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Abstract  

Skin cancer is considered one of the most common types of cancer in several countries and its 

incidence rate has increased in recent years. Computational methods have been developed to 

assist dermatologists in early diagnosis of skin cancer. Computational analysis of skin lesion 

images has become a challenging research area due to the difficulty in discerning some types of 

skin lesions. A novel computational approach is presented for extracting skin lesion features 

from images based on asymmetry, border, colour and texture analysis, in order to diagnose skin 

lesion types. The approach is based on an anisotropic diffusion filter, an active contour model 

without edges and a support vector machine. Experiments were performed regarding the 

segmentation and classification of pigmented skin lesions in macroscopic images, with the 

results obtained being very promising. 

Keywords: Image pre-processing; Image Segmentation; Image Classification; Anisotropic 

Diffusion Filter; Active Contour Model without Edges; Support Vector Machine. 
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1. Introduction 

Computational analysis of skin lesion images is an area of great research interest due to its 

importance in skin cancer prevention, particularly in achieving a successful early diagnosis 

(Celebi, et al., 2007b; Filho, et al., 2015; Scharcanski & Celebi, 2013). Such lesions, which can 

be classified as benign or malignant, are mainly due to abnormal production of melanocyte cells 

originating from factors such as excessive sun exposure. Melanocyte cells are responsible for 

creating the substance melanin, whose main function is to provide skin pigmentation. In the case 

of malignant cells, i.e. melanoma (Figure 1a), such cells divide quickly and may invade other 

parts of the body. An increasing number of deaths due to melanoma have been observed 

worldwide, since this type of malignant lesion is the most aggressive compared to other lesion 

types due to its high level of metastasis (INCA, 2014). Benign lesions display a more organized 

structure than malignant lesions, since the former are unable to proliferate into other tissues. 

Seborrheic keratosis (Figure 1b) and melanocytic nevus (Figure 1c) are examples of benign 

lesions. However, these skin lesions have also been of global concern, since some types of nevi 

may become melanoma; moreover a melanoma may resemble a seborrheic keratosis or a nevus 

in its initial state. 

  
Figure 1: Three examples of pigmented skin lesions: (a) melanoma, (b) seborrheic keratosis and (c) 

melanocytic nevus. 

 
Different non-invasive imaging techniques have been employed to assist dermatologists in 

diagnosing skin lesions (Smith & MacNeil, 2011). Macroscopic images, commonly known as 

clinical images, are normally used in computational analysis of skin lesions (Cavalcanti & 

Scharcanski, 2013; Wong, et al., 2011), since such images may be obtained using common 

digital video or image cameras. Figure 1 presents examples of macroscopic images. However, 

their imaging conditions are frequently inconsistent; for example, images are acquired from 

variable distances and/or under different illumination conditions. Furthermore, the images may 

have poor resolution, which may be challenging when the lesion under study is small. An 

additional problem with clinical images is related to the presence of artefacts, such as hair, 

reflections, shadows and skin lines, which may hinder adequate analysis of the imaged skin 

lesions.  
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Pre-processing, segmentation, feature extraction, and classification are fundamental steps 

commonly found in computational systems of image analysis. In terms of skin lesions, the image 

pre-processing step is an important aspect for good segmentation, i.e. identification, of the 

image’s pigmented skin lesions. Effective approaches based on colour space transformation 

(Abbas, et al., 2012a), contrast enhancement (Schaefer, et al., 2011) and artefact removal (Abbas, 

et al., 2013b) have been proposed for this step in order to improve the accuracy of the following 

segmentation step. Segmentation allows for extracting the region of interest (ROI) from the 

macroscopic image under analysis. Previous studies (Silveira, et al., 2009; Wong, et al., 2011; 

Zhou, et al., 2010) have shown that computational methods for image segmentation may provide 

suitable results for the identification of skin lesions in images.  

The feature extraction of skin lesion images is usually based on methods used by 

dermatologists in their clinical routine diagnosis. Of these methods, the ABCD rule is mostly 

used, being a criteria based on the Asymmetry, Border, Colour and Diameter characteristics of 

the lesion under study (Abbasi, et al., 2004). The asymmetry criterion may be examined by 

dividing the region of the lesion into two sub-regions by an axis of symmetry, in order to 

analyse the similarity of the area by overlapping the two sub-regions along the axis. The lesion 

is considered symmetric when the two sub-regions are highly similar, which is prevalent in 

benign lesions. Otherwise, the lesion is considered asymmetric which is associated with 

malignant lesions. The border criterion corresponds to the measure of the regularity of the 

lesion’s shape. According to this criterion, a border of regular shape is associated with benign 

lesions while a border of irregular shape is associated with malignant lesions instead. The colour 

criterion consists of analysing the tonality variation of the pigmented skin lesions in order to 

identify the malignant lesions, which usually present non-uniform colours. The diameter 

criterion is associated with the size of the lesion and is defined by the greatest distance between 

any two points of the lesion’s border. As such, a diameter equal to or greater than 6 (six) 

millimetres may indicate malignancy. Texture analysis may also be performed for image-based 

examination of skin lesions, since it assists in discriminating benign from malignant lesions by 

assessing the roughness of their structure (Cavalcanti & Scharcanski, 2013). 

Several computational solutions (Celebi, et al., 2007b; Iyatomi, et al., 2010) have been 

proposed for extracting features from pigmented skin lesions in images in order to represent 

them according to certain criteria. Then, the classification step consists of recognizing and 

interpreting the information about the pigmented skin lesions based on these features. Hence, 

computational classifiers are important tools to assist the computational diagnosis of skin 

lesions in macroscopic images (Celebi, et al., 2008a; Iyatomi, et al., 2008; Maglogiannis & 

Doukas, 2009).  
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The objective of this work was to develop a novel computational approach based on the 

ABCD rule and texture analysis for the identification and classification of pigmented skin 

lesions in macroscopic images, in order to provide information that may assist dermatologists in 

their diagnosis. In this approach, an anisotropic diffusion filter (Barcelos, et al., 2003) is applied 

to reduce the noise present in the image under study. Then, the active contour model without 

edges (Chan & Vese, 2001) is employed in the segmentation of the lesion in the pre-processed 

image. Afterwards, features related to the asymmetry, border, colour and texture of the lesion 

are extracted from the segmented image. Finally, the features are used as input to a support 

vector machine (SVM) classifier (Burges, 1998) to classify the skin lesion. 

This paper is organized as follows: a review of the computational methods that have been 

applied to classify pigmented skin cancers and other skin lesions is provided in section 2. A 

novel approach for detecting and classifying skin lesions in dermoscopy images is proposed in 

Section 3. The results and their discussion are provided in Section 4. Finally, conclusions drawn 

and proposal for future studies are in the last section. 

2. Related studies 

Computer-aided diagnosis (CAD) systems for skin lesions in images have been proposed in 

order to assist dermatologists, predominantly in the early assessment of skin cancer. In these 

systems, image filters are commonly applied to pre-process the input images in order to increase 

the accuracy of the segmentation step. A median filter, which is a non-linear image filtering 

algorithm, has been applied often to smooth images of skin lesions as well as to remove 

artefacts, preserving the border of the lesion, which is imperative to assure adequate 

segmentation (Celebi, et al., 2008b; Celebi, et al., 2007b; Silveira, et al., 2009). An anisotropic 

diffusion filter has also been regularly used for smoothing skin lesion images, particularly to 

remove artefacts with good results and without losing relevant information about lesions 

(Barcelos & Pires, 2009). Based on set theory, morphological filtering (Gonzalez & Woods, 

2002) enables removing image noise (Norton, et al., 2010; Silveira, et al., 2009), and may also 

be used to enhance skin lesions in images (Beuren, et al., 2012), as well as to include areas with 

borders of low contrast in previously detected lesion regions (Norton, et al., 2012; Norton, et al., 

2010). 

Algorithms of image segmentation have been developed based on several techniques to 

assist the diagnosis of skin lesions from images (Oliveira, et al., 2016). From these, threshold-

based algorithms have been widely used, mainly because of their simplicity. Thus, thresholding 

algorithms, such as the Otsu (Celebi, et al., 2007b; Celebi, et al., 2013; Norton, et al., 2012; 

Norton, et al., 2010), type-2 fuzzy logic (Yuksel & Borlu, 2009) and the Renyi entropy method 
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(Beuren, et al., 2012), aim to establish the threshold values in order to separate the regions of 

interest (ROIs) in the input images. However, these techniques may reveal some problems; for 

example the segmented lesions tend to be smaller than their real size, and the segmentation 

process may lead to highly irregular lesion borders (Yuksel & Borlu, 2009).  

Algorithms based on active contour models (ACM) have been frequently proposed for the 

segmentation of skin lesions in images (Abbas, et al., 2012a; Silveira, et al., 2009; Zhou, et al., 

2010). In these algorithms, initial curves move toward the boundaries of the objects of interest 

through appropriate deformation. The algorithms of active contour may be classified as edge- or 

region-based models (Zhang, et al., 2010) according to the technique used to track the curves 

movement. Additionally, mixed models have been also adopted, see, for example, Li, et al. 

(2010). The edge-based models include classic parametric models (Kass, et al., 1988), gradient 

vector flow (GVF) (Xu & Prince, 1998) and geometric (or geodesic) active contours (GAC) 

(Paragios & Deriche, 2002). However, classic parametric models and GVF have difficulty in 

dealing with topological changes and large curvatures. On the other hand, GAC models, such as 

level-set-based algorithms, do not present such problems. The region-based active contour 

model proposed by Chan and Vese (Chan & Vese, 2001) has been used in the segmentation of 

skin lesions (Silveira, et al., 2009) due to its advantages relatively to other segmentation 

algorithms based on ACM (Chan & Vese, 2001), such as: 1) the initial curve may be defined 

more freely in the input image, 2) the inner contours are automatically detected without the need 

to define additional curves in the image, and 3) the segmentation is successfully carried out even 

in the presence of intensity variations, very smooth boundaries and boundaries not successfully 

detected by gradient operators. Region-based algorithms, like the region growing, splitting and 

merging methods have also been used to segment skin lesions in images (Celebi, et al., 2007a; 

Celebi, et al., 2007b; Iyatomi, et al., 2008; Silveira, et al., 2009). These methods consist of 

grouping similar neighbouring pixels, or sub-regions, into larger homogeneous regions 

according to a growing criterion. Such methods have shown successful performance even under 

complex conditions such as great variations of illumination and colour. However, some of these 

methods may not adequately identify lesion regions that present low contrast relatively to the 

skin background. 

The wide use of algorithms based on artificial intelligence (AI) is justified by the advantages 

they offer (Silveira, et al., 2009), such as the possibility of learning from sample cases provided 

by artificial neural networks (ANNs) (Schaefer, et al., 2011), the search and optimization for the 

best segmentation results provided by techniques based on genetic algorithms (GAs) (Roberts & 

Claridge, 2003), and the capability of dealing with imprecise values provided by fuzzy logic, 

e.g., by applying the type-2 fuzzy logic technique (Yuksel & Borlu, 2009). In addition, fuzzy 
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logic combined with clustering techniques have been employed in the image segmentation of 

skin lesions, such as the fuzzy c-means (FCM) algorithm (Rahman, et al., 2008) and the 

anisotropic mean shift approach based on the FCM algorithm (AMSFCM) (Zhou, et al., 2009). 

The hill-climbing algorithm (HCA) is a technique based on the clustering of points on an image, 

which is also applied to detect ROIs in skin lesion images (Abbas, et al., 2013a). In Abbas, et al. 

(2012b), a new segmentation method based on dynamic programming was proposed to 

overcome the limitation of thresholding, region-growing and clustering, as well as level-set-

based segmentation methods. However, some algorithms based on AI may also present 

disadvantages regarding the complexity of their implementation and the presence of 

unnecessary steps, which requires high computational efforts (Roberts & Claridge, 2003). 

The ABCD rule and texture analysis are examples of approaches employed in the literature 

for the computational analysis of skin lesions in macroscopic images. However, other 

descriptors have also been extracted for the characterization of skin lesions in images: 

• Asymmetry (A): asymmetry index descriptors based on axis of symmetry (Chang, et al., 

2005; She, et al., 2007), and geometrical descriptors (Cavalcanti & Scharcanski, 2013);  

• Border (B): geometrical descriptors based on the best-fit of ellipse axes (Chang, et al., 

2005; She, et al., 2007), and statistical descriptors based on border gradient and edge 

regions (Cavalcanti & Scharcanski, 2013);  

• Colour (C): statistical descriptors based on colour models (Cavalcanti & Scharcanski, 

2013; Chang, et al., 2005; She, et al., 2007), amount of colour pixels (Cavalcanti & 

Scharcanski, 2013), and relative colour descriptors (Chang, et al., 2005);  

• Diameter (D): semi-major axis of the best-fit ellipse (She, et al., 2007); and  

• Texture (T): statistical descriptor based on the intensity of the pixels inside the lesion 

regions (Cavalcanti & Scharcanski, 2013).  

For the classification process, one or several methods have been evaluated to achieve the 

best results. The performance of this process depends on several issues, such as the quality of 

the segmented image and extracted features, as well as on the classification method used. The 

output of the skin lesion classification process may be binary or multi-class, and concern 

different classes according to the classification goal, e.g., malignancy of the lesions (benign 

versus malignant) (Garnavi, et al., 2012), and distinct types of skin lesions (melanoma versus 

nevus (Iyatomi, et al., 2008; Maglogiannis & Doukas, 2009), melanocytic versus non-

melanocytic (Iyatomi, et al., 2010), and dysplastic versus non-dysplastic versus melanotic 
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(Maglogiannis & Doukas, 2009)). Furthermore, skin lesion features, such as border features 

regular versus irregular (Clawson, et al., 2009) can also be classified. 

Classification methods based on a decision tree have been used in the classification of skin 

lesions by many authors (Celebi, et al., 2008a; Chang, et al., 2005; Maglogiannis & Doukas, 

2009). The simplicity of the classification structure in terms of ease of understanding and 

visualization, as well as the easy rule generation, is one of the important advantages of this 

approach. However, the difficulties in dealing with correlated features and the possibility of 

excessive adjustments (over-fitting) are its major drawbacks. Bayesian learning-based methods 

have also been applied to classify skin lesions (Garnavi, et al., 2012; Maglogiannis & Doukas, 

2009). Although Bayesian methods provide fast training and no sensitivity to irrelevant features, 

they assume that the features are independent. Despite the long training time, artificial neural 

networks have been proposed in various studies (Iyatomi, et al., 2008; Maglogiannis & Doukas, 

2009) to cope with many complex pattern recognition problems, since such classifiers present 

good capability and flexibility to solve several non-separable problems. The SVM classifier 

(Burges, 1998) has also been applied to discriminate skin lesions, due to its good generalization 

and simplification of the non-linear data separation by means of kernel functions (Celebi, et al., 

2007b; Maglogiannis & Doukas, 2009). The SVM performed better than other computer 

classifiers in several studies (Maglogiannis & Doukas, 2009). However, this classifier may be 

sensitive to noise and the classification process is binary. 

3. Proposed approach 

In this section, a computational approach for identification and classification of pigmented 

skin lesions in macroscopic images is presented, in order to provide information that may assist 

dermatologists in their diagnosis. Figure 2 illustrates the pipeline of the proposed approach, 

which involves the following steps: 1) image pre-processing, 2) image segmentation, 3) image 

post-processing, 4) feature extraction, and 5) lesion classification. The first step is mainly applied 

to deal with noisy images based on an anisotropic diffusion filter (Barcelos, et al., 2003). The 

second step is responsible for identifying the lesion presented in the image being studied by using 

an active contour model without edges, known as Chan-Vese’s model (Chan & Vese, 2001). The 

third step consists of the post-processing of the segmented image based on morphological 

filtering (Gonzalez & Woods, 2002) in order to improve the quality of the segmentation result. In 

the fourth step, features are extracted from the identified lesion, including the lesion’s 

asymmetry, border, colour and texture properties. Finally, the last step concerns the lesion 

classification based on the extracted features that are inputted into an SVM classifier (Burges, 

1998). In the next sections, each step of the proposed approach is detailed. 
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3.1. Image pre-processing 

As mentioned previously, the image under analysis may contain several artefacts that can 

affect the accuracy of the image segmentation step. Hence, an anisotropic diffusion filter 

(Barcelos, et al., 2003) is applied to smooth the input image, mainly in order to reduce the 

presence of hairs. Hence, initially, the original RGB (red, green, blue) image is converted into a 

grey-level image, since the segmentation method used is applied to grey-level images. 

Afterwards, the anisotropic diffusion filter is applied to the converted image according to the 

solution proposed by Barcelos, et al. (2003), which aims at smoothing very noisy images without 

removing relevant borders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Pipeline of the proposed approach for detecting and classifying pigmented skin lesions in 
images. 

 

The implementation of this filter is based on the following equations: 
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𝐺" 𝑥, 𝑦 = 7
?@'"<

𝑒
B C<DE<
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where 𝑢 𝑥, 𝑦, 0 = 𝐼(𝑥, 𝑦), 𝑥 ∈ Ω, 𝑡 > 0, 𝐼(𝑥, 𝑦) is the original image to be processed, 𝑢 the 

smoothed image at scale 𝑡, 𝑑𝑖𝑣 the divergence operator, ∇𝑢 the gradient of 𝑢, and 𝜆 a parameter 

related to the diffusion speed. The term 𝑔( (𝐺' ∗ ∇𝑢 )	 is used for border detection, where 𝑘 is a 

parameter, 𝐺' the Gaussian function, and 𝜎 the standard deviation of 𝐺'. The convolution 𝐺' ∗

∇𝑢 is a Gaussian scale space of 𝑔 given by: 𝑇O 𝑥, 𝑦, 𝑡 = 𝑔 ∗ 𝐺"(𝑥, 𝑦) where 𝐺" is given by Eq. 

(3) and 𝑡 is the scale. Considering a neighbourhood of a pixel 𝑥, when the gradient ∇ has a low 

average value; i.e., there are few noisy pixels in the input image, 𝑥 is considered an inner pixel 

(homogeneous region), resulting in 𝑔	 ≅ 1. Otherwise, 𝑥 will be a pixel of a contour, 𝑔	 ≅ 0. The 

moderation selector 1 − 𝑔  (Barcelos, et al., 2003) allows a balanced diffusion of the input 

image, i.e., the homogeneous regions are smoothed even more with respect to the borders of the 

regions. This filter is iteratively applied to the image, such that the number of iterations (𝑁𝐼) is 

determined according to the amount of noise presented in the input image. However, relevant 

borders may be removed when the number of iterations is too large.  

3.2. Image segmentation 

The segmentation process should be effective, so information of the lesion may be extracted 

with high confidence. In addition, the accuracy of this process directly influences the feature 

extraction step, which is required to suitably represent the lesion for its classification process. 

Therefore, an appropriate segmentation technique is crucial to obtain good classification results 

for the problem in question. The Chan-Vese model (Chan & Vese, 2001) is based on the average 

of the intensities of the image’s pixels, and not on the image’s gradient. This model uses the 

concepts of the Mumford-Shah and level-set segmentation models. Essentially, Chan-Vese’s 

model considers a "fitting" term 𝐹 for the energy minimization, which allows the deformation of 

the curve toward the boundary of the object to be segmented, in which the inside and outside 

intensities are constant and similar. In order to identify whether the object of interest is inside or 

outside the curve, the energy minimization 𝐹 𝑐7, 𝑐?, 𝜙  is calculated as: 

𝐹 𝑐7, 𝑐?, 𝜙 = 𝜇 𝛿 𝜙 𝑥, 𝑦 ∇𝜙 𝑥, 𝑦 𝑑𝑥𝑑𝑦W + 𝜈 𝐻 𝜙 𝑥, 𝑦 𝑑𝑥𝑑𝑦W +

⋋7 𝑢\ 𝑥, 𝑦 − 𝑐7 ?𝐻 𝜙 𝑥, 𝑦 𝑑𝑥𝑑𝑦 +⋋? 𝑢\ 𝑥, 𝑦 − 𝑐? ?(1 − 𝐻(𝜙 𝑥, 𝑦 ))	𝑑𝑥𝑑𝑦W 	 ,W 				(4) 

where 𝑢\ is a pre-processed image, as a bounded function on Ω and with real values. The fixed 

parameters 𝜇, 𝜈 ≥ 0, and ⋋7 and ⋋?> 0 are weights for the fitting term. The terms 𝐻 and 𝛿 are 

the Heaviside and Dirac delta functions, respectively, used in order to obtain the level-set energy 

function 𝐹 𝑐7, 𝑐?, 𝜙 . The constants 𝑐7 and 𝑐?, which are based on the Mumford-Shah 
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segmentation model, are the average image 𝑢\ inside and outside curve 𝐶, respectively. Such 

constants are given by: 

𝑐7 𝜙 =
0_ `,a b(c `,a )d`dae

b(c `,a )d`dae

	,       (5) 

𝑐? 𝜙 =
0_ `,a (7fb(c `,a ))d`dae

(7fb(c `,a ))d`dae

	.       (6) 

3.3. Image post-processing 

Frequently, the segmentation results are post-processed to improve the accuracy of the 

obtained lesion region. In many cases, morphological operations (Gonzalez & Woods, 2002) are 

employed for this purpose (Celebi, et al., 2008b; Norton, et al., 2012; Zhou, et al., 2009). Here, a 

morphological filtering, presented in Eq. (7), is applied to the segmented image 𝐼 by using a 

structuring element 𝐸. This process allows the smoothing of borders, the removing of isolated 

regions, and/or even filling the segmented lesion region. This filter consists of the opening 

operation 𝐼 ∘ 𝐸, defined by Eq. (8), followed by the closing operation of the result by 𝐸, defined 

by Eq. (9), respectively:  

𝐼 ∘ 𝐸 ∙ 𝐸	,           (7) 

𝐼 ∘ 𝐸 = 𝐼 ⊖ 𝐸 ⊕ 𝐸	,        (8) 

𝐼 ∙ 𝐸 = 𝐼 ⊕ 𝐸 ⊖ 𝐸	,	        (9) 

where 𝐼 ⊕ 𝐸 is the dilation operation given by Eq. (10) and 𝐼 ⊖ 𝐸 is the erosion operation given 

by Eq. (11). Therefore, the opening of set 𝐼 by 𝐸 is the erosion of 𝐼 by 𝐸, followed by the dilation 

of the result by 𝐸. The closing of the set 𝐼 by 𝐸 is the dilation of 𝐼 by 𝐸, followed by the erosion 

of the result by 𝐸: 

𝐼 ⊕ 𝐸 = 𝑥| 𝐸 ` 𝐼 ⊆ 𝐼 	,	       (10) 

𝐼 ⊖ 𝐸 = 𝑥| 𝐸 ` ⊆ 𝐼 	,       (11) 

where 𝐸 is the reflection of set 𝐸 (structuring element), 𝐸 ` is the translation of set 𝐸 by pixel 

𝑥, and 𝐸 ` is the translation of set 𝐸 by pixel 𝑥. 

3.4. Feature extraction 

After the ROI identification, the next step is to extract a lesion’s features based on the 

ABCD rule in order to numerically describe its properties. The clinical assessment is usually 

based on all of the rule’s criteria to diagnose the malignancy of lesions in images. However, the 

diameter criterion was not applied here due to its great dependence on the image resolution 

(Celebi, et al., 2007b), since the size of the image highly affects the number of pixels of each 
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segmented lesion regions. Instead, a texture analysis is performed to assess the surface 

roughness of the lesion. Therefore, asymmetry, border, colour and texture properties are 

extracted from the original RGB image using the segmented image after post-processing as a 

feature extraction mask. 

3.4.1.  Asymmetry 

In order to extract features based on the asymmetry criterion, the region of the lesion under 

analysis is dividing into two sub-regions 𝑅7, 𝑅?  by an axis according to the longest diagonal 𝑑 

defined by Euclidian distance (Gonzalez & Woods, 2002):  

𝐷(q,r) = 𝑥7 − 𝑥? ? + 𝑦7 − 𝑦? ?	,      (12) 

where (𝑥7, 𝑦7) and (𝑥?, 𝑦?) are the coordinates of the border’s pixels 𝑝 and 𝑞. All the border’s 

pixels are analysed in order to find which pair has the greatest distance 𝐷(q,r).  

Perpendicular lines from the pixels of the longest diagonal 𝑑 are computed to analyse the 

similarity between two sub-regions of the lesion. The number of perpendicular lines may be 

different for each image, since it depends on the size of the diagonal 𝑑 of the lesion. Therefore, 

𝑁 = 𝑇/𝑃 is computed to determine the number of perpendicular lines for all images to be 

classified; i.e. it determines a set of perpendicular lines 𝑆, where 𝑇 is the total number of 

perpendicular lines along the diagonal 𝑑, and 𝑃 is a pre-defined fixed number of expected 

perpendicular lines. In order to determine an adequate set 𝑆, the following values for 𝑃 have 

been experimentally established, 𝑃 = 10, 20, 30, 40, 50 . Ten perpendicular lines 𝑃 = 10 

obtained the best results in experimental tests to represent the size of the set of perpendicular 

lines for each image. Afterwards, two semi-lines were determined from each perpendicular line 

of the set 𝑆, one semi-line represents the sub-region 𝑅7, and the other represents the sub-region 

𝑅?. For each perpendicular, the distance 𝐷(q,r) of the semi-line for both sub-regions 𝑅7, 𝑅?  is 

computed, where 𝑝 is a pixel of the diagonal 𝑑 and 𝑞 is a pixel of the border. 

Eleven features are extracted to represent the asymmetry criterion: 

• The ratio between the shortest and longest distances based on the semi-lines (𝑅7,	𝑅?) 

from each perpendicular line of set 𝑆 (10 features); 

• The standard deviation from ratios based on all perpendicular lines of set 𝑆 (1 feature). 

The ratio between the two semi-lines allows for determining whether the lesion area may be 

more symmetric or more asymmetric to a particular pixel of the longest diagonal, i.e., the area is 

either more asymmetric when its coefficient is closer to zero, or more symmetrical when its 

coefficient is closer to one. 
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3.4.2.  Border 

A border is represented by pixels comprising the lesion's boundary, obtained as a result of 

the lesion segmentation process. A one-dimensional border (Gonzalez & Woods, 2002) of the 

lesion under analysis is defined to extract features based on this criterion. The number of peaks, 

valleys and straight lines of the border is extracted by vector product and inflexion point 

descriptors by means of the one-dimensional border. An inflexion point descriptor is applied to 

measure small irregularities in the border, whereas a vector product descriptor is applied to 

measure substantial irregularities in the border (Araujo, 2010). 

The inflexion point descriptor aims to analyse border’s pixels 𝑃| to define which pixels show 

a change of direction. Therefore, a four-point neighbourhood 𝑁} for both left and right 

directions is considered for each border’s pixel 𝑃|. In order to detect if a given pixel 𝑃| is an 

inflexion, weights 𝑤} are assigned to its neighbour pixels. From the analysis of the 𝑦 axis of a 

system of coordinates, each neighbour pixel 𝑁} that is below the pixel under analysis 𝑃| receives 

𝑤} = 1. Otherwise, each neighbour pixel receives 𝑤} = −1. Afterwards, the weights 𝑤} 

corresponding to each direction (left, 𝐷�, and right, 𝐷�) are added separately, 𝐷�, 𝐷� = 𝑤}} . 

Pre-defined thresholds 𝑇7 = 2 and 𝑇? = −2 (Araujo, 2010) are considered to analyse small 

irregularities in the border, based on the sum of the weights 𝐷�, 𝐷d. An inflexion pixel 𝑃| is 

achieved when 𝐷�	and 𝐷� ≥ 𝑇7 or 𝐷�	and 𝐷� ≤ 𝑇?. The sum of the weights for both left and 

right neighbour pixels 𝑆| = 𝐷� + 𝐷� identifies the inflexion pixel 𝑃| as a peak when 𝑆| > 0, as a 

valley when 𝑆| < 0, or as a straight line when 𝑆| = 0. 

On the other hand, the vector product descriptor aims to analyse a border’s pixels to identify 

peaks and valleys with substantial irregularities. The vector product 𝑉| is based on three border 

pixels 𝑝7, 𝑝?, and	𝑝� established according to a difference of fifteen pixels between them, 

totalling a difference of thirty pixels between 𝑝7 and 𝑝� (Araujo, 2010). The vector product 𝑉| is 

computed for each border’s pixels as: 

𝑉| = 𝑥? − 𝑥7 𝑦� − 𝑦7 − 𝑦? − 𝑦7 𝑥� − 𝑥7 	,      (13) 

where (𝑥7, 𝑦7), (𝑥?, 𝑦?) and (𝑥�, 𝑦�) are the three aforementioned pixels 𝑝7, 𝑝?, and	𝑝�. Such 

points determine whether a segment belongs to a peak, valley or straight line. Therefore, a 

border’s pixel 𝑃| is identified as a peak when 𝑉| > 0, as a valley when 𝑉| < 0, or as a straight 

line when 𝑉| = 0.   

Six features are extracted to represent the border criterion: 

• The number of  peaks, valleys and straight lines based on small irregularities of the border 

by using the inflexion point descriptor (3 features); 
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• The number of  peaks, valleys and straight lines based on large irregularities of the border 

by using the vector product descriptor (3 features). 

The peak, valley and straight-line values may be relatively different for each image, since 

they depend on the size of the lesion’s border. In order to solve the problem of different ranges 

that may influence the classification results, such values are adjusted into an interval between 0 

(zero) and 1 (one). Therefore, the values obtained by the inflexion point descriptor are divided 

by the total number of pixels obtained, and the values obtained by the vector product descriptor 

are divided by the total number of border’s pixels. These features allow the assessment of the 

regularity or irregularity of the lesion’s border. 

3.4.3.  Colour 

The RGB colour model is commonly employed to represent the colours of skin lesions in 

images (Celebi, et al., 2007b; Chang, et al., 2005; Iyatomi, et al., 2010; Iyatomi, et al., 2008; 

She, et al., 2007). Therefore, statistical measures based on this model are applied to represent 

the colour criterion. The mean, variance and standard deviation values for each RGB channel 

were extracted (nine features). These features allow for analysing tonality changes of pigmented 

skin lesions in order to identify malignant lesions. 

3.4.4.  Texture 

In order to extract texture properties of the skin lesions, fractal dimensions are computed 

from the image under study by using a box-counting method (BCM), since it is simple and 

effective (Dobrescu, et al., 2010; Garnavi, et al., 2012). A fractal dimension (Al-Akaidi, 2004) 

is a procedure for splitting the input image into several quadrants to quantify the irregularity 

level or self-similarity of the image's fractals according to: 

𝐷 = ���(�)
���(7 �)

	,         (14) 

where N represent the number of elements of the self-similar parts that reconstruct the original 

image, and T is the amount of quadrants corresponding to a fraction of its previous size. 

The BCM method demarcates a grid over the image; i.e., it divides the image into several 

squares. The process is iterative, in which the size of each square decreases and the amount of 

squares that covered the fractal is counted at each iteration. The box-counting algorithm uses a 

least squares error to compute the fractal dimension:  

𝑒 = 	 𝑓| − 𝑓�
?

| , with	𝑖 = 1,2, … , 𝑁,      (15) 
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where N is the number of elements and the term 𝑓�, which is an approximation to function 𝑓|, is 

defined as:  

𝑓� = 𝛽𝑥| + 𝑐	,          (16) 

where the slope 𝛽 and intercept	𝑐 of the line 𝑓� are computed as:  

𝛽 = 	� ��`�f ��� `���
� `�

<f `�� < 	,        (17) 

 

𝑐 = 	 ��f	�	 `���
�

	.         (18) 

The image-based fractal dimension 𝐷? is computed individually for each row and column of 

the image. Afterwards, the final fractal dimension is defined as:  

𝐷? =
���
"

+ 1	,         (19) 

where 𝐷| is the fractal dimension obtained at each iteration and 𝑡 is the total amount of fractal 

dimensions. 

Eighteen features are extracted to represent the texture properties of the lesion under 

analysis: 

• The fractal dimension of the lesion’s area (1 feature); 

• The fractal dimension of the original image (1 feature); 

• The fractal dimension of sixteen parts of the image, with the original image divided into 

parts of the same size to measure their fractal dimension (16 features). 

The fractal dimension is a value between two and three, which allows for measuring the 

irregularity level or self-similarity of the image surface.  

Overall, the number of features 𝑚 extracted from each image under study is 44 (11 

asymmetry, 6 border, 9 colour and 18 texture features). From this set of features, datasets are 

constructed with a set of samples 𝑥� , according to the number of images 𝑛 for a given 

classification problem, 𝑖 = 1, … , 𝑛. Each sample (𝑥�) is composed of 𝑚 features (𝑥|�) and the 

class to which it belongs (𝑦|). Such datasets are used for the classification process. 

3.5. Lesion classification 

After building the set of features, the next step is the lesion classification based on the 

extracted features. The classification process occurs by randomly dividing the available image 

samples into training and test sets. The training step consists of developing a classification 

model based on the training samples, which are applied as input data to the classifier for the 
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learning process. The testing step consists of measuring the accuracy of the model learned in the 

training step over the set of tests. The classification process should have high performance and 

robustness, since its results are often used to assist dermatologists in their diagnosis. Therefore, 

the SVM classifier (Burges, 1998) was used mainly due to its good generalization properties.  

The SVM classifier involves an algorithm based on statistical learning applied to build a 

hyperplane that separates the data according to the defined classes. Such data may be linearly 

separable or linearly non-separable. Let us consider the training data {𝑥|, 𝑦|}, with 𝑥| ∈ Χ and 

𝑦| ∈ Y, where Χ is the set of samples and Y is the class to which they belong −1,+1 . A 

separating hyperplane may be defined as 𝑓 𝑥 = 𝑤 ∙ 𝑥 + 𝑏. Then, the points 𝑥 that lie on the 

hyperplane satisfy 𝑓 𝑥 = 0, where 𝑤 is the normal distance to the hyperplane, and 𝑏 / 𝑤  is 

the perpendicular distance from the hyperplane to the origin, with 𝑏 ∈ 	ℜ and 𝑤  being the 

Euclidian norm of 𝑤. Therefore, the 𝑓 𝑥  divides Χ into two regions: positive samples if 

𝑓 𝑥 > 0, and negative samples if 𝑓 𝑥 < 0. For the linearly separable case, the algorithm is 

used to search the data with largest distance (“named as largest margin”) from the hyperplane 

based on the following constraints: 

𝑦| 𝑤 ∙ 𝑥| + 𝑏 − 1 ≥ 0, with	∀|= 1, … , 𝑛,      (20) 

where 𝑤 ∙ 𝑥| + 𝑏 ≥ +1 for 𝑦| = +1, and 𝑤 ∙ 𝑥| + 𝑏 ≤ −1 for 𝑦| = −1. 

The largest border is represented by a pair of parallel hyperplanes, 𝐻7 and 𝐻?. The points 

defined for these hyperplanes are the training points used for classification, called support 

vectors. The pair of hyperplanes is obtained by minimization of 𝑤 ? based on the constraints 

defined in Eq. (20).  Such minimization is given by the Lagrangian function subject to the 

conditions 𝑤 = 𝛼|𝑦|𝑥|¨
|©7  and 𝛼|𝑦| = 0¨

|©7 , where 𝛼| are positive Lagrange multipliers for 

each of the constraints (Eq. (20)). The Lagrangian function is defined as:  

𝐿7 = 𝛼|¨
|©7 − 7

?
𝛼|𝛼}𝑦|𝑦}𝑥|𝑥}¨

|,}©7 , with	𝛼| ≥ 0	.     (21) 

For the linearly non-separable case, positive slack variables 𝜉|, 𝑖 = 1, … , 𝑛, are introduced in 

the constraints: 

𝑦| 𝑤 ∙ 𝑥| + 𝑏 ≥ 1 − 𝜉|	, with		𝜉| ≥ 0, and	∀|= 1, … , 𝑛	,    (22) 

where 𝑤 ∙ 𝑥| + 𝑏 ≥ +1 − 𝜉| for 𝑦| = +1, and 𝑤 ∙ 𝑥| + 𝑏 ≤ −1 + 𝜉| for 𝑦| = −1. In order to 

deal with noise and outliers, parameter 𝐶 is introduced for assigning a penalty to errors, which 

becomes: 

𝐿? = 𝛼|¨
|©7 − 7

?
𝛼|𝛼}𝑦|𝑦}𝑥|𝑥}¨

|,}©7 	,       (23) 

subject to 0 ≤ 𝛼| ≤ 𝐶, ∀|= 1, … , 𝑛, and 𝛼|𝑦| = 0¨
|©7 .    
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In order to simplify the process of separating the non-linear data, a kernel function may be 

applied to map the set of samples of the original space Χ to a new space with infinite 

dimensional ℑ, defined as Φ: Χ → ℑ. The kernel function receives two points of the original 

space (x|, x}), and computes the scalar product in the new space, defined as 𝐾 x|, x} = Φ x| ∙

Φ x} . The mapping, by using kernel function based on a dual problem presented in Eq. (23), is 

defined as: 

𝐿� = 𝛼|¨
|©7 − 7

?
𝛼|𝛼}𝑦|𝑦}𝐾 x|, x}¨

|,}©7 	,      (24) 

subject to 0 ≤ 𝛼| ≤ 𝐶, and 𝛼|𝑦| = 0¨
|©7 . The application of kernel functions for non-linear 

data makes the algorithm efficient, so that simple hyperplanes are constructed in a space with 

high dimensions. 

In this study, the histogram intersection kernel (Barla, et al., 2003) is adopted, as defined by 

Eq. (25), since such a kernel is proposed especially for image classification and it has achieved 

superior results compared to other kernels. The histogram intersection kernel has been proposed 

for colour-based image recognition (Barla, et al., 2003), whereas in this study it is based on all 

extracted lesion features, i.e., asymmetry, border, colour and texture: 

𝐾 x|, x} = min(𝑥|, 𝑥})¨
|©7 	.       (25) 

Here, the classification algorithm is based on supervised learning and the classification 

process is binary, since the SVM classifier is originally binary. The image classification is 

divided into two steps: feature classification and skin lesion classification. The feature 

classification step consists of analysing the following classification processes: 1) region 

asymmetry (symmetric or asymmetric), 2) border irregularity (regular or irregular), 3) colour 

uniformity (uniform or non-uniform), and 4) texture irregularity (regular or irregular). Each 

process takes into account only the features related to the classification goal, i.e., a subset of 

features. The skin lesion classification step consists of distinguishing the following types of skin 

lesions: 1) nevus and seborrheic keratosis, 2) nevus and melanoma, and 3) seborrheic keratosis 

and melanoma. In this case, each classification process considers the entire set of features. 

4. Experimental Results and Discussion 

In this section, segmentation and classification results are described and discussed. First, the 

image databases used to evaluate the results are described. Second, the experiments for border 

detection, regarding the pre-processing, segmentation and post-processing steps are presented. 

Finally, the experiments on the feature extraction of skin lesions, which correspond to the 
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lesion’s asymmetry, border, colour, and texture, are presented as well as those for lesion 

classification. 

4.1. Image databases 

The databases used to evaluate the proposed approach are composed of macroscopic images 

of pigmented skin lesions. Examples of such images are shown in Figure 1. A great deal of 

information concerning the diagnosis of the imaged lesions provided by expert dermatologists is 

available in these databases, including among them, diagnostics on the lesions and their features 

(i.e., asymmetry, border, colour and texture). All the information contained in the datasets has 

been used for the development and evaluation of this work.  

The used databases have a total of 408 images, which were collected from Loyola University 

Chicago (Melton & Swanson, 2012), YSP Dermatology Image Database (Suzumura, 2012), 

DermAtlas (Cohen & Lehmann, 2012), DermIS (Diepgen & Yihune, 2012), Saúde Total (Saúde 

Total, 2012), Skin Cancer Guide (Skin Cancer Guide, 2012), and Dermnet - Skin Disease Atlas 

(Campbell Jr. , 2012; Chapman, 2012). Of these, 62 images were melanocytic nevi, 86 images 

were seborrheic keratosis, and 260 images were melanoma. In regard to the asymmetry criterion, 

the lesions were symmetric in 137 images and in 271 images were asymmetric. In regard to the 

border criterion, the lesions have regular borders in 77 images and irregular borders in 331 

images. In regard to the colour criterion, the lesions present uniform colours in 32 images and 

non-uniform colours in 376 images. In regard to the texture criterion, the lesions present regular 

texture in 224 images and in 184 images they present irregular texture. The images of the 

databases have been resized to 200	×200 pixels to simplify their processing. 

4.2. Border detection 

In order to remove noise and enhance the lesions, an anisotropic diffusion filter was applied to 

the input images according to the discretization of Eq. (1). The parameters were defined by 

experimental tests, based on parameters suggested by Barcelos and Pires (2009), with the 

following values: ∆𝑡 = 0.1, 𝜎 = 1, 𝜆 = 1, 𝑘 = 0.0008, and 𝑁𝐼 = 100. The smoothing results 

obtained by applying the anisotropic diffusion filter to grey-level images are shown in Figure 

3(a-c). The resultant images in (d-f) indicate that the filter has successfully reduced the presence 

of hairs. However, this filter may not remove other artefacts, such as, reflections and shadows.  
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Figure 3: Image processing results for each step of the proposed approach: (a-c) grey-level images, (d-f) 

smoothed images, (g-i) segmented images, (j-l) post-processed images, and (m-o) original images with 

the detected borders (white contours) overlapped. 

 
Afterwards, Chan-Vese’s model was applied to segment the smoothed image according to Eq. 

(4). The parameters were defined by experimental tests, based on the parameters proposed by 

Chan and Vese (2001): 𝜇 = 0.2, 𝜈 = 0, 𝜆7 and 𝜆? = 1, ℎ = 1, Δt = 0.1, and 500 iterations were 

established for the evolution of the curve. In order to define an appropriate curve 𝐶, several 

initial shapes and sizes were tried and visually assessed. A square-shaped curve was defined and 

positioned close to the image’s centre. However, the imaging conditions are usually inconsistent, 

and the clinical images are acquired from variable distances, implying that the size of the lesions 

may be different as they are dependent on the distance adopted in the image acquisition. 

Therefore, two curves, C¹ and Cº, with different sizes were established: for small lesions, C¹ =

40×40 pixels, and for large lesions, Cº = 140	×140 pixels. Examples of the segmentation 

results obtained by applying the Chan-Vese model to the smoothed images (d-f) are shown in 

Figure 3. Although the resultant binary images (g-i) are of good quality, some binary images 

presented holes in the interior of the seguemented lesion region and/or split regions, which were 

mainly caused by reflections and shadows. 

A morphological filter (Gonzalez & Woods, 2002) was applied to the segmented binary 

images to achieve better segmentation results. In order to define an appropriate structuring 

element 𝐸, several shapes and sizes were tested. Ellipse-shaped structuring elements with radii 

𝑟7, 𝑟? = 4, presented the best results according to a visual assessment. The post-processing 

results obtained by applying the morphological filter to the binary images (g-i) are shown in 

Figure 3. The resultant images (j-l) confirm the removing of isolated regions and the filling of 
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hole regions, as well as the smoothing of the borders without losing their important 

characteristics. Afterwards, the borders found were overlapped on the original images (m-o) 

based on the post-processing image results (j-l).  

A subjective evaluation (Celebi, et al., 2009) was applied to evaluate the proposed approach, 

which included a visual assessment of the border detection results by a specialist. The first 

evaluation analysed whether the lesions were correctly or incorrectly segmented; Figure 4 

includes some example results. The evaluation of the results obtained revealed that the proposed 

approach is effective in detecting skin lesions and extracting their contours from clinical images. 

The proposed approach adequately tackled the noisy images. However, some images with low 

contrast boundaries, shadows and reflections were incorrectly segmented.  

 
Figure 4: Example of border detection results obtained by applying the proposed approach: (a-d) 

examples of correctly segmented images and (e-h) examples of incorrectly segmented images. 

 
The second evaluation compared the segmentation results obtained by the proposed approach 

against the threshold-based segmentation results achieved by using Otsu’s method (Otsu, 1979), 

since this method has been widely applied in this domain (Abbas, et al., 2013a; Celebi, et al., 

2007b; Norton, et al., 2012; Norton, et al., 2010). Figure 5 presents examples of the segmentation 

results obtained by applying both segmentation methods to the original images (a-e). The 

evaluation performed on the results obtained revealed that the proposed approach defined the 

border of the lesion in a more effective way than Otsu’s method in several cases. Furthermore, 

the proposed approach also achieved better results when dealing with images of low contrast, and 

with shadows and reflections. The percentages of correctly segmented images for both 

segmentation methods, based on the visual assessment of the resultant borders by a specialist, are 

shown in Table 1. It may be seen that the proposed approach obtained significantly superior 

results compared to the threshold-based method. The quality of the detected borders of the 385 

images correctly segmented by the proposed approach was also visually evaluated by the 
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specialist, with 91.43% of these considered having good quality and the remaining ones having 

acceptable quality. 

 

Figure 5: Comparison of the two segmentation methods: (a-e) original images, (f-j) borders detected by 

Otsu’s method, and (k-o) detected by the proposed approach.  

Table 1: Skin lesion segmentation results.  
 

Segmentation 
method 

Melanocytic nevus Seborrheic 
keratosis Melanoma All 

(%) (%) (%) (%) 

Thesholding 80.65 81.40 80 80.39 
Proposed 
approach 96.77 93.02 94.23 94.36 

4.3. Skin lesion classification 

In order to differentiate types of skin lesions and to detect their features, several classification 

experiments were performed. The sets of training and test for the classification process were 

randomly defined from the available image samples, i.e., from the 385 correctly segmented 

images. In order to define adequate training sets and test for each classification problem, several 

sizes for the training set were assessed, with the remaining ones employed as test sets. The size 

values considered for the training set were T¼ = {10, 20, 30, 40, 50} (in percentage). Each 

classification model was obtained by applying the SVM classifier (Burges, 1998) by using a 

histogram intersection kernel (Barla, et al., 2003) based on the set or subset of features and on the 

samples of the training set. Afterwards, the samples of the test set were classified based on the 

classification model and the predicted classes were compared to the known classes. Classification 
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performance metrics, such as the precision for each class and the accuracy for each model, were 

measured to assess the quality of the results obtained.  

The following experiments for feature classification were performed: 1) the first experiment 

involved asymmetry classification, in which T¼ = 10 was considered the best training set, 2) the 

second experiment comprised the border classification, in which T¼ = 50 was considered the 

best training set, 3) the third experiment comprised the colour classification, in which T¼ = 50 

was considered the best training set, and 4) the last experiment was the texture classification, in 

which T¼ = 30 was considered the best training set. The feature classification results are shown 

in Table 2. The asymmetry classification obtained good results for both classes. In contrast, the 

texture and colour feature classifications have not led to good generalization between the 

classes, whereas border feature classification has resulted in an average distinction between the 

two classes.  

Table 2: Feature classification results of the proposed approach. 
 

Classification 

Radial basis function Histogram intersection 
Class 1 Class 2 Accuracy 

(%) 

Class 1  Class 2  Accuracy 
(%) Precision 

(%) 
Precision 

(%) 
Precision 

(%) 
Precision 

(%) 

Asymmetry  Symmetric  Asymmetric 69.45 Symmetric  Asymmetric  
60.71 73.62 89.29 100 96.54 

Border Regular Irregular 81.35 Regular Irregular  
22.86 94.30 71.43 74.68 74.09 

Colour Uniform Non-uniform 73.06 Uniform Non-uniform  
43.75 75.71 56.25 75.14 73.58 

Texture Regular Irregular 62.73 Regular Irregular  
61.69 64.10 60.39 69.23 64.21 

 

The results obtained for the skin lesion classification are shown in Table 3. The following 

experiments for skin lesion classification were performed: 1) the first experiment involved 

classification between nevus and seborrheic keratosis, in which T¼ = 40 was considered the best 

training set. Although these two types of lesions are benign, the classification model had an 

average separation between the two classes, 2) the second experiment was determined by the 

classification between nevus and melanoma, in which T¼ = 50 was considered the best training 

set. The classification result between these two types of lesion has not been quite expressive, 

since several samples of the database are composed of skin lesions that do not exactly follow the 

rule that distinguishes these lesions, and 3) the last experiment was based on the classification 

between seborrheic keratosis and melanoma, in which T¼ = 20 was considered the best training 

set. In this case, such lesions are usually too similar, with texture being the main feature used to 

differentiate them. Therefore, the outcome of the texture classification properly explains why 

the classification results between seborrheic keratosis and melanoma were not so expressive. 
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Table 3: Skin lesion classification results of the proposed approach. 
 

Classification	

Radial basis function Histogram intersection	
Class 1 Class 2 Accuracy 

(%) 

Class 1  Class 2  Accuracy 
(%) Precision  

(%) 
Precisio
n (%) 

Precision 
(%) 

Precision 
(%) 

Nevus – Keratosis 
(Class 1 – Class 2) 72.22 73.33 72.84 77.78 80 79.01 

Nevus – Melanoma 
(Class 1 – Class 2)     56.67 73.02 69.87 76.67 73.81 74.36 

Keratosis – Melanoma 
(Class 1 – Class 2) 60 72.64 69.73 80 72.64 74.33 

 

The classification results obtained by applying the histogram intersection kernel for the SVM 

classifier were compared with the results obtained by applying the radial basis function (RBF) 

kernel (Celebi, et al., 2007b; Maglogiannis & Doukas, 2009; Rahman, et al., 2008). The 

comparison results between the two kernels for both feature and skin lesion classifications are 

shown in Table 2 and Table 3, respectively. The application of a histogram intersection kernel 

showed superior performances for the image classifications. Although the border classification 

by using an RBF kernel had better accuracy than the classification by using a histogram 

intersection kernel, the precision of the regular border classification was somewhat low 

(22.86%). On the other hand, the border classification by using a histogram intersection kernel 

achieved a more balanced classification result between the regular and irregular classes. In regard 

to the colour and texture classification, the results were similar for both kernels. In contrast, the 

asymmetry classification presented significantly superior results. Moreover, the application of a 

histogram intersection kernel presented much better results for all skin lesion classifications than 

the RBF kernel. 

The proposed approach has been developed using: 1) Matlab 8.4.0.150421 environment for 

the algorithms of pre-processing, segmentation, post-processing and feature extraction; and 2) 

Dev-C++ 5.11 environment for the algorithms of texture extraction and classification. The pre-

processing step took 63.76 s in smoothing the 385 images. As to the segmentation step, the 

algorithm took around 49.12 min to segment the images. The post-processing step required 5.09 s 

to enhance the segmented images. The extraction of the image features from the enhanced 

images required 1.54 min: asymmetry, 48.65 s; border, 7.35 s; colour, 6.53 s; and texture, 29.44 

s. Finally, the classifier required a total of 4.48 s for the training and testing steps. From these 

values, which are the average times over 10 runs, one can note that the segmentation step was the 

most time-consuming; however, the computation time required by this step can be considerably 

decreased by using optimized C/C++ implementations. All algorithms were performed on an 

Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz 3.33 GHz with 8 GB of RAM, running Microsoft 

Windows 7 Professional 64-bits. 
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5. Conclusion and future works 

There are several approaches in the literature for pigmented skin lesion classification. 

Nevertheless, most of the studies involve only dermoscopy images, in which these images may 

be more difficult to obtain, since they require a dermoscopy device. In contrast, macroscopic 

images may be obtained using common digital video or image cameras, so that many 

computational methods to process them become accessible to dermatologists in several regions 

of the world. Furthermore, the feature classifications in macroscopic images are still little 

explored in research on automated diagnosis, and most studies do not deal with the 

classification of all features considered in this paper. 

An approach was presented for the segmentation and classification of pigmented skin lesions 

in macroscopic images. This approach is based on an anisotropic diffusion filter, Chan-Vese’s 

model and a SVM classifier to allow for extracting lesion features and the distinguishing 

between some types of skin lesions, in order to assist dermatologists in their diagnosis. 

Asymmetry, border, colour and texture properties were considered for the classification process. 

Although the proposed approach achieved good segmentation results, mainly with noisy images, 

it may not perform well on images with too low contrast boundaries, shadows and reflections. 

Both feature and skin lesion classification presented significant results. However, some 

classification results were not expressive, e.g., the colour and texture based classifications. 

Whereas these features were extracted from the original RGB images of the databases, in which 

some images contain too much hair and too many reflections and shadows. Therefore, such 

artefacts may harm the assessement of the colour and texture properties of the lesions. In 

addition, the features of some images of the databases are too heterogeneous for both classes, 

which can adversely affect the classification results. Unbalanced databases regarding the 

number of samples for each class may have decreased the accuracy of the classification results, 

since the classifier tends to be based on classes with the highest occurrence. 

In conclusion, future studies regarding the segmentation and classification of pigmented skin 

lesion images should involve searching for new methods aiming to develop more efficient and 

effective systems for better computational diagnosis based on macroscopic images. For 

example, the development of methods for dealing with reflections and shadows may be 

considered, in order to solve the previously discussed problems concerning the image 

segmentation step. Other features and types of pigmented skin lesions may also be approached 

for the purpose of lesions classification from macroscopic images. The skin lesion classification 

results can be improved using deep learning architectures, since these achictures have presented 

excellent performances in different applications, including of Computational Vision. From the 
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advantages that these architectures have revelead, one can stress the capacity of learning from 

large amount of data in an unsupervised way (Bengio, 2009). Therefore, deep learning 

architectures should be taken into account in future works related to the classification of skin 

lesions in images. 
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