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Abstract

This dissertation presents a comprehensive framework for analysing flow systems, through the
integration between agent-based modelling and large-scale traffic simulations. The primary aim is
to provide researchers with a scalable and flexible program for creating, observing, and evaluating
traffic simulations. This framework leverages sophisticated machine learning methods, particu-
larly deep reinforcement learning, to train agents in inferring behaviours for abstract scenarios. In
doing so, it enables the exploration of dynamic interactions, emergent patterns, and potential bot-
tlenecks within traffic networks, ultimately leading to optimized routing and re-routing strategies
for flow systems.

Keywords: Agent Modelling, Multi-Agent Systems, MAS, Agent-Based Modelling, ABM, Large-
Scale Simulation, Abstract Language Design, Traffic Network, Machine Learning, Reinforcement
Learning, MARL, Flow Systems, TraCI, SUMO, Abstract Language
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Resumo

Esta dissertação apresenta uma estrutura abrangente para analisar sistemas de fluxo, por meio da
integração entre modelagem baseada em agentes e simulações de tráfego em larga escala. O obje-
tivo principal é fornecer aos pesquisadores um programa escalável e flexível para criar, observar e
avaliar simulações de tráfego. Esta estrutura aproveita métodos sofisticados de Machine Learning,
particularmente Deep Reinforcement Learning, para treinar agentes na inferência de comporta-
mentos para cenários abstratos. Ao fazer isso, ele permite a exploração de interações dinâmicas,
padrões emergentes e potenciais engarrafamentos dentro de redes de tráfego, levando, em última
análise, a estratégias otimizadas de roteamento e redirecionamento para sistemas de fluxo.

Keywords: Modelagem de Agentes, Sistemas Multiagentes, MAS, Modelagem Baseada em Agentes,
ABM, Simulação em Grande Escala, Resumo Design de Linguagem, Rede de Tráfego, Apren-
dizado de Máquina, Aprendizado por Reforço, MARL, Sistemas de Fluxo, TraCI, SUMO, Lin-
guagem Abstrata
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Chapter 1

Introduction

1.1 Scope

In today’s complex and interconnected world, optimizing flow systems has become crucial for

ensuring efficiency and minimizing disruptions. Flow systems can be considered a network with

a graph-like structure, where entities transit from one point to another, interacting with other en-

tities and the environment in their travels. In these systems, there are usually several entities that

perform different travels within a certain time period, often varying in origin, destination and

frequency, thus naturally creating the need for efficient interaction between the entities to avoid

underperformance of their travels. The ability to model and simulate such networks accurately is

of great importance in developing effective strategies for routing and re-routing entities to opti-

mize flow in these systems. The easiest and most practical type of flow system to imagine and

consider would be a traffic network system.

Large-scale simulation of human behaviour in an urban setting is critical for the understanding

of key planning and deployment issues. Results can help policymakers define urban development

strategies, such as where to build more housing and of what type. Daily mobility studies and

simulations can help them determine if more bus routes are needed and where the best public

transportation transfer hubs would be located. In the context of risk analysis, these simulations

could also provide key insights into the fragilities of the food supply network, thus allowing for

changes that would increase its resiliency in case of natural disasters or conflicts.

1.2 Problem Statement and Motivation

With the recent exponential growth of populations in big cities across the globe, it has been

recorded that an increasing number of vehicles on the roads has led to major traffic congestion

problems in urban areas. Traditional approaches to traffic management have proven to be inef-

fective in dealing with these problems, and new methods are required to better manage traffic

flow. Additionally, traffic networks pose unique challenges due to their intricate dynamics, diverse

entities, and unpredictable nature.
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2 Introduction

1.3 Aim and Goals

Considering this, this research work focuses on designing sophisticated agent modelling in large-

scale simulations to address the intricacies and complexities of flow systems, using traffic net-

works as a practical application. By employing practical examples and drawing insights from

traffic management, this study explores how advanced simulation techniques can contribute to

developing efficient routing and re-routing strategies.

The primary goal of this research is to examine how sophisticated agent modelling, in con-

junction with large-scale simulations and machine learning, can enhance the efficiency of rout-

ing and re-routing strategies in traffic networks. A more realistic representation of the traffic

ecosystem can be achieved by incorporating agent-based models that capture the decision-making

processes inferred by machine learning methods instead of human-written hardcoded behaviours.

This approach enables the exploration of dynamic interactions, emergent patterns, and potential

bottlenecks within the system, leading to the identification of optimized routing solutions.

The final goal is to develop a scripting declarative language that allows for the definition

of sophisticated agent behaviours that take into account a set of observable simulation variables

and mission goals. These behaviours are from the traffic simulation practical application using

reinforcement learning and are abstracted in order to be universally mapped into any other scenario

application. This way, it is possible to ensure efficient decision-making for routing and re-routing

for every entity across any flow system.

Additionally, by the end, an efficient and customizable template for creating, observing, and

evaluating traffic simulations will be created.

1.4 Document Outline

This document contains sections dedicated to the topic’s Background, the State of the Art, the

adopted Methodology and Conclusions relating to the topic at hand.

1.5 Summary

In summary, this chapter has outlined the importance of optimizing flow systems, particularly

in urban traffic networks, to enhance efficiency and reduce congestion. It identified the need for

advanced simulation techniques and sophisticated agent modelling to address the challenges posed

by traditional traffic management methods. The goals of this research include developing agent-

based models and a declarative scripting language to improve routing strategies. The next sections

will cover the background, state-of-the-art, methodology, and conclusions of this study.



Chapter 2

Background Knowledge

This chapter provides essential foundational concepts related to the topic of this dissertation. Like-

wise, it goes into detail on large-scale simulations, agent-based modelling, machine learning, and

reinforcement learning. The chapter explains the core principles and methodologies of these fields,

highlighting their significance and the challenges they address in complex system simulations, par-

ticularly in urban traffic networks.

2.1 Large-Scale Simulations

Large-scale simulations involve the modelling and simulation of complex systems at a large scale,

providing a virtual environment to study their behaviour and dynamics. These simulations play a

significant role across various domains by offering a powerful tool to understand, analyse, and op-

timize complex systems. From transportation and logistics to urban planning, healthcare, ecology,

and social sciences, large-scale simulations enable researchers and decision-makers to explore

different scenarios, test hypotheses, and evaluate the consequences of interventions. By repli-

cating real-world conditions and interactions, these simulations provide valuable insights, inform

decision-making processes, and facilitate the design of efficient strategies in a wide range of do-

mains [27].

In the case of human behaviour in an urban setting, large-scale simulations are critical for

understanding key planning and deployment issues [5]. Results from simulations covering daily

mobility studies can help policymakers define urban development strategies, such as where to

build more housing and of what type, and if more bus routes are needed and where the best public

transportation transfer hubs would be located [14] [74]. In the context of risk analysis, these

simulations could also provide key insights into the fragilities of the food supply network, thus

allowing for changes that would increase its resiliency in case of natural disasters or conflicts [50].

3



4 Background Knowledge

Modelling and simulating large-scale systems pose several challenges due to their inherent

complexity and the vast amount of data and interactions involved. One key challenge is the ac-

curate representation of system components and their interactions, as the behaviour of entities

at the individual level influences the system’s overall behaviour. Incorporating the appropriate

level of detail and granularity while considering computational limitations is crucial. Another

challenge is data availability, as large-scale simulations often require significant amounts of real-

world data for calibration and validation. Gathering, processing, and managing such extensive

data can be time-consuming and resource-intensive. Additionally, scaling up simulations to han-

dle large-scale systems requires efficient algorithms, high-performance computing infrastructure,

and suitable simulation frameworks. Overcoming these challenges is essential to ensure the relia-

bility, accuracy, and scalability of large-scale simulations, enabling researchers to gain meaningful

insights and make informed decisions about complex systems [3] [10] [30] [64].

2.2 Agent-Based Modelling

Traditional modelling approaches often face limitations in capturing the complexities of large-

scale systems. These approaches often rely on simplistic assumptions or aggregate-level represen-

tations, overlooking the heterogeneity and individual characteristics of entities within the system

[43]. By assuming homogeneous behaviour or using average values, traditional models fail to

capture the rich interactions, feedback loops, and non-linear behaviours that exist in real-world

systems [11]. Moreover, traditional models may struggle to represent the adaptive and evolving

nature of entities within the system, as they typically rely on fixed rules or assumptions that do not

account for the dynamic decision-making processes and responses to changing conditions. These

limitations can lead to inaccurate predictions and inadequate understanding of the complexities

present in large-scale systems. Agent-based modelling addresses these limitations by explicitly

modelling individual entities and their behaviours, allowing for a more nuanced and realistic rep-

resentation of system dynamics [70].

Agent-based modelling is a powerful technique that represents entities within a system as

autonomous agents with individual behaviours and interactions. In this approach, agents are en-

dowed with specific characteristics, rules, and decision-making abilities, allowing them to interact

with each other and their environment. Each agent operates based on its own internal state and

external stimuli, leading to emergent patterns and system-level behaviours. By modelling entities

as agents, agent-based modelling provides a bottom-up perspective, capturing the dynamics and

interactions at the individual level that collectively shape the entire system’s behaviour [77].

Incorporating realistic agent behaviours and decision-making processes in simulations is cru-

cial for capturing the complexity and dynamics of real-world systems. By accurately representing

the individual behaviours of agents, such as their preferences, goals, and decision rules, agent-

based models can capture the diversity and complexity observed in real-world systems [27]. Real-

istic agent behaviours enable the exploration of how different strategies and actions at the individ-

ual level propagate through the system, leading to emergent patterns and system-wide effects [2]
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[34]. Additionally, incorporating adaptive decision-making processes allows agents to respond dy-

namically to changing conditions, enabling simulations to capture the dynamic nature of complex

systems and simulate realistic scenarios [73].

The paper "Synergistic Integration Between Machine Learning and Agent-Based Modelling:

A Multidisciplinary Review" by Zhang et al. (2023) [81] provides a comprehensive review of the

evolution of ABM throughout the years. In this work, the authors divide the progress of ABM in

three periods:

• From 1970 to 2000: research on agent-based models (ABMs) primarily focused on natu-

ral life behaviours and characteristics. The term individual-based model (IBM) was more

commonly used. Significant early works included Botkin et al.’s JABOWA model for for-

est succession [12], Shugart et al.’s gap model for forest dynamics [67], and Pacala et al.’s

SORTIE model for predicting tree characteristics [51]. Studies also explored animal be-

haviours, such as fish flocking, and evolutionary computing approaches like agent-based

memetic algorithms (AMAs) for optimization tasks. The introduction of swarm intelligence

approaches further contributed to the understanding of decentralized systems.

• From 2000 to 2010: there was a noticeable shift in the adoption and application of ABMs.

Around 2005, Grimm’s paper [32] marked a turning point, popularizing the term agent-

based model. The term multiagent system (MAS) also gained traction. ABMs expanded

into human-related areas such as sociology, business, market analysis, land use science,

and biological processes. Key applications included testing macro-sociological theories,

business simulations, land-use pattern predictions, and modelling gene-protein interactions.

This period saw the integration of new learning paradigms like particle swarm optimization

and reinforcement learning, broadening the scope of ABM applications.

• From 2010 to 2020: ABMs became prevalent in fields such as social science, epidemi-

ology, economics, and industrial business. Researchers applied ABMs to study complex,

large-scale systems, including segregation patterns, HIV transmission dynamics, food risk

assessment, and financial systems modelling. ABMs also facilitated the exploration of fis-

cal and monetary policies, industrial symbiosis networks, emergency evacuation plans, and

household heating feedback. The terms ABM and MAS were used interchangeably in some

contexts, particularly in computing domains, while the integration of machine learning tech-

niques in ABMs gained momentum, enhancing the agents’ decision-making and predictive

capabilities.

2.3 Machine Learning

Machine learning is a branch of artificial intelligence that focuses on developing algorithms and

statistical models that enable computer systems to learn and improve from experience without be-

ing explicitly programmed [47]. It is a computational approach that allows machines to automat-

ically discover patterns, make predictions, and make data-based decisions [9]. Machine learning
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algorithms analyse large datasets to identify underlying patterns, relationships, and trends. By uti-

lizing techniques such as supervised learning, unsupervised learning, and reinforcement learning,

machine learning algorithms can learn from labelled or unlabelled data, recognize complex pat-

terns, and generalize their knowledge to make accurate predictions or take appropriate actions in

new situations [31]. It finds applications in various domains, including image and speech recogni-

tion, natural language processing, recommendation systems, predictive analytics, and autonomous

decision-making [63].

Machine learning in agent-based modelling has emerged as a powerful approach to enhance the

realism and effectiveness of simulations [11]. Machine learning techniques like neural networks,

decision trees, and reinforcement learning algorithms can infer agent behaviours, learn from data,

and adapt to changing environments [69]. Researchers can capture complex and realistic agent

behaviours that evolve over time by integrating machine learning into agent-based models [46].

Machine learning algorithms can leverage real data or simulated environments to train agents,

allowing them to learn optimal decision-making strategies, adapt to new scenarios, and interact

more realistically with their environment and other agents [52].

2.4 Reinforcement Learning

This section covers concepts and methodologies from "Reinforcement Learning: An Introduction"

by Richard S. Sutton and Andrew G. Barto [69]. It provides an overview of the reinforcement

learning problem, finite Markov decision processes, dynamic programming techniques, and recent

advancements in the field.

2.4.1 The Reinforcement Learning Problem

Reinforcement learning (RL) is a branch of machine learning where an agent learns to make de-

cisions by taking actions in an environment to maximize cumulative reward. Unlike supervised

learning, where the agent is provided with explicit instructions on what actions to take, RL re-

quires the agent to discover the best actions through trial and error. This process involves the agent

interacting with its environment, where its actions influence future states and rewards. Key char-

acteristics of RL problems include their closed-loop nature, the agent’s need to explore actions,

and the extended consequences of actions over time. Reinforcement learning systems typically

comprise four main elements:

• The Policy: The agent’s strategy to determine actions based on the current state.

• Reward Signal: The feedback received from the environment in response to the agent’s

actions defines the goal of the RL problem.

• Value Function: An estimate of the total future rewards obtained from each state, guiding

the agent to make decisions that maximize long-term rewards.
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• Model of the Environment (optional): A representation of the environment used for plan-

ning by predicting future states and rewards based on current actions.

While RL methods often involve estimating value functions, it is not the only approach. Evo-

lutionary methods, for instance, evaluate the performance of different policies over many episodes

without learning during individual interactions. RL focuses on learning from interactions with the

environment, which can be more efficient than evolutionary methods in many cases. Policy gradi-

ent methods, which adjust policy parameters directly based on performance feedback, are another

approach within RL that does not rely on value functions.

The history of RL is rooted in two main threads: trial-and-error learning from psychology and

optimal control from engineering. The trial-and-error approach, influenced by Thorndike’s Law

of Effect, emphasizes learning from the consequences of actions. Optimal control, formalized

by Bellman’s dynamic programming and Markov decision processes (MDPs), focuses on mini-

mizing cost functions over time. These threads converged in the late 1980s, integrating dynamic

programming with online learning to form modern RL.

2.4.2 Finite Markov Decision Processes

The reinforcement learning problem is conceptualized as an interaction between an agent and

its environment. The agent makes decisions by selecting actions based on the current state of

the environment. The environment responds to these actions by transitioning to new states and

providing rewards. This interaction is cyclical and occurs over discrete time steps t = 0,1,2,3, ....

At each time step, the agent receives a state St from the environment, chooses an action At from

a set of available actions A(St), and then receives a reward Rt+1 and a new state St+1 from the

environment.

The agent’s goal in reinforcement learning is to maximize the cumulative reward it receives

over time. The reward signal is a scalar feedback signal indicating how well the agent performs

at each time step. The agent’s objective is to find a policy, a mapping from states to actions, that

maximizes the expected sum of the rewards over the future.

The return Gt is the total accumulated reward from time step t onward. For episodic tasks,

which have a natural end, the return is the sum of the rewards until the end of the episode. For

continuing tasks, the return is typically defined using a discount factor γ , ensuring that the rewards’

sum is finite. The return is then given by:

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + · · ·=

∞

∑
k=0

γ
kRt+k+1 (2.1)

where 0 ≤ γ < 1. This discount factor reflects the idea that immediate rewards are more

valuable than distant future rewards.

To handle both episodic and continuing tasks within a unified framework, the return Gt is used

as the standard measure of future rewards. For episodic tasks, the return naturally ends when the
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episode terminates. For continuing tasks, the discount factor γ ensures that the sum converges.

This unified notation allows for a consistent treatment of different types of tasks.

A state signal is said to have the Markov property if it captures all relevant information about

the past that is necessary to predict the future. Formally, a state St is Markov if:

Pr(St+1 = s′ | St = s,At = a) = Pr(St+1 = s′ | S0,A0,S1,A1, . . . ,St = s,At = a) (2.2)

This implies that the future is conditionally independent of the past, given the present state. En-

vironments that satisfy this property are called Markov decision processes (MDPs). The Markov

property is crucial because it simplifies the decision-making process, allowing the agent to base

its decisions solely on the current state.

A finite Markov decision process (MDP) is defined by its finite set of states S, a finite set

of actions A, and the one-step dynamics of the environment specified by the transition probability

p(s′,r|s,a). This probability denotes the likelihood of transitioning to state s′ and receiving reward

r given that the agent is in state s s and takes action a. The dynamics of a finite MDP are fully

characterized by these probabilities.

Value functions are used to estimate the expected return from each state (or state-action pair)

under a particular policy. The state-value function vπ(s) gives the expected return when starting

from state s and following policy π:

vπ(s) = Eπ [Gt |St = s] = Eπ

[
∞

∑
k=0

γ
kRt+k+1|St = s

]
(2.3)

The action-value function qπ(s,a) gives the expected return starting from state s, taking action

a, and thereafter following policy π:

qπ(s,a) = Eπ [Gt | St = s,At = a] (2.4)

These functions provide a basis for evaluating and improving policies.

Optimal value functions define the best possible performance that can be achieved from each

state (or state-action pair). The optimal state-value function v∗(s) is the maximum expected return

achievable from state s):

v∗(s) = max
π

vπ(s) (2.5)

Similarly, the optimal action-value function q∗(s,a) is the maximum expected return achiev-

able from state s and action a:
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q∗(s,a) = max
π

qπ(s,a) (2.6)

These optimal functions satisfy the Bellman optimality equations, which can be solved to find

the optimal policy.

In practice, finding exact solutions to the Bellman equations for large-scale MDPs is often

infeasible due to the computational complexity. Therefore, approximation methods are used to

find near-optimal solutions. These methods include various forms of function approximation and

iterative algorithms that converge to optimal or near-optimal policies over time.

2.4.3 Dynamic Programming

Policy evaluation is the process of determining the value function vπ for a given policy π . The

value function represents the expected return starting from a state s and following the policy π . For

a finite Markov Decision Process (MDP), the value function vπ(s) satisfies the Bellman equation:

vπ(s) = Epi[Gt |St = s] = ∑
a∈A

π(a | s)∑
s′,r

p(s′,r | s,a)[r+ γvπ(s′)] (2.7)

This equation can be solved iteratively, starting with an initial guess v0 and repeatedly applying

the update rule:

vk+1(s) = ∑
a∈A

π(a|s)∑
s′,r

p(s′,r | s,a)[r+ γvk(s′)] (2.8)

This iterative process continues until the values converge.

Once the value function vπ for a policy π is known, the policy can be improved by acting

greedily with respect to vπ . This means selecting actions that maximize the expected return based

on the current value function. The improved policy π ′ is given by:

π
′(s) = argmax

a∈A
∑
s′,r

p(s′,r|s,a)[r+ γvπ(s′)] (2.9)

If the new policy π ′ is different from the old policy π , the process can be repeated with π ′

replacing π . This iterative procedure is known as policy iteration.

Policy iteration involves two steps: policy evaluation and policy improvement. These steps are

repeated iteratively until the policy converges to the optimal policy π∗. The algorithm for policy

iteration can be summarized as follows:

1. Initialize a policy π .
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2. Evaluate the current policy π to obtain π ′.

3. Improve the policy to obtain a new policy π ′.

4. If π ′ ̸= π , set π ← π and repeat from step 2; otherwise, terminate.

Policy iteration converges to the optimal policy and optimal value function because each policy

improvement step is guaranteed to produce a strictly better policy unless the current policy is

already optimal.

Value iteration is an alternative to policy iteration that combines policy evaluation and im-

provement into a single step. Instead of evaluating a policy to completion, value iteration updates

the value function directly using the Bellman optimality equation:

vk+1(s) = max
a∈A

∑
s′,r

p(s′,r|s,a)[r+ γvk(s′)] (2.10)

This update rule is applied iteratively for all states until the value function converges. Once the

value function v∗ converges, the optimal policy π∗ can be derived by acting greedily with respect

to v∗:

π∗(s) = argmax
a∈A

∑
s′,r

p(s′,r|s,a)[r+ γv∗(s′)] (2.11)

Value iteration is often preferred over policy iteration because it can converge faster in practice,

particularly for large state spaces.

Asynchronous dynamic programming methods update the value function for some states at

each iteration, rather than all states simultaneously. This flexibility allows for more efficient use

of computational resources and can lead to faster convergence in practice. Asynchronous methods

can be particularly useful in large or complex MDPs where updating all states simultaneously is

computationally infeasible.

Generalized Policy Iteration (GPI) refers to the interplay between policy evaluation and policy

improvement, where both processes occur simultaneously or in a more flexible sequence. The core

idea is that the value function and policy are continually updated towards optimality, efficiently

leveraging any available computational resources. GPI encompasses policy iteration and value it-

eration as special cases, providing a unifying framework for understanding dynamic programming

methods in reinforcement learning.

Dynamic programming methods, while powerful, can suffer from the "curse of dimensional-

ity," where the state space grows exponentially with the number of state variables. To address this,

various techniques, such as function approximation, state aggregation, and hierarchical decom-

position, are employed to make dynamic programming feasible for large-scale problems. These

methods reduce computational complexity and enable the application of dynamic programming to

real-world problems.
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2.4.4 Monte Carlo

Monte Carlo (MC) methods are a class of algorithms that rely on repeated random sampling to

obtain numerical results. In the context of reinforcement learning, Monte Carlo methods are used

to estimate the value of states or state-action pairs based on empirical returns observed during

interaction with the environment.

The value of a state vπ(s) under policy π can be estimated using the sample average of the

returns following visits to that state:

vπ(s)≈
1

N(s)

N(s)

∑
i=1

Gi (2.12)

where N(s) is the number of times state s has been visited and Gi is the return following the i-th

visit to s. This approach requires complete episodes to be observed, as the returns Giare calculated

based on the total rewards received from the time of the visit to the end of the episode.

For estimating the value of state-action pairs qπ(s,a), the Monte Carlo method involves aver-

aging the returns following visits to the state-action pair (s,a):

qπ(s,a)≈
1

N(s,a)

N(s,a)

∑
i=1

Gi (2.13)

where N(s,a) is the number of times action a has been taken in state s, and Gi is the return

following the i-th occurrence of (s,a). This allows for the evaluation of policies based on empirical

data without requiring knowledge of the environment’s dynamics.

Monte Carlo control methods aim to improve the policy by combining policy evaluation and

policy improvement steps iteratively. The overall process involves:

1. Policy Evaluation: Using Monte Carlo prediction to estimate qπ(s,a) for the current policy

π

2. Policy Improvement: Updating the policy to be greedy with respect to the current action-

value estimates:

π
′(s) = argmax

a
qπ(s,a) (2.14)

This iterative process continues until the policy converges to an optimal policy.

Exploring starts ensure that all state-action pairs are explored sufficiently by starting each

episode in a randomly selected state-action pair. However, this is often impractical. An alternative

approach is to use ε-greedy policies, where actions are chosen randomly with a small probability

ε and greedily with probability 1− ε . This method ensures sufficient exploration while gradually

improving the policy.
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Monte Carlo methods can also be applied off-policy, where the target policy π differs from the

behaviour policy b used to generate data. Importance sampling corrects for the difference between

the policies by weighting returns by the ratio of the target to behaviour policy probabilities:

vπ(s) = E[ρtGt | St = s] (2.15)

where

ρt =
T−1

∏
k=t

π(Ak | Sk)

b(Ak | Sk)
(2.16)

is the importance sampling ratio.

Monte Carlo methods can be implemented incrementally, allowing for updates to value esti-

mates after each step, rather than waiting for the end of an episode. This is particularly useful for

environments with long episodes or for continuing tasks. The incremental update rule for state

values is:

V (St)←V (St)+α(Gt −V (St)) (2.17)

where α is a step-size parameter.

Off-policy Monte Carlo control uses importance sampling to learn the value of the target policy

π while following a different behaviour policy b. The key is to apply importance sampling to both

policy evaluation and policy improvement steps to derive an optimal target policy.

2.4.5 Temporal-Difference Learning

Temporal-Difference (TD) learning is a class of model-free reinforcement learning methods that

learn by bootstrapping from the current estimate of the value function. Unlike Monte Carlo meth-

ods, which wait until the end of an episode to update value estimates, TD learning updates esti-

mates based on partial returns observed after each step. The simplest TD method is TD(0), which

updates the value of the current state St based on the observed reward Rt+1 and the estimated value

of the next state V (St +1 :

V (St)←V (St)+α[Rt+1 + γV (St+1)−V (St)] (2.18)

where α is the learning rate, and γ is the discount factor.

TD learning combines the benefits of Monte Carlo and dynamic programming methods. It

can learn directly from raw experience without a model of the environment, like Monte Carlo

methods, and it updates estimates based on other learned estimates, as in dynamic programming.
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This allows TD methods to learn efficiently and quickly, even from incomplete episodes. Key

advantages include:

• Sample Efficiency: TD methods update value estimates at every step, making them more

sample-efficient than Monte Carlo methods.

• Online Learning: TD methods can learn from each interaction step-by-step, making them

suitable for online learning scenarios.

• Low Variance: TD methods typically exhibit lower variance in their estimates compared to

Monte Carlo methods by bootstrapping from the current value function.

TD(0) converges to the true value function Vπ for any fixed policy π under certain conditions,

such as using a decreasing step-size parameter and ensuring that all states are visited infinitely

often. The theory of stochastic approximation and dynamic programming guarantees this conver-

gence.

Sarsa is an on-policy TD control algorithm that updates the action-value function Q based on

the state-action pair, the reward, the next state, and the next action chosen according to the current

policy. The update rule for Sarsa is:

Q(St ,At)← Q(St ,At)+α[Rt+1 + γQ(St+1,a)−Q(St ,At)] (2.19)

This algorithm ensures that the policy being improved is the same as the policy used to generate

the data, making it suitable for learning in dynamic and uncertain environments.

6.5 Q-learning: Off-policy TD Control Q-learning is an off-policy TD control algorithm aim-

ing to learn the optimal action-value function Q∗, directly approximating the maximum expected

return. The updated rule for Q-learning is:

Q(St ,At)← Q(St ,At)+α[Rt+1 + γ max
a

Q(St+1,a)−Q(St ,At)] (2.20)

Unlike Sarsa, Q-learning uses the maximum estimated value of the next state rather than the

value of the next action taken by the current policy. This makes Q-learning more flexible, but also

introduces potential instability due to overestimation biases.

6.6 Expected Sarsa Expected Sarsa is a variant of Sarsa that uses the expected value of the next

state’s action-value function, rather than the actual next action taken. The update rule for Expected

Sarsa is:

Q(St ,At) ← Q(St ,At)+α

[
Rt+1 + γ ∑

a
π(a | St+1)Q(St+1,a)−Q(St ,At)

]
(2.21)
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This approach reduces variance compared to regular Sarsa and Q-learning by averaging over

the policy’s action probabilities.

Maximization bias in Q-learning refers to the tendency to overestimate the value of the maxi-

mum action due to noise in the value estimates. Double Q-learning addresses this issue by using

two separate value functions to decouple the action selection from the value estimation:

Q1(St ,At)← Q1(St ,At)+α

[
Rt+1 + γQ2(St+1,argmax

a
Q1(St+1,a))−Q1(St ,At)

]
(2.22)

Q2(St ,At)← Q2(St ,At)+α

[
Rt+1 + γQ1(St+1,argmax

a
Q2(St+1,a))−Q2(St ,At)

]
(2.23)

Double Q-learning mitigates the overestimation bias by alternating updates between Q1 and

Q2.

2.4.6 Frontiers

Initially, value functions were tied to specific reward predictions and policies. Over time, these

have been expanded to include off-policy learning and state-dependent discount functions, allow-

ing for more nuanced and flexible predictions.

A key advancement discussed is the idea of general value functions (GVFs), which extend

beyond rewards to predict various signals, such as sensory inputs or internal signals. These pre-

dictions can be formulated as:

vπ,γ,C(s) = E

[
∞

∑
k=t

(
k

∏
i=t+1

γ(Si)

)
Ck+1 | St = s,At:∞ ∼ π

]
(2.24)

where Ct is the cumulant signal, representing the signal being predicted, and γ(Si) is the state-

dependent discount function. GVFs offer a way to make diverse predictions about the environ-

ment, enhancing the agent’s ability to model and interact with its surroundings effectively.

Temporal abstraction allows reinforcement learning agents to operate at different levels of

granularity, from low-level actions to extended courses of action spanning many time steps. This

is formalized through the concept of options, which are pairs consisting of a policy and a termi-

nation function. An option ω = (πω ,βω) is executed until the termination condition βω is met.

This framework enables hierarchical reinforcement learning, where the agent can select extended

actions (options) that persist over multiple time steps, thus simplifying complex decision-making

processes. The value function for options can be expressed similarly to standard value functions

but incorporates the expected cumulative reward and state transitions associated with the option.

qπ(s,ω) = E

[
τ−1

∑
k=0

γ
krt+k + γ

τvπ(st+τ) | St = s,ωt = ω

]
(2.25)
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where τ is the termination time of the option.

In many realistic scenarios, the agent cannot fully observe the environment’s state. One ap-

proach to deal with this is to use belief states in Partially Observable Markov Decision Processes

(POMDPs), where the agent maintains a probability distribution over possible states given its

observations. Another approach is Predictive State Representations (PSRs), where the state is rep-

resented as a vector of predictions about future observations. This method leverages observable

data to ground the agent’s state representation, making it more practical for learning and planning

in partially observable environments.

Designing effective reward signals is critical to guiding reinforcement learning agents towards

desirable behaviours. However, poorly designed rewards can lead to unintended and possibly

harmful outcomes. The chapter emphasizes the importance of crafting reward signals that align

well with the overall goals and constraints of the system, considering both immediate and long-

term effects. One strategy is to use shaping, where the reward signal is adjusted over time to guide

the agent towards the desired behaviour gradually. Another method involves using imitation learn-

ing or inverse reinforcement learning to derive reward signals from observing expert behaviour.

Several unresolved challenges and areas for future research in reinforcement learning consist of:

• Developing scalable and efficient planning methods with learned environment models.

• Automating the choice of auxiliary tasks and GVFs to enhance the agent’s learning process.

• Ensuring safe and robust learning in real-world environments, which involves risk manage-

ment and adherence to best practices in control engineering.

• Addressing the limitations of current deep learning methods, particularly their suitability for

online, incremental learning settings.

• Exploring the interaction between behaviour and learning through computational curiosity,

where intrinsic rewards are used to drive exploration and learning.

2.5 Summary

This chapter explores the components necessary for understanding and developing advanced sim-

ulation systems. It begins with an overview of large-scale simulations and their application across

various domains, emphasizing their importance in urban planning and risk analysis. The chapter

then discusses agent-based modelling, illustrating how it overcomes the limitations of traditional

models by representing entities as autonomous agents with individual behaviours. It also reviews

the integration of machine learning in agent-based models, enhancing their realism and adaptabil-

ity. Finally, the chapter covers reinforcement learning, detailing its problem space, the Markov

decision process framework, and dynamic programming techniques, underscoring their relevance

in optimizing decision-making processes within simulations.
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Chapter 3

State of the Art

This chapter serves as a comprehensive exploration of the current landscape of research and de-

velopments relevant to the proposed work. This section aims to provide a thorough understanding

of existing theories and methodologies that form the foundation for the decided methodology pre-

sented in the next chapter.

3.1 Machine Learning in Agent-Based Modelling

This section heavily focuses on the study carried out by Zhang et al. (2023) in their work "Syn-

ergistic Integration Between Machine Learning and Agent-Based Modelling: A Multidisciplinary

Review"[81]. This work provides a comprehensive review of the integration of ML and ABM,

addressing various scenarios and their related algorithms, frameworks, procedures, and multidis-

ciplinary applications.

The introduction of this multidisciplinary review paper sets the stage by highlighting the grow-

ing importance of integrating Machine Learning (ML) and Agent-Based Modeling (ABM) across

various fields. The synergy between ML and ABM offers a powerful framework for simulating

complex systems and improving decision-making processes. The review aims to provide a com-

prehensive overview of how ML can enhance ABM, addressing the challenges and opportunities

that arise from this integration. The paper begins by defining the key concepts of ML and ABM.

Machine Learning is described as a subset of artificial intelligence that focuses on developing al-

gorithms that allow computers to learn from and make predictions based on data. Agent-Based

Modeling, on the other hand, is a computational approach used to simulate the actions and in-

teractions of autonomous agents to assess their effects on the system as a whole. The authors

emphasize the significance of this integration in various domains, such as traffic management,

healthcare, economics, and environmental science. By leveraging the strengths of both ML and

ABM, researchers can create more accurate and adaptable models that better reflect real-world

complexities. The introduction also outlines the structure of the paper, which includes a detailed

17
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review of the background and trends of ABM, the integration of ML with ABM, and the future

directions of this interdisciplinary research.

3.1.1 Scenarios of Applying ML to ABM

The integration of Machine Learning (ML) with Agent-Based Models (ABM) can be implemented

in various scenarios to enhance model functionality and accuracy. Firstly, ML algorithms can be

broadly categorized into four types:

• Supervised learning: is a type of ML where the model is trained using labelled data, mean-

ing that each training example is paired with an output label. The primary objective is to

learn a mapping from inputs to outputs that can be used to predict the labels for new, unseen

data. This approach is widely used for classification and regression tasks. For instance,

in ABMs, supervised learning can be applied to predict agent behaviours or environmental

outcomes based on historical data, improving the accuracy and reliability of simulations.

• Unsupervised learning: unlike supervised learning, unsupervised learning involves train-

ing a model on data without labelled responses. The goal is to identify hidden patterns

or intrinsic structures within the data. This approach is particularly useful for clustering,

anomaly detection, and association tasks. Within ABMs, unsupervised learning can help

discover group behaviours or patterns among agents that were not predefined, thereby re-

vealing insights that might be overlooked using traditional methods.

• Semisupervised learning: bridges the gap between supervised and unsupervised learning

by using a small amount of labelled data along with a large amount of unlabelled data. This

method is especially beneficial when labelling data is expensive or time-consuming. It can

significantly improve model performance by leveraging both labelled and unlabelled data.

This approach can enhance the model’s predictive capabilities in ABM contexts by using

available labelled data to guide the learning process while exploring the broader dataset.

• Reinforcement learning (RL): is a type of ML where an agent learns to make decisions

by performing actions in an environment to maximize cumulative reward. RL is partic-

ularly effective in dynamic and complex environments where the agent must learn from

interactions and adapt its strategy over time. In ABMs, RL can be used to model adaptive

behaviours and decision-making processes, allowing agents to optimize their actions based

on feedback from the environment. This iterative learning process enables the development

of more sophisticated and realistic simulations.

Each type of ML algorithm brings unique strengths to the integration with ABMs, providing

a robust framework for simulating and analysing complex systems. Researchers and practition-

ers can create more accurate, dynamic, and insightful agent-based models by understanding and

leveraging these algorithms.

Four primary scenarios illustrate the application of ML in ABM:
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1. Microagent Situational Awareness Learning: involves using ML to enhance the aware-

ness of individual agents about their environment. ML algorithms predict relevant social,

economic, or environmental variables or agent-related behaviours in this scenario. Both su-

pervised learning and reinforcement learning (RL) algorithms are employed, depending on

the clarity and labelling of the objectives. Supervised learning is used when the outcomes

can be clearly defined and labelled, while RL is preferred for more complex behaviour dy-

namics where direct labelling is not feasible.

2. Microagent Behaviour Interventions: focuses on modifying agents’ behaviour based on

ML-driven insights. This approach uses ML to infer improved decision-making models

from empirical and real-time data. Supervised ML algorithms, such as decision trees (DT),

Bayesian networks (BN), and artificial neural networks (ANN), can classify and select op-

timal actions for agents. In contrast, RL can incorporate streaming data to adapt behaviours

over time. This scenario highlights how ML can empower agents to achieve their goals more

effectively by continually optimizing their actions based on new data.

3. Macrolevel Emergence Emulator: utilizes ML to map the relationship between microa-

gent parameters and macrolevel system outcomes. This approach addresses the "dimen-

sional disaster" by building emulators that predict macro-level emergent properties from

micro-level behaviours. Techniques such as extremely boosted gradient trees (XGBoost)

and random forests (RF) are used to explore parameter spaces and predict system outcomes.

This scenario is essential for understanding and predicting complex emergent phenomena

arising from numerous agents’ interactions.

4. Macro ABMs Decision-Making: In Macro ABMs Decision-Making, ML algorithms as-

sist macrolevel policymakers in making informed decisions that influence microagent be-

haviours. This scenario treats the policymaker as a single "macroagent" whose decisions

affect the entire system. RL algorithms, such as Q-learning, are commonly used to re-

inforce decision-making processes. This approach is applied in various fields, including

traffic signal control, land-use planning, and healthcare, where macro-level decisions need

to guide the behaviour of numerous agents to achieve specific objectives.

Each scenario leverages ML techniques to address specific aspects of agent behaviour and

system-level outcomes, demonstrating the versatility and power of combining these two method-

ologies. These scenarios illustrate the multifaceted roles that ML can play in enhancing the

functionality and accuracy of ABMs. By integrating ML techniques, ABMs can become more

adaptive, predictive, and effective in simulating complex systems and informing decision-making

processes.

3.1.2 Multidisciplinary Review for Roles of ML in ABM

• A. Microagent Situational Awareness Learning
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1. Supervised ML-Based Method: Supervised Machine Learning methods significantly

enhance the situational awareness of microagents in Agent-Based Modelling (ABM).

These methods involve training models on labelled datasets to enable agents to predict

and respond to various environmental conditions and behavioural patterns.

– a) Situational Awareness Learning of Environment: Supervised ML methods

enhance microagent situational awareness by predicting environmental variables

crucial to agent decision-making. For example, supervised algorithms can pre-

dict weather conditions or market trends, providing agents with the data needed

to make informed decisions. By processing historical data, these methods can

identify patterns and trends that agents can use to anticipate changes in their en-

vironment, thereby improving their responsiveness and adaptability.

– b) Agent-Related Behavioural Prediction: Supervised ML techniques also ex-

cel in predicting agent-related behaviours. These algorithms can analyse past

actions and outcomes to forecast future agent behaviours. This capability is par-

ticularly useful in applications such as traffic management, where predicting indi-

vidual driver behaviours can improve overall system efficiency. By learning from

labelled datasets, these methods can provide accurate predictions that help agents

adjust their strategies proactively.

2. RL-Based Method: Reinforcement Learning (RL) methods are employed when the

behavioural dynamics of agents cannot be clearly defined or labelled. RL algorithms

enable agents to learn optimal behaviours through interactions with their environment.

This learning process involves receiving feedback from actions and continuously im-

proving strategies based on rewards and penalties. RL is particularly effective in dy-

namic environments where agents need to adapt to changes and learn from real-time

experiences.

• B. Microagent Behavioural Intervention

1. Agent Behavioural Interventions With Supervised ML: Supervised ML algorithms

facilitate behavioural interventions by providing empirical data that agents can use to

optimize their actions. Techniques like decision trees (DT), Bayesian networks (BN),

and artificial neural networks (ANN) can classify different actions and determine the

most effective ones for achieving desired outcomes. These interventions enable agents

to refine their decision-making processes, leading to more efficient and effective be-

haviours.

2. Agent Behavioural Interventions With RL: Reinforcement Learning (RL) is par-

ticularly effective for behavioural interventions, as it allows agents to learn and adapt

their behaviours based on feedback from the environment. RL-based interventions can

be tailored to different tasks, including cooperative, competitive, and mixed tasks.
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– a) Cooperative Tasks: In cooperative tasks, RL algorithms help agents work to-

gether to achieve common goals. Agents learn to coordinate their actions to max-

imize collective rewards. This is particularly useful in scenarios like multi-robot

systems or collaborative filtering, where agents must collaborate to complete tasks

more efficiently than they could individually.

– b) Competitive Tasks: For competitive tasks, RL algorithms enable agents to de-

velop strategies that optimize their performance against opponents. By simulating

competitive environments, agents learn to anticipate and counteract the actions of

others, improving their chances of success. Applications include economic mar-

kets and strategic games where competitive interactions are prevalent.

– c) Mixed Tasks: Mixed tasks involve both cooperative and competitive elements,

requiring agents to balance collaboration and competition. RL algorithms help

agents navigate these complex interactions by learning when to cooperate and

when to compete. This versatility is crucial in real-world scenarios like traffic

systems, where drivers must cooperate to avoid accidents while competing for

optimal routes.

• C. Macro ABMs/Emergence Emulator: The Macrolevel Emergence Emulator scenario

leverages ML to model the emergence of macro-level patterns from micro-level interactions.

Techniques such as extremely boosted gradient trees (XGBoost) and random forests (RF)

are employed to predict macro-level phenomena based on micro-level agent behaviours.

This approach helps in understanding and forecasting complex system-wide behaviours that

emerge from the interactions of numerous agents, providing valuable insights into the dy-

namics of large-scale systems.

• D. Macrolevel ABMs Decision-Making: In Macrolevel ABMs Decision-Making, ML al-

gorithms support policymakers in making strategic decisions that influence microagent be-

haviours. Reinforcement learning (RL) algorithms, such as Q-learning, are used to optimize

policy decisions that affect the entire system. This approach is applied in various domains,

including urban planning, healthcare, and environmental management, where decisions at

the macro level need to guide and shape the behaviours of numerous individual agents to

achieve overarching objectives.

3.2 Traffic Simulations

3.2.1 SUMO (Simulation of Urban MObility)

SUMO [38] is an open-source, flexible, and extensible platform designed to model and simu-

late the detailed behaviour of individual vehicles. The primary objective of SUMO is to assist in

analysing and optimizing traffic systems by providing a realistic and dynamic simulation environ-

ment. The introduction highlights the key features of SUMO, including its capability to handle
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large-scale networks, support for various types of transportation modes, and interoperability with

other software tools. Lopez et al. (2018) explain in great detail the intricacies of SUMO in their

paper "Microscopic Traffic Simulation using SUMO" [42].

In SUMO, users can import existing road networks from various data sources or create custom

networks using SUMO’s network editor tools. This step involves defining road layouts, inter-

sections, traffic signals, and other infrastructure elements. Traffic demand is generated based on

historical data, synthetic models, or user-defined parameters. This step involves specifying the

types and numbers of vehicles, their routes, and departure times. Users configure the simulation

parameters, including simulation duration, time steps, and output options. This stage ensures that

the simulation environment accurately reflects the intended study parameters. Users can monitor

the simulation in real time, adjust parameters, and collect data on various traffic metrics. SUMO

also provides tools for analysing and visualizing the simulation results.

SUMO allows for the creation of a detailed road network representation, including road seg-

ments, lanes, intersections, traffic signals, and other relevant infrastructure components. Users

can import networks from external sources such as OpenStreetMap (OSM), which allows for the

virtual representation of real life scenarios. Using SUMO’s network editor, it is possible to set

up traffic signal programs, including signal phases, timings, and coordination between multiple

signals, allowing for both fixed-time and adaptive signal control strategies. It also allows for the

definition of lane attributes like lane width, speed limits, and lane restrictions. Incorporating other

network elements like pedestrian crossings, bus stops, and parking areas to create a comprehensive

traffic environment ensures that the simulation accurately reflects real-world driving conditions

SUMO allows for generating trips based on various models, including random distributions,

activity-based models, and real-world data. Routes are defined by specifying the origin, destina-

tion, departure time, and mode of transport for each trip. SUMO uses dynamic route assignment

algorithms that can adapt to changing traffic conditions, adapting traffic flows based on real-time

simulation data. This includes re-routing vehicles in response to congestion, accidents, or other

disruptions, which helps to manage traffic more effectively by dynamically adjusting routes. Inte-

grating different modes of transport, such as cars, buses, bicycles, and pedestrians, to simulate a

multi-modal transportation system provides a complete view of the traffic network and its interac-

tions.

Coupling SUMO with other simulation tools to create an interactive traffic simulation envi-

ronment is possible through TraCI (Traffic Control Interface). TraCI communicates with SUMO

through a TCP socket, being able to receive data about individual simulation components and

directly modify them in real time.

3.2.2 TraCI (Traffic Control Interface)

TraCI [76] is an API created for interlinking road traffic and network simulators, allowing for

an effective evaluation of the impact of vehicular applications on traffic patterns. Unlike tradi-

tional methods that rely on static mobility traces, TraCI allows for real-time coupling, enabling

the dynamic adaptation of driver behaviour during simulation runtime. This approach improves
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the accuracy of simulations and supports the systematic evaluation of VANET (Vehicular Ad-Hoc

Networks) applications under realistic conditions.

The concept of mobility primitives is introduced to decompose complex mobility patterns into

basic commands such as ’change speed’, ’change lane’, and ’change route’. These primitives

are independent of VANET applications and depend on macroscopic and microscopic mobility

constraints. The system architecture of TraCI involves concurrent operation of the road traffic and

network simulators, connected via a TCP-based data exchange protocol. The road traffic simulator

is extended with a TraCI-Server, while the network simulator operates with a TraCI-Client. This

setup allows the network simulator to control the traffic simulator, enabling real-time adjustments

to vehicle movements based on VANET application outputs. Data exchange is managed through

periodic commands from the network simulator, ensuring synchronized simulation steps between

the two simulators.

3.3 Multi-Agent Systems in Traffic Simulations

Modern cities are experiencing unprecedented growth in population and financial power, leading

to an increase in private vehicle ownership and reliance on urban road networks [71]. The result-

ing traffic volumes have exceeded the capacity of existing infrastructure, making effective traffic

management crucial. Traditional solutions like building new roads or adding more lanes to exist-

ing ones have been proven ineffective [78] [26], often leading to phenomena like Braess’ paradox

[13]. Current traffic control systems are often static, relying on past data rather than real-time in-

formation, which is insufficient in modern, chaotic traffic environments. Therefore, there is a need

to understand traffic scenarios and create adaptive and intelligent traffic management systems that

can learn and respond to real-time conditions [72].

Intelligent Traffic Management (ITM) can be achieved using Multi-Agent Systems (MAS)

in combination with traffic simulations. In this approach, each traffic component acts as an au-

tonomous and adaptive agent. These agents can communicate and cooperate to optimize traffic

flow locally and globally, leading to network throughput improvements. It allows for real-time

interaction with simulators, enabling the creation and evaluation of MAS-based traffic manage-

ment solutions. This is of special interest to urban planners since it provides insights and possible

solutions without the high costs associated with modifying road infrastructure. It does not rely

on physical components of the real world like self-driving cars [16] or the usage of computer vi-

sion [57] [25]. This approach also saw an increase in popularity due to advancements in AI and

computational power [80], which allowed for the modelling of complex systems with numerous

interacting sophisticated agents.

There are several different applications of agent-based technology in traffic systems [22]. One

of the most natural and popular approaches consists of treating each vehicle as an agent, focusing

on their decision-making behaviours for [23] [49] [61] [62]. Another approach simply focuses on

the prediction of congestion in traffic networks [59] [79].



24 State of the Art

3.4 Reinforcement Learning in Traffic Simulations

Reinforcement Learning (RL) is a subset of machine learning where an agent learns to make de-

cisions by performing actions in an environment to maximize cumulative reward. In the context

of traffic simulations, RL involves agents (vehicles or traffic signals) learning optimal policies to

improve traffic flow and reduce congestion. In RL, the agent receives feedback from the envi-

ronment through rewards or penalties based on its actions and, over time, adjusts its strategy to

achieve the highest possible reward. This method is particularly effective in dynamic and complex

environments such as urban traffic networks, where traditional rule-based systems may fall short.

Using RL in traffic simulations provides a virtual environment where it is possible to develop and

test adaptive traffic management strategies, allowing for real-time optimization of traffic flow and

dynamic response to changing conditions. Because of this, several studies have been conducted

using the methodology in this field.

3.4.1 Curriculum Learning

One of the significant challenges in reinforcement learning is dealing with sparse reward sig-

nals. Sparse rewards occur when the agent receives feedback infrequently, making it difficult to

learn optimal policies efficiently. This issue is prevalent in traffic simulations, where meaningful

feedback (such as significant congestion reduction) may not occur frequently. Makri et al. (2023)

tackle this issue in their article "Curriculum based Reinforcement Learning for traffic simulations"

[44].

The authors discuss the usage of Curriculum Learning, where the learning process is structured

in a series of increasingly difficult tasks [8]. The approach consists of defining a series of tasks

with varying difficulty levels. Initially, the agent is trained on simpler tasks with frequent and clear

rewards. These tasks could involve managing traffic at a single intersection or a small network with

low traffic volume. As the agent’s performance improves, it is progressively introduced to more

complex scenarios, such as larger networks with higher traffic volumes and multiple intersections.

This gradual increase in difficulty ensures that the agent builds a robust understanding of traffic

dynamics and learns effective control strategies.

The methodology also involves setting up the simulation environment, defining the reward

structure, and selecting appropriate RL algorithms that can handle the complexities of traffic man-

agement. The training begins with the agent interacting with a simulated traffic environment,

receiving rewards based on actions. The initial phases of training focus on simple tasks to ensure

the agent quickly learns basic traffic management strategies. As the agent’s proficiency increases,

the tasks’ complexity increases. This incremental approach helps the agent transfer knowledge

from simpler tasks to more complex ones, enhancing learning efficiency. The training process

also involves fine-tuning the hyperparameters of the RL algorithm to optimize performance. Ad-

ditionally, techniques such as experience replay, where the agent learns from past experiences, and

target networks, which stabilize training, are employed to improve learning outcomes.
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The research demonstrates that agents trained using this method perform significantly better

than those trained using traditional RL approaches. Using curriculum learning leads to faster con-

vergence and higher overall performance in managing traffic flow. The results include quantitative

metrics such as reduced waiting times at intersections, lower average travel times, and improved

traffic throughput. The study also demonstrates that the agents can generalize their learning to

new and unseen traffic scenarios, showcasing the robustness of the curriculum-based approach.

3.4.2 Deep Reinforcement Learning

Deep Learning [39] is a subset of machine learning that focuses on neural networks with many

layers to model and understand complex patterns in data. Through the usage of large datasets and

high computational power, deep learning algorithms can automatically learn representations from

raw inputs. Deep Reinforcement Learning (DRL) [1] combines deep learning with reinforcement

learning principles. In DRL, deep neural networks are used to approximate the decision-making

policies or value functions that guide agents in an environment. These agents learn to achieve goals

by interacting with the environment and receiving feedback in the form of rewards or penalties,

creating complex behaviours from raw sensory inputs in the process.

Kheterpal et al. (2018) present "Flow" [36], an open-source framework that leverages deep re-

inforcement learning to achieve control in traffic simulations. Flow allows researchers to apply RL

methods to traffic scenarios, enabling vehicle and infrastructure control in diverse environments.

Flow facilitates the development of autonomous vehicles and intelligent infrastructure controllers,

optimizing customizable traffic metrics like traffic flow and average velocity.

Flow provides an open-source Python framework that integrates traffic simulators with RL

libraries, allowing users to create environments encapsulating MDPs for RL problems. Flow’s ar-

chitecture is designed to be modular and extensible, with components for generating networks and

configuring environments. It manages simulation initialization, steps, and resets; defines observa-

tion and action spaces; and aggregates information to calculate observations and rewards. Flow

supports multiple RL libraries (rllab [24], RLlib [41]) and is compatible with OpenAI’s Gym [15].

It also enables the usage of SUMO’s microscopic simulation capabilities [38], including various

car-following and lane-changing models, to create rich environments for training RL agents.

Flow uses policy gradient algorithms [53] like Trust Region Policy Optimization (TRPO)

[65] and Proximal Policy Optimization (PPO) [66] to train controllers, with actions drawn from

stochastic distributions to facilitate exploration and gradient computation. Techniques to improve

training efficiency include AWS Integration, Parallelization and Policy Evaluation.

3.4.3 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) is a field that extends traditional reinforcement

learning to environments with multiple interacting agents. In MARL, agents learn not only from

their own experiences but also from their interactions with other agents within the same environ-

ment. This collaborative and competitive learning process allows agents to develop strategies that
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consider the actions and reactions of others, leading to more sophisticated and realistic models of

complex systems.

Lemos et al. (2019) explore the usage of MARL within the context of traffic simulations in

their work "Combining adaptation at supply and demand levels in microscopic traffic simulation: a

multiagent learning approach" [40]. The authors focus on mitigating traffic congestion by applying

Multi-Agent Reinforcement Learning (MARL) by exploring the simultaneous learning of driver

and traffic signal agents. They explain how most MARL studies focus on a single class of agents:

either traffic lights [45] [37] or drivers and their route choice [58] [7].

The goal of the study is to define a microscopic modelling approach and simulate scenarios

where drivers aim to minimize travel costs by selecting efficient routes, while traffic signals strive

to maximize traffic throughput at intersections. The study measures travel times from origin to

destination and shows that MARL-based approaches can reduce these times, incorporating mi-

croscopic simulation that allows for fine-grained modelling of agents, including different speeds,

acceleration, car-following behaviour, and traffic signal control.

The MDP for driver agents is based on repeated games, where there is only one state. The

actions for drivers are the pre-calculated shortest paths, and the reward signal is the negative of

the driver’s travel time. On the other hand, the MDP for traffic signals is state-based, considering

stochastic games. The state for each traffic signal consists of the current phase, elapsed time of the

current phase, and queue lengths for each phase. The actions for traffic signals are either keeping

the current phase or changing to another phase. The reward for traffic signals is defined as the

difference between the current and previous average queue length.

Driver agents learn by using Q-learning [75] in episodes, where each episode ends when all

drivers reach their destinations. Drivers choose actions (routes) based on the Q-values and receive

rewards based on their travel time. The Q-values are updated using the Q-learning equation, and

the exploration-exploitation trade-off is controlled using an epsilon-greedy exploration strategy.

Meanwhile, traffic signal agents also use Q-learning to learn the optimal timing scheme for im-

proving local flow. Traffic signals continuously observe the state of incoming lanes and make

decisions to keep or change the green signal. They receive rewards based on the change in queue

lengths since the last decision and update their Q-values accordingly.

Mushtaq et al. (2023) explore the integration of MARL in the field of Intelligent Transporta-

tion Systems (ITS) in their work "Multi-Agent Reinforcement Learning for Traffic Flow Manage-

ment of Autonomous Vehicles" [48]. The authors propose an approach that combines Multi-Agent

Reinforcement Learning and smart routing to improve the flow of autonomous vehicles in road net-

works. The study evaluates two MARL techniques, namely Multi-Agent Advantage Actor-Critic

(MA2C) and Independent Advantage Actor-Critic (IA2C) [28], along with smart routing for traf-

fic signal optimization. The paper explores non-Markov decision processes to better understand

the algorithms. Simulations using the SUMO software modelling tool for traffic simulations are

conducted to demonstrate the effectiveness and reliability of the proposed method.

In the IA2C algorithm, each agent learns its own value function and policy from its experi-

ences. The actor loss and critic loss are calculated based on the observed history and the advantage.
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The IA2C algorithm allows for rapid exploration by including entropy loss in the policy.

The MA2C algorithm stabilizes the learning process and weak convergence by communicat-

ing with neighbouring agents. A spatial discount factor is introduced to weaken the reward and

state signals of agents not present in a specific agent’s neighbourhood. The learning process be-

comes more stable, and there is more correlation between local region observations and spatially

discounted returns.

Afterwards, a routing strategy is used to manage traffic flow. The Dijkstra algorithm is initially

used to compute the shortest paths between origins and destinations. Alternate paths are computed

and stored in a route file. During congested hours, vehicles that have not yet reached intersections

are considered the current state of the intersection. If the total travel time of the current path

and wait time at the intersection is greater than the travel time of the second alternate path, the

vehicle is rerouted. This re-routing helps load-balance vehicles and improves traffic flow. The

methodology involves the use of detectors, re-routers, and sensors for efficient routing. SUMO

provides features for route assignments using re-routers, edge weights, and TraCI functions.

The authors also reference numerous other studies that explore the usage of MARL [18] [6]

[29] [17].

3.4.4 Alternatives

There are alternatives to RL for dealing with dynamic environments. In "Engineering Sustainable

and Adaptive Systems in Dynamic and Unpredictable Environments" [21], Cardoso et al. (2018)

list some socially and biologically inspired techniques suitable for unpredictable contexts:

• Electronic Institutions (EI): Electronic Institutions are frameworks designed to facilitate

and regulate interactions among autonomous agents within a virtual environment. They

provide the rules and protocols that guide agent behaviour, ensuring that interactions are

orderly, predictable, and aligned with predefined objectives or social norms. Studies on EI:

[56] [54] [55].

• Evolutionary Computing (EC) and Genetic Programming (GP): Evolutionary Comput-

ing is a subfield of artificial intelligence that involves computational algorithms inspired by

the process of natural evolution, such as selection, mutation, and crossover. Genetic Pro-

gramming is a type of Evolutionary Computing where computer programs are optimized to

solve problems by evolving over successive iterations, mimicking the principles of biologi-

cal evolution. Studies on EC: [20] [19]. Studies on GP: [4] [68] [33].

• Community Energy Systems (CES): Community Energy Systems are localized energy

networks that generate, distribute, and manage energy within a community. These systems

often utilize renewable energy sources and aim to enhance energy efficiency, reduce carbon

emissions, and promote energy independence and resilience at the community level. Studies

on CES: [35]
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3.5 Summary

This chapter explored a variety of studies relevant to the implementation of the proposed work.

It examined concepts like Machine Learning (ML), Agent-Based Modeling (ABM), Multi-Agent

Systems (MAS), and the integration of these. It focused on traffic simulations and the usage of

tools like SUMO and TraCI for modelling traffic systems. The chapter also highlights how these

technologies improve traffic flow and decision-making in complex systems, with an emphasis on

reinforcement learning.



Chapter 4

Methodology

This section outlines the comprehensive methodology used to address the complexities of flow

systems through agent-based modelling and large-scale simulations specifically applied to traffic

networks. The methodology is divided into two main parts: the Theoretical Part and the Exper-

imental Setup. The Theoretical Part discusses the conceptual framework, explaining how agent-

based modelling and reinforcement learning are employed to optimize vehicle routes and enhance

traffic flow. The Experimental Setup details the practical implementation, including the software

and hardware used, the preparation process, the input and output data, and the design of traffic

network maps and routes. Together, these components provide a robust approach for simulating

and analysing traffic systems, aiming to develop efficient routing strategies that can be generalized

to other types of flow systems.

4.1 Context of the Methodology

In order to address the intricacies and complexities of flow systems, an approach using agent

modelling in large-scale simulations is designed, using traffic networks as a practical application

and reinforcement learning for learning and behaviour emergence.

Agent-based modelling allows for the simulation of numerous individual entities (vehicles)

within a traffic network, each with its own behaviour and decision-making processes. This scal-

ability is crucial for realistically representing the dynamics of urban traffic systems, where nu-

merous vehicles interact simultaneously. Traffic networks are a practical and tangible application

of flow systems, making the research outcomes directly relevant to real-world problems. Urban

traffic congestion is a significant issue in many cities, and the ability to develop and test solu-

tions in a simulated environment provides a low-risk, cost-effective way to explore new strategies

before implementation. Reinforcement learning provides a framework for agents to learn opti-

mal behaviours through interaction with their environment. This is particularly advantageous in

complex systems like traffic networks, where the optimal routing strategy may not be predefined

29
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but needs to be discovered through experience. The ability of reinforcement learning to adapt to

changing conditions and continuously improve performance makes it well-suited for dynamic and

unpredictable environments. Analysing the behaviours learned by the agents makes it possible to

gain valuable insights into the decision-making processes that lead to optimized flow. This is more

informative than pre-programmed strategies, revealing the conditions and actions contributing to

improved performance. These insights can then be generalized to other types of flow systems,

providing a broader applicability of the findings.

The approach consists of simulating a large amount of vehicles performing different trips

across traffic networks. Each traffic network follows an architecture representing common traffic

design patterns used in real life. The vehicles will have access to a set of functions that allows

them to check the system’s state and perform different actions. Using reinforcement learning,

the vehicles will learn how to use these functions to optimize their trip routes and maximize the

system’s flow. After they have learned how to do so, it will be possible to inspect what functions

were chosen under what conditions at different times of the simulation. The knowledge from this

inspection can be extracted and mapped to more general scenarios, thus allowing for the creation

of an abstract guidebook on how to ensure flow in any type of flow system.

4.2 Experimental Setup

4.2.1 Software

SUMO was used to simulate the network and the vehicle trips [38]. SUMO, or Simulation of

Urban Mobility, stands out as an excellent choice for a vehicle simulator due to its comprehensive

features and versatility. SUMO offers a realistic simulation environment, enabling users to model

various aspects of urban mobility, including road networks, traffic flow, and vehicle behaviour.

Its support for a wide range of traffic scenarios and simulation algorithms makes it suitable for

diverse research and development purposes, from studying traffic management strategies to testing

autonomous vehicle technologies. Moreover, SUMO’s integration capabilities with other software

tools enhance its utility and make it a valuable asset for both academic and industrial applications

in the fields of transportation engineering and urban planning.

TraCI was used to interact with the SUMO simulations [76]. Integrating TraCI (Traffic Con-

trol Interface) with SUMO significantly enhances its capabilities as a vehicle simulator. TraCI

enables real-time communication between external applications and the SUMO simulation, al-

lowing for dynamic control and analysis of traffic scenarios. This integration empowers users to

implement and evaluate advanced traffic control strategies in a realistic simulation environment,

such as adaptive signal control and dynamic route guidance. By leveraging TraCI, developers can

interact with SUMO programmatically, accessing detailed information about vehicles, infrastruc-

ture, and traffic conditions. This level of interaction facilitates the development and testing of

intelligent transportation systems, including connected and autonomous vehicles, as well as traffic
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management algorithms. Overall, the utilization of TraCI with SUMO offers unparalleled flexibil-

ity and precision in simulating complex urban mobility scenarios, making it an indispensable tool

for transportation research and development.

The Ray framework was used for reinforcement learning (rllib) [41]. Ray, renowned for its

scalability and efficiency in distributed computing, emerges as an optimal reinforcement learning

(RL) framework for integration with SUMO simulations. Ray facilitates seamless incorporation

of RL algorithms into SUMO, enabling the training of RL agents to interact with dynamic traffic

environments in real-time. Its distributed computing capabilities empower efficient parallelization

of RL training, expediting experimentation and policy optimization for traffic control and vehicle

management within SUMO’s simulation environment. Ray’s support for both synchronous and

asynchronous RL algorithms caters to diverse training paradigms, making it an ideal choice for

researchers and practitioners seeking comprehensive solutions to address various traffic-related

challenges. By harnessing Ray’s capabilities, namely PPO, alongside SUMO simulations, devel-

opers can accelerate innovation in transportation systems, fostering the development of safer, more

efficient, and sustainable urban mobility solutions.

The Gymnasium (previously Gym) library was used to connect Ray, TraCI and SUMO [15].

Incorporating the Gymnasium library is crucial for creating a custom environment that connects

SUMO, TraCI, and Ray seamlessly. Gymnasium provides a standardized interface for RL en-

vironments, streamlining the integration process and enabling efficient communication between

these components. By leveraging Gymnasium, developers can effortlessly design custom envi-

ronments tailored to their specific needs, integrating SUMO’s realistic traffic simulations with

TraCI’s real-time control capabilities and Ray’s powerful reinforcement learning algorithms. This

interoperability ensures smooth interaction between the simulation, control, and learning compo-

nents, facilitating the development and evaluation of advanced traffic management strategies and

autonomous vehicle systems with ease and precision.

The interaction between all the components can be seen in Figure 4.1. Initially, Python’s main

function calls for the initialization of the ray framework, which loads the custom environment

defined with Gymnasium. Through the custom environment, Ray evokes its reset function, which

clears the environment and uses TraCI to start the SUMO simulation. Afterwards, the step function

is called repeatedly until it receives a termination variable. In this function, TraCI is used to receive

the simulation’s state information and to interact with the agents. Once the simulation reaches its

end, TraCI closes it and returns a termination variable to Ray through Gymnasium. In Ray’s

training stage, this process constitutes one episode, and several episodes are executed to constitute

one iteration. After each iteration, ray returns its results to Python, and the information is stored.

Once all iterations are completed, Ray shuts down, and the program ends.
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Figure 4.1: Software Component Interactions

4.2.2 Hardware

The computer used to run all the simulations had the following specifications:

• Processor: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

• Video Card: GeForce GTX 1050

• Video Card #2: Intel(R) UHD Graphics 630

• Operating System: Windows 10

• RAM: 16 GB

4.2.3 Preparation

In order for the program to inspect the state of the simulation and interact with it, several functions

that the program can choose were created. These functions are grouped into different categories

and ordered with a specific logic. The created logic was inspired by the educational tool "Scratch"

[60]. In Scratch, several premade functionalities take the form of blocks and are organised into

different categories. Each category relates to the nature of the functionality (Events, Motion, Con-

trol, Sensing, Operation, etc.). Users can select different functionality options and connect them

together. The connection of these blocks follows a specific logic in order to achieve a concrete

result. Similarly, the logic of the program created consists of the existence of 5 different types of

blocks: Decision Point, Agent Selection, Behaviour, Condition Check and Action. These 5 blocks

are executed sequentially in the written order. Figure 4.2 displays a visual representation of the

sequential order of the execution blocks. The purpose of these types of blocks is the following:
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Figure 4.2: Execution Blocks order

1. Decision Point (DP): Relates to WHEN the program decides to execute a change in the

simulation. Although this five-block combination is created at each timestep, a specific

decision point must be selected in order to advance to the following blocks. If a non-empty

list of agents is returned by this block, it is considered the selected point for a decision was

reached, and it is time for the blocks to be executed.

2. Agent Selection (AGT): Relates to WHO should be targeted for this execution. Given that

a decision point was reached, it is now decided which agents will be selected for execution.

3. Personality (PERS): Related to HOW the selected agents for this timestep will react to the

chosen action. This block pretends to mimic the nature of human beings and their likelihood

of following suggestions or commands, thus creating a layer where the agent may accept or

reject them. Therefore, this block filters the agents that will reject the Condition checked

and the Action chosen for them. This block was purposefully placed here to prevent some

agents from wasting time with the following blocks in the case of rejecting them by the end,

4. Condition Check (COND): Relates to inspecting a variable and checking IF it passes a

condition. This block analyses a performance component of the agent itself or the simulation
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state and compares it to a given threshold. The result of this comparison is used to decide

whether an action should be executed.

5. Action (ACT): Relates to WHAT action should be finally executed once all the previous

blocks were passed successfully. The action consists of changing how the agent travels

through the flow system.

At each timestep in the simulation, the program generates a combination of 5 integers. Each

integer works as an index for a map of a possible option for each block type.

Description of the Execution Blocks options:

1. Decision Point (DP): WHEN to execute

• Check Periodically: Execute the block sequence every X timesteps.

• Check Randomly: Execute the block sequence with a random chance.

• Check Key Points: Execute the block sequence if agents pass over specific map points

in the current timestep.

• Check Location-based: Execute the block sequence if agents are within a selected

map region.

2. Agent Selection (AGT): WHO to select

• Select from All: Select a subgroup of all agents in the map.

• Select from the DP: Select a subgroup of the agents returned from the Decision Point

block.

3. Personality (PERS): HOW to behave

• Submissive: High likelihood of an agent accepting the action.

• Indecisive: Medium likelihood of an agent accepting the action.

• Stubborn: Low likelihood of an agent accepting the action.

4. Condition Check (IF): IF something checks out

• Total Trip Distance: Checks if the total distance of the agent’s trip passes a given

condition.

• Elapsed Time: Checks if the agent’s trip elapsed time passes a given condition.

• Elapsed Distance: Checks if the distance agent’s travelled distance passes a given

condition.

• Time Left: Checks if the estimated time left on the agent’s trip passes a given condi-

tion.

• Distance Left: Checks if the distance left on the agent’s trip passes a given condition.
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• Current Speed: Checks if the agent’s current speed passes a given condition.

• Average Speed: Checks if the agent’s average speed during its trip passes a given

condition.

• Slow Duration: Checks if the duration that the agent was travelling with a slow speed

passes a given condition.

• Stopped Duration: Checks if the duration that the agent was stopped passes a given

condition.

• Number of Stop and Start: Checks if the number of times the agent came to a halt

and resumed its travel passes a given condition.

• Number of Surrounding Agents: Checks if the number of vehicles surrounding the

agent passes a given condition.

• Traffic in Route: Checks if the number of vehicles in the remaining route of the agent

passes a given condition.

5. Action (THEN): THEN execute this action

• Slow Down: Decreases the agent’s current speed.

• Reset Speed: Resets the agent’s speed back to normal.

• Change Lane: Changes the agent’s current lane to the adjacent one, if possible.

• Avoid Next Edge: Performs a reroute by avoiding the next edge in the agent’s route,

if possible.

• Enter Highway: Performs a reroute to force the agent to go through a "highway"

labelled edge.

• Enter Avenue: Performs a reroute to force the agent to go through an "avenue" la-

belled edge.

• Go Directly: Performs a reroute to force the agent to go through the shortest path to

its destination
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Table 4.1: Possible Value Options for each Block Option

On top of the integers generated for the block options, 4 other integer variables are generated

in each timestep: "dp_val_idx", "agt_val_idx", "cond_val_idx", and "act_val_idx". Each of these

integers works as an index for the value to be used in combination with the option chosen for a

specific block type. The purpose of these integers is to attribute the model with choice freedom for

the values used in some block options. Instead of having a single hardcoded value as a parameter

or threshold for a function, the model can choose between a premade list of values, which is

different for each block option. It is presented in Table 4.1 all the possible value options for each

block option.

For example, if the model chooses the first value option (blue column) for the Condition Check

option "Distance Left", the program will check if the agent’s distance left in its route is greater

than 200 meters. Alternatively, if it chooses the fourth value option (yellow column), it will check

if the agent’s distance left in its route is greater than 650 meters.
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The creation of the 4 value options results from a middle-ground decision between having only

one hardcoded value (e.g. always making the program check if an agent’s distance left in its route

is greater than 400 meters) and having the ability to use any value possible value (e.g. allowing the

program to check if an agent’s distance left in its route is greater than 1 million meters). By using

an approach where the model is limited to four options instead of having the freedom to select a

number from an infinite amount, the complexity of the learning curve is greatly reduced while still

ensuring some exploration capabilities. The final values for these options result from intuition and

much testing. It should be noted how not every block type and block option requires the usage of

value options for their functionality.

4.2.4 Input

In Gymnasium, each environment comes with its predefined action and observation spaces, which

are described in the environment’s documentation. Researchers and developers can easily work

with different environments while developing and testing reinforcement learning algorithms.

The Observation Space refers to the set of all possible observations the agent can perceive

from the environment. These observations provide information about the current state of the envi-

ronment and are used by the agent to decide which actions to take. In the case of this project, the

following metrics are collected each timestep:

• "activeNum": the number of currently active agents in the simulation

• "emissions": the amount of emissions currently being expelled by all the agents of the

simulation

• "meanSpeed": the current average speed of all the active agents in the simulation

• "occupancy": the current space occupied by all the active vehicles over the total space

occupied by the edges being currently used in the simulation

• "simTime": the current timestep in the simulation

The Action Space refers to the set of all possible actions that an agent can take within a given

environment. In the case of this project, the actions refer to the index of the block option for each

block type to be used in the execution block sequence.

• "dp": Index for the Decision Point block option.

• "dp_val_idx": Index for the Decision Point value option.

• "agt": Index for the Agent Selection block option.

• "agt_val_idx": Index for the Agent Selection value option.

• "pers": Index for the Personality block option.

• "cond": Index for the Condition Check block option.
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• "cond_val_idx": Index for the Condition Check value option.

• "act": Index for the Action block option.

• "act_val_idx": Index for the Action value option.

4.2.5 Output

Every time a training iteration returns a new highest average reward value, a checkpoint for the

model is created and stored in the device, marking a milestone in its learning process. After

the training stage is concluded, the testing stage begins. The highest-scoring checkpoint from

the training stage is restored in the testing stage, where one or several final simulations are run.

In these simulations, several variables are retrieved from every timestep, allowing for a deeper

understanding of the simulation evolution. These variables consist of a history of all recorded

observations and actions taken (as described in Section 4.2.4), along with some additional metrics

that are not present in the prior: the average trip time, the average trip distance, and a dictionary

describing the elapsed time and distance for every vehicle’s trip.

This information is then processed and presented to describe the respective simulation of the

testing stage, representing the result of the model’s learning process. The following output is

generated:

• Observation Graph: a plot graph displaying, for each timestep, the evolution of "mean_speed",

"occupancy", and "activeNum" across the simulation.

• Action Graph: a plot graph displaying, for each timestep, the option chosen for each exe-

cution block, along with a colour-based representation of the value option chosen for each

one. It should be noted that the colour scheme used to represent the value options is the

same as the one presented in Table 4.1. The blue dots represent value option 1, the red dots

value option 2, the green dots value option 3, and the yellow dots value option 4. The black

dots indicate that the respective block option does not require value options.

• Evaluation Metrics: a dictionary displaying different metrics for the final values of the

simulation:

– "mean_speed": average speed of all vehicles across the entire simulation

– "occupancy": average occupancy of the network edges across the entire simulation

– "simTime": total number of timesteps until the end of the simulation

– "avg_trip_time": average time for every vehicle’s trip across the simulation

– "avg_trip_distance": average distance for every vehicle’s trip across the simulation
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4.2.6 Map and Routes

Exploring simulations across diverse map architectures provides invaluable insights into mobility

systems, as these architectures closely resemble real-world scenarios encountered in cities world-

wide. By encompassing the most common layouts in urban environments, the simulations cover

a wide range of scenarios and offer a comprehensive understanding of transportation dynamics.

The chosen architectures for testing are Grid, Radial and Medieval. This diversity ensures that the

simulations capture the complexities of real-world traffic scenarios, enabling the development of

robust and adaptable solutions across various urban contexts.

• Grid Architecture: The orthogonal grid architecture features streets intersecting at right

angles, forming a pattern of blocks and squares. This is usually a result of a deliberate,

structured urban design.

• Radial (Spider Web) Architecture: The decentralized radial city architecture consists of

streets extending outward from a central point, connecting to concentrically arranged roads

leading to the city’s periphery. This is often seen in suburban neighbourhoods.

• Medieval (Random) Architecture: Presenting a chaotic and irregular layout, the medieval

architecture reflects a blend of strategic defence and organic urban growth. This is com-

monly present in historic city centres or rural areas.

Figure 4.3: Grid Map Figure 4.4: Spider Map Figure 4.5: Random Map

In Figures 4.3, 4.4 and 4.5, it is possible to inspect the maps created for the Grid, Radial and

Medieval architectures, respectively. The maps were generated using the SUMO built-in tools

netgenerate, which creates abstract road networks from a command line, and netedit, which is a

visual network editor that allows the modification of aspects of an existing network. Because of

the nomenclature used in netgenerate to describe the network types, the name of some maps was

changed accordingly for simplicity purposes. Because of its similarity to a spider web, the map

of the radial architecture takes the name "Spider". Similarly, the map of the Medieval architecture

takes the name "Random". The grid architecture remains with the map name "Grid".

The routes for these maps were created with the SUMO built-in tool randomTrips.py, where a

random set of trips can be configurable and generated. Each set of trips consists of 200 vehicles
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that start their travel at different instants with different origin and destination points on a map.

After a lot of trial testing, 200 seems to be the appropriate number of trips for creating an environ-

ment with enough congestion for the designed maps, while avoiding excessive vehicles in backlog

awaiting to enter the simulation. Additionally, 100 different sets of trips were created for each

map, ensuring that the model does not overfit while learning how to ensure efficiency for the same

set of trips.

4.3 Summary

In summary, this chapter presents a detailed description of the decided methodology used to opti-

mize traffic flow through agent-based modelling and reinforcement learning. The approach utilizes

SUMO for realistic traffic simulation and TraCI for dynamic control, while Ray facilitates the inte-

gration of reinforcement learning algorithms. The preparation process involved creating functions

for decision points, agent selection, behaviour, condition checks, and actions, which are executed

in a specific sequence. The experimental setup, including software, hardware, and algorithmic

components, is thoroughly explained. The chapter concludes with an explanation of the input and

output metrics used to evaluate the effectiveness of the optimization strategy. This methodological

framework provides a robust foundation for simulating and improving urban traffic systems.



Chapter 5

Experiments and Results

In this chapter, we present the experiments conducted and the results obtained throughout the

project. The experiments were designed to iteratively improve the reward function and the overall

performance of the agents in the simulation environment. Various configurations and modifi-

cations were tested to address the initial issues observed with the baseline performance and to

enhance the model’s effectiveness. The results of these experiments provide valuable insights into

the effectiveness of the implemented strategies and the improvements achieved over the control

group.

5.1 Experiments

A Control Group (CG) was conceived to create a baseline for comparing and analysing the re-

sults of the experiments. The Control Group consists of the evaluation scores for a simulation

being executed without any intervention by the agents on every map. This project aims to achieve

evaluation scores that are better than the CG for each map.

In an earlier project stage, the reward function consisted of the reward sum of 6 variables:

"arrivedNum", "collidingNum", "simTime", "fuel", "emissions", "meanSpeed", and "occupancy".

Each variable’s expected values during the simulation were analysed at different timesteps. Af-

terwards, a spreadsheet table describing the score Y for each possible value of the observation X

for each variable was written. These scores are greater the better the result is than its expected

values, and the opposite is true for worse results, even going below zero if considered bad enough.

This way, the desired results are rewarded positively, and the undesired ones are penalised. Then,

by using polynomial regression, a mathematical function that accurately represents the scoring for

each possible value was generated for each of the 5 variables. During every timestep, a score was

associated with each variable according to their respective polynomial function, and the reward

resulted in the sum of these scores.

41
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Figure 5.1: Previous Grid
Map

Figure 5.2: Previous Spider
Map

Figure 5.3: Previous Random
Map

Although apparently promising, results from this setup often returned an evaluation score

lower than the control group. Additionally, many results scored the same as the control group,

because the model learned to create execution block sequences that lead to the absence of action

executions, which indirectly led to the non-intervention of the agents and, therefore, the same case

as the control group. For example, the model would learn to always pick the "stubborn" person-

ality option or the "resetSpeed" action option, which would essentially lead to inactivity in the

simulation. To fix this, many changes were made iteratively.

Firstly, some variables were removed since they were redundant, irrelevant, or simply linearly

dependent on other variables, which unnecessarily increased the complexity of the reward func-

tion and, thus, negatively affected the learning process. This was the case for "arrivedNum" and

"collidingNum", "fuel", "emissions" and "occupancy". This way, only the "meanSpeed" and "sim-

Time" variables were considered for the reward function, since they are the only essential ones for

representing the flow efficiency of a system.

Secondly, the polynomial regression seemed promising as a nuanced way of mapping from

observations to rewards and its capability of modelling complex relationships. However, it ulti-

mately led to very sharp gradients in the reward landscape that were difficult for the RL model to

learn from. Because of this, the reward was greatly simplified and started using roughly the direct

values of the considered variables instead of a scoring map to possible values.

Thirdly, penalties were added for the choice of execution block options that could lead to the

absence of any execution. This way, the model won’t get stuck in a local optima where it does

not intervene in the simulation and will explore execution options that return an evaluation score

higher than the Control Group.

In spite of all of these improvements in the logic of the program, the problem of not achieving

better results than the control group persisted. There were some rare instances where the simula-

tions returned better evaluation metrics, but the results were unsatisfactory. In fact, this happened

when an action option called "SpeedUp" existed, and the model was learning to simply increase

every vehicle’s speed (beyond the speed limit) for every timestep. Although this made sense in

theory, in practice, these were not viable nor innovative results.

At this point, it was understood that the problem was not on the program’s logic, but most
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likely on the networks designed. At first, the maps used were not the ones displayed in Section

4.2.6 of page 39. Initially, motivated by the idea of Curriculum Learning, the maps were much

simpler (Figures 5.1, 5.2 and 5.3), with intentions of making them more complex as the model

made progress in the learning process. However, it turned out that the maps were too simple and

homogeneous for any progress to have been achieved. For each type of network, every edge had

two lanes, the same speed limit, standard intersection priority, and bidirectional connections. In

hindsight, it makes sense that if there are no different aspects of the network for the agents to

exploit, then every route option will be considered equally good. In this environment, there is no

possibility of improvement in traffic flow other than just increasing the vehicle’s speeds. In order

to tackle this issue, several changes were made to these maps, with the aim of making them more

heterogeneous:

• Traffic lights: priority control in some of the intersections.

• Change in the number of lanes: edges with one, two or three lanes in different network

sections.

• One-way streets: sections where traffic only flows in one direction.

• Blocked lanes: lanes that are inaccessible, to simulate traffic accidents or congestions.

• Avenues: edges with priority over others and/or with higher speed limits.

• Highways: edges with more lanes and significantly higher speed limits surrounding the

network.

The purpose was to add some traffic elements to increase the heterogeneity of the environment

while still trying not to make it too context-dependent. Upon implementation, there were ideas of

adding elements like parking areas, pedestrian crosswalks, and bus stops, but it was decided not

to. This decision stemmed from fear that the environment would become too closely related to its

practical application to generate suitable solutions for abstract scenarios.

The modification of these maps alone was not sufficient for immediate improvements in the

simulation results. It was at this stage that the actions "enterHighway", "enterAvenue", and "goDi-

rectly" were implemented, so as to make the best use of these newly added components. Addition-

ally, value options for the decision point option "checkKeyPoints" were added, in order to provide

the model with better specificity for when to execute and which agents to select. Lastly, removing

traffic lights from every network and not using a different set of trips throughout the training sim-

ulation finally led to good results. This is not surprising since the traffic lights followed a static

program, and improving flow through improvement of the traffic light system is a whole field of

study on its own, as seen in the State-of-the-Art chapter. Since this project focuses on improving

the route of the vehicles and not on traffic lights, the latter was completely removed.
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5.2 Results

Although "mean_speed", "simTime", and "occupancy" are the selected evaluation metrics, "sim-

Time" was considered the most important one when deciding if a result is better than the control

group. Because the number of total vehicles is always the same, the faster it is for all vehicles to

arrive at their destination, the higher the vehicle throughput of a network will be, which ultimately

represents a higher flow in the system. This section presents the best scoring results for each of

the designed networks, along with an interpretation of them.

5.2.1 Grid

The control group score for the ’Grid’ network is:

• ’overall_mean_speed’: 9.361

• ’avg_occupancy’: 0.126

• ’sim_time’: 229

• ’avg_trip_time’: 96.259

• ’avg_trip_distance’: 611.538

The best scoring result achieved for the ’Grid’ network is:

• ’overall_mean_speed’: 9.4

• ’avg_occupancy’: 0.125

• ’sim_time’: 209

• ’avg_trip_time’: 95.259562

• ’avg_trip_distance’: 618.279

The observation and action graphs for the "Grid" network can be seen in Figures 5.4 and 5.5,

respectively. After analysing the latter, it is clear there are some notable trends in the choice of the

execution block options.

Overall, as a first impression, it is noticeable that there is a lack of preference for the value

option 3 (represented by the green dots), meaning the model learned to favour both extreme ends

of the value options: really low values (blue) and really high values (yellow).

Firstly, under the Decision Point block, there is a clear preference for a random check with low

probability, along with a check on agents passing by key points in the network. This reveals that

the model chose to execute mostly when there are agents passing over these key points, alternating

with a low probability of executing randomly, opting for inactivity in these cases.

Secondly, under the Agent Selection block, there is no strong preference for any block option.

Agents are selected from the result of the previous block and from the list of all agents in the
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Figure 5.4: Grid: Best Result Observation Graph. The graph displays the state of the system for
every timestep of the simulation: the average speed of all agents (red), the average occupancy
of the network edges (blue), and the number of active numbers. It shows a steady and natural
progression of these metrics.

simulation equally. Regardless, there is a strong preference for the value option 1 (blue), which

means the model mostly selects a small number of agents for the following blocks.

Thirdly, under the Personality block, there is a strong preference for "indecisive" behaviour,

meaning half of the time, the selected agents will accept a change in their behaviour.

Afterwards, the model learned that the most important Condition Check options to analyse

are the agent’s speed and the number of surrounding agents, equally choosing the extreme option

values (blue and yellow). Regarding the agent’s speed option, the yellow dots represent higher

sensitivity, since the condition check will pass the comparison if the agent has any speed below 11

m/s. Alternatively, the blue dots represent higher sensitivity in the option regarding the number of

surrounding agents, since the comparison will pass if there is more than one agent surrounding the

agent. The opposite happens when the blue and yellow options are chosen, respectively.

Lastly, there is a clear preference for the "goDirectly", "avoidNextEdge", and "resetSpeed"

options in the Action block. The lack of preference for "enterAvenue" means the model avoids

clogging the centre edges of the network. This makes sense in a grid-like network because the

agents often enter from the fringe and need to traverse the centre to reach their destination. Inter-

estingly, the model finds it unnecessary to use the surrounding highway in order to achieve this.

Apparently, the model finds success in combining "avoidNextEdge" with "goDirectly", which re-

sults in a small detour in the agent’s route. The option "resetSpeed" represents an absence of

change in the agent’s behaviours, since the "slowDown" option is practically never chosen.

Ultimately, it seems the model learned to combine the block options and value options to

rarely execute, and retrieve a small amount of agents when it does. Upon execution, this small set

of agents considers its speed and the number of surrounding agents and executes a small detour
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Figure 5.5: Grid: Best Result Action Graph. The graph displays, for each timestep, the option
chosen for each block type (Decision Point, Agent Selection, Personality, Condition Check, and
Action). The coloured dots also represent the value option associated with each block option
choice. It shows a contingent block option choice and value option choice.

in order to reduce congestion in the centre of the network. This strategy leads to a slight global

improvement in the system’s overall speed and average trip time, at a cost of a higher trip dis-

tance. Nonetheless, this led to a shorter simulation time for all agents to leave the network, which

represents a better system flow.

5.2.2 Spider

The control group score for the "Spider" network is:

• ’overall_mean_speed’: 9.215

• ’avg_occupancy’: 0.127

• ’sim_time’: 235
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Figure 5.6: Spider: Best Result Observation Graph.The graph displays the state of the system for
every timestep of the simulation: the average speed of all agents (red), the average occupancy
of the network edges (blue), and the number of active numbers. It shows a steady and natural
progression of these metrics.

• ’avg_trip_time’: 98.06

• ’avg_trip_distance’: 748.354

The best scoring result achieved for the ’Spider’ network is:

• ’overall_mean_speed’: 9.24

• ’avg_occupancy’: 0.125

• ’sim_time’: 227

• ’avg_trip_time’: 98.244

• ’avg_trip_distance’: 771.972

The observation and action graphs for the "Spider" network can be seen in Figures 5.6 and 5.7,

respectively.

Overall, at first glance, it is clear the choice of block and value options is more scattered than

the "Grid" result. Although there are some notable preferences, it seems every block option is

used at some point in the simulation, even if just once.

Firstly, regarding the Decision Point options, there is a stronger preference for the quadrant

check, followed by periodic check and key point check, with the random check coming in last

place. This instantly reveals that, in contrast to the "Grid" result, the model learned to initiate the

execution blocks more often, not opting as often for options that may lead to inactivity.
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Figure 5.7: Spider: Best Result Action Graph. The graph displays, for each timestep, the option
chosen for each block type (Decision Point, Agent Selection, Personality, Condition Check, and
Action). The coloured dots also represent the value option associated with each block option
choice. It shows a scattered block option choice and a contingent value option choice.

Secondly, in the Agent Selection, there is again an equal preference for both options. However,

compared to the "Grid" result, the model learned to choose value options that select a larger set of

agents. Likewise, there is a strong preference for value options 3 (green) and 4 (yellow).

Thirdly, the model has a clear preference for the "submissive" and "indecisive" Personality

options, further confirming the need for the agents to accept behavioural change.

Afterwards, in the Condition Check block, the model shows a higher preference for a value

option rather than any block option. The favouritism for the value option 1 (blue) reveals that the

condition check comparisons are easy to pass. There is also some favouritism for the "getSlow-

Duration" and "getAverageSpeed" block options.

Lastly, the model considerably prefers the Action block option "enterHighway". In this net-

work, the "highway" labelled edges refer not to a highway but rather to the outermost ring of the

map. Although these edges have only one lane and cover the biggest distance, the model still
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learned to make the agents take this path over the centre-most ring. Additionally, there is some

preference for the "enterAvenue" and "avoidNextEdge" action options.

Ultimately, the model has learned to execute most of the time and retrieve the highest amount

of agents. This can be seen in the preference for targeting the agents in entire quadrants, keeping

most of them through a selection of a large partition, ensuring they will accept a change in be-

haviour, and that the condition checks are easily passable. By the end, there is a strong interest in

these agents travelling through the longest ring, which is revealed in the significant increase in the

average trip distance compared to the control group. And even though the overall mean speed and

average trip time remained basically the same, the time for all the agents to complete their trips

decreased (shorter simulation time), which means an increase in the system’s flow. This means

that the model focused on removing agents from the centre-most ring in order to avoid congestion.

Nonetheless, actions like "enterAvenue" and "avoidNextEdge" also reveal themselves as crucial

to keeping the balance in the distribution of the agents across the network, since only choosing

"enterHighway" would most likely lead to even worse congestion problems.

5.2.3 Random

The control group score for the ’Random’ network is:

• ’overall_mean_speed’: 11.754

• ’avg_occupancy’: 0.144

• ’sim_time’: 464

• ’avg_trip_time’: 178.154

• ’avg_trip_distance’: 959.32

The best scoring result achieved for the ’Random’ network is:

• ’overall_mean_speed’: 10.961

• ’avg_occupancy’: 0.149

• ’sim_time’: 439

• ’avg_trip_time’: 178.254

• ’avg_trip_distance’: 1050.631

The observation and action graphs for the "Random" network can be seen in Figures 5.8 and

5.9, respectively.

Overall, at first glance, it is noticeable how the block option choice is contingent similar to the

"Grid" results, and the value option choice is scattered similar to the "Spider" result.
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Figure 5.8: Random: Best Result Action Graph. The graph displays the state of the system for
every timestep of the simulation: the average speed of all agents (red), the average occupancy of
the network edges (blue), and the number of active numbers. It shows a slow progression of the
metrics, with high peaks at the end.

Firstly, in the Decision Point section, the model has a strong preference for the "checkQuad-

rant" option, followed by a preference for the "checkRandomly" option. In both cases, the choice

for the value option does not seem to follow any pattern, which means this section targets a diverse

range of agents.

Secondly, as seen in the previous results, there is no strong preference for any Agent Selection

block option. Additionally, it seems there is also no pattern in the choice for the value option, thus

selecting a diverse range of agents for the next blocks once more.

Thirdly, there is a strong preference for the "submissive" and "indecisive" Personality block

options, just like in the "Spider" result. In this case, the "submissive" option is chosen even more

often than in the "Spider" result, which highlights a strong incentive for the agents to accept a

change in their behaviour.

Afterwards, it seems there is a preference for the Condition Check options "getNumStopStart",

"getAverageSpeed", and "getSpeed", in descending order of preference. In spite of this, it appears

the choice of value options is quite scattered, which leads to a wide variety of value comparisons

for the condition checks.

Lastly, the model has learned to mostly favour the "goDirectly" and "enterAvenue" Action

block options. In this scenario, the "avenue" labelled edges have higher priority and speed limit

than the others, serving a similar purpose as a road connecting distant small towns in a rural dis-

trict. This means that the model highly incentivizes the agents to enter the avenue and then travel

to their destination from there. There is also some preference for the "avoidNextEdge", which

means there is some incentive for the selected agents to take a small detour from their current

route, allowing other agents to enter the so-favoured avenues and reduce the overall congestion.
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Figure 5.9: Random: Best Result Action Graph. The graph displays, for each timestep, the option
chosen for each block type (Decision Point, Agent Selection, Personality, Condition Check, and
Action). The coloured dots also represent the value option associated with each block option
choice. It shows a somewhat contingent block option choice and scattered value option choice.

Ultimately, although there is a concrete trend for the block option choice, the value option

choice seems to be too random. The model has learned to essentially retrieve the agents from the

quadrants, make an apparently random selection of them, and ensure they are receptive to changes

in their behaviour. Afterwards, the model mostly checks their current speed, average speed, or the

number of times they stopped and started their travel, and compares it with an apparently random

value. Finally, the agents are incentivized to either keep on the shortest path to their destiny or to

use the avenue that crosses the network. It is interesting to notice how, in spite of a decrease in the

overall mean speed, a significant increase in the average trip distance, and an unchanged average

trip time, the number of total timesteps in the simulation shortened significantly. It seems that

the model does not find it relevant to rely on the value option choices and that pushing a varying

amount of agents to travel through the faster edges seems to be the simplest and easiest option to

increase the system’s flow.



52 Experiments and Results

5.3 Summary

This chapter detailed the extensive experimentation process taken to refine the reward function and

improve agent performance in a simulation environment. Initially, the control group provided a

baseline for comparison, revealing that early reward function setups led to evaluation scores often

lower than or equivalent to the control group. Several iterations and modifications, including vari-

able reduction and reward function simplification, were implemented to address these issues. The

introduction of traffic elements and the adaptation of maps increased heterogeneity and provided

better learning opportunities for the agents. Despite these enhancements, achieving results consis-

tently better than the control group remained challenging. Ultimately, the experiments highlighted

the importance of environment complexity and reward structure in training effective models, lead-

ing to notable improvements in specific scenarios. The results for the network configurations

’Grid’, ’Spider’, and ’Random’, showcased the model’s learning progress and the strategies it

adopted to enhance traffic flow and system efficiency. Table 5.1 shows an overview of the strate-

gies learned by the model for each of the network configurations.

Table 5.1: Overview of the model’s learned strategies for increasing the flow in network configu-
ration: Grid, Spider and Random



Chapter 6

Conclusions and Future Work

This chapter concludes the dissertation by summarizing the key findings and accomplishments

achieved through the practical application of a traffic network to analyse flow systems. It highlights

the creation of a comprehensive framework for large-scale traffic simulations, focusing on agent-

based modelling and deep reinforcement learning. The chapter also outlines the limitations and

assumptions of the study and suggests directions for future work to further enhance the research.

6.1 Conclusions

In conclusion, this dissertation successfully used the practical application of a traffic network to

analyse the intricacies and complexities of flow systems. A framework designed for creating, ob-

serving, and evaluating large-scale traffic simulations was constructed, focusing on sophisticated

modelling of the agents. Additionally, this framework uses specialized machine-learning technolo-

gies (deep reinforcement learning) that allow the agents to learn how to improve the flow of the

system under different network scenarios. The agents have at their disposal an easily configurable

and extensible set of functionalities that follow a logical sequence of operations for inspecting and

interacting with the environment, which can easily be abstracted to any type of flow system. After

conducting several experiments with different network schemes, an analysis of the best scoring

results was made to understand which is the best way of achieving better flow conditions in a

system. Table 5.1 of page 52 displays the sequence of operations that improved the flow for each

type of network. However, this study did not manage to develop a scripting declarative language

to define sophisticated agent behaviours to apply in generic flow systems.

The work presented was done under some assumptions and presents some limitations. The

created framework assumes that a central entity has information regarding numerous aspects of the

simulation, like the state of each agent and each network component. Although the experiments

returned positive results for the considered situations, they did not explore testing scenarios with

variance on certain variables. For example, testing with a different number of agents, different
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network architectures, and different map sizes, just to name a few. Additionally, an approach

where every agent could individually choose a pair of Condition Check and Action options was

attempted, but was left unexplored due to hardware limitations.

6.2 Future Work

Since the presented work did not manage to achieve all the initially proposed goals, the biggest

opportunity for future work on this study must be the development of the scripting declarative

language for abstract applications.

Additionally, on top of exploring all the previously listed limitations, it would be beneficial to

fine-tune the results by extending the learning phases and conducting hyperparameter tuning.

Lastly, it would be very convenient for researchers if a GUI capable of setting up the envi-

ronment of a flow simulation was created. This way, researchers could intuitively conduct ex-

periments and explore the effects different conditions and execution block options have on flow

systems. Ideally, it would be possible to pick and drag boxes relating to the different execution

blocks, similar to Scratch.



Appendix A

Algorithms

A.1 Environment Reset and Simulation (Re)Start

This function is evoked by Ray through Gymnasium each time the custom environment needs to

be reset to start or restart a simulation.

Algorithm 1 reset()
1: if simulationIsRunning() then
2: closeSimulation()
3: end if
4: resetSimulationVariables()
5: startSimulation()

A.2 Simulation Step Loop

This loop represents the step function evoked by Ray through Gymnasium every timestep. The

variable initialize works as a global variable, stored in the custom environment class.

Algorithm 2 step()

1: initialize done← False
2: while not done do
3: action← generateAction()
4: executeBlock(action)
5: advanceSimulation()
6: obs← getObservation()
7: reward← getReward(obs, action)
8: if simulationReachedEnd(obs) then
9: done← True

10: end if
11: saveInfo(obs, reward)
12: end while
13: closeSimulation()
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A.3 Observation collection function

Relates to the getObservation() function called in the step() function.

Algorithm 3 getObservation()
1: observed_edges← [ ]
2: all_obs← [ ]
3: all_vehicles← getActiveVehicles()
4: for vehicle in all_vehicles do
5: updateVehicleSpeeds(vehicle)
6: updateVehicleQuadrantLocation(vehicle)
7: updateElapsedTripTimesAndDistances(vehicle)
8: if not hasObservedAllEdges(observed_edges) then
9: edge← getCurrentEdge(vehicle)

10: obs← getEdgeObservations(edge)
11: all_obs.insert(obs)
12: observed_edges.insert(edge)
13: end if
14: end for
15: obs_metrics← unpackObs(all_obs)
16: return obs_metrics

A.4 Reward calculation function

Relates to the getReward(obs, action) function called in the step() function.

Algorithm 4 getReward()

1: current_timestep, mean_speed← inspectObservation(obs)
2: timestep_threshold← getTimestepThreshold()
3: if current_timestep > timestep_threshold then
4: reward← -1
5: else
6: reward← mean_speed
7: reward← normaliseReward(reward)
8: penalty← calculatePenalty(action)
9: reward← reward - penalty

10: end if
11: return reward



Appendix B

Additional Results

B.1 First Observation Graphs

B.1.1 Linear Scale

Observation graph with previous observation variables, in linear scale. At this implementation

stage, the reward was dependent on the number of arrived vehicles.

Figure B.1: Observation Graph: Linear Scale
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B.1.2 Logarithmic Scale

Observation graph with previous observation variables, in logarithmic scale. At this implementa-

tion stage, the reward was dependent on the number of arrived vehicles.

Figure B.2: Observation Graph: Logarithmic Scale

B.1.3 Fuel and Emissions

Observation graph displaying "fuel" consumption and particle "emission" variables. This high-

lights how the variables are linear dependent on one another, which is why they were simplified in

a later stage.
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Figure B.3: Observation Graph: Fuel and Emissions

B.1.4 Reward Function from Polynomial Regression

Observation graph displaying the first attempt at designing the reward function with polynomial

regression functions for each observation variable.
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Figure B.4: Observation Graph: Reward Function from Polynomial Regression

B.1.5 Reward Function from Polynomial Regression 2.0

Observation graph displaying the another attempt at designing the reward function with polyno-

mial regression functions for each observation variable, highlighting the respective function for

each one.
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Figure B.5: Observation Graph: Reward Function from Polynomial Regression 2.0

B.2 First Action Graphs

B.2.1 With Execution Block

Action graph displaying an implementation stage when the block type "Execute" still existed. The

block contained the options "Execute" and "Standby", which served as a step before the Decision

Point where the program would decide if it would execute or not. As displayed by the graph,

the program revealed issues where the "Standby" option would be chosen consistently, leading to

inactivity from the program on the simulation.
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Figure B.6: Action Graph: With Execution Block

B.2.2 Without Execution Block

Action graph displaying an implementation stage when the "Execute" got removed. As displayed

by the graph, the model learned to choose other options in different blocks that led to the same

problem. In this case, the program learned to always choose the "stubborn" option.
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Figure B.7: Action Graph: Without Execution Block

B.2.3 Addition of Penalties

Action graph displaying an implementation stage when penalties were added to mitigate the pre-

vious issues. Although some changes can be seen, the problem persisted.
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Figure B.8: Action Graph: Addition of Penalties

B.2.4 Creation of Value Options

Action graph displaying an implementation stage when value options for the block types were

created.
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Figure B.9: Action Graph: Creation of Value Options

B.2.5 Colour-Coded Value Options

Action graph displaying the chosen value options in a colour-coded format for better visibility and

understanding.
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Figure B.10: Action Graph: Colour-Coded Value Options

B.2.6 Hyperparameter Tuning

Action graph showing a result where hyperparameter tuning was tested. Although this was the

first result that returned a better scoring evaluation than the control group, it consisted of always

selecting all the vehicles and increasing their speed, which is not considered valid or innovative

for the purpose of this dissertation.
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Figure B.11: Action Graph: Hyperparameter Tuning Result

B.2.7 Removal of "speedUp" and Addition of "enterHighway" and "addAvenue"

Action graph showing an implementation stage where the "speedUp" was removed. At this point,

the new maps had been designed, so the "enterHighway" and "addAvenue" functions were created

to make better use of the new network components.
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Figure B.12: Action Graph: Removal of "speedUp" and Addition of "enterHighway" and "addAv-
enue"

After this result, several additional experiments were made. It was only upon the removal of

the traffic lights that the model started returning valid positive results.
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