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Resumo

As limitações das atuais soluções de (operação e manutenção) O&M realizadas por humanos
propõem a integração de tecnologias robóticas para enfrentar esses desafios. A presente disser-
tação analisa os desafios críticos da percepção subaquática no contexto da operação e manutenção
(O&M) de energia eólica maritima. Ela destaca as dificuldades únicas da percepção subaquática,
tais como a luz natural limitada, as condições imprevisíveis da água e o fenómeno de neve mar-
inha. Ela explora a eficácia de vários sensores, incluindo sonares, câmeras e técnicas de imagem,
como visão estereoscópica e Light Stripe Ranging (LSR), para melhorar a percepção subaquática.
A visão estereoscópica é uma técnica de imagem que adquire informações 3D densas e colori-
das, mas com limitada capacidade de estimação de profundidade. Por outro lado, o LSR é uma
técnica de imagem capaz de fazer previsões precisas de profundidade, mas a densidade de infor-
mação adquirida é escassa. MARESye é um sensor híbrido que combina estas duas técnicas de
imagem, permitindo a fusão destas técnicas de imagem. Ela discute a importância da fusão de
dados heterogêneos em 3D na combinação de dados estereoscópicos e de LSR para permitir que
robôs naveguem e operem de maneira eficaz em ambientes subaquáticos complexos. Em resumo,
a dissertação sublinha a importância de sistemas avançados de percepção e fusão de dados 3D para
melhorar a O&M da energia eólica maritima, reduzindo, em última análise, custos e aumentando
a confiabilidade.

A rede AttentDeepUW é uma nova arquitetura de aprendizagem profunda projetada para mel-
horar a precisão e robustez da percepção subaquática por meio de mecanismos de atenção. Os
resultados experimentais mostram um erro RMSE de 0,0167 m com dados sintéticos e uma pre-
cisão δ1 de 99,1%. Em ambientes subaquáticos, a rede apresentou um erro absoluto médio de
0,0188 m e um erro relativo médio de 6.83 %. A previsão da rede é feita a partir de uma nuvem
de pontos estéreo e uma nuvem de pontos LSR, que apresenta informações esparsas em apenas
duas linhas. Esses fatores dificultam a estimativa, causando distorções nas previsões. No entanto,
em cenários do mundo real, a rede gerou consistentemente nuvens de pontos de saída alinhadas
e suaves. Estas experiências servem para validar a eficácia das metodologias propostas, apresen-
tando melhorias substanciais na precisão da percepção e na eficiência operacional em comparação
com os métodos convencionais. A rede opera com um tempo médio de processamento de 4,2 ms
por iteração, enfatizando sua adequação para aplicações em tempo real onde tempos de processa-
mento rápidos são essenciais.

O trabalho conclui destacando o impacto potencial desses sistemas avançados de percepção e
técnicas de fusão de dados 3D na estrutura flutuante offshore DURIUS. Ao reduzir a dependência
de mergulhadores humanos e ao melhorar as capacidades dos sistemas robóticos, a investigação
visa reduzir os custos operacionais e aumentar a fiabilidade e segurança dos parques eólicos off-
shore.

Palavras-chave: O&M, visão 3D, subaquático, MARESye, fusão de dados heterogéneos,
AttentDeepUW
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Abstract

The limitations of current human-based (operation and maintenance) O&M solutions propose the
integration of robotic technologies to address these challenges. The present dissertation analyses
the critical challenges of underwater perception in the context of offshore wind energy opera-
tion and maintenance (O&M). It highlight the unique difficulties of underwater perception, such
as limited natural light, unpredictable water conditions and the phenomenon of marine snow. It
explores the effectiveness of various sensors, including sonars, cameras and imaging techniques
such as Stereoscopc Vision and Light Stripe Ranging (LSR), to improve underwater perception.
Stereoscopic Vision is an imaging technique that acquires dense and colorful 3D information but
with limited capacity to depth estimation. On the other hand LSR is an imaging technique capable
of making accurate depth predictions, but the information density acquired is sparse. MARESye is
a hybrid sensor that combines these two imaging techniques, allowing the fusion of these imaging
techniques. It discusses the importance of 3D heterogeneous data fusion in combining stereo-
scopic and LSR data to enable robots to navigate and operate effectively in complex underwater
environments. In summary, the dissertation underlines the importance of advanced perception sys-
tems and 3D data fusion to improve the O&M of offshore wind energy, ultimately reducing costs
and increasing reliability.

The AttentDeepUW network is a novel deep learning architecture designed to improve the ac-
curacy and robustness of underwater perception through attention mechanisms. The experimental
findings show an RMSE error of 0.0167 m with synthetic data and a δ1 accuracy of 99.1%. In
underwater environments, the network exhibited an average absolute error of 0.0188 m and an
average relative error of 6.83 %. The network prediction is made from a input stereo point cloud
and an LSR point cloud, which presents sparse information in just two lines. These factors hin-
der the estimation, causing distortions to the predictions. However, in real-world scenarios, the
network consistently generated aligned and smooth output point clouds. These experiments serve
to validate the efficacy of the proposed methodologies, showcasing substantial enhancements in
perception accuracy and operational efficiency compared to conventional methods. The network
operates with an average processing time of 4.2 ms per iteration, emphasizing its suitability for
real-time applications where fast processing times are essential.

Work concludes by underscoring the potential impact of these advanced perception systems
and 3D data fusion techniques on the DURIUS offshore floating structure. By reducing depen-
dency on human divers and enhancing the capabilities of robotic systems, the research aims to
lower operational costs and increase the reliability and safety of offshore wind farms.

Keywords: O&M, 3D vision, underwater, MARESye, heterogeneous data fusion, Attent-
DeepUW
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SDG (Sustainable Development Goals)

This dissertation makes contributions to the fulfillment of the SDGs mentioned in table 1.

Table 1: Contributions of this dissertation to the SDGs.

SDG Target Contribution Performance
indicators
and metrics

7 By 2030, increase substantially the
share of renewable energy in the global
energy mix.

By reducing maintenance
time for offshore wind
turbines, it is possible to in-
crease the share of renewable
energy in the global energy
mix.

Renewable
energy share
in the total
final energy
consumption.

9 By 2030, upgrade infrastructure and
retrofit industries to make them sus-
tainable, with increased resource-use
efficiency and greater adoption of clean
and environmentally sound technolo-
gies and industrial processes, with all
countries taking action in accordance
with their respective capabilities.

Better offshore wind tur-
bine maintenance systems
promote greater use of this
renewable energy source.

CO2 emission
per unit of
value added.

Enhance scientific research, upgrade
the technological capabilities of indus-
trial sectors in all countries, in particu-
lar developing countries, including, by
2030, encouraging innovation and sub-
stantially increasing the number of re-
search and development workers per 1
million people and public and private
research and development spending.

This project is included in the
highly scientific area promot-
ing scientific development.

Research and
development
expenditure as
a proportion
of GDP.
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Chapter 1

Introduction

1.1 Context and Motivation

Offshore wind production has seen a significant growth in recent years, becoming one of the

main sources of electrical energy in the near future. Operation and maintenance (O&M) of off-

shore wind energy accounts for a large part of the costs of offshore wind energy produced. The

underwater environment can cause deterioration in electrical and structural equipment, implying

regular maintenance, and monitoring [1, 2]. Most of the current O&M solutions are man-based,

which is a very arduous and dangerous process, requires a significant amount of resources (sup-

port vessels, human resources, etc.), and restricts operations to certain atmospheric conditions.

Man-based O&M is also an unreliable and unrepeatable solution, with divers relying on hand-held

flashlights to perform these operations. Employing robotic technologies in offshore wind farms

can help to mitigate these issues [1]. Autonomous underwater vehicles, bridge substructures in-

spection systems [3], aerial mapping and localization [4], multi-domain inspection [5, 6], and

docking procedures [7, 8, 9] are some examples where the implementation of robotics has become

increasingly prevalent in these environments.

Developing advanced perception systems is now a pressing necessity in the field of robotics, as

they are essential for enabling robots to navigate, interact, and operate efficiently in complex and

dynamic environments [10]. Perceiving objects underwater is uniquely challenging when com-

pared to other settings due to factors such as limited natural light, the absorption of light, un-

predictable water conditions and disturbances in the environment that are beyond the control of

human observers [10].

Sonars represent a category of acoustic sensors that exhibit resilience to underwater visibility

challenges. These demonstrate robust performance even in the presence of water turbidity and

are characterized by an extended range of detection capabilities, enabling them to navigate and

perceive the underwater environment effectively. On the other hand, the acoustic waves used in

sonar can result in lower detail and less precise imaging, making it challenging to recognize fine

features or objects with intricate structures. Another limitation is its susceptibility to a minimum

operational distance constraint. In the case of Infrared LiDAR, their utility is restricted when
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2 Introduction

deployed over extended distances beneath the water surface [10]. Specifically, water absorbs a

significant portion, if not all, of the infrared laser energy emitted by these sensors. Consequently,

the return signals become exceptionally weak or even non-existent, impeding the sensors’ ability

to provide reliable data over long underwater ranges. Imaging sensors, rely on optical sensors such

as cameras can offer distinct advantages. The cameras employed in visual navigation systems take

advantage of intricate and colorful information, proving instrumental in tasks related to object

detection and classification within the underwater domain [10].

None of the existing sensors are capable of providing dense and very precise information

about the environment. Stereoscopic Vision is an imaging technique that obtains 3D and colored

information about the environment. Structured light is another imaging technique, which despite

providing very sparse and non-colorized information about the environment, it presents high pre-

cision in depth estimation. Stereoscopic vision and structured light are two imaging techniques

that have useful advantages, but each of them also has disadvantages that compromise their solo

use. Stereoscopic vision provides dense, colorful 3D information, however with low depth accu-

racy. In contrast, structured light offers dense 3D information with high precision. MARESye is

a sensor that explores these two sources of information. As these disadvantages are complemen-

tary, it becomes theoretically possible to implement a heterogeneous data fusion to minimize the

individual disadvantages of each one [11].

1.2 Objectives

The objective of this dissertation is to provide a high-density and precise 3D reconstruction of

the underwater environment. Data fusion is the process of combining data from multiple image

techniques to create a more comprehensive understanding of the environment. By integrating

data from various techniques, a robot can gain a more accurate and holistic perception of its

surroundings. Passive Photometric Stereo (PS) and active Light Stripe Ranging (LSR) techniques

will be combined to produce a high-density and precise 3D reconstruction of the environment. In

summary, the dissertation aims to:

• Develop 3D heterogeneous data fusion algorithms based on deep learning for integrating

visual information (that are textured and dense information) and precise depth informa-

tion (provided by LSR technique that is sparse but very accurate information) from the

MARESye hybrid sensor into a unified 3D point cloud providing a better reconstruction of

the underwater environment.

• Evaluate data fusion algorithms by conducting initial validation of performance using syn-

thetic data. This involves testing the algorithms with synthetic data and then applying them

to real-world data to assess their effectiveness and reliability.

• Assess the performance of data fusion algorithms using data collected in a controlled un-

derwater environment, ensuring accurate and consistent results under specified conditions,

improving the state-of-the-art using attention mechanisms.
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1.3 Document Structure

In addition to this introductory chapter, the document presents other four other chapters. Chap-

ter 2, presents the state of the art, including section 2.1, that presents the challenges of the under-

water environment which must be overcome by robotic implementations. The section 2.2 presents

sensors that provide a perception of the surrounding environment and also some image techniques

that provide processing and enhancement of information provided by the sensors. The final sec-

tion of the chapter (2.4) provides a brief review of the most relevant information of the state-of-art.

Chapter 3 begins with a detailed presentation of the sensor used and a comprehensive character-

ization of the problem. It includes a description of data acquisition procedures and a detailed

overview of the final deep learning network developed. The analysis of the obtained results is

presented in Chapter 4. Chapter 5 provides a summary of the obtained conclusions, as well as

future work to be developed.
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Chapter 2

Bibliographic review

This chapter focuses on the main challenges of the underwater environment and presents sen-

sors, imaging techniques, heterogeneous 3D data fusion techniques.

2.1 Challenges of underwater perception

One of the most significant challenges in underwater perception is the scarcity of high-quality

sensors capable of delivering tridimensional data. Obtaining such information is impeded by a

range of factors, including limitations in sensor range and resolution, suboptimal lighting condi-

tions, and the absence of textural cues in the environment [12].

Another challenge is optical sensor calibration issues and lens distortions. When light rays

enter a spherical lens, they are refracted or reflected more or less than those that strike close to the

center. This deviation reduces the quality of images produced by optical systems. The spherical

shape of a lens can cause light rays to deviate and not focus at a single point, leading to image

distortion. This is particularly noticeable when the lens is large or has a short focal length [10].

2.1.1 Absorption

The underwater environment exhibits significant light absorption, primarily due to interactions

between photons and water molecules, resulting in heat generation. This interaction hinders the

penetration of visible light into water, particularly affecting red and violet spectrums, causing a

substantial decrease in their intensity. The impact is less pronounced in the blue and green range.

As a result of this absorption effect, red and violet light vanishes at depths less than 7 m, yellow

and orange colors are lost around 15 m, and blue and green colors fade at approximately 30 m,

as seen in figure 2.1 [13]. This phenomenon explains the prevalent blue or green appearance of

seawater. Furthermore, underwater substances like organic matter and dissolved organic materials

can intensify light attenuation, especially in the blue wavelength. Other factors contributing to

reduced ambient light in underwater settings include light reflection at the water’s surface, light

refraction as light traverses the water, and light diffusion causing deviations in light paths. These

5
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interactions collectively restrict the penetration of visible light into the water, resulting in darker

surroundings as a robot descends into deeper waters [13].

Figure 2.1: Attenuation of light in water1.

To address the issue of low visibility in underwater environments, active light systems inte-

grated with robotic platforms are used. However, this solution faces two main challenges. First,

the artificial light system also experiences energy attenuation, limiting its effectiveness in illumi-

nating deeper water layers.

While increasing the overall object illumination might seem beneficial, the back-scattering ef-

fect diminishes the contrast between the object and its background. The problem stems from light

being scattered along the illumination path, washing out the object and causing light from the ob-

ject to scatter, resulting in image blurring. Enhancing the total object illumination doesn’t improve

contrast in such scenarios because the scattering is directly proportional to intensity, negating any

net increase in contrast. In turbid environments, these perception challenges worsen as higher

turbidity amplifies light attenuation and scattering intensity, particularly in waters rich in clay, silt,

algae, and other organic matter, rendering optical imaging systems ineffective[13].

2.1.2 Scattering

One other challenge of underwater perception is the scattering phenomenon. The interaction

of light with water molecules and suspended particles significantly influences the propagation of

light rays. Scattering refers to the phenomenon where light gets dispersed in various directions due

to interactions with particles in the water. This scattering of light contributes to the degradation of

image clarity, resulting in low contrast and blurry details. The scattering and absorption of light in

water can cause various quality degradation issues in underwater images. These degraded-quality

underwater images are harmful to analysis and applications [14, 15].

1https://www.empiricalimaging.com/knowledge-base/underwater-photography/
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Backscattering occurs when light is redirected backward after encountering particles or in-

terfaces within a medium. This phenomenon plays a significant role in various fields, including

remote sensing, medical imaging, and underwater exploration, influencing the interpretation of

collected data and the quality of acquired images. Back-scattering frequently arises in underwater

imaging when the active light system inadvertently illuminates particles between the optical sen-

sor and the object or the open water space behind the object rather than the intended object itself.

This leads to blurred and noisy images in various underwater optical systems. This effect restricts

object detection distance in contrast-limited imaging applications like human vision or film [14].

Marine snow represents a significant source of degradation in underwater images (see figure

2.2), and it’s a common occurrence in the ocean. In the context of capturing underwater images

or videos, these small particles intercept the path of light before it reaches the optical sensor. As

a result, these particles represent an effect of backscattering the light, leading to issues such as

reduced contrast and a hazy appearance. Additionally, light reflecting off marine snow particles

introduces random bright spots in the captured images, diminishing the overall clarity of the scene

[16].

Figure 2.2: Marine Snow in underwater environment [16].

The irradiance E(r) at position r can be described by equation 2.1, where a and b are absorption

and scattering coefficients [11].

E(r) = E(0)e−are−br (2.1)

The underwater medium, characterized by its distinct optical properties, introduces challenges

and intricacies that profoundly impact the way objects and features are perceived. Understanding

the principles of scattering is essential for developing effective underwater sensing and imaging

systems.

To effectively solve these quality degradation issues, various methods have been introduced.

One of these methods is an underwater image restoration method via weighted wavelet visual

perception fusion. This method first presents an attenuation-map-guided color correction strategy

to correct the color distortion of an underwater image. Then it employs strategies to obtain global

and local contrast-enhanced images. Finally, it introduces a weighted wavelet visual perception
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fusion strategy to obtain a high-quality underwater image by fusing the high-frequency and low-

frequency components of images at different scales. These methods aim to improve the quality

of underwater images, making them more suitable for human perception and computer processing

[14].

2.2 Underwater Perception: Sensors and Imaging Techniques

2.2.1 Sonars

Sonar systems work by emitting a sound wave and then listening for the echo. This is known

as the “time of flight” method. The time it takes for the echo to return can be used to calculate the

distance to an object. Sonars are a type of sensor that has the advantage of not suffering from the

underwater conditions imposed on optical sensors. They are robust to water turbidity, have long

range due to the sound properties of water, and are immune to lighting conditions. However, sonars

have specific disadvantages [10]. However, at very short distances, the echo may return while the

sonar system is still emitting the sound wave. This can cause a problem because the sonar system

needs to switch from emitting to receiving mode to detect the echo. If the echo returns before the

system has switched to receiving mode, it won’t be detected, and the sonar system will not be able

to accurately measure the distance to the object. This system is proposed for longer ranges and

is unsuitable for short-range applications. Additionally, the utilization of sonars is hindered by

their suboptimal resolution, a critical limitation in inspection and maintenance tasks where precise

millimeter-level reconstruction is essential [2].

Historically used in underwater applications, sonar-based systems have made it possible to

carry out tasks such as bathymetry, navigation, and collision avoidance, as the work proposed by

Y. Petillot et al. (2001) [17], where a new structure was designed for sonar image segmentation,

underwater object tracking, and movement estimation. The maintenance and control of port struc-

tures used to be carried out by divers. This type of human operation entails various costs and risks,

which is why N. Brahim et al. (2008) [18] proposed a sonar-based system for inspecting quays.

The work proposes to detect and characterize quay defects using sonar images.

P. Teixeira et al. (2016) [19] proposed a submap-based technique for inspecting and mapping

underwater structures with complex geometries. The approach is based on the use of probabilistic

volumetric techniques creating submaps from multibeam sonar scans. A slightly different ap-

proach Y. Kim et al. (2020) [20] use a sonar on an Unmanned Surface Vehicle (USV). Because

the sonar is installed on a surface vehicle, the waves affect the sonar data. The author also pro-

poses a stabilization method to minimize image errors. T. Guerneve et al. (2015) [21] propose an

underwater 3D reconstruction solution based on 2D imaging sonars. This algorithm generates 3D

maps based on a sequence of imaging sonar images. This technique allows surface reconstruction

for tasks of inspection using standard sonars. S. Hou et al. (2022) [3] used a sonar and a convolu-

tional neural network to inspect the underwater part of bridges. The convolutional neural network
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(CNN) provides quantitative measurements of erosion depths and damage using the data obtained

from the side-scan sonar device.

2.2.2 Imaging Techniques

A frequently employed method for underwater 3D reconstruction involves the utilization of

optical systems that have the advantage of providing dense, extensive information about the en-

vironment, and unlike sonars, they provide rich color and texture information supporting a large

range of tasks [10]. They are passive sensors and therefore, in low light conditions, which are

very common in underwater environments, they require lighting on board the vehicle to be useful.

Furthermore, in conditions of low visibility and high water turbidity, optical sensors may not be

useful underwater perception. These water conditions can corrupt optical sensor data. Another

drawback is the fact that the quality of water causes a heavy attenuation of the red channel and

haze the images, reducing the texture of images which is fundamental for automated perception

methods [10]. Imaging techniques fall into 2 categories: active and passive [22]. Passive under-

water imaging uses external light sources (natural or artificial) to capture different points of view

of the environment to obtain information for 3D reconstruction. This type of perception system

is usually based on stereo optical sensor pairs [2, 22]. Contrarily, active underwater imaging con-

sists of projecting signals, such as waves, pulses, lasers, or light patterns into the environment and

then detecting and analysing them [22]. Tridimensional data extraction is achieved by employing

triangulation methods.

Stereo Vision

Stereo vision is a classic computer vision algorithm inspired by the human binocular vision

system. It relies on two parallel viewpoints and calculates depth by estimating disparities between

matching key-points in the left and right images. Incorporating multiple visual sensors into a sys-

tem enables the perception of depth and the generation of a tridimentional (3D) representation of

the surrounding environment. This method involves the use of multiple optical sensors to capture

several images of an object, with the optical sensors positioned at a known distance from each

other (displacement), a discernible disparity among objects within captured images can be estab-

lished. This inter-sensor disparity serves as the basis for estimating the depth of objects in the

visual images. The integration of these images relies on triangulating the distances between the

optical sensors and the distance from the scanned object, ultimately generating a 3D image. How-

ever, achieving precise image matching poses challenges, needing the implementation of specific

procedures to ensure accurate results [23]. The figure 2.3 shows a 3D reconstruction from stereo

matching.

The implementation of 3D image sensing in various industries serves underwater purposes like

underwater navigation and collision detection systems. Different methods are employed for 3D

imaging depending on the specific application requirements. While methods like laser point are
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Figure 2.3: Stereo Reconstruction of a boat in underwater [24].

utilized for accurate reconstruction, they may not be suitable for capturing dense, dynamic scenes,

a capability achieved by stereo vision [23].

Utilizing the principles of triangulation, depth can be derived through the application of similar

triangles. Considering the left image as the reference, equations 2.2 and 2.3 are formulated by

accounting for the disparity induced in the right image due to its displacement [25].

In this context, where X and Z denote the lateral distance and depth of the object relative to

the optical sensor, and xL and xR represent the x-coordinates of pixels in the left and right images,

respectively, with f representing the focal length, the following relationships are established.

Z
f
=

X
xL (2.2)

Z
f
=

X −T
xR (2.3)

d = f
T
Z

(2.4)

The stereo vision system typically comprises two optical sensors with identical specifications,

including the same focal length, aperture, and sensor area. Ideally, the left and right optical sensors

are aligned in the same plane, ensuring that their horizontal axes are on the same line and parallel
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to the imaging plane. The imaging model is depicted in Figure 2.4, with Figure 2.5 illustrating the

two-dimensional plane of the ideal model [25].

Figure 2.4: Representation of a point in 3D space
in stereo system [25].

Figure 2.5: 2D perspective of stereo system op-
eration [25].

In the figure 2.4, the distance between the two optical sensors is denoted as B. The point P(X,

Y, Z) in the imaging coordinates of the left and right optical sensors is represented as pL(uL,vL)

and pR(rR,vR) respectively. The left and right optical sensor coordinate systems are respectively

displayed as OLxLyL and ORxRyR. The image coordinates of the left and right optical sensors are

shown as (uL, vL) and (uR, vR). The conversion from a tridimensional map to a two-dimensional

map is illustrated in Figure 2.5.

In the realm of stereo vision, a fundamental relationship exists between depth and disparity.

This association is characterized by an inverse proportionality: an increase in disparity corresponds

to a closer positioning of an object to the optical sensor baseline, whereas a decrease in disparity

indicates a greater distance from the baseline. As explained in figure 2.6, the disparity observed in

stereo images is directly linked to the baseline between the two optical sensors. When the baseline

is diminished, the resulting disparity is likewise reduced, yielding smaller differences between the

images. Conversely, an augmentation of the baseline leads to a proportional escalation in disparity.

These principles bear significant implications for the design of stereo vision systems. In the pursuit

of accurate depth measurement, precise disparity assessment becomes paramount. Consequently,

an optimal stereo configuration necessitates a sufficiently large baseline, as an expanded baseline

facilitates more meticulous disparity measurements. This understanding underscores the critical

importance of thoughtful design considerations when developing stereo systems for applications

where precise depth estimation is imperative [26].

In recent years many research works rely on underwater perception systems based on optical

stereo systems. M. R. Shortis et al. (2014) [28] introduced stereo-video system to towed body

systems. In the same year, K. Williams et al. (2014) [29] deployed underwater stereo optical

sensor capable of triggering when animals are present in the field of view. P. Carrasco et al. (2015)

[30] propose a stereo-vision Graph-SLAM system using a conventional Bumblebee stereo pair to
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Figure 2.6: Accuracy of depth estimation by distance [27].

be used in control and navigation systems of SPARUS II AUV, and M. Carreras et al. (2018) [31]

continues the project proposing a path-planning algorithm. A stereovision system composed of

two AVT Mako optical sensors to 3D object detection was proposed F. Oleari et al. (2015) [32] to

provide visual perception to underwater intervention and manipulation tasks. S. Tani et al. (2023)

[33], develop a navigation solution based on stereo vision. Vision systems were used to collect

images of the underwater environment performing robot navigation based on visual odometry.

V. Kramar et al. (2023) [34] investigate methods to tackle challenges associated with detecting,

recognizing, and localizing objects in underwater environments, employing stereo vision systems

to overcome environmental constraints. The analysis focuses on the technical limitations presented

by underwater conditions and the effectiveness of stereo vision systems in addressing these issues.

Structured Light

Light Stripe Ranging (LSR) is a technique used in imaging systems, particularly in underwater

environments that involves projecting a set of visible stripes of light into the scene and recovering

3D information from these laser stripes through triangulation. It is one of the sensors/techniques

used to gather sparse depth information for dense disparity maps from RGB and sparse depth

information using deep regression models [2]. It has several advantages and disadvantages: Ad-

vantages include giving accurate 3D information (LSR provides accurate 3D information from

harsh underwater environments) and less affected by sub-sea conditions. Disadvantages include

limited data acquisition, only providing 3D information in a narrow line.

To extract correct 3D information from lasers, it is necessary to conduct a calibration to de-

termine the spatial configuration of each laser in relation to the camera frame. Triangulation

calculates the tridimensional points by intersecting 2D points derived from segmentation with the

given plane equations (assuming the camera matrix is known). Equations 2.5, 2.6, 2.7 represent

the triangulation to calibrate the lasers.
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Figure 2.7: Depth estimation by triangulation between optical sensor and laser projection [35].

Z =−a∗ x+b∗ y+d
c

(2.5)

X = Z ∗ x (2.6)

Y = Z ∗ y (2.7)

G. Inglis et al. (2012) [36] proposed a structured light laser imaging (as demonstrated in figure

2.8) to create high-resolution bathymetric maps of the sea floor.

Figure 2.8: Bathymetry using the LSR system proposed by G. Inglis et al. (2012) [36].

N. Hansen et al. (2015) [35] proposed the use of two lasers and a optical sensor, the lasers
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project vertical lines into the environment parallel to the optical sensor’s axis of view. By tri-

angulating points in the image (figure 2.7) using the Hough transform, this system provides an

accurate estimate of depth and is used in underwater inspection by autonomous underwater ve-

hicles (AUVs). This system showed an approximated error of 0.04m in the depth measurements

in underwater inspection tasks. Although these solutions show good accuracy in depth measure-

ments, they reveal a sparse point cloud. A solution was developed by F. Lopes et al.(2015) [37]

use a rotating laser line projector mechanism that allows an area to be scanned with a single beam.

This system is more complex and difficult to set up, but it allows for denser reconstruction and is

capable of reconstructing an object with an overall error of 2% of its size. The paper also shows

how to calibrate this stereo SLS system in and out of water and is able to reveal accuracy results of

less than 1 mm in a dry environment. M. Massot-Campos et al. (2014) [38] proposed a different

approach. Instead of increasing the number of laser beams, the proposed system uses a Diffractive

Optical Element (DOE) in front of the laser beam, dividing it into 25 parallel lines. This strategy

allows for a more complete 3D reconstruction without increasing the number of lasers and restrict-

ing energy consumption. However, this approach is highly affected by the turbidity of the water

as the refracted beams have less energy and are quickly attenuated at short distances.

Usually, underwater 3D laser scanners rely on a rotating mirror driven by a galvanometer.

However, the planes of light directed by these mirrors are usually deformed into cones. For this

reason, M. Castillon et al. (2021) [39] proposed the use of a biaxial MEMS mirror, in which the

second rotational degree of freedom can be used so that the refraction process transforms the light

shapes into planes. Y. Ou et al. (2023) [40] addressed active vision measurement systems designed

for underwater 3D reconstruction based on binocular structured light to combat the challenges of

light scarcity in underwater operations. H. Lin et al. (2024) [41] developed a high-precision 3D

reconstruction method for underwater concrete using line-structured light combined with stereo

vision. This method features a mathematical model to address light refraction, utilizes epipolar

constraints for noise reduction, and employs dual cameras for enhanced color accuracy, achieving

less than 5% error in controlled tests.

Pattern Projectors

Pattern projector is a technique based on designing a pattern or sequence of patterns that uniquely

determines the keyword of a pixel within a non-periodic region (each point on the surface of the

object has a unique binary code that differs from the code of any other point) [42, 43]. The 3D

coordinates of each point can be calculated based on triangulation principles.

F. Bruno et al. (2021) [44] use a gray-coded pattern projector and stereo equipment to recon-

struct submerged 3D objects. This system was difficult to operate at high levels of water turbidity,

making it unable to detect the projected patterns. It also had high acquisition times which made

it impossible to optimize the system’s performance. A different approach was presented by A.

Sarafraz et al. (2016) [45]. In this approach, only a single optical sensor is placed underwater and

an out-of-water pattern projector is used, projecting from top to bottom. This approach has several

disadvantages being highly dependent on the clarity of the water and given the strong attenuation
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of the projected light its operating range is very limited. Another similar work was developed by

Q. Zhang et al. (2011) [46] where a fringe projector and an optical sensor were positioned out of

the water and the object to be tracked was in the water. The digital projector projects a sinusoidal

fringe and the optical sensor records the distorted fringe which is modulated by the shape of the

object. The effects of the air-water interface were also taken into account. S. Zhuang et al. (2023)

[47] used a pattern projector to overcome the challenges posed by the underwater environment. It

used an active speckle pattern method in conjunction with underwater stereo vision to improve the

accuracy of underwater 3D measurement. This type of binary coding is reliable and less sensitive

to surface characteristics since all pixels are coded by binary values. However, to achieve high

spatial resolution, it is necessary to design a large number of sequential patterns. For the applica-

tion to be developed, 3D image acquisition would be very high, making it unfeasible to use [43].

Underwater 3D reconstruction is challenged by equipment nonlinearities and varied HDR object

reflectance, causing phase errors. Z. Zhu et al. (2023) [48] propose a double N-step orthogonal

polarization state phase-shift strategy (DOPS), using orthogonal polarization to enhance phase ac-

curacy and efficiency. Experiments show DOPS reduces errors by 57% and increases efficiency

by 50% compared to existing methods.

2.2.3 Hybrid Sensors

A lot of research has already been done on underwater perception systems. However, the chal-

lenges posed by underwater environments often do not allow for the millimetric precision required

to perform minute tasks due to data degradation. A hybrid sensor that combines active and pas-

sive sensing the system can exploit the benefits of each mode and overcome the limitations of the

other. For example, active mode can provide high resolution and accuracy, but it also consumes

more power and generates more interference. Passive mode can provide low power consumption

and textured information.

Given the advantages of stereo and LSR systems, it is useful in this work to use a sensor that

allows the use of these imaging techniques and is capable of being used in an underwater environ-

ment. MARESye (figure 2.9) is a hybrid image sensor that can be easily installed in different un-

derwater robotic applications. MARESye provides dense and accurate 3D information of diverse

underwater environments. The system is guided by a range-gated system to reduce the impact of

photometric problems such as diffuse reflection, non-uniform illumination, and water turbidity.

This system can be easily installed in different robotic applications, being a self-sufficient system

with an internal processing unit. MARESye ensures high fidelity of the data retrieved and has a

built-in information fusion module that allows for a dense and accurate tridimensional representa-

tion of the data obtained [11].

2.3 Heterogeneous 3D Data Fusion

Measurements obtained by sensors are always prone to errors, with noise introduced into the

measurements due to phenomena imposed by the environment. Fusing information from different
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Figure 2.9: MARESye hybrid imaging sensor [2].

sources becomes a multidisciplinary solution to combat the weaknesses of each sensor or tech-

nique [49].

In an out-of-water context, a lot of research has already been done into fusing heterogeneous

tridimensional information from stereo vision and LiDAR data. Stereo data is textured and dense

but requires a lot of computing power to produce accurate results [50]. On the other hand, LiDAR

data can be sparse or dense and is very accurate. This complementarity makes the fusion of these

data useful and feasible, and W. Maddern has developed work in this area. W. Maddern et al.

(2016) [50] fused sparse 3D data from a LiDAR scanner, which produces accurate but low-density

depth maps, with stereo data. The authors propose a real-time probabilistic approach that merges

the depth maps by propagating uncertainty estimates through a prior disparity refinement phase.

This system can be used in localization, mapping, and collision avoidance tasks for autonomous

vehicles. The method was evaluated on data collected by small urban autonomous vehicles and

made use of the KITTI dataset.

K. Park et al. (2018) [51], presented a new approach to fusing the same type of data mentioned

above. K. Park et al. chose to use a deep convolutional neural network (CNN) architecture for

high-precision depth estimation. In this network, the complementary characteristics of sparse

3D LiDAR data and dense stereo depth are coded simultaneously in an enhancing way, differing

from other CNNs by incorporating a compact convolution module. The authors report accurate

results, as evidenced by an example in figure 2.10, on several data sets proving the generalization

capabilities of the proposed network.

D. Martins et al. (2018) [52] used a self-supervised approach in which the depth estimates

obtained from the stereo data are used in a convolutional neural network (CNN), transforming a

single fixed image into a dense depth map. After training, the monocular estimates obtained from

the CNN and the stereo estimates are fused to preserve the high reliability of the stereo and take

advantage of the monocular depth in occluded regions. The experiments use the KITTI dataset

and aim to show that this type of fusion leads to better performance than isolated stereo estimates.

Using stereo optical sensors providing dense data and laser ranging sensors being more precise

and sparse, M. K. Ali et al. (2019) [53] proposed a new mechanism for incrementally merging

sparse data with dense data to produce dense and accurate depth maps. This method proved to

produce better results than those from a single source.
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Figure 2.10: Example of improving the quality of reconstruction after fusion [51].
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An unsupervised LiDAR-stereo fusion approach that can be trained end-to-end without the

need for real data by using a feedback loop to confirm the data. This approach by the authors X.

Cheng et al. (2019) [54] overcome the lack of LiDAR information.

Another approach is to fuse two equally dense sources based on a one-to-one mapping of 3D

points. This approach is usually used in aerial robotic applications, but in underwater environ-

ments, it is difficult to use this approach due to the lack of dense and precise information, such as

that provided by LiDARs, which makes it impossible to use in underwater environments due to

the strong attenuation of red and infrared radiation.

Recently there was a scientific advance with the work developed by P. N. Leite et al. (2024) [2]

bring for the first time a 3D information fusion approach capable of being used in the inspection

and maintenance operations of submerged structures. This approach relies on dense information

with textures and more accurate and sparse data, triangulate the projection of laser beams in the

scene. This approach contrasts with other fusion approaches, in which case the sparse 3D informa-

tion is propagated to the dense point cloud by exploiting homogeneous regions around the specific

beams. This way, an equally dense input cloud is no longer necessary to serve as a reference. A

supervised learning approach, called RHEA, is also discussed, which is based on state-of-the-art

approaches for training models with synthetic data, however, a synthetic-to-real training scheme

is used to allow direct application in an underwater context, skipping a retraining phase.

J. Zhang et al. (2014) [55] create a perception system using sonar and stereo vision to be inte-

grated into an ROV. A fusion of these two perception methods is proposed to obtain an improved

perception system for maintaining underwater infrastructures.

2.4 Critical Review

This section presents a short analysis of the drawn conclusions concerning the different state-

of-art sensors and image techniques used and described in this chapter. Although sonars are robust

and unaffected by water turbidity, which is why they are widely used in underwater environments,

they lack the resolution required for inspection tasks. Another factor that makes it unsuitable

for these tasks is its high minimum usage distance, making it unsuitable for short-distance tasks.

Visual sensors, on the other hand, have excellent resolution and textured information, making them

an acceptable choice for the task at hand. However, to obtain 3D information using visual sensors,

imaging techniques will have to be applied, stereo vision being one way of obtaining dense and

textured information about the scene, although the accuracy of the estimated depth is not the best.

To obtain more precise depth information, techniques such as LSR could be used, projecting lasers

onto the scene. This technique provides accurate depth information, but the information extracted

is sparse and untextured. Structured light (Pattern Projector) is another of the imaging techniques

covered in this document. The advantage of using a hybrid sensor that combines stereo vision and

LSR is that it can improve the accuracy and robustness of the 3D reconstruction. Stereo vision can

provide high-resolution images and dense depth maps, but it also suffers from occlusion, noise,

and low-texture regions. LSR can provide accurate and reliable distance measurements, but it
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also has a limited field of view and resolution. By fusing the data from both sensors, the hybrid

sensor can overcome the limitations of each sensor and provide a more complete and consistent

3D model of the scene. To collect this data, the MARESye hybrid sensor is prepared to use these

two techniques and is ready to be used in an underwater environment.
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Chapter 3

Fusing heterogeneous 3D information

Light propagation is challenged by adverse underwater physical phenomena that affect light

propagation through water. Absorption and scattering, as the main challenging factors, degrade

the information obtained from the environment.

The objective of this chapter is to presents a AI model that is to takes advantage of these

two imaging techniques provides a dense and precise unified point cloud on the information ob-

tained by the MARESye sensor. The system must be capable of delivering an information density

comparable to that of stereo, ensuring that each point is corrected using the sparse information

from the LSR. This approach ensures that all points in the dense point cloud are refined using the

limited yet precise information obtained from the sparse point cloud. Therefore, the depth infor-

mation from the LSR will be propagated by the stereoscopic points to correct its depth values.

The integration of data will be executed by projecting the point clouds onto the camera’s refer-

ence plane, thereby converting the point clouds into 2D images. These images will subsequently

be processed through a deep learning network to generate a unified 2D representation. The deep

learning network employs a U-Net architecture [56], operating in an early-fusion process, utilizing

a ResNet18 backbone that has undergone pre-training for the encoder component. Additionally,

attention blocks are implemented within the skip connections to enhance the emphasis on the most

significant features.

This chapter explores the data acquisition process (section 3.1) and the augmetations used

(subsection 3.1.1), the architecture of AttentDeepUW and AttentDeepUW_3skips (section 3.2)

and the network optimization methods (subsection 3.2.1).

3.1 Underwater Tridimensional Data Acquisition

MARESye is a hybrid sensor 1 equipped with a dual-camera system, each camera featuring a

resolution of 1440 x 1080 pixels arranged in a stereo configuration. The device also includes two

1This patented technology is covered by: US11503269B2 (granted); PCT/IB2019/052926, EP3775996,
AU2019251438A1 (pending).

21
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laser beam projectors operating at red and green wavelengths, complemented by a set of high-

intensity LED lights. An internal processing unit facilitates autonomous data processing, avoiding

the need for external computational support. Additionally, the sensor is equipped with a trigger

system. This arrangement improves image clarity and precision. Additionally, the sensor’s com-

pact form factor facilitates integration into Autonomous Underwater Vehicles (AUVs), Remotely

Operated Vehicles (ROVs), and robotic manipulators. It is engineered to endure pressures encoun-

tered at depths of up to 300 m. The baseline of the optical sensors and the subtle orientation of the

LED lights are precisely calibrated to achieve an optimal working range of 0.5 to 0.8 m. Operation

beyond this designated range is possible, it may adversely affect the quality of the data collected

[11, 2].

As MARESye is a hybrid sensor, the sensor is capable of obtaining information from the

environment through active and passive techniques as shown in figure 3.1. These different 3D

imaging techniques present different error characteristics. Therefore, the disadvantages of each of

the techniques can be theoretically mitigated by combining the point clouds extracted by each of

the techniques to obtain a denser and more accurate representation of the environment.

(a) Passive (b) Active

Figure 3.1: MARESye active and passive data aquisition [2].

Collecting underwater data is a very expensive process to carry out and, for this reason, only a

few collections of underwater data or underwater datasets are found in the state of the art. For the

same reason, these datasets are generally small, making it difficult to use them to train deep learn-

ing algorithms to be used in an underwater environment [57, 58]. Due to the limited availability

of relevant underwater datasets, a large-scale synthetic dataset was generated to emulate the data

obtained by the MARESye sensor [2]. The large amount of generated data facilitates its use in
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training deep learning networks. Since this synthetic data emulates MARESye’s output, it enables

the trained networks to be effectively applied to real data captured by the sensor.

The dataset employed was generated through a synthetic-to-real approach using Gazebo2 to

simulate the MARESye sensor. This approach enables the creation of 3D data that closely re-

semble real underwater 3D information. MARESye’s simulated sensor configurations and relative

orientations comply with the original calibrations. The LSR information is replicated using a 2D

laser that simulates a sparse, narrow line of 2.5D points. Given the high reliability and measure-

ment accuracy of LiDAR systems, the dense point cloud was captured using a 128-beam LiDAR.

While the LiDAR captures a highly precise and dense group of points from the environment, this

information does not match the real output provided by PS stereo. Therefore, the number of points

was adjusted to align with the resolution of the actual PS stereo. Additionally, the data collected

in simulation were tuned to mirror the noise characteristics and depth resolution of the PS point

cloud. The AttentDeepUW network is trained directly with 2.5D projections of 3D point clouds

that exclusively represent the depth readings from the collected tridimensional information. Con-

sequently, the absence of texture in synthetic data, compared to real stereo-based information,

does not pose a problem. The PS image texture is utilized solely to colorize the final output pre-

diction in real underwater applications. The point clouds are projected onto a 2D plane in the

form of depth maps, where each pixel value represents the distance from the camera to a point in

the scene. Each 3D point in the point cloud is then multiplied by camera matrix to obtain its 2D

coordinates on the image plane. The depth value for each pixel is derived from the Z-coordinate

of the transformed 3D point, which represents the distance from the camera to the point.

The stereo input is modeled with characteristics similar to harsh underwater environments [2]:

• The 2D projection of the stereo point cloud is divided into 20 bins, each with a resolution of

0.05 m.

• Adding a random offset within the range of [−0.05,0.05] m to the depth readings of the

entire point cloud is a crucial step in simulating real-world conditions that can impact the

accuracy of stereo vision systems. This modification addresses potential issues that could

arise from several factors like, poor parameters tuning of the SGBM algorithm, inaccurate

stereo calibrations or even mechanical vibrations during operation. By introducing a random

depth offset, the dataset more closely mimics these potential inaccuracies, thus providing a

more challenging and realistic training scenario for the neural network. This helps ensure

that the system is not only effective in ideal conditions but is also robust enough to handle

the unpredictable nature of real-world underwater environments.

• Gaussian noise was added to each 3D point, generating multiple noise masks with different

means and standard deviations, as detailed in table 3.1. This approach simulates the pres-

ence of floating particles, bubbles, and sudden illumination changes typical of underwater

2https://gazebosim.org/home



24 Fusing heterogeneous 3D information

Table 3.1: Parameters of gaussian noise added to dataset.

µ (mean) σ (standard deviation)
-0.25 0

0 0.015
0.25 0.03

scenarios, introducing constant discrepancies into the pixel matching operation. By incor-

porating this erroneous information, the model is better equipped to handle the inherent

noise and variability of real underwater environments.

• To effectively mimic real-world radial distortion, which disproportionately affects pixels

farther from the center of the image due to camera lens characteristics, noise values were

scaled based on each pixel’s distance from the center. This was achieved using an inverse

distance transform. Pixels received values between 0 and 1 according to their radial distance

from the center, with higher values indicating greater distance. Noise masks were then

multiplied by these distance values, resulting in a higher concentration of inaccuracies at the

image periphery, thus simulating the radial distortion typically observed in camera lenses, as

described in [59]. This simulation helps enhance the robustness of the system by preparing

it to handle the spatial variability of noise in real underwater imaging scenarios.

Several objects from the ModelNet40 dataset [60] were used as inspiration due to their rel-

evance. The simulated version of MARESye captured 3D information, with 32,000 instances

allocated for training and 8,000 for validation. Figure 3.2 presents samples of the data used to

train the model. Vertically arranged, the figure includes stereo input, LSR input, and ground truth

for each sample. This layout visually illustrates the types of input data provided to the model

and the corresponding ground truth used for training, highlighting the variety and structure of the

dataset.

For the synthetic dataset in this work, the data was split such that 80% was allocated for

training, while the remaining 20% was used for validation. This division ensures that there is

sufficient data for both training the model effectively and evaluating its initial performance without

overfitting. The data splitting process was implemented using a random selection of point clouds to

ensure a diverse representation of scenarios in both the training and validation sets. This approach

helps the model to generalize better by exposing it to a wide variety of situations during training.

The model was then tested using real data captured in two settings: a controlled underwater

environment (specifically, a clean water tank) and a real maritime environment. This dual test-

ing approach provides a comprehensive evaluation of the model’s performance, demonstrating its

effectiveness in both ideal and practical conditions.

3.1.1 Data Augmentation

Data augmentation is a widely employed technique to enhance both the volume and variety of

data available for training neural networks without collecting new data. This approach involves al-
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Figure 3.2: Samples of synthetic dataset.

tering each data instance prior to its fusion by the neural network helping to prevent overfitting and

make the model more robust to variations in input data. Common approachs for data augmentation

includes operations like rotation and cropping, which help to diversify the training examples.

For the specific dataset, various data augmentation techniques were applied to increase the robust-

ness and improve the generalization capability of the model, see table 3.2. The parameters utilized

for data augmentation in this study are detailed in table 3.2. This table outlines the specific tech-

niques and corresponding values applied to enhance the diversity and robustness of the dataset.

These techniques were systematically selected to ensure effective training across varied scenarios.

These augmentations produces enhance the model’s ability to generalize across different sce-

narios and viewing angles. Depth translations allow the network has a good performance at differ-

ent depths from very close distances (0.3 m) to far distances (2 m). Projection translations in the

data augmentation process enable the network to learn how to reconstruct images independently

of the specific region of the image being analyzed. This technique helps improve the network’s

Table 3.2: Parameters of Data Augmentations.

Augmentation Technique Parameter Specification
Horizontal Flip 50% of probability of occurrence
Vertical Flip 50% of probability of occurrence
Projection Translation 50% of probability of occurrence in a range of 150 pixels in each direction
Depth Translation Constant occurrence in a range of -0.25 m to +0.25 m
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robustness and ensures consistent performance across different parts of the image. Horizontal and

vertical flips are used to further increase the volume of data available for training. By applying

these flips with a probability of 50%, there is an equal utilization of both original and augmented

data. This balanced approach ensures that the model is exposed to a diverse set of scenarios,

enhancing its ability to generalize across different image orientations.

(a) Original ground truth (b) Augmented ground truth: Depth translation

(c) Augmented ground truth: Depth translation,
projection translation and horizontal flip

(d) Augmented ground truth: Depth translation,
projection translation and vertical flip

Figure 3.3: Ground truth of a sample and 3 possible augmentations. Are visible the horizontal and
vertical flips, the projection translations and different depth translations.

As illustrated in figure 3.3, data augmentation techniques enable the generation of a diverse set

of data from a single sample. This approach effectively increases the variety of training examples

available, which helps in developing a model that is robust and performs well under different

conditions.

3.2 AttentDeepUW Network

The network receives input through stereo and LSR point clouds. After projecting them to 2D,

they are concatenated a priori to form a combined input. This concatenated input is then processed

together as it moves through the encoder, allowing for the simultaneous extraction of features from
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both inputs. This approach ensures that the network effectively leverages the integrated data for

enhanced feature extraction.

The architecture follows U-Net model [56], which employs an encoder-decoder structure, be-

ginning with an encoder where feature extraction occurs progressively along the network. As the

encoder processes the input, it systematically reduces the dimensions of the feature maps. This

reduction is designed to streamline the processing workflow and facilitate the extraction of increas-

ingly complex features from the input data. In the decoder segment of the network, the prediction

is reconstructed starting with higher-level feature maps.

This process includes skip connections that integrate features from the higher levels of the en-

coder. This design aids in reconstructing the environment by utilizing more abstract information

from the higher levels of the network, which is then combined with more detailed and realistic

information provided by the skip connections. The network achieves a more effective reconstruc-

tion by concatenation of both detailed and abstract information, allowing it to leverage each source

of feature maps optimally. To enhance the flow of information from the encoder to the decoder

layers, attention blocks have been incorporated into the network. These blocks enhance the utility

of the encoder feature maps in the decoder, thereby improving the quality of the reconstruction by

selectively emphasizing critical features [61].

The presented deep neural network is illustrated in figure 3.4, which depicts each layer of

the network in detail. This figure provides a comprehensive view of the network architecture,

showcasing the arrangement and connection of the layers that constitute the model.
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Figure 3.4: Architecture of Network AttentDeepUW.

Encoder

The network initially reduces the dimensions of the input images. This approach allows the

network to process smaller feature maps, enabling the use of larger batch sizes. The utilization of

larger batches contributes to improved generalization capabilities within the model. This modifi-

cation involved adding a convolutional block, which consists of a convolution layer with a stride of

2, followed by batch normalization and a ReLU activation layer. This block effectively reduces the
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spatial resolution of the feature maps by 75%, reducing them to 25% of their original size. Utiliz-

ing a convolutional layer for downsampling facilitates the initial extraction of critical features from

the input data, minimizing the loss of important information that might occur with straightforward

resizing, where significant details could be lost. The encoder utilizes the ResNet18 architecture,

as seen in figure 3.5 which has been pre-trained to enhance its effectiveness in feature extraction

and training process. Residual connections in the ResNet18 [62] model address the issue of van-

ishing gradients by facilitating a more efficient gradient flow. This configuration enables easier

network optimization, as it allows gradients to bypass certain layers directly, thereby maintain-

ing their strength throughout the training process. The small complexity of the encoder offers a

significant advantage by enabling low inference times, thereby facilitating edge computing. Con-

sequently, inference processes can be directly conducted by the MARESye sensor, streamlining

data processing and reducing dependency on external computational resources.

Figure 3.5: ResNet18 Architeture [62].

The standard ResNet18 network receives an input of 3 channels representing an RGB image.

However, for the proposed task, the network needs to accept 2 depth maps as input. Therefore, the

input convolutional layer of the network must be modified to accommodate the different number

of input channels. The first convolution layer was replaced with a similar one in all aspects except

for the number of input channels, which was changed from 3 to 2 to accept the projections from the

stereo and LSR inputs, respectively. This modification ensures proper adjustment to the number

of input channels and allows for appropriate processing of these data. Only the convolutional

part of the ResNet18 architecture where features are extracted is utilized in this setup, with the

fully-connected layers, typically responsible for classification, being discarded. Additionally, a

new convolutional block has been added at the end of the ResNet18 convolutions maintaining the

dimensions of the feature maps, further enhancing feature extraction capabilities. The pretraining

of ResNet18 was utilized. Nevertheless, the pretraining provides valuable benefits by leveraging

learned feature extraction capabilities, enabling the network to handle high-level abstractions more

effectively.

Decoder

During the decoding phase, the upsampling task is executed through the BLConv5 decoder

[63], which offers a favorable balance between performance and inference times. This decoder
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efficiently reconstructs higher-resolution output from the condensed feature maps, ensuring effec-

tive image reconstruction while maintaining manageable computational demands. The decoder

is structured with five consecutive layers that perform two critical functions: they incrementally

increase the spatial dimensions of the output and simultaneously merge the feature maps channel-

wise.

Each layer in the decoder is composed of an upsampling step followed by two blocks [63]:

depthwise and pointwise. These blocks are composed of a convolution (depthwise convolution

and pointwise convolution respectively) followed by a batch normalization and a ReLU layer.

The upsampling process within the decoder utilizes the bilinear technique, which is designed to

provide a smoother gradient transition between pixels. This method enhances feature maps quality

by interpolating the pixel values, resulting in less pixelation during the upscaling process. The

bilinear upsampling technique is particularly effective in retaining the clarity and continuity of

image features as they are expanded to higher resolutions. The depthwise convolution [64] uses a

5x5 filter to process each output channel independently based on a corresponding input channel.

This step allows for efficient spatial filtering as it handles each channel separately. Following the

depthwise convolution, the pointwise layer takes over. This layer consists of a 1x1 convolution

that consolidates the information from all the input channels into fewer output channels. The

pointwise convolution effectively merges the spatially filtered information across all channels,

enabling the combination of features extracted by the depthwise layer. This structure enhances the

feature integration while maintaining computational efficiency, crucial for effective upsampling in

the decoding phase.

For enhanced clarity and understanding, figure 3.6 illustrates the depthwise and pointwise

convolutions within a single layer of the decoder architecture. This graphical representation helps

elucidate the sequential processing and integration of these convolution types, which are pivotal

for refining the feature maps in terms of spatial dimensions and channel-wise information.

This design allows the decoder to effectively reconstruct the original dimensions of the input

while integrating diverse feature information across different levels of the network.

Attention Blocks

Skip connections serve as a critical feature in many deep learning architectures, allowing in-

formation to bypass certain layers in the network and be directly transmitted from earlier to later

layers. This mechanism helps preserve important features and gradients, facilitating more effec-

tive learning and deeper network training without the risk of gradient vanishing. However, while

skip connections can enhance learning efficiency and model depth, they also have the potential

to propagate initial error patterns throughout the network. If the early layers generate inaccurate

or misleading feature representations, these errors can be carried forward directly to the output,

impacting the overall accuracy and performance of the model [65, 56].

The network proposed in this dissertation has skip connections that connect the outputs of

ResNet18 blocks to the inputs of BLConv5 blocks. However, not all blocks are connected via



30 Fusing heterogeneous 3D information

Figure 3.6: Depthwise and Pointwise Convolution.

skip connections. Only the two highest-level skip-connections were added, while the two lowest-

level skip-connections weren’t implemented to prevent the propagation of errors from the inputs

to the output. In the added skip connections, squeeze-and-excitation attention mechanisms [66]

were implemented to enhance the network’s focus on the most significant channels of the feature

maps that are skip connected. The network AttentDeepUW_3skips represents an initial version of

the proposed network. The primary distinction between this network and the proposed one is that

AttentDeepUW_3skips includes three skip connections, one more than the proposed network. This

network was initially proposed before AttentDeepUW but was abandoned during development

due to poor performance with real data. This topic is discussed in greater detail in chapter 4. This

network only ignores the lowest-level skip-connection.

The squeeze-and-excitation mechanism, as shown in figure 3.7a, enhances the model’s ability

to focus on the most relevant features by recalibrating the channel-wise feature responses. This

mechanism operates in two main stages: the "squeeze" stage, where global spatial information is

aggregated into a channel descriptor, and the "excitation" stage, where a self-gating mechanism

is applied to scale the channel descriptors adaptively. By incorporating this process, the network

can prioritize informative features while suppressing less useful ones, leading to improved perfor-

mance and more efficient learning.

At the network’s bottleneck, a Multihead Self Attention mechanism [67], as illustrated in fig-

ure 3.7b, adapted to the CNN architecture, has been implemented. This mechanism enables a

global context understanding, which is highly advantageous when combined with the local feature

extraction capabilities of the standard CNN architecture, creating an effective hybrid approach.

The attention layer within this setup is capable of focus its attention where each "head" in the

multihead arrangement can attend to different segments of the input data. This allows the model
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to capture a diverse array of information from various representational subspaces. While standard

CNNs typically excel in extracting spatial hierarchies, they may fall short in capturing contex-

tual relationships within data that are spatially distant. By integrating the Multihead Self Atten-

tion mechanism at the network’s bottleneck, the model addresses these limitations by facilitating

the integration of context over long ranges, thereby enhancing overall model performance. Im-

plementing this attention block at the bottleneck allows the mechanism to access the most criti-

cal information and makes the implementation more efficient by processing less data due to the

lower resolution of the feature maps at this stage. By prioritizing more important features and

de-emphasizing less significant ones, the network becomes more adept at achieving better recon-

struction quality and more effective learning outcomes. This focus enhances the model’s ability to

discern and amplify relevant information, leading to improved performance in tasks such as image

reconstruction.

(a) Architecture of Squeeze-and-Excite Block
[66]. (b) Architecture of Multihead Attention [67].

Figure 3.7: Architectures of Squeeze-and-Excite Block [66] and Multihead Attention[67].

3.2.1 Network Optimization

The prediction is compared to the associated ground truth, and the discrepancy between them

is quantified using a loss function. Based on this error, the network’s parameters, specifically the

weights, are adjusted by the optimizer to minimize the loss and improve the model’s predictive

accuracy in subsequent iterations.

The optimization of the network parameters employed a custom l2-based loss function, as

delineated in equation 3.1. This function comprises three components: valid pixels, fill pixels, and

neighbor smoothness, which are detailed in equations 3.2, 3.3, and 3.4 respectively.

l2_ComposedSmothness = 0.75× (l2_valid)+0.05× l2_ f ill +0.20× l2_smothness (3.1)

l2_valid = (ypx − ŷpx)
2,∀ ypx ∈ [1e−5,2.0] m (3.2)

l2_ f ill = (ypx − ŷpx)
2,∀ ypx /∈ [1e−5,2.0] m (3.3)
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l2_smothness = (AvgPool2D(ypx)−AvgPool2D(ŷpx))
2,∀ ypx /∈ [1e−5,2.0] m (3.4)

where ypx is the ground truth and ŷpx is the estimated prediction. The AvgPool2D operation 3

is described by equation 3.5 with kernel size k = (15,15), stride = (1,1) and padding = 0. Here,

N represents the batch size, C represents the number of channels, h represents the height, and w

represents the width of the images.

AvgPool2D(Ni,Ci,h,w) =
1

k[0]× k[1]

k[0]−1

∑
m=0

k[1]−1

∑
n=0

input(Ni,C j,stride[0]∗h+m,stride[1]∗w+n)

(3.5)

The points from the input 3D information, once projected into 2D, are represented as valid

pixels. The network will heavily penalize these pixels because they have a direct correspondence

to the accurate ground truth. Consequently, these pixels will contribute to 75% of the loss function.

On the other side, there are pixels that merely serve to fill the 2D projection in areas where no data

exists. These pixels do not contain useful information. To guide the network in learning that these

areas are merely fillers, a small weight, constituting 5% of the loss function, is sufficient. The

introduction of the l2_smothness term, which accounts for 20% of the overall loss function, serves

to encourage consistency across neighboring pixels. This aspect of the loss function is designed

to ensure that the network doesn’t focus only on individual pixel accuracy in depth prediction,

but also considers the coherence and continuity among adjacent pixels. This term is crucial for

mitigating the impact of noise and artifacts, which are common in sensor data, especially in chal-

lenging environments like underwater scenes. By promoting spatial coherence, the model better

interprets the essential structures and surfaces, thus making the depth prediction not only accu-

rate but also visually plausible and consistent across the entire image. This approach effectively

balances the detailed accuracy needed for individual pixel depth with the broader requirement

for a coherent depth perception across the entire field of view. The minimal emphasis on l2_ f ill

grants the network the flexibility to generate information in regions proximate to valid pixels. This

reduced influence of l2_ f ill enables pixels, initially assigned a value of zero, to acquire useful in-

formation, thereby facilitating the reconstruction of occluded areas using data from neighboring

pixels [2].

The learning rate was initially set to 0.1 and strategically reduced by a factor of 1/10 every 3

epochs. This approach is designed to facilitate a precise adjustment of the network’s weights as

training progresses. Initially, a higher learning rate helps in converging to a good solution quickly,

capturing the broad features of the dataset. As the epochs progress, reducing the learning rate helps

the model fine-tune its parameters, refining its predictions. This step-wise reduction in the learning

rate ensures that the training remains stable and efficient over time, optimizing performance and

enhancing the model’s ability to generalize from the training data.

3https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d
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Table 3.3: Optimizers used and their updating rules.

Optimizer Update Rule
SGD [68] wt+1 = wt − lrgt

Adam [69] wt+1 = wt − lrm̂t√
v̂t+ε

Adadelta [70] wt+1 = wt − RMS[∆w]t−1
RMS[g]t

gt

RMSprop 4 wt+1 = wt − ηt√
E[g2]t+ε

gt

Optimizers are algorithms designed to update the parameters of a neural network through back-

propagation, aiming to minimize the loss function. The primary goal is to find the optimal values

of the weights that yield the most accurate predictions. For training the network, four different

optimizers were evaluated: SGD (Stochastic Gradient Descent), Adam, Adadelta, and RMSprop.

Each optimizer is characterized by distinct update rules, which dictate how the weights are ad-

justed during training. Table 3.3 summarizes the update rules for the four selected optimizers:

• SGD (Stochastic Gradient Descent): This optimizer updates the weights based on the

gradient of the loss function with respect to each weight for each training example, often

enhanced with momentum to accelerate convergence.

• Adam: Combining the benefits of Adagrad and RMSprop, Adam adjusts learning rates

based on the first and second moments of the gradients, providing efficient and reliable

convergence.

• Adadelta: This optimizer adapts learning rates based on a moving window of gradient

updates, making it robust to various hyperparameters.

• RMSprop: RMSprop modifies the Adagrad algorithm to reduce its aggressive, monotoni-

cally decreasing learning rate, using a moving average of squared gradients to normalize the

gradient.

In the given update rules, wt and wt+1 denote the weights at iteration t and t +1, respectively.

The learning rate is represented by lr. The gradient of the loss function is denoted as gt . mt is

the moving average of the gradients, vt is the squared gradient, and E[g2]t is the exponentially

decaying average of the squared gradients.

A weight decay parameter of 1×10−3 is implemented within the training process to serve as

a regularization technique. By doing so, it encourages the network to maintain smaller weight

values, making it less likely to fit noise and spurious correlations present in the training data.

Regularization via weight decay is crucial for preventing overfitting, particularly in complex neural

4https://www.cs.toronto.edu/t̃ijmen/csc321/slides/lecture_slides_lec6.pdf
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network models with a large number of parameters. It helps in promoting a simpler model with a

better generalization capability on unseen data.

The total number of parameters in the network is 16.7M. This parameter count reflects the

complexity of the neural network. Despite the complexity of the network, it proves to be lightweight

and capable of being applied to real-time applications. The models generated by training this

learning-based approach were obtained using the following hardware: an NVIDIA GeForce RTX

2060 with 6 GB of VRAM and an Intel i5-10600K CPU @ 4.10 GHz with 6 cores. The network

was implemented in PyTorch.



Chapter 4

Results and Discussion

This section evaluates the performance of the fusion networks proposed throughout this disserta-

tion. Initially, experiments utilizing synthetic data, as detailed in Section 4.2, illustrate the robust-

ness of the methodologies against noisy inputs. These experiments show a significant enhance-

ment in the quality of the resulting point clouds, both in terms of metrics and visual assessment,

when compared to baseline models. Real-world underwater environments introduce complexi-

ties that are challenging to replicate in simulations, such as disturbances from floating particles

and variable lighting conditions. To bridge the gap between synthetic simulations and real-world

applicability, section 4.3 investigates the performance of the synthetic-to-real training approach.

This is conducted through precise measurements of the fused 3D outputs within a controlled un-

derwater setting, specifically a clean water tank. The findings from this section aim to validate the

effectiveness of the proposed methodologies and their potential for adaptation to more complex

and less predictable underwater scenarios.

4.1 Introduction

The testing methodology began by training and validating the AttentDeepUW and Attent-

DeepUW_3skips architectures, evaluating the performance contributions that each block in the

network makes to the final result. After that, tests were then carried out in an underwater environ-

ment, characterizing absolute and relative error and then taking relative measurements from a set

of objects. Finally, tests were carried out in a real marine environment on the ATLANTIS coastal

testbed.

4.2 Synthetic Data Experiments

Overall, the quantitative analysis is guided by the following metrics, which are utilized to evaluate

the output predictions:

• RMSE (Root Mean Squared Error)

35
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• MAE (Mean Absolute Error)

• δn: The percentage of predicted pixels whose relative error falls within a specified threshold,

defined as equation 4.1.

δn =
card

({
ŷ : max

(
ŷ
y ,

y
ŷ

)
< 1.25n

})
card({y})

(4.1)

where y and ŷ represent the ground truth and predicted values, respectively, and card denotes

the cardinality of a set.

4.2.1 Network Design Evaluation

To assess the performance of the proposed networks, a baseline is established by directly com-

paring the synthetic stereo input with the ground truth data. This comparison serves as a reference

point, allowing for the evaluation of the improvements introduced by the proposed networks. By

measuring how closely the synthetic stereo input approximates the ground truth, can be quantified

the effectiveness of our approach. This baseline comparison is essential for highlighting the ad-

vancements achieved in terms of accuracy and reliability, providing a clear metric for assessing

the performance gains attributed to the methodologies introduced in this work.

Table 4.1: Architecture Modifications.

Modification
RMSE

(m)
MAE
(m)

δ1

(%)

RMSE
Performance
Decline (%)

AttentDeepUW 0.0167 0.0121 98.9 —

Without convolutional block with stride 2 at the beginning of encoder 0.0253 0.0183 91.3 51.5

Without Multihead Self Attention layer 0.0195 0.0141 98.9 16.8

Without convolutional block at the end of ResNet18 convolutions 0.0186 0.0147 97.9 11.4

Without attention mechanisms added at skip connections 0.0239 0.0195 99.4 43.1

Replace SE blocks with CBAM blocks at skip connections 0.0169 0.0129 99.2 1.2

Without initial dimension redution Without the convolutional block with a stride of 2 that

reduces the dimensions of the input projections, the optimization process was limited to using a

batch size of 2. This constraint posed significant challenges, particularly in terms of the network’s

ability to generalize. Small batch sizes can hinder the learning process because they provide less

diverse information in each training iteration, which can lead to overfitting and poor generalization

to new data. To address the limitations posed by the small batch size and to enhance the network’s

generalization capacity, was implemented at the beginning of the architecture a convolutional

block with a stride of 2. This reduction in size enabled the network to process larger batches

of data, thereby improving its generalization capabilities across diverse underwater scenarios.

Unlike a simple resizing operation, which might indiscriminately discard significant details,

using a convolutional layer for downsampling allows for an initial extraction of critical features
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from the input data. By performing convolution with a stride of 2, the network captures essential

information while reducing dimensionality, ensuring that the most relevant features are retained

and propagated forward through the network. This method minimizes the loss of important infor-

mation that might occur with straightforward resizing, where significant details could be lost. To

ensure the network’s outputs match the original input dimensions for accurate comparison with

the ground truth, an upsampling step followed by a convolutional block was incorporated at the

end of the network. This upsampling process restores the reduced feature maps to their original

resolution, allowing the final predictions to be directly compared with the ground truth data.

Without this initial reduction via the convolutional block with a stride of 2, the proposed

network would suffer a performance decrease from 0.0167 m RMSE to 0.0253 m RMSE. This

represents a 51.5% performance drop compared to the AttentDeepUW network.

Without Multihead Self Attention layer Subsequently the Multihead Self-Attention (MHSA)

mechanism was removed from the network. The MHSA mechanism facilitates a global context

understanding, complementing the local feature extraction typically performed by convolutional

layers. This enhancement allows the network to capture dependencies across the entire input. To

maximize its effectiveness, the MHSA block was added to the bottleneck of the network. The

bottleneck is strategically chosen because it contains the highest level and most relevant features

extracted by the network. Since MHSA operates on a global context, it is most beneficial when

applied to these high-level features, enabling the network to understand and leverage long-range

dependencies within the input data. Another advantage of positioning the MHSA block at the bot-

tleneck is the reduced resolution of feature maps at this stage. Lower resolution means fewer data

points for the MHSA to process, which translates to lighter computational requirements and faster

processing times. This efficiency gain is crucial for maintaining the network’s performance while

enhancing its capacity for global context comprehension. Without the Multihead Self-Attention

(MHSA) mechanism, the proposed network exhibits an RMSE value of 0.0195 m, an MAE of

0.0141 m, and a δ1 of 98.8%, resulting in a degradation of 16.8% in RMSE performance com-

pared to the AttentDeepUW network.

Without convolutional block extending ResNet18 encoder To further enhance feature extrac-

tion, in the AttentDeepUW network, an additional convolutional block was integrated at the end

of the ResNet18 encoder, positioned just before the Multihead Self-Attention (MHSA) mecha-

nism. This convolutional block maintains the dimensions of the feature maps while increasing the

number of channels, thus enriching the feature representation. This additional convolutional block

allows for an extra layer of feature extraction, which in turn improves the quality of features being

fed into the MHSA. By increasing the number of channels, the network can capture more complex

patterns and nuances in the input data, leading to a more robust and detailed feature set. Position-

ing this block right before the MHSA ensures that the global context mechanism receives a rich

and comprehensive set of features to work with. This strategic placement maximizes the benefits

of both local feature extraction and global context understanding, creating a more capable and
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nuanced network architecture. Removing this additional convolutional block leads the network to

present RMSE metrics of 0.0186 m, MAE of 0.0147 m and δ1 of 97.9%, increasing the RMSE

result by 11.4% comparated to the AttentDeepUW network, thus demonstrating the effectiveness

of this convolutional block for the performance of the network.

Without attention mechanisms at skip connections To enhance the network’s focus on the

most relevant features for scene reconstruction, Squeeze-and-Excite attention blocks were inte-

grated into the skip connections of AttentDeepUW. Attention mechanisms help the network se-

lectively emphasize important features while suppressing less relevant information, thereby im-

proving the overall reconstruction quality. Attention mechanisms are particularly effective in skip

connections because they allow the network to dynamically adjust the importance of different

features at various stages of processing. By incorporating these blocks, the network can better

prioritize critical features that are essential for accurate scene reconstruction.

To evaluate the utility of this attention mechanism, the network’s performance was assessed

by implementing it with the encoder directly connected to the decoder through simple skip con-

nections. Without the attention blocks, the network produced an RMSE of 0.0239 m, an MAE

of 0.0195 m, and a δ1 of 99.4%. The absence of this attention mechanism reduced the network’s

capacity by 43.1% in terms of RMSE.

Replace SE blocks with CBAM blocks at skip connections The AttentDeepUW network uti-

lizes Squeeze-and-Excite attention mechanisms in its skip connections. To evaluate the perfor-

mance of this attention mechanism and determine its suitability, these blocks were replaced with

an alternative attention mechanism, the Convolutional Block Attention Module (CBAM). CBAM

[71] is an attention mechanism that enhances the network’s focus on important features across

both spatial and channel dimensions, as illustrated in figure 4.1. This module significantly im-

proves the representational power of Convolutional Neural Networks (CNNs) by directing the

network’s attention to the most informative regions and channels within the feature maps. The

CBAM operates in two sequential stages: channel attention and spatial attention. The channel

attention module prioritizes important feature channels, while the spatial attention module focuses

on the most relevant spatial regions within the feature maps. This dual attention mechanism allows

the network to more effectively capture and emphasize critical aspects of the input data. The ap-

plication of CBAM blocks to the skip connections resulted in an RMSE result of 0.0169, MAE of

0.0129 and δ1 of 99.2%, representing 1.2% worse RMSE result compared to the AttentDeepUW

network that uses SE blocks.

It is concluded that the application of spatial attention within the skip connections was found

to be detrimental to the network’s convergence, complicating the training process and ultimately

hindering performance. In contrast, channel attention proved beneficial for enhancing scene recon-

struction. Consequently, Squeeze-and-Excitation (SE) blocks, which focus exclusively on channel

attention, have demonstrated better performance compared to the Convolutional Block Attention
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Figure 4.1: Architecture of CBAM [71].

Module (CBAM), which incorporates spatial and channel attention. The focus on channel atten-

tion alone proved to be a more advantageous approach, enhancing the network’s ability to leverage

critical features without the complications introduced by spatial attention. This modification un-

derscores the importance of targeted and efficient attention mechanisms in deep neural network

design.

These modifications, as detailed in Table 4.1, underscores the utility of the components that

comprise the AttentDeepUW network. The network, AttentDeepUW_3skips, follows the same

architectural principles but with an additional low-level skip connection and its respective SE

attention block.

4.2.2 Optimizers for training

To effectively train the parameters of the network, several optimizers were tested, including SGD

with momentum, Adam, Adadelta, and RMSprop, as detailed in table 4.2. Among these, the SGD

with momentum demonstrated superior performance, outperforming the other optimizers.

The use of different optimizers provided valuable insights into the training dynamics of the net-

work. SGD with momentum emerged as the most effective optimizer, offering stable and superior

performance. While Adam and RMSprop struggled with convergence issues, Adadelta showed

some utility, although with suboptimal results. These findings underscore the importance of opti-

mizer selection in achieving optimal network performance for underwater scene reconstruction.

To determine the best optimization function, three different loss functions were tested: L2

Composed Smoothness with weights of 0.6, 0.05, and 0.35 for valid, fill, and smoothness compo-

nents respectively; L2 Composed Smoothness with weights of 0.75, 0.05, and 0.2 for valid, fill,

Table 4.2: Optimizers tested for 20 epochs.

Optimizer RMSE (m) MAE (m) δ1 (%)
SGD 0.0167 0.0121 98.9%
Adam 0.0367 0.0308 51.3%
Adadelta 0.0204 0.0161 98.7%
RMSprop 0.4320 0.4280 52.8%
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Table 4.3: Loss functions tested.

Loss RMSE (m) MAE (m) δ1 (%)
L2 Composed Smoothness 0.6 0.05 0.35 0.0167 0.0121 98.9%
L2 Composed Smoothness 0.75 0.05 0.2 0.0196 0.0142 98.9%
L2 Composed masked 0.0213 0.0145 99.0%

and smoothness components respectively; and L2 Composed Masked, as detailed in table 4.3.

The L2 Composed Masked loss function is an l2-based loss that distinguishes between valid

pixels, which provide useful information, and fill pixels, which merely serve to complete the 2D

projection where data is absent. This loss function allocates a contribution of 0.75% to valid pixels

and 25% to fill pixels. Among the tested loss functions, the L2 Composed Smoothness emerged as

the most effective. This loss function achieved superior results by appropriately weighting valid

pixels, which add valuable information, and fill pixels, which do not add useful information and

must be learned as merely filling pixels. Additionally, it considers the neighborhood of each pixel,

promoting surface consistency. The L2 Composed Smoothness with weights of 0.6, 0.05, and

0.35 yielded better results than the version with weights of 0.75, 0.05, and 0.2. This improvement

can be attributed to the higher emphasis on surface consistency in the former configuration. By

assigning a greater weight to the smoothness component, the network was better able to ensure

consistent surface reconstructions, enhancing the overall quality of the output.

4.2.3 Comparison with state-of-the-art

Table 4.4 presents a comparison of metrics between the proposed fusion methodologies, fusion

methodologies previously proposed by P.Leite et al. [2] and this baseline. Learning-based method-

ologies demonstrate greater flexibility in this aspect, effectively improving the input point cloud

even with limited information. The network can translate features captured from the sparse input

to the surrounding neighborhood pixels. Attention mechanisms aid in selecting the most useful

features, thereby enhancing performance in feature utilization. On the downside, despite efforts to

enforce neighborhood consistency, the network experiences degradation in this aspect, resulting

in artifacts in the predictions and rough gradient patches. Specifically, the edges of the predicted

depth maps accumulate the highest amount of error, as illustrated in figure 4.3. These errors can

manifest as inaccuracies in depth transitions or inconsistencies in depth values across neighboring

pixels.

As demonstrated in figure 4.2, the network AttentDeepUW_3skips produced superior results

among all fusion methodologies in synthetic data. However, as detailed in section 4.3, this net-

work has a significant drawback: it propagates input errors to the output prediction. This leads to

an overly aggressive correction using LSR information, resulting in data distortion. The network

AttentDeepUW, with RMSE metrics of 0.0167 m, 0.0121 m of MAE, δ1 of 98.8%, despite having

worse results than AttentDeepUW_3skips, 0.0147 m RMSE, 0.0108 m MAE, δ1 of 99.1% on syn-

thetic data, still presents a significant improvement over the baseline, 0.0508 m RMSE, 0.0338 m

MAE, δ1 of 43.5% and RHEA network without preprocessing, 0.0294 m RMSE, 0.0227 m MAE,
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δ1 of 96.7%. Notably, even without preprocessing, AttentDeepUW exhibits comparable metrics

to the RHEA network with LSR extended through JMR, 0.0172 m RMSE, 0.0119 m MAE, and

δ1 of 99.0%. The significant discrepancy between AttentDeepUW_3skips and AttentDeepUW is

attributed to the capacity of the low-level skip connections to reconstruct the scene. Metrically,

AttentDeepUW_3skips exhibits a remarkable improvement of 71.1% compared to the baseline

and a notable enhancement of 14.5% relative to the RHEA Network extended through JMR. At-

tentDeepUW demonstrates a substantial improvement of 67.1% over the baseline and a modest

increase of 2.9% compared to the RHEA Network extended through JMR. These metrics under-

score the efficacy of both networks in significantly enhancing performance metrics compared to

baseline methods.

Table 4.4: Performance comparison between the proposed fusion methodologies with synthetic
data, compared to previously proposed methodologies and estimated baseline.

Approach
RMSE
(m)

MAE
(m)

δ1

(%)
(a) Joint Masked Regression (JMR) [2] 0.0428 0.0338 44.5

(b) RHEA network w/ no preprocessing [2] 0.0294 0.0227 96.7

(c) RHEA network w/ LSR extended through JMR [2] 0.0172 0.0119 99.0

(d) AttentDeepUW_3skips w/ no preprocess 0.0147 0.0108 99.1
(e) AttentDeepUW w/ no preprocess 0.0167 0.0121 98.8

(f) Baseline 0.0508 0.0476 43.5
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Figure 4.2: Visual comparison of synthetic information between proposed fusion methodologies.
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(a) (b) (c)

Figure 4.3: RMSE maps that allow comparing the error in different regions of the projection.
RMSE maps of predictions AttentDeepUW_3skips and AttentDeepUW from the last column of
figure 4.2 to the ground truth. The baseline error map was calculated by subtracting the stereo
input from the ground truth. These maps visualize the root mean square error (RMSE) between
the predicted and ground truth depth values, highlighting areas where the predictions deviate from
the actual values provided by ground truth data. The predictions AttentDeepUW_3skips and At-
tentDeepUW correspond to the figures (a) and (b), respectively, while the stereo input corresponds
to the figure (c).

4.3 Controlled underwater Experiments

This section delves into the performance evaluation of both the AttentDeepUW and Attent-

DeepUW_3skips networks, validating the designed synthetic-to-real training methodology through

a series of experiments conducted in a controlled environment.

To evaluate the network’s performance, an absolute (figure 4.4) and a relative (figure 4.5) error

characterization was initially conducted using a chessboard in a controlled underwater environ-

ment.

(a) (b)

Figure 4.4: Absolute Error Characterization. Figure (a) shows the experiment to be conducted.
Figure (b) exposes the stereo an LSR acquired in absolute error characterization experiment.
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(a) (b)

Figure 4.5: Relative Error Characterization. Figure (a) shows the experiment to be conducted.
Figure (b) exposes the stereo an LSR acquired in relative error characterization experiment.

For the absolute error characterization, the chessboard was positioned at various distances

ranging from 0.35 m to 1.00 m in 0.05 m increments. This setup allowed for a detailed analysis of

the network’s accuracy at different depths. The relative error characterization followed a similar

procedure. A block with dimensions of 0.0902 m in depth and 0.0445 m in height was placed

horizontally in front of the chessboard. This chessboard-block combination was then positioned at

distances ranging from 0.50 m to 0.85 m, also in 0.05 m increments. This setup provided a compre-

hensive understanding of the network’s performance in distinguishing relative depth differences

at various distances. The performance evaluation is conducted by comparing the results obtained

with stereo and LSR inputs. This involves a detailed analysis of the output quality, accuracy, and

robustness of the 3D reconstruction algorithms.

To evaluate the characterization of absolute and relative error, the distances between the points

of twenty-five predictions, for each distance, were measured and averaged to obtain more reliable

metrics.

Absolute Error Characterization As depicted in the graph in figure 4.6, both the Attent-

DeepUW and AttentDeepUW_3skips networks exhibit lower errors compared to the stereo method

at distances greater than 0.55 m. In these scenarios, the networks demonstrate an ability to correct

the information provided by the stereo input using the LSR data. The AttentDeepUW network

demonstrates an average absolute error of 0.0188 m, representing a 65.9% improvement in per-

formance compared to the Photogrammetric Stereo (PS) input point cloud, which has an average

absolute error of 0.0551 m. The AttentDeepUW_3skips network shows an average absolute error

of 0.0172 m, achieving a 68.8% performance improvement over the PS input point cloud. The

improved performance of the AttentDeepUW_3skips network compared to the AttentDeepUW

network is attributed to its reduced sensitivity to stereo input. The AttentDeepUW_3skips net-

work assigned significant weight to the LSR input, as evidenced by the graph in Figure 4.6, which

closely follows the characteristic error profile of the LSR. Meanwhile, the AttentDeepUW network

is influenced more evenly by both the stereo and LSR inputs. It exhibits an error characteristic

similar to the stereo input, but with less significant errors, as it utilizes the LSR input to assist in

depth correction. However, at a distance of 0.65 m, the AttentDeepUW_3skips network exhibits
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Table 4.5: Characterization of Absolute Error Using Chessboard at Various Distances to Assess
the Performance of the AttentDeep Network.

Measured
Distance

(m)

True
Distance

(m)

Average
Chess

Distance
(m)

Average
Distance
Absolute

Error
(m)

STD
Distance
Absolute

Error
(m)

Average
Relative
Error
(%)

Number
of Points

0,35 0,37604 0,36218 0,01386 0,004379 3,69% 805527
0,4 0,42604 0,40449 0,02155 0,005599 5,06% 917147
0,45 0,47604 0,47408 0,00196 0,007646 0,41% 861371
0,5 0,52604 0,50417 0,02187 0,008763 4,16% 885456
0,55 0,57604 0,56386 0,012184 0,007381 2,12% 865453
0,6 0,62604 0,62400 0,002038 0,008579 0,33% 851729
0,65 0,67604 0,67041 0,005625 0,008703 0,83% 809234
0,7 0,72604 0,73754 0,011500 0,010360 1,58% 818066
0,75 0,77604 0,80019 0,024147 0,012042 3,11% 836908
0,8 0,82604 0,85473 0,028694 0,014886 3,47% 832261
0,85 0,87604 0,91271 0,036669 0,010174 4,19% 836140
0,9 0,92604 0,92494 0,001104 0,009697 0,12% 815024
0,95 0,97604 0,95929 0,016755 0,006961 1,72% 684467

1 1,02604 0,96048 0,065557 0,007300 6,39% 690596

a higher error than the stereo method, indicating a problem and resulting in decreased depth es-

timation quality. At this distance, the LSR showed an error characteristic of 0.0166 m, slightly

higher than expected for this range. Despite the stereo method’s reduced error at this distance,

with an absolute error of 0.0300 m, the AttentDeepUW_3skips network followed the LSR error

characteristic and reached a value of 0.0354 m.

For distances less than 0.55 m, the errors associated with both the stereo and LSR inputs are

minimal. In these cases, the AttentDeepUW network shows errors similar to those of the in-

puts. At distances approaching 1.00 m, the stereo method exhibits significantly elevated errors,

which subsequently affect the performance of the network. The results obtained from the absolute

error characterization are presented in the tables 4.5 and 4.6 of the AttentDeepUW and Attent-

DeepUW_3skips networks respectively.
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Table 4.6: Characterization of Absolute Error Using Chessboard at Various Distances to Assess
the Performance of the AttentDeep_3skips Network.

Measured
Distance

(m)

True
Distance

(m)

Average
Chess

Distance
(m)

Average
Distance
Absolute

Error
(m)

STD
Distance
Absolute

Error
(m)

Average
Relative
Error
(%)

Number
of

Points

0,35 0,37604 0,35466 0,02138 0,005781 5,69% 860019
0,4 0,42604 0,39523 0,03081 0,004790 7,23% 905652

0,45 0,47604 0,47788 0,00184 0,005972 0,39% 865349
0,5 0,52604 0,50757 0,01847 0,007065 3,51% 862866

0,55 0,57604 0,56741 0,008634 0,007781 1,50% 909349
0,6 0,62604 0,60755 0,018492 0,010343 2,95% 920123

0,65 0,67604 0,64063 0,035411 0,012201 5,24% 919723
0,7 0,72604 0,70670 0,019341 0,017174 2,66% 911396

0,75 0,77604 0,76693 0,009111 0,022536 1,17% 899597
0,8 0,82604 0,81014 0,015898 0,026366 1,92% 892618

0,85 0,87604 0,87191 0,004131 0,027134 0,47% 871129
0,9 0,92604 0,89348 0,032555 0,026339 3,52% 896462

0,95 0,97604 0,96611 0,009929 0,038637 1,02% 889870
1 1,02604 1,01195 0,014088 0,055640 1,37% 865911

Figure 4.6: Graphic of absolute error characterization.

As illustrated in Figure 4.7, the AttentDeepUW_3skips network tends to produce non-smooth

regions around the LSR inputs. This lack of smoothness was a significant factor in the decision to

discontinue the use of this network architecture. In contrast, the AttentDeepUW network generates

much subtler perturbations, preserving the integrity of the object’s shape within the scene. This

characteristic makes the AttentDeepUW network more suitable for applications requiring high

fidelity in shape reconstruction.
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(a) AttentDeepUW_3skips (b) AttentDeepUW

Figure 4.7: Visual comparison between AttentDeepUW_3skips and AttentDeepUW networks in
chess images

Relative Error Characterization In relative error characterization, the network’s ability to esti-

mate the difference in depth between the chessboard and the block was evaluated. As illustrated in

figure 4.8, the AttentDeepUW network consistently demonstrates lower errors compared to both

the LSR and stereo methods. However, at distances approaching 0.85 m, the network’s errors are

influenced by the high error rates associated with the LSR input. In close-range inspections, the

short distance to the object allows for significant discontinuities in the laser projections, making it

easy to separate segments of the beam that are projected onto and reflected by the chessboard. This

enables direct triangulation of the point cloud. However, the same cannot be said for large-range

reconstructions. At these distances, in addition to the phenomenon of light absorption, the laser

discontinuities become progressively smaller, making it very difficult for the LSR algorithm to es-

timate depth values for each of the beam’s projection planes. Due to the network’s reliance on the

LSR input primarily for depth estimation, the increase in errors associated with LSR clearly im-

pacted the network’s performance. The network demonstrated an average relative error of 0.00616

m, compared to 0.0123 m for the stereo method and 0.0241 m for the LSR. Despite the negative

impact of LSR errors at greater distances, the network achieved a 49.9% improvement over the

stereo input. Despite this, the AttentDeepUW network still manages to outperform the traditional

stereo method across most measured distances, effectively leveraging the LSR data to enhance the

accuracy of depth estimation.

The results from the relative error characterization are presented in table 4.7.
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Table 4.7: Characterization of Relative Error Using Chessboard at Various Distances to Assess the
Performance of the AttentDeep.

Measured
Distance

(m)

True
Distance

(m)

Block
Depth

(m)

STD
Error

Absolute
Error
Block
Depth

(m)

Average
Relative

Error (%)

Block
Height

(m)

Absolute
Error
Block
Height

(m)

STD
Height

Number
of

Points
Chess

Number
of

Points
Block

0,5 0,52604 0,09421 0,009893 0,00401 4,45% 0,05688 0,012380 0,000406 583469 102615
0,55 0,57604 0,09152 0,011561 0,00132 1,46% 0,06073 0,016229 0,000734 590473 103378
0,6 0,62604 0,09575 0,012047 0,00555 6,15% 0,05824 0,013744 0,001028 748935 80922

0,65 0,67604 0,09812 0,010757 0,00792 8,78% 0,05315 0,008652 0,001508 381338 50413
0,7 0,72604 0,08883 0,015476 0,00137 1,52% 0,05796 0,013459 0,005439 625024 58557

0,75 0,77604 0,08931 0,016782 0,00089 0,98% 0,05459 0,010094 0,003917 544071 53599
0,8 0,82604 0,08135 0,013766 0,00885 9,81% 0,05533 0,010831 0,006879 434038 38432

0,85 0,87604 0,07082 0,012560 0,01938 21,49% 0,06793 0,023432 0,031404 442750 20472

Figure 4.8: Graphic of relative error characterization.

4.3.1 Relative Measurements from a Set of Objects

A predefined set of objects was employed during the trials to mitigate the absence of ground-

truth data underwater. Relative measurements of these objects served as the target for metric

analysis, as depicted in figure 4.9. In the first experiment, the MARESye system and the objects

were positioned in fixed relative positions within a water tank. Point clouds were captured for

each object using both Photogrammetric Stereo and Light Stripe Ranging techniques. These point

clouds were then fused using the proposed algorithm. The resulting predictions were evaluated

based on spatial and volumetric dimensions, as well as distance to the camera. The outcomes of

this analysis are summarized in table 4.8.

The AttentDeepUW consistently integrates both input point clouds to achieve a more accurate

representation of each object. Consistent with findings from synthetic data, the precise align-

ment of laser beams is critical for the method’s performance. Predictions generated by the At-

tentDeepUW network demonstrate significant metric improvements over Photogrammetric Stereo
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Figure 4.9: The set of objects utilized in the controlled underwater experiments includes various
characteristics for analysis. Each object is depicted with pairs of images obtained during the
Photogrammetric Stereo mode (enhanced for visualization) and the corresponding reference image
acquired during the Light Stripe Ranging stage [2].

estimates. By effectively utilizing all information from the LSR input, the model accurately com-

plements regions of the stereo input. The proposed network demonstrates its capability to compete

effectively with the RHEA network in the fusion task. Despite achieving results consistent with

other fusion methodologies, the network encountered spatial errors attributed to the initial reduc-

tion of network dimensions, which led to the degradation of spatial information. This reduction

potentially impacted the network’s ability to accurately preserve and utilize spatial details crucial

for precise fusion of input data. As a result, spatial errors emerged in the predictions, particularly

affecting the fidelity of the reconstructed scenes. Despite the AttentDeepUW network difficulties

in predicting spatial dimensions, it proved to outperform stereo and LSR inputs and state-of-the-

art methodologies, with an error of 0.0046 m for estimating the inner diameter spatial dimension,

and an error of 0.0061 m for the depth volumetric dimension. The high errors in spatial measure-

ments of inner (0.0121 m) and outer (0.0116 m) diameters of D object can be attributed to the

network’s difficulty in making accurate predictions in areas of high gradient. When the network

encounters regions with sharp changes in depth, it tends to smooth out these gradients, resulting

in rounded edges instead of the sharp, well-defined boundaries present in the actual objects. This

smoothing effect leads to significant inaccuracies in the measurements of critical dimensions, such

as inner and outer diameters, because the network fails to preserve the true geometric details of the

scene. Consequently, the predicted point clouds exhibit higher measurement errors, particularly

in regions where precise delineation of edges is crucial. This issue underscores the challenge of

maintaining both smoothness and accuracy in depth estimation, particularly in complex underwa-

ter environments where abrupt changes in depth are common.

When considering the volumetric depth of object D, the proposed methodology demonstrates

its capability to refine the input point cloud. The AttentDeepUW model excels in estimating volu-

metric dimensions, achieving a highly precise depth estimation with an error of only 0.0008 m in

the output point cloud, as detailed in table 4.8. However, it shows a higher absolute error of 0.0059

m for distance to the camera compared to other methods. The capacity of the proposed network

to predict the depth of the scene aligns well with the proposed objectives, surpassing stereo input.

Overall, it demonstrates slightly superior performance compared to the RHEA network in terms
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Table 4.8: Evaluation of Fusion Methodologies on Underwater Object Dataset despited in figure
4.9. Bold entries denote the highest metric improvement relative to the baseline point cloud.

Object Characteristics
Ground
Truth

Photogrammetric
Stereo

Light
Stripe

Ranging

Joint
Masked

Regression [2]

RHEA
Network [2]

AttentDeepUW
Network

Measured
(m)

Estimated
(m)

Absolute
Error
(m)

Estimated
(m)

Absolute
Error
(m)

Estimated
(m)

Absolute
Error
(m)

Estimated
(m)

Absolute
Error

Estimated
(m)

Absolute
Error
(m)

A
Spatial
Dimensions

Back
Diameter

0.0900 0.1030 0.0130 * 0.1030 0.0130 0.0995 0.0095 0.1020 0.0120

Volumetric
Dimensions

Height 0.1250 0.0370 0.0880 0.1205 0.0005 0.0370 0.0880 0.1284 0.0034 0.1480 0.0230

Distance
to Camera

———— 0.4900 0.4968 0.0068 0.4873 0.0027 0.4932 0.0032 0.4980 0.0080 0.4700 0.0200

B

Spatial
Dimensions

Inner
Diameter

0.1000 0.0876 0.0124 * 0.0876 0.0124 0.0924 0.0076 0.0954 0.0046

Volumetric
Dimensions

Depth 0.1200 0.1442 0.0242 0.1232 0.0032 0.1270 0.0070 0.1317 0.0117 0.1261 0.0061

Distance
to Camera

———— 0.5000 0.5049 0.0049 0.5039 0.0039 0.5016 0.0016 0.5044 0.0044 0.4870 0.0130

C

Spatial
Dimensions

Back
Diameter

0.1350 0.1376 0.0026 * 0.1376 0.0026 0.1328 0.0022 0.1227 0.0123

Volumetric
Dimensions

Height 0.1650 ⋆ 0.1703 0.0053 ⋆ 0.1820 0.0170 0.1794 0.0144

Distance
to Camera

———— 0.4500 0.4649 0.0149 0.4469 0.0031 0.4419 0.0081 0.4422 0.0078 0.4430 0.0070

D

Spatial
Dimensions

Inner
Diameter

0.1800 0.1743 0.0057
*

0.1669 0.0131 0.1692 0.0108 0.1679 0.0121

Outer
Diameter

0.2000 0.1941 0.0059 0.1868 0.0132 0.1866 0.0134 0.1884 0.0116

Volumetric
Dimensions

Depth 0.1550 0.1449 0.0101 0.1603 0.0052 0.1583 0.0033 0.1496 0.0054 0.1558 0.0008

Ellipse
Carving

0.0090 0.1010 0.0110 0.0767 0.0133 0.1141 0.0241 † †

Distance
to Camera

———— 0.4000 0.4053 0.0053 0.3980 0.0020 0.3982 0.0018 0.4035 0.0035 0.3941 0.0059

(*) Laser beam positioning makes it unfeasible to calculate the spatial dimension.
(⋆) Not enough information on the point cloud to calculate the volumetric dimension.
(†) RHEA network and AttentDeepUW introduced new points in the point cloud that completely filled the ellipse carving.

of depth estimation. The network’s ability to predict depth effectively stems from its architec-

ture, which integrates advanced fusion methodologies and attention mechanisms. By leveraging

both stereo and LSR inputs, the AttentDeepUW network harnesses complementary information to

produce depth predictions that are more accurate and robust.

However, the flexibility of the convolutional neural network can sometimes introduce unreli-

able information. Object D in table 4.8 serves as an example: the ellipse carving, measured as

0.1010 m in the stereo input, is completely filled in by the network, interpreting the carving as

missing information rather than a feature of object D. Despite efforts in training to enforce neigh-

borhood consistency, artifacts persist in the predictions, especially around high-gradient regions

like the edges of the point cloud. These experiments demonstrate the effectiveness of the proposed

fusion network in underwater environments. The stereo input often lacks information due to oc-

clusion zones, resulting in less precise and faithful output predictions unless both stereo and LSR

inputs overlap, allowing for more accurate predictions. The findings from synthetic data transfer

effectively to real-world applications, validating the proposed synthetic-to-real training method-

ology. The network excels in estimating improved output point clouds by leveraging information

from both inputs, particularly guided by the LSR input to fill in missing details. However, while

these additions improve results in certain scenarios, they can also introduce erroneous information,

especially in high-gradient regions.
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4.4 ATLANTIS coastal testbed - real maritime environment

In contrast to controlled underwater environments, real underwater environments are charac-

terized by harsh conditions such as sediment presence and constant light changes. These factors

introduce additional challenges including reduced visibility and increased backscattering of pho-

tons. To test the robustness of the proposed fusion methodology under these conditions, data was

collected at the ATLANTIS Coastal Test Centre, quayside in Viana do Castelo’s Port infrastructure

[1]. The offshore floating structure DURIUS, repurposed from the Oil & Gas industry, provided

an ideal platform for this testing. Access to this platform allowed for the collection of data using

the MARESye sensor, and for testing the data fusion algorithms in a real-world application [2].

The sensor was used to gather information on specific areas of interest on the buoy. Multiple

data collection campaigns were conducted under diverse environmental conditions, resulting in

varying amounts of suspensoids within the water. The heterogeneous tridimensional information

retrieved was then fused using the AttentDeepUW network. The results of these experiments are

discussed in this section [2].

Figure 4.10: The data was gathered at the ATLANTIS Coastal Testbed located in Viana do Castelo.
In the real application experiments, DURIUS, the floating structure, is depicted in Figure (a). Fig-
ure (b) shows how the team at INESC TEC is collecting information with the help of MARESye,
which is suspended from a support vessel [2].

The data collected from the DURIUS floating buoy enabled the validation of the proposed

fusion algorithm in a real underwater environment. Figure 4.11 illustrates several instances from

these trials. The analysis was limited to a qualitative discussion due to the absence of ground-truth

data. During the tests, the DURIUS was covered with biofouling, both helping and challenging the

collection of 3D information by MARESye. The photogrammetric stereo method benefited from

the rich textures of the environment, enhancing its performance. In contrast, this scenario became

particularly challenging due to the absorption of the laser beam in sediment heavy waters and the

fact that many bio-organisms shared the same color as one of the projected laser beams (green -

520 nm), significantly hindering LSR data collection and making segmentation impossible for In-

stances 1, 2, and 3. Despite having only a single laser beam as input, the AttentDeepUW network

effectively utilized the available sparse information to generate a more accurate point cloud [2].
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Instance 1 in figure 4.11 shows the top part of a pillar structure with a thick border of attached

mussels, representing a relatively smooth region. The AttentDeepUW network successfully re-

constructs the smoothness of the surface. However, the network was unable to perfectly align

the output prediction with the laser beam line. The resulting point cloud is positioned at a depth

between the laser beam and the stereo input, closer to the laser beam, and potentially nearer to the

actual depth information. This misalignment is attributed to the network’s limited ability to fuse

information at very close depths.

In Instance 1, both the RHEA and AttentDeepUW networks introduce curvature to the point

cloud, accurately depicting the top border of the cylindrical structure. However, the RHEA net-

work incorrectly propagates this curvature to the remaining portion of the point cloud, as high-

lighted in green in Instance 1 of figure 4.11. In contrast, the AttentDeepUW network successfully

introduces curvature to the top border of the cylindrical structure without extending this curvature

to the rest of the point cloud. On the other hand, the AttentDeepUW network didn’t accurately cor-

rect the global position of the point cloud relative to the camera, maintaining a distance between

the output point cloud and the LSR, as indicated by the red arrows in Figure 4.11.

A continuation of this pillar structure is depicted in Instance 2 of figure 4.11. In this instance,

the point clouds are situated slightly farther from the camera, which enhances the network’s perfor-

mance. Here, the AttentDeepUW network not only maintains the smoothness of the environment

but also successfully aligns the output prediction with the laser beam. This accurate superposition

indicates that the network effectively fuses the stereo and LSR inputs, achieving a more precise

depth estimation. The increased distance likely provides the network with more distinguishable

depth cues, enabling better fusion and alignment of the point clouds. The AttentDeepUW network

demonstrates high robustness when working with limited information, as it was trained on scenar-

ios where only single-beam data was available. Despite this, the AttentDeepUW network enhances

the smoothness of the output predictions compared to the RHEA network, while maintaining the

quality of depth estimation. This improvement is evident in the output predictions shown in figure

4.11. The AttentDeepUW network successfully regresses the entire input point cloud, even with

the sparse laser information, proving its capability to produce more accurate and smoother depth

maps under challenging conditions.

Instance 3 of figure 4.11 presents a scenario where one of the beams supporting the stairs of

DURIUS is heavily covered with fouling, enhancing the already complex depth gradient. In this

instance, the laser beam information is optimally positioned to convey part of the structure’s vol-

umetric dimensions. Consequently, both tri-dimensional fusion algorithms excel in this situation,

successfully regressing the input point cloud based on the sparse information. Additionally, the

AttentDeepUW network introduces points into the output prediction, filling in previously empty

sections of the point cloud caused by occlusion zones. The output prediction of AttentDeepUW

closely resembles the prediction generated by the RHEA network.

Despite the initial data collection campaign using MARESye at the ATLANTIS Coastal Testbed

successfully gathering high-quality information, which validated the 3D fusion capability of the

Joint Masked Regression (JMR) algorithm, the RHEA network, and the AttentDeepUW network
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Figure 4.11: Comparison fusion methodologies using real underwater data from the MARESye
sensor at the ATLANTIS Coastal Testbed.
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in a real underwater environment, the fact that only one laser was functional impacted the visual re-

sults. This impact was most pronounced in the performance of the JMR algorithm. Based on these

insights, improvements were made to the MARESye imaging system by replacing the green laser

beam with a violet one (405 nm) to facilitate laser segmentation and avoid confusion with existing

bioorganisms [2]. Subsequent data collection campaigns occurred under challenging conditions,

including heavy rain and increased turbidity caused by floating particles, significantly altering the

environmental dynamics [2]. Instance 4 in figure 4.11 illustrates one of the experiments conducted

under these environmental conditions, focusing on a cylinder-shaped structure similar to that of

the DURIUS buoy. In this trial, the AttentDeepUW network performs as anticipated, generating a

point cloud that aligns with the LSR input and exhibits increased density due to the network intro-

ducing additional points. The network effectively corrects the input point cloud while preserving

its curved shape, as demonstrated in the lower part of instance 4 in figure 4.11. The presence of

two available laser beams contributes to this improved outcome, as the regression curve does not

need to generalize from a single beam across the entire uniform region — a limitation observed in

Instances 1 and 2. The green-circled points added on the right side contribute to completing the

structure’s shape. Compared to RHEA, AttentDeepUW demonstrates improvement by avoiding

the erroneous connection of both portions of the cylinder.



Chapter 5

Conclusions and Future Work

The integration of various sensors and the development of advanced perception systems are cru-

cial for improving offshore wind energy operation and maintenance through enhanced underwater

perception. By leveraging heterogeneous data fusion and addressing the challenges of underwater

perception, robotic systems can navigate, interact, and operate efficiently in complex and dynamic

underwater environments, ultimately reducing costs and improving the reliability of offshore wind

energy production. The heterogeneous 3D information captured by the MARESye sensor, which

includes a dense and textured Photogrammetric Stereo (PS) point cloud along with multiple sparse

yet highly accurate lines of points triangulated via Light Stripe Ranging (LSR), can be effectively

combined into a single, dense, and precise representation. The proposed AttentDeepUW method

is a learning-based approach that utilizes early fusion to jointly learn features from a coupled rep-

resentation of both tri-dimensional inputs. By employing attention mechanisms, the network’s

learning and overall performance are significantly enhanced.

The network’s optimization leverages a synthetic-to-real training scheme, effectively bypass-

ing the need for domain-adaptation methodologies. This approach facilitates the direct deployment

of the network in underwater scenarios, ensuring robust and reliable performance in real-world ap-

plications. Extensive experiments have been conducted to validate the proposed fusion algorithms

across various settings, including simulation, controlled environments, and real-world applications

with data collected from the DURIUS platform. These comprehensive tests demonstrate the ro-

bustness and effectiveness of the developed methodologies. The synthetic data experiments results

in metrics RMSE of 0.0167 m, 0.0121 m MAE, and δ1 of 99.1% to AttentDeepUW.

In 3D fusion error characterization, the AttentDeepUW network exhibited an average absolute

error of 0.0188 m. This performance signifies a metric improvement of 65.9% compared to the

input Photogrammetric Stereo (PS) point cloud. Such a significant enhancement underscores the

network’s ability to accurately reconstruct the 3D structure of underwater scenes, correcting the

inherent inaccuracies present in the PS point cloud data. Furthermore, the network also achieved

an average relative error of 0.00616 m. This represents an improvement of 49.9% over the input

PS point cloud. This metric reflects the network’s proficiency in maintaining the relative spa-

tial relationships within the 3D data, ensuring a more coherent and precise representation of the
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underwater environment.

The object experiment in controlled underwater allowed an evaluation of the network’s perfor-

mance on real objects, enabling a spatial and volumetric evaluation of the network’s predictions in

an underwater environment. This experiment allowed to conclude that the network causes a degra-

dation of spatial dimensions caused by the initial reduction of the network resulting in an average

absolute error of 0.0105 m. As for volumetric dimensions, the network was able to produce predic-

tions with an average absolute error of 0.0111 m. The experiments conducted at the ATLANTIS

Coastal Testbed introduced significant challenges due to harsh underwater conditions and the pres-

ence of biofouling on the DURIUS structure, which impeded the data acquisition process. Despite

these challenges, the AttentDeepUW network demonstrated its robustness and effectiveness in

producing an improved output point cloud. The AttentDeepUW network successfully predicted

enhanced output point clouds even when provided with a sparse set of input features, validating

the efficacy of the synthetic-to-real training scheme employed. This approach allows the network

to adapt seamlessly to real-world underwater scenarios without requiring additional domain adap-

tation methodologies. Moreover, the network consistently generated dense point clouds that were

accurately adjusted based on LSR (Light Stripe Ranging) information. The resulting point clouds

exhibited smooth surfaces, reflecting a high degree of consistency and precision. This capability

is particularly notable given the unfavorable conditions where only one of the laser beams could

be segmented.

In these challenging environments, the network not only maintained good performance but

also demonstrated its capacity to extend the information extracted by the LSR, effectively enhanc-

ing the overall quality of the 3D reconstruction. This adaptability and resilience underscore the

network’s practical utility in real-world underwater applications, where data acquisition is often

hindered by environmental factors. Throughout the conducted tests, the network consistently pro-

duced accurate output predictions, with an average processing time of approximately 4.2 millisec-

onds per prediction. This efficiency underscores the network’s potential for real-time applications.

In conclusion, the proposed fusion network has demonstrated remarkable robustness in handling

noisy and harsh environmental conditions. In addition to this improvement, further development

can be conducted, such as the following:

• Enhancing Network Robustness and Adaptability: future work can focus on refining the

network to produce an even more robust and adaptable response to 3D heterogeneous data.

• Implementing MARESye Sensor and Fusion Algorithms in Robotic Systems: another

promising direction is the development of approaches to integrate the MARESye sensor

and fusion algorithms with a robotic arm. This integration would create an eye-in-hand

system, enabling precise and dynamic 3D mapping and inspection capabilities in complex

underwater environments.
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