ σ∗R = ∅.

Conversely, if E = p∗ (p
∗F0(R)) in the given conditions, then obviously E ∈ N T and moreover

det(E) ∼= F 2
0 T (Nm(R)) as in (4.3).

Now, take the diagonal embedding

p∗F0 →֒ p∗E = p∗F0(R)⊕ p∗F0(σ
∗R).
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It has torsion-free quotient because by assumption R∩σ∗R = ∅. It is also an equivariant section,
and so it descends to either F0 →֒ E or F0T →֒ E (recall that E ∼= E ⊗ T ), as the kernel of the
pullback under p is generated by T . Using that det(E) ∼= F 2

0 T (Nm(R)) and that by assumption

KT (−Nm(R)) ∼= O(D) for some D ∈ Symδ(X), we conclude that the first case yields the short
exact sequence

0 −→ F0 −→ E −→ F0K(−D) −→ 0

while the second one produces

0 −→ F0T −→ E −→ F0KT (−D) −→ 0.

In both cases a non-zero section of O(D) ∼= Hom(F0K(−D), F0K) ∼= Hom(F0KT (−D), F0TK)
gives rise to a non-zero nilpotent ψ : E −→ E ⊗ K with kernel F0 in the first case or F0T in
the second one. In both cases the degree of this kernel is 1− g + δ/2 and so E ∈ WT

δ .
Finally, since the above construction works for any possible value of δ, it follows that all the

subschemes WT
δ are non-empty. �

Remark 4.3. When R = 0, namely when O(D) ∼= K or O(D) ∼= KT , we see that E is wobbly
if and only if it is strictly semistable.

4.2. A stratification of the generic Hitchin fibres of the Lagrangian subvarieties. In
this section we construct a stratification of SM

T ∩h−1(c) for c = (2a, a2−b2) ∈ BT
ni. As explained

in Section 4.3 below, such stratification will allow us to compute the limit of the C
∗-action of

some points in SM
T , via the description of the maximal destabilizing bundle of the underlying

vector bundle associated to these points.
Set a ∈ H0(K) and b ∈ H0(KT ), such that c = (2a, a2−b2) lies in BT

ni ⊂ H0(K)⊕H0(K2). By
Theorem 3.6, any Higgs bundle in the intersection of the Hitchin fibre h−1(c) and our Lagrangian
subvariety SM

T , E = (E,ϕ) in SM
T ∩ h−1(c), is equipped with the short exact sequence

(4.4) 0 −→ E
Ψ

−−→M ⊕MT −→ Odiv(b) −→ 0

with ϕ verifying (Ψ⊗ 1K)ϕ = ΦΨ, and the short exact sequence (4.4) is uniquely defined up to
scaling Ψ. Notice that if p ∈ div(b) then the Ψ(E)p is a 1-dimensional linear subspace of (M ⊕
MT )p and it coincides with the 1-dimensional subspace Wp defining the Hecke transformation
at p as explained before Theorem 3.6. Recall that OX(div(b)) ∼= KT and that moreover div(b)
is reduced. Define

(4.5) DE = supp
(
M

/
Ψ(E) ∩M

)
.

Then DE is an effective subdivisor of div(b), hence it is reduced. It is also defined by considering
the image of the restriction to M of the map M ⊕MT −→ Odiv(b). Indeed such restriction has
image ODE

. The points of DE are precisely those p ∈ div(b) such that Ψ(E)p does not coincide

with Mp. Hence DE = div(b) for a generic Higgs bundle E ∈ SM
T ∩ h−1(c).

Given an effective subdivisor 0 ≤ D ≤ div(b), let us consider the locus of SM
T ∩ h−1(c) given

by those Higgs bundles yielding D under (4.5),

V(D) :=
{
E = (E,ϕ) ∈ SM

T ∩ h−1(c) such that DE = D
}
.

This naturally provides a stratification of the generic Hitchin fibres of our Lagrangian subvariety,

(4.6) SM
T ∩ h−1(c) =

⊔

0≤D≤div(b)

V(D).

To study the strata V(D) we need the following useful result.

Lemma 4.4. Let a ∈ H0(K) and b ∈ H0(KT ) with c = (2a, a2−b2) ∈ BT
ni ⊂ H0(K)⊕H0(K2).

Pick 0 ≤ D ≤ div(b) and consider a Higgs bundle (E,ϕ) contained in V(D) ⊂ SM
T ∩ h−1(c).
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Then, E fits in the commutative diagram

(4.7) 0

��

0

��

0

��

0 // M(−D) //

s

��

E //

Ψ

��

MK−1(D) //

b/s

��

0

0 // M //

��

M ⊕MT //

��

MT //

��

0

0 // OD

��

// Odiv(b)

��

// Odiv(b)−D
//

��

0

0 0 0,

where s ∈ H0(OX(D)), b/s ∈ H0(OX(div(b)−D)).

Proof. Immediately after Theorem 3.6 and the definition of DE one has that E fits into

0

��

0

��

0 // M(−DE ) //

s

��

E

Ψ

��

0 // M //

��

M ⊕MT //

��

MT // 0

0 // ODE

��

// Odiv(b)

��

0 0.

Recalling that det(E) ∼= M2K−1 one can easily complete the diagram to obtain (4.7) after
identifying D with DE , as one can do since E is a point of V(D). �

We set up some notation before stating the main result of this section. For a given effective
divisor D and section s ∈ H0(OX(D)) with div(s) = D, consider the double complex C•

D :

K(−2D)
s
−→ K(−D) given by multiplication by s. Associated to such complex, we have its first

hypercohomology H
1(C•

D) vector space, defined as follows, using Dolbeault representatives.
Consider the commutative square

(4.8) Ω0(K(−2D))

∂̄
��

s
// Ω0(K(−D))

∂̄
��

Ω0,1(K(−2D))
s

// Ω0,1(K(−D)).

Then, by definition,

H
1(C•

D) =
{(σ, α) ∈ Ω0,1(K(−2D))× Ω0(K(−D)) | sσ = ∂̄α}

{(∂̄x, sx) ∈ Ω0,1(K(−2D))× Ω0(K(−D)) |x ∈ Ω0(K(−2D))}

(since X is a Riemann surface, σ ∈ Ω0,1(K(−2D)) is automatically ∂̄-closed). Note that H1(C•
D)

is independent of the choice of the section s and that if D = 0 then H
1(C•

D) = {0}.
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Proposition 4.5. Let a ∈ H0(K) and b ∈ H0(KT ) are such that c = (2a, a2 − b2) ∈ BT
ni ⊂

H0(K)⊕H0(K2). Take div(b) and fix an effective subdivisor 0 ≤ D ≤ div(b), then one has the
identification

V(D) ∼= H
1(C•

D),

so

dimV(D) = deg(D).

Proof. We will have to construct an element of H
1(C•

D) out of a given (E,ϕ) ∈ V(D) and
conversely.

Let then (E,ϕ) ∈ V(D) so that E is an extension of MK−1(D) by M(−D). Let σ ∈
H1(K(−2D)) be the corresponding extension class. Under the C∞ decomposition M(−D) ⊕
MK−1(D) ∼= E, the holomorphic structure of E is determined by the ∂̄-operator ∂̄E =(

∂̄1 σ
0 ∂̄2

)
with ∂̄1 (resp. ∂̄2) the holomorphic structure of M(−D) (resp. MK−1(D)) and where

here σ ∈ Ω0,1(Hom(MK−1(D),M(−D))) denotes a representative of the class σ. We also
have the holomorphic map Ψ : E −→ M ⊕ MT determined by the Hecke transformation
alone. Taking the above C∞-splitting of E, we write Ψ =

( s α
0 b/s

)
for some C∞ section

α ∈ Ω0(Hom(MK−1(D),M)) = Ω0(K(−D)). Let the holomorphic structure of M ⊕ MT

being given by ∂̄M⊕MT =
(

∂̄3 0
0 ∂̄4

)
. As Ψ is holomorphic, ∂̄M⊕MTΨ− Ψ∂̄E = 0 which is equiv-

alent to ∂̄3α − α∂̄2 = sσ and hence to ∂̄α = sσ where ∂̄ is the holomorphic structure on
K(−D) ∼= Hom(MK−1(D),M) given on the right map of (4.8).

So out of (E,ϕ) ∈ V(D) we obtained the class in H
1(C•

D) represented by (σ, α),

(4.9) (E,ϕ) ∈ V(D) 7→ [(σ, α)] ∈ H
1(C•

D).

Note that the Higgs field ϕ does not give any new information because it is completely deter-
mined by Ψ and Φ via the condition (Ψ ⊗ 1K)ϕ = ΦΨ.

The converse inclusion is basically reversing the procedure just described, Suppose then that
we are given an element [(σ, α)] ∈ H

1(C•
D) represented by (σ, α) ∈ Ω0,1(K(−2D))×Ω0(K(−D))

such that sσ = ∂̄α. Take the cohomology class σ ∈ H1(K(−2D)) = H1(Hom(MK−1(D),M(−D)))
and let E be the associated extension ofMK−1(D) byM(−D), so that its holomorphic structure

is given by ∂̄E =
(

∂̄1 σ
0 ∂̄2

)
. Define also Ψ : E −→ M ⊕MT as Ψ =

( s α
0 b/s

)
in the C∞-splitting

M(−D) ⊕ MK−1(D) of E. Since both s and b/s are holomorphic, the condition sσ = ∂̄α
ensures that Ψ is holomorphic. It is then clear that E is a Hecke transformation of M ⊕MT
via Ψ and fitting in (4.7).

It remains to construct a Higgs field ϕ : E −→ E ⊗ K on E. Recall that M ⊕ MT has
the Higgs field Φ =

(
a b
b a

)
. Then (Ψ ⊗ 1K)ϕ = ΦΨ shows that, in the C∞ decomposition

E ≃M(−D)⊕MK−1(D), the Higgs field is given by ϕ =
(

−sα+a −α2+b2/s2

s2 sα+a

)
. It is easy to see

that ϕ is indeed a holomorphic map, that is, ∂̄Eϕ− ϕ∂̄E = 0.
From the previous description of ϕ, one can easily observe that tr(ϕ) = 2a and det(ϕ) =

a2 − b2. This shows that the spectral curve associated to (E,ϕ) just constructed is the one
associated to c ∈ BT

ni, which is integral by assumption. This implies that (E,ϕ) is stable, hence
lies in V(D).

Performing the same construction from a different choice (σ+∂̄x, α+sx) of the class [(σ, α)] ∈
H

1(C•
D) yields a Higgs bundle (E′, ϕ′) which is isomorphic to (E,ϕ) by the isomorphism ( 1 x

0 1 ) :
E′ −→ E in the C∞-decompositions E′ ≃M(−D)⊕MK−1(D) ≃ E.

So we have the correspondence

(4.10) [(σ, α)] ∈ H
1(C•

D) 7→ (E,ϕ) ∈ V(D)

and clearly (4.9) and (4.10) are inverse correspondences and prove the first part of the propo-
sition.

The dimension claim is obvious from the isomorphism H
1(C•

D)
∼= H0(OD), where OD is the

structure sheaf of the effective divisor D ⊂ X. The fact that these two spaces are isomorphic
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follows by taking the long exact sequence in cohomology and in hypercohomology associated to
the complex C•

D. �

The previous proposition completes the description of the stratification introduced in (4.6).

Corollary 4.6. Let a ∈ H0(K) and b ∈ H0(KT ) are such that c = (2a, a2 − b2) ∈ BT
ni ⊂

H0(K)⊕H0(K2). Then SM
T ∩ h−1(c) admits a stratification

SM
T ∩ h−1(c) =

⊔

0≤D≤div(b)

V(D) =
⊔

0≤D≤div(b)

H
1(C•

D),

with S(div(b)) = H
1(C•

div(b)) the open stratum and S(0) = {0} the closed one.

Analogously to (4.5), given a Higgs bundle E = (E,ϕ) ∈ SM
T ∩h−1(c), with c ∈ BT

ni as before,
one can define the simple subdivisor of div(b),

(4.11) D′
E = supp

(
MT

/
Ψ(E) ∩MT

)
,

having the same properties as DE but now with respect to MT instead of M . Defining locus

V ′(D) :=
{
E = (E,ϕ) ∈ SM

T ∩ h−1(c) such that D′
E = D

}
.

produces again a natural stratification,

(4.12) SM
T ∩ h−1(c) =

⊔

0≤D≤div(b)

V ′(D).

The following Lemma 4.7, Proposition 4.8 and Corollary 4.9 are the natural counterparts of
Lemma 4.4, Proposition 4.5 and Corollary 4.6, respectively, and their proofs are exactly the
same.

Lemma 4.7. Let a ∈ H0(K) and b ∈ H0(KT ) with c = (2a, a2−b2) ∈ BT
ni ⊂ H0(K)⊕H0(K2).

Pick 0 ≤ D ≤ div(b) and consider a Higgs bundle (E,ϕ) contained in V ′(D) ⊂ SM
T ∩ h−1(c).

Then, E fits in the commutative diagram

(4.13) 0

��

0

��

0

��

0 // MT (−D) //

s

��

E //

Ψ

��

MTK−1(D) //

b/s

��

0

0 // MT //

��

M ⊕MT //

��

M //

��

0

0 // OD

��

// Odiv(b)

��

// Odiv(b)−D
//

��

0

0 0 0,

where s ∈ H0(OX(D)), b/s ∈ H0(OX(div(b)−D)).

Proposition 4.8. Let a ∈ H0(K) and b ∈ H0(KT ) are such that c = (2a, a2 − b2) ∈ BT
ni ⊂

H0(K)⊕H0(K2). Take div(b) and fix an effective subdivisor 0 ≤ D ≤ div(b), then one has the
identification

V ′(D) ∼= H
1(C•

D),

so

dimV ′(D) = deg(D).
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Corollary 4.9. Let a ∈ H0(K) and b ∈ H0(KT ) are such that c = (2a, a2 − b2) ∈ BT
ni ⊂

H0(K)⊕H0(K2). Then SM
T ∩ h−1(c) admits a stratification

SM
T ∩ h−1(c) =

⊔

0≤D≤div(b)

V ′(D) =
⊔

0≤D≤div(b)

H
1(C•

D),

with S(div(b)) = H
1(C•

div(b)) the open stratum and S(0) = {0} the closed one.

Remark 4.10. Even if V(D) and V ′(D), for a fixed effective divisor D ≤ div(b), are both
isomorphic to H

1(C•
D), they parameterize different subsets of SM

T ∩ h−1(c). For instance,

(4.14) V(0) =
(
M ⊕MK−1,

(
a b2
1 a

))
,

whereas

(4.15) V ′(0) =
(
MT ⊕MTK−1,

(
a b2
1 a

))
.

It follows by all of the above that one can obtain a third statification by intersecting the
previous two,

SM
T ∩ h−1(c) =

⊔

0≤D,D′≤div(b)

V(D) ∩ V ′(D′).

The next statement will allow us to analyize when we get an empty intersection of the strata
V(D) ∩ V ′(D′).

Lemma 4.11. Let a ∈ H0(K) and b ∈ H0(KT ) with c = (2a, a2 − b2) ∈ BT
ni. Consider two

effective divisors 0 ≤ D,D′ ≤ div(b). Then

V(D) ∩ V ′(D′) = ∅

unless

div(b) ≤ D +D′.

In particular, V(D) ∩ V ′(D′) = ∅ when

0 ≤ deg(D),deg(D′) < g − 1.

Proof. Take any Higgs bundle E = (E,ϕ) ∈ SM
T ∩ h−1(c). Observing (4.5), we note that the

points parameterized by DE correspond to those points x ∈ div(b) such that Ψ(E)|x trivially
intersects M |x. Conversely, the points in div(b) − DE are those points x′ ∈ div(b) where
Ψ(E)|x′ = M |x′ . An analogous analysis can be applied to D′

E and y ∈ D′
E if and only if

Ψ(E)|y ∩MT |y = 0 and y′ ∈ div(b)−D′
E if and only if Ψ(E)|y′ =MT |y′ . From this discussion,

one observes that

(div(b)−DE) ∩ (div(b)−D′
E) = ∅.

Hence, the sum of div(b)−DE and div(b)−D′
E is an effective subdivisor of div(b),

(div(b)−DE) +
(
div(b)−D′

E

)
≤ div(b).

This yields

div(b) ≤ DE +D′
E ,

and the proof of the lemma follows naturally from this statement. �

Remark 4.12. Note that M |x is subspace of dimension 1 in the ambience vector space (M ⊕
MT )|x of dimension 2. Since for every x ∈ div(b) one has that Ψ(E)|x has dimension 1, it
follows that Ψ(E)|x ∩M |x is generically trivial as so is the generic intersection of two subspaces
of dimension 1 in a vector space of dimension 2. A similar analysis can be performed on the
points of D′

E . Indeed, the generic points are those parameterized by V(div(b)) ∩ V ′(div(b)),

which is dense in SM
T ∩ h−1(c).
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4.3. Limits of C
∗-flows along the Lagrangians. Our aim in this section is to study the

Lagrangian subvarieties SM
T at the nilpotent cone. Since SM

T is constructed as the closure of a

subvariety defined over the locus BT
ni, we study the limits of the C

∗-action on the points SM
T

inside the nilpotent cone. Our analysis shows that the Lagrangians SM
T hit the wobbly locus.

Proposition 4.13. Let M ∈ Jacg−1(X) and SM
T be the Lagrangian of M defined in (3.5).

Then, SM
T ∩ h−1(BT

ni) is C
∗-invariant.

Proof. Take a generic Higgs bundle (E,ϕ) in SM
T in the sense that (E,ϕ) ∈ SM

T ∩h−1(c) for some
c = (2a, a2 − b2) ∈ BT

ni with a ∈ H0(K) and b ∈ H0(KT ). Then by Theorem 3.6, it is a Hecke
transformation of (M ⊕MT,Φ) given in (3.7). For t ∈ C

∗, define tc = (2ta, (ta)2 − (tb)2) and
note that tc ∈ BT

ni because MT is C∗-invariant and also because Xtc is still nodal and integral.
Moreover, (Ψ ⊗ 1K)tϕ = tΦΨ so (E, tϕ) ∈ h−1(tc) is a Hecke transformation of (M ⊕MT, tΦ)
along Dtb = div(b), hence again Theorem 3.6 tells us that (E, tϕ) ∈ SM

T ∩ h−1(tc). �

Let us now study the fixed point loci of the C
∗-action on the Lagrangian subvarieties SM

T .
Recall that, as we have seen in Section 2.3, this amounts to study the maximal destabilizing
subbundle of the underlying vector bundle of those Higgs bundles parameterized by SM

T .

Proposition 4.14. Consider E = (E,ϕ) ∈ SM
T ∩ h−1(c), with c = (2a, a2 − b2) ∈ BT

ni for a
certain a ∈ H0(K) and b ∈ H0(KT ). If E is not semistable, if and only if one of the two
(mutually exclusive) conditions holds:

(a) deg(DE ) < g− 1 and the maximal destabilizing subbundle of E is M(−DE) and the compo-

sition φ : M(−DE ) −→ E
ϕ

−−→ E ⊗K −→ M(DE ) is s2E , where sE is a section of OX(DE)
that vanishes in DE ;
or

(b) deg(D′
E ) < g − 1 and the maximal destabilizing subbundle of E is LMT (−D′

E ) and the

composition φ : MT (−D′
E) −→ E

ϕ
−−→ E ⊗K −→ MT (D′

E) is (s′E)
2, where s′E is a section

of OX(D′
E ) that vanishes in D′

E .

Furthermore, E is strictly semistable if and only if deg(DE ) = g − 1 (and M(−DE) ⊂ E) or
deg(D′

E) = g − 1 (and MT (−D′
E ) ⊂ E).

Proof. First observe that (a) and (b) are mutually exclusive due to Lemma 4.11.
If deg(DE ) < g − 1 (resp. deg(DE ) < g − 1) one immediately sees after Lemma 4.4

(resp. Lemma 4.7) that M(−DE) (resp. MT (−D′
E )) is a destabilizing subbundle, so E is

not semistable. Conversely, suppose that E is not semistable with maximal destabilizing sub-
bundle L. Since the determinant of E is M2K−1, its underlying vector bundle is equipped with
the short exact sequence,

0 −→ L −→ E −→M2K−1L−1 −→ 0,

and the composition φ : L −→ E
ϕ

−−→ E ⊗ K −→ M2L−1 is non-zero, as otherwise it would
contradict the semistability of E .

Using again Theorem 3.6 to see (E,ϕ) as a Hecke transformation of (M ⊕MT,Φ), it follows
that L is a subsheaf of M ⊕MT with quotient having torsion over a subdivisor DL ≤ div(b).
Saturating L in M ⊕MT produces the line subbundle L(DL) ⊂ M ⊕MT . From this, and if
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sL is a section with divisor DL, we get the following diagram, analogue to (4.7) and (4.13),

(4.16) 0

��

0

��

0

��

0 // L //

sL
��

E //

Ψ

��

M2K−1L−1 //

b/sL
��

0

0 // L(DL) //

��

M ⊕MT //

��

M2TL−1(−DL) //

��

0

0 // ODL

��

// Odiv(b)

��

// Odiv(b)−DL
//

��

0

0 0 0,

where again DL records precisely the points p ∈ div(b) where L(DL)|p does not coincide with
Ψ(E)|p as a subsheaf of (M ⊕MT )|p.

Let pr : (M ⊕MT )⊗K −→M2TL−1K(−DL) be the projection induced by the one on the
second line above. Since (Ψ⊗ 1K)ϕ = ΦΨ, it follows that pr ◦ (Ψ⊗ 1K) ◦ϕ|L = pr◦Φ ◦Ψ|L and
this equivalent to (b/sL)φ = bsL (where here b/sL :M2L−1 −→M2TL−1K(−DL)). So φ = s2L
and moreover

(4.17) O(2DL) ∼=M2L−2,

so

L ∼=M(−DL)T
′

for some T ′ ∈ Jac(X)[2]. This implies that L(DL) ∼= MT ′ is a subbundle of M ⊕ MT , or
equivalently, T ′ is a subbundle of OX ⊕ T which is only the case if T ′ ∼= OX or T ′ ∼= T . In the
first case, one has that

L ∼=M(−DL)

and

DL = DE ,

while in the second case

L ∼=MT (−DL)

and

DL = D′
E .

The first statement follows easily from the previous identifications.
Finally, observe that when deg(DE ) = g− 1, Lemma 4.4 implies that E is strictly semistable

with M(−DE ) ⊂ E having trivial degree (and slope). Analogously, when deg(D′
E ) = g − 1,

Lemma 4.7 implies that E is strictly semistable with MT (−D′
E ) ⊂ E having trivial degree

(and slope). Conversely, if E is strictly semistable with L ⊂ E topologically trivial, it follows
from the previous analysis that L(DL) is either M or MT . In the first case, this implies that
DL = DE and M(−DE) ⊂ E while in the second case, one has DL = D′

E and MT (−D′
E) ⊂ E.

This proves the second claim and concludes the proof. �

Recall from Section 4.2 the stratifications
⊔

D≤div(b) V(D) and
⊔

D≤div(b) V
′(D) of SM

T ∩h−1(c),

the restriction of our Lagrangian subvarieties to a generic Hitchin fibre. Consider a Higgs bundle
E = (E,ϕ) in the previous intersection. Thanks to Proposition 4.14 one has that the underlying
vector bundle E of E is unstable if and only if it lies in some V(D) or V ′(D) for D ≤ div(b)
with deg(D) < g − 1. In view of this, we consider the set of subdivisors of div(b) with length
smaller than g − 1,

Ub = {D ≤ div(b) such that deg(D) < g − 1} .
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Hence, E is semistable provided it is not contained in the union of
⊔

D∈Ub
V(D) and

⊔
D∈Ub

V ′(D).
Also, observe that it follows from Lemma 4.11 that the previous sets do not intersect. Further-
more, if E ∈ V(D) or E ∈ V ′(D) for any D ∈ Ub, we immediately knows that its maximal
destabilizing subbundle is M(−D) or MT (−D), respectively. Hence, knowing in which stratum
lies E we know the maximal destabilizing bundle of its underlying vector bundle E, hence we
know the limit of E under the C

∗-action. Let us summarize all this in the following result.

Corollary 4.15. Consider E = (E,ϕ) ∈ SM
T ∩ h−1(c), with c = (2a, a2 − b2) ∈ BT

ni for some
a ∈ H0(K) and b ∈ H0(KT ). Then,

• if E = (E,ϕ) lies in the complement of
⊔

D∈Ub
V(D)⊔

⊔
D′∈Ub

V ′(D′), then E is semistable
and

lim
t−→0

(E, tϕ) = (E, 0);

• if E = (E,ϕ) lies in V(D) (resp. in V ′(D)) for some D ∈ Ub, then E is unstable and

lim
t−→0

(E, tϕ) =
(
M(−D)⊕MK−1(D),

(
0 0
s2D 0

))
,(4.18)

(
resp. lim

t−→0
(E, tϕ) =

(
MT (−D)⊕MTK−1(D),

(
0 0
s2D 0

)))
,

where sD is a non-zero section of OX(D) with divisor D.

We can now address the main result of this section.

Theorem 4.16. Consider E = (E,ϕ) ∈ SM
T ∩h−1(c), with c = (2a, a2 − b2) ∈ BT

ni for a certain
a ∈ H0(K) and b ∈ H0(KT ). Then,

(1) if E is semistable (i.e. E = (E,ϕ) lies in the complement of
⊔

D∈Ub
V(D)⊔

⊔
D′∈Ub

V ′(D′)),

then limt−→0(E, tϕ) is wobbly, that is, E ∈ N is wobbly.
(2) If E is unstable with M(−D) ⊂ E maximal destabilizing subbundle for 0 < D ∈ Ub (i.e.

E lies in V(D) or V ′(D) for a non-zero D ∈ Ub), then limt−→0(E, tϕ) is wobbly, that is,
(4.18) is wobbly.

(3) If E is unstable with M ⊂ E maximal destabilizing subbundle M (i.e. E lies in V(0) or
V ′(0) for a non-zero D), then limt−→0(E, tϕ) is very stable.

Proof. Suppose E is semistable. Observe that E is obtained via an extension

0 −→M(−D) −→ E −→MK−1(D) −→ 0,

(or with M replaced by MT ) for some 0 ≤ D ≤ div(b). Hence to prove that E is wobbly, it is
enough to show that there is a non-zero holomorphic map MK−1(D) −→ M(−D)K, because
then the composition E −→MK−1(D) −→M(−D)K −→ E ⊗K will be a non-zero nilpotent
Higgs field on E. But H0(Hom(MK−1(D),M(−D)K)) = H0(OX(2div(b) − 2D)) 6= 0 because
div(b)−D is effective. This proves (1).

Item (2) follows from Corollary 4.15 and the criterion [HH, Theorem 1.2], noting that s2D has
double zeros (because D > 0) and that the Higgs bundles of the form (4.18) are stable.

Regarding the last item, we have that (4.18) equal

lim
t−→0

(E, tϕ) =
(
M ⊕MK−1, ( 0 0

1 0 )
)
,

(
resp. lim

t−→0
(E, tϕ) =

(
MT ⊕MTK−1, ( 0 0

1 0 )
))
,

so they are fixed points with destabilzing subbundle of E of maximal degree, hence they are
very stable by Remark 2.1, hence proving (3). Indeed, in such case, E must be of the form
(4.14) (resp. (4.15)) i.e. must lie in a Hitchin section (associated to M) of h. �

Remark 4.17.

(1) According to [HH, Theorem 1.2] a rank 2 Higgs bundle
(
L1 ⊕ L2,

(
0 0
φ 0

))
with φ 6= 0 is

wobbly if and only if φ has a multiple zero. Hence one concludes that the wobbly Higgs
bundles (with non-vanishing Higgs field) arising as C∗-limits along the Lagrangians SM

T
are special in the sense that all zeros are multiple.
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(2) Theorem 4.16 says that the intersection of the Lagrangians SM
T with the nilpotent cone

i.e. the closure of SM
T ∩h−1(BT

ni) in h
−1(0) is not just given by the limit point under the

C
∗-flows in SM

T ∩h−1(BT
ni). Indeed, since they are wobbly, the upward flow of such limit

points contains C∗-orbits inside the nilpotent cones. Then those orbits in h−1(0) whose
limits (to 0 and ∞) are fixed points which are limits of Higgs bundles in SM

T ∩h−1(BT
ni)

belong to SM
T . It would be interesting to have an explicit description of these nilpotent

C
∗-orbits in SM

T . Indeed, this would give a complete description of SM
T ∩ h−1(0). We

describe these flows in work in progress.
(3) Upon varying c = (2a, a2−b2) in BT

ni, (4.14) and (4.15) give rise to two different sections
of h|h−1(BT

ni)
which extend to BT , so take values in SM

T . In particular, choosing a spin

structureK1/2, we see that the Lagrangian SK1/2

T contains (the restrictions to BT of) two

classical Hitchin sections, namely
(
K1/2 ⊕K−1/2,

(
a b2
1 a

))
and

(
K1/2T ⊕K−1/2T,

(
a b2
1 a

))
,

associated to the two spin structures K1/2 and K1/2T . By taking the locus in BT with
a = 0 these two sections lie also in the moduli space of SL(2,C)-Higgs bundles. In such
moduli space, the C

∗-fixed point locus of the form (2.1) with deg(L1) = g− 1 is a finite
set because L1 must be a square root of K. Hence it has 22g points. From above we

see that SK1/2

T intersects exactly two of those 22g points:
(
K1/2 ⊕K−1/2, ( 0 0

1 0 )
)
and(

K1/2T ⊕K−1/2T, ( 0 0
1 0 )

)
.
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