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Abstract

Supply chain (SC) design, planning, and operation decisions are critical to the success or failure
of a company (Craighead et al., 2007). Measuring SC efficiency enables organizations to assess
their operational performance, uncover enhancement opportunities, and refine their processes for
improved outcomes. Despite the various existing approaches SC efficiency evaluation, no single
method is universally recognized or suitable for all businesses. Companies have traditionally relied
on methods such as Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA) to
calculate SC efficiency (Cooper et al., 2003; Daraio and Simar, 2007; Burger, 2008). However, the
limitations of both methods highlight the need for alternative approaches that can address these
challenges effectively (Katharakis et al., 2014; Bauer et al., 1998). To bridge this gap, a research
initiative by Sieben (2023) proposes a two-step method to quantify SC efficiency. Firstly, value
curves are used to extract a proxy value for SC efficiency, which was named by Sieben (2023)
as flow efficiency. Secondly, the derived flow efficiency is compared with the predicted flow
efficiency.

This master thesis proposes a pioneering approach to improve flow efficiency prediction accuracy
using machine learning (ML) models. Moreover, it provides visibility into the features that most
significantly contribute to flow efficiency prediction, laying the groundwork for targeted improve-
ments in underperforming SC.

To achieve the desired results, the methodology proposed in this master’s dissertation begins with
data consolidation, focussing on the extraction and preparation of both the target variable (theo-
retical flow efficiency calculated from value curves) and the explanatory variables (identified flow
efficiency drivers). Following this, two primary approaches are employed. First, ML models are
developed using Stepwise Backward Elimination (SBE) to explore the balance between model
complexity and accuracy, aiming to identify flow efficiency drivers that are deemed the most im-
portant. Second, density-based spatial clustering of noise applications (DBSCAN) is utilised to
identify distinct clusters of materials. These clusters are then analysed using various ML models
to determine the best performing model cluster combinations. Finally, the importance of each fea-
ture within these combinations is assessed using SHAP values, providing insights into the factors
influencing SC flow efficiency prediction.

The application of the described methodology to a case study developed within Hilti revealed room
for significant advancements in supply chain management practices. The study identifies machine
time and material cost as consistently critical features for predicting flow efficiency in various
models. Moreover, clustering the data into subsets is proven not to significantly improve prediction
performance, but to greatly enhance model interpretability. Clustering uncovers distinct patterns
and highlights the variability in the impact of efficiency drivers across different clusters. This
variability underscores the importance of considering cluster-specific characteristics for targeted
SC efficiency improvements.
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Resumo

As decisões de conceção e planeamento da cadeia de abastecimento (CA) são fundamentais para
o sucesso de uma empresa (Craighead et al., 2007). A medição da eficiência da CA permite
às organizações avaliar o seu desempenho operacional, identificar oportunidades de melhoria e
aperfeiçoar os seus processos. Apesar das várias abordagens existentes à avaliação da eficiência
nas CA, não existed ainda um método universalmente reconhecido. Tradicionalmente, as em-
presas têm-se apoiado em métodos como a Análise de Fronteira Estocástica (SFA) ou a Análise
Envoltória de Dados (DEA) para calcular a eficiência das CA (Cooper et al., 2003; Daraio and
Simar, 2007; Burger, 2008). No entanto, as limitações de ambos os métodos sublinham a neces-
sidade de abordagens alternativas (Katharakis et al., 2014; Bauer et al., 1998). Para colmatar esta
lacuna, uma iniciativa de investigação de Sieben (2023) propõe um método em duas etapas para
quantificar a eficiência das CA. Em primeiro lugar, as curvas de valor são utilizadas para extrair um
valor aproximado da eficiência da CA, que foi designado por Sieben (2023) como flow efficiency.
Em seguida, a flow efficiency obtida é comparada com uma flow efficiency estimada.

Esta dissertação propõe uma nova abordagem para a melhoria da precisão da previsão da flow effi-
ciency utilizando modelos de Machine Learning (ML). Além disso, pretende ainda dar visibilidade
das características que contribuem de forma mais significativa para a previsão da flow efficiency,
construindo uma base para uma melhor alocação de recursos na procura por uma CA otimizada.

Para alcançar os resultados pretendidos, a metodologia proposta começa com a consolidação dos
dados, centrando-se na extração e preparação da variável-alvo (flow efficiency calculada a partir
das curvas de valor) e das variáveis explicativas ( flow efficiency drivers identificados). De seguida,
são utilizadas duas abordagens distintas. Em primeiro lugar, são desenvolvidos modelos de ML
utilizando Stepwise Backward Elimination (SBE) para explorar o equilíbrio entre a complexidade
e a precisão dos modelo, com o objetivo de identificar os flow efficiency drivers considerados
mais importantes. Em segundo lugar, utiliza-se Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) para identificar grupos distintos de materiais. Estes grupos são analisados
utilizando vários modelos ML para determinar as combinações modelo-cluster com melhor de-
sempenho. Finalmente, a importância de cada caraterística dentro destas combinações é avaliada
utilizando valores SHAP.

A aplicação da metodologia descrita a um caso prático desenvolvido na Hilti revelou a existência
de espaço para avanços significativos na gestão da cadeia de abastecimento. O estudo identifica
o tempo de máquina e o custo do material como características críticas para a previsão da flow
efficiency. Além disso, ficou provado que o agrupamento dos dados em subconjuntos não melhora
significativamente a capacidade preditiva dos modelos, mas aumenta a interpretabilidade dos mes-
mos. O agrupamento revela padrões distintos e destaca a variabilidade no impacto dos factores de
eficiência em diferentes contextos. Esta variabilidade sublinha a importância de ter em conta as
características específicas dos clusters para melhorar a eficiência da CA.
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"To develop a complete mind: Study the science of art; Study the art of science. Learn how to
see. Realize that everything connects to everything else."
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Chapter 1

Introduction

This chapter serves as an introductory overview of the dissertation. It provides information about

the context in which the motivation for developing this work emerged. The project’s background

will be presented by referencing previous relevant projects that will support this dissertation. Ad-

ditionally, the research methodology and research questions will be detailed. To conclude, the

structure of the dissertation will be outlined.

1.1 Context and Problem Scope

Supply chain (SC) design, planning, and operation decisions play a pivotal role in the success or

failure of a company (Craighead et al., 2007). Measuring SC efficiency enables organizations to

assess their operational performance, identify opportunities for enhancement, and refine their pro-

cesses for improved outcomes. Although multiple approaches exist for evaluating SC efficiency,

there is no single method that is universally recognized or suitable for every business.

Companies have relied on methods such as Stochastic Frontier Analysis (SFA) - a parametric

approach, which assumes a specific functional form and statistical distribution for the data - or Data

Envelopment Analysis (DEA) - a non-parametric approach - to calculate and identify opportunities

for efficiency improvements in their operations (Cooper et al., 2003; Daraio and Simar, 2007;

Burger, 2008). However, SFA requires normally distributed data while DEA struggles to handle

noise in the data. (Katharakis et al., 2014; Bauer et al., 1998). Therefore, there is room for

alternative approaches that can address these challenges.

A recent pioneering research initiative proposing a novel approach to quantify efficiency has been

conducted by Sieben (2023) to bridge the identified gap. Initially, value curves are plotted to depict

the relationship between value and time at each stage of production. These curves facilitate the

computation of a proxy for SC efficiency, which was named by Sieben (2023) as flow efficiency.

A value curve example and the base concept for efficiency calculation are presented in 1.1 In the

1
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second step, the derived flow efficiency is compared against a flow efficiency predicted through

ML models.

Figure 1.1: Value curve example and efficiency calculation (Parlak and Pescalli, 2023).

This master’s dissertation aims not only to enhance the methodologies for flow efficiency predic-

tion but also to provide visibility on the parameters that are impacting flow efficiency the most.

A primary emphasis will be placed on data extraction and processing, as this is crucial for the

precise identification of drivers affecting flow efficiency. Furthermore, the study will focus on the

development and evaluation of ML models designed to quantify SC efficiencies.

The anticipated outcomes of this research should offer insightful visibility into materials that are

underperforming. As a result, it will facilitate targeted interventions for the enhancement of SC

operations, ensuring a strategic alignment between the SC configurations and both market and

operational demands.

The motivation behind this project is to validate the model proposed by Sieben (2023) as a reliable

alternative to traditional methodologies for calculating SC efficiency. To test the applicability of

this methodology, Hilti’s business context is used as a case study, leveraging its data to address

the issue of SC strategic alignment. This approach not only aims to contribute to the scientific

community but also demonstrates practical applications in a real-world business environment.

1.2 Research Method and Heuristic Framework

This dissertation will follow the research method proposed by Ulrich (1981), as described in the

Dissertation Structure section.

This masters’ thesis is going to leverage the research project conducted by Sieben (2023) which en-

compasses bachelors’ (Näf (2015); Wolf (2020)) and master’s theses (Parlak and Pescalli (2023);

Gomes (2021); Klein (2021); Putkivaara (2020); Musacchia (2019); Thampi (2018); Rodrigues

(2023)), a journal paper (Sieben et al. (2023)) and a doctoral thesis (Sieben (2023)). Rodrigues

(2023) findings on the best-performing flow efficiency calculation methods are going to be directly

used in this project. Moreover, Parlak and Pescalli (2023) contributions on the impact of ML on
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flow efficiency prediction will be considered during this dissertation’s methodological develop-

ment.

Hilti employs performance pricing (VDI, 2015) within its sourcing departments as a well-established

method and is now seeking enhancements on flow efficiency calculations by applying similar prac-

tices. Given that flow efficiency remains an emerging area of research, ML techniques stand out

as promising approaches as they are expected to enable Hilti to derive actionable insights from

their flow efficiency-related data, facilitating data-driven decision-making. Thus, Hilti’s interest

in improving internal processes allowed us to investigate flow efficiency calculations.

The methodologies proposed throughout this dissertation will be applied to datasets extracted from

Hilti’s databases. This data will be used to evaluate the reliability and assess the performance of

the described methods. After identifying the model or models that better suit the context under

analysis, the outcomes of the methodological development will be implemented in a specific case

study provided by Hilti.

1.3 Research Questions

A research question is designed to precisely delineate the issue that will be the focal point through-

out a research endeavour. In the case under analysis, the main focus will be the improvement of

flow efficiency prediction.

The accuracy of predicted flow efficiency is highly dependent on the quality of the input data.

To address this challenge, artificial intelligence, in particular ML techniques, is used to support

pattern identification and provide insights into how different drivers affect SC flow efficiency in

various contexts. After an improved selection of drivers, it is possible to use ML models to increase

the accuracy of flow efficiency predictions and extract actionable insights from these results.

The accuracy of predicted flow efficiency heavily relies on the quality of input data, specifically

the data on flow efficiency drivers. Establishing a strong foundation with reliable data enables

the use of ML techniques to identify patterns and understand the impact of various drivers on

flow efficiency predictions. By exploring alternative approaches, it is possible to enhance predic-

tion accuracy while ensuring model interpretability, thus allowing for the extraction of actionable

insights from the results.

Given the context outlined and the benefits of not only refining existing models for predicting flow

efficiency but also evaluating their comparative performance, the research questions are:

• How can flow efficiency drivers be identified for a more accurate flow efficiency prediction?

• How can machine learning be leveraged to improve the accuracy of SC flow efficiency

prediction?

• How do different flow efficiency drivers affect flow efficiency prediction?
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1.4 Dissertation Structure

The structure of the dissertation follows the methodology proposed by Ulrich (1981), chosen for its

effectiveness in addressing real-world issues in a rigorous scientific way (Ulrich, 1982). Chapter 1

introduces the subject of this thesis by presenting the heuristic framework, the problem statement,

the research method and the research questions.

Considering the research questions introduced in Chapter 1, Chapter 2 focuses on a comprehensive

review of the literature on SC efficiency drivers and SC efficiency calculation techniques. This

review clarifies the current state of the art and pinpoints existing gaps in the field. Chapter 3

presents the core idea of this thesis, building upon the gaps identified in Chapter 2 and outlining

the formal methods to be explored for addressing the research questions.

Chapter 4 is dedicated to an in-depth exploration of the methodology followed to extract data and

systematically identify drivers of Flow Efficiency.

Building on the findings from Chapter 4, Chapters 5 and 6 explore two distinct approaches for

predicting flow efficiency and evaluating feature importance. Chapter 5 assesses various ML tech-

niques using different sets of flow efficiency drivers. The objective is to identify a set of drivers

that consistently yield accurate predictions. Conversely, Chapter 6 concentrates on evaluating the

importance of different flow efficiency drivers in the prediction process in subsets of the original

data.

Moreover, in Chapter 7, the described methodology is applied to a specific case study to validate

the reliability of the work developed. Hilit’s company profile is shared to help the reader better

understand the context in which this thesis was developed.

Chapter 8, Discussion and Outlook, presents the answers to the research questions and this disser-

tation’s contribution to science and business. It also concludes by discussing the limitations faced

and the avenues for further research.

The adaptation of Ulrich’s research structure to this work is shown in Figure 1.2:
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Figure 1.2: Dissertation’s structure (Ulrich, 1981) (modified).



Chapter 2

State of the Art

This chapter builds on the foundational concepts from AppendixA and the research questions out-

lined in Chapter 1 to thoroughly analyse the current research landscape. The conducted research is

divided into three primary focus areas. Initially, the study explored the drivers of efficiency in SC.

Subsequently, an examination of performance measurement systems (PMS) within the context of

dynamic SC is undertaken. Finally, research on the evaluation methods for the variable importance

in the context of ML models is conducted.

2.1 Efficiency Drivers for Flow Efficiency Prediction

Efficiency drivers play a crucial role in shaping the overall efficiency of a SC. These drivers en-

compass a range of factors that impact various aspects of SC’s operations. Businesses can optimize

their SC processes and enhance their competitiveness, by understanding and effectively managing

these drivers.

This section is split between two main areas. First, a comprehensive literature research on the

factors that impact SC efficiency is conducted. Secondly, the author focused on finding techniques

that allow the selection of the most important variables among a predefined range of parameters,

tackling high dimensionality challenges.

2.1.1 Supply Chain Efficiency Drivers Identification

This section predominantly draws from the research undertaken by Niklas Bley during his Master’s

dissertation (Bley, 2022). Bley (2022) aimed to pinpoint the factors influencing SC efficiency

through a comprehensive literature review complemented by parameters deemed as critical by

Hilti for evaluating SC efficiency. To ensure a comprehensive representation of all aspects of the

SC the SCOR model is applied, ensuring each facet of the SC is accounted for by at least one

efficiency driver, thus offering a holistic perspective.

6
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The literature review is a two-step process. Firstly, Bley (2022) specifically searched for articles

that examine the key metrics used by Hilti. Secondly, a conventional literature search is conducted

focusing on SC and SCM. From this body of literature, additional sources are identified that either

corroborated statements from other works or introduced new efficiency drivers.

The identified SC efficiency drivers are presented in 2.1

Table 2.1: Supply chain flow efficiency drivers (Bley, 2022).

Driver Driver

Annual demand Product commonality
Batch size Product complexity
Business interruption risk (BI) Product value density
Complexity of supplier’s network Purchase price
Customer order decoupling point (CODP) Response time
Delivery reliability Selling price
Flexibility of supplier’s network Throughput
Forecast error Throughput variance
Inventory Transportation cost
Lead time Turnover
Lead time variance Unit production cost
Minimum order quantity (MOQ) Weight and volume
Obsolescence risk Working capital

To validate the findings of Bley (2022), a new Scopus search is conducted. Initially, the query

"Supply chain efficiency drivers" yielded no results. Assuming the lack of literature is due to spe-

cific terminology, the query is revised to "Supply chain performance factors," which resulted in

finding 8 relevant articles. These articles delved into comprehensive literature reviews on the vari-

ous factors directly or indirectly impacting SC efficiency. The majority of the previously identified

flow efficiency drivers are corroborated through this validation process. However, considering the

growing significance of technology in contemporary SC processes, it is deemed essential to men-

tion other authors and incorporate Technological Integration as a new efficiency driver.

Technological integration refers to the strategic utilization of digital technologies to connect,

automate, and optimize information flow and collaboration throughout the entire SC. Studies have

shown that both digitalization and SC integration positively influence firm performance (Liu and

Chiu, 2021).

Additionally, to better illustrate the dynamic nature of supply-demand relationships across differ-

ent product maturity stages, the concept of Product lifecycle is also important to pinpoint.

Product lifecycle encompasses the phases a product traverses from its introduction to the mar-

ket until its eventual withdrawal or discontinuation. These stages typically include introduction,

growth, maturity, and decline. SC strategies must dynamically adapt to ensure alignment with

product characteristics and customer requirements, thereby maximizing competitiveness (Aitken

et al., 2003).

This review process tries to ensure the preservation of the holistic and contemporary nature of the

parameters under analysis.
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2.1.2 Supply Chain Efficiency Drivers Selection

In this section, techniques are explored to mitigate the challenges posed by high-dimensional

datasets on predictive models for SC efficiency. Given the narrow scope of available research,

Scopus yielded no results. Consequently, the works of Bley (2022) and Parlak and Pescalli (2023)

serve as state-of-the-art references for feature selection impacting SC efficiency prediction.

Bley (2022) emphasizes the criticality of ensuring data availability as a preliminary step in select-

ing flow efficiency drivers for analysis. To streamline resource allocation, an individual evaluation

of each driver based on predefined criteria is performed. The high-level criteria include the pres-

ence of data within the company and the necessity of data collection. As subcategories, Bley

(2022) uses the VDI 2817 standards referenced for assessing data quality VDI (2015). If data is

deemed missing or unavailable, a cost-benefit analysis is suggested, considering factors such as

the effort and cost of data collection alongside the relevancy of the efficiency driver.

Following this assessment, a comparison of results across different products or product families

enables the selection of drivers for analysis, ensuring robust feature selection for effective SC

efficiency prediction.

Building on this methodology, Parlak and Pescalli (2023) focuses on the usage of EDA and ML

techniques to identify the most important variables for more accurate analysis in flow efficiency

calculations. The authors take into account the previously identified pool of drivers and apply two

different methodologies. On the one hand, correlation matrices are used to gain visibility on the

relationships and patterns of the explanatory variables. This technique enabled a selection of the

parameters that mostly impact the prediction of the SC flow efficiency. On the other hand, PCA is

used to further reduce the dimension of the dataset that would later be fed to the ML models.

2.2 Methods for Production and Logistics Performance Estimation

The research presented addresses the necessity of enhancing SC performance to meet customer

expectations. The central focus of achieving this improvement is the adoption of effective perfor-

mance measures and metrics that assess the efficiency of the SC. An effective PMS is therefore

critical to the success of any business, enabling the measurement of relevant indicators at oppor-

tune times.

Over the past few decades, numerous researchers have conducted literature reviews on supply

chain performance measurement systems (SCPMS). However, most of these studies have inte-

grated SC as components of broader PMS frameworks. In the current market environment, the

adoption of SCM approaches and techniques is becoming increasingly prevalent (Vitasek, 2013).

This underscores the need for a comprehensive review of PMS in the specific context of SC.

Thus, the main focus is the review of existing literature on PMS within the dynamic SC environ-

ment and the identification of potential research gaps that could be explored in this dissertation.
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To fulfil this objective, the author has employed a systematic literature review procedure. Initially,

the author utilised databases such as Scopus, Google Scholar and ISI in order to collect literature

from the year 2000 to 2024. Over 900 papers are identified in the context of SCPMS, utilising

the keywords "supply chain performance", "supply chain efficiency measurement", "supply chain

performance measurement" and "supply chain performance methods". Initially, redundant papers

collected from different databases are eliminated. To improve the quality of the papers under

analysis, the title, keywords, abstract and conclusions are reviewed. Ultimately, 127 papers are

considered to be included in the review process in the context of SCPMS.

After the papers’ analysis, the following techniques are found to be the most relevant.

2.2.1 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a comprehensive theory of measurement that derives

ratio scales from both discrete and continuous paired comparisons. These comparisons can be

based on actual measurements or on a fundamental scale that reflects the intensity of preferences

and perceptions. AHP is particularly focused on measuring inconsistencies, as well as examining

dependencies within and between the groups of elements in its structure (Saaty, 1987). This

technique has been extensively applied in fields such as multi-criteria decision-making, planning,

resource allocation, and conflict resolution.

Even though it was developed in the 1970s, only in the early 2000s the model is applied in the

SCM context.

Chan (2003) leverages AHP to address the challenge of prioritizing performance measures in

SCM. This methodology facilitates an objective evaluation of each performance measure by pair-

wise comparisons. This process is a key innovation in the paper, providing a clear and quantifiable

way to balance several SC efficiency drivers. The author offers a detailed guide on how to methodi-

cally evaluate and rank the importance of different performance measures, thus enabling managers

to make informed decisions about where to focus their improvement efforts.

Cho et al. (2012) presents a framework for measuring the performance of service SC, which is

particularly groundbreaking given the limited exploration of this area in existing research. The

innovation lies in integrating fuzzy logic with the traditional AHP, enabling a more effective han-

dling of the ambiguities and subjective evaluations common in performance assessments. By set-

ting a priority between the different dimensions, the framework not only offers a methodological

advance but also provides a practical tool for SC managers to enhance efficiency.

2.2.2 Supply Chain Operations Reference

The SC Operations Reference (SCOR) model serves as a framework for evaluating and improving

SC management practices (Stevens, 1997). This model categorizes all SC activities into six core

management processes: Plan, Source, Make, Deliver, Return, and Enable. By integrating these
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elements, the SCOR model facilitates detailed mapping of SC operations, benchmarking against

industry standards, and the identification of areas needing improvement.

The SCOR model’s strength lies in its broad applicability across diverse industries, providing

tools for businesses to achieve operational efficiency. It quantifies performance using standardized

metrics based on reliability, responsiveness, agility, costs, and asset management efficiency, which

guide strategic decision-making and operational adjustments (Stevens, 1997).

2.2.3 Stochastic Frontier Analysis

SFA is a parametric approach that aims to assess the efficiency of production units. This method

incorporates both random errors due to external factors and inefficiencies related to the production

process itself (Aigner, 1977). SFA operates by estimating a frontier production function which

serves as the benchmark for maximum possible output given a set of inputs. The efficiency of each

decision-making unit (DMUs) - any entity that is to be evaluated in terms of its abilities to convert

inputs into outputs - is then evaluated based on its distance from this frontier, with consideration for

stochastic variations that could skew the measurement of output inefficiencies. SFA is particularly

beneficial in contexts where data might be influenced by noise and measurement errors. The

methodology not only identifies the presence of inefficiencies but also quantifies them, thereby

offering critical insights for performance improvement and strategic management across diverse

contexts.

Hamdan et al. (2017) presents a methodology based on SFA to analyze the efficiency of the Build-

to-Order SC (BTO-SC), contrasting it with that of traditional SC. The findings aim to provide a

robust analytical framework that can serve as an investment guideline for companies considering

the adoption of BTO-SC principles, offering insights into the potential benefits and efficiencies

gained from this agile SC model.

2.2.4 Data Envelopment Analysis

DEA is a non-parametric method for estimating production frontiers and assessing the relative effi-

ciency of DMUs without assuming a specific functional form of the production process (A Charnes

and Seiford, 1997). The original DEA model evaluates units based on their inputs and outputs us-

ing mathematical programming to form an efficiency frontier. This approach compares each unit

against a combination of others to determine an efficiency score, indicating whether units are effi-

cient (on the frontier) or inefficient (below it). DEA’s strength lies in its ability to handle multiple

input and output scenarios without a predefined production function, making it versatile for per-

formance evaluation across various fields. The DEA model has been extended to address specific

conditions and incorporate additional variables, establishing it as a crucial methodology in opera-

tions research and performance management. Literature research indicates that DEA is commonly

used in SC performance measurement.
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Wong and Wong (2007) examines the application of DEA to assess internal SC performance, with

a particular focus on two distinct models: the technical efficiency model and the cost efficiency

model. The study highlights how DEA helps identify inefficiencies within SC operations and

guides managers in implementing effective remedial actions and resource allocation strategies.

Tavana et al. (2013) proposes an extension of DEA models using Epsilon-Based Measures (EBMs)

of efficiency, which allow for the simultaneous consideration of both radial - scale by the same

factor - and non-radial inputs and outputs. The new model termed the Network EBM (NEBM),

integrates these measures into a unified framework to address network DEA problems effectively.

2.2.5 Machine Learning

Considering that ML will be used to address the research questions posed in Chapter 1, the author

decided to narrow the scope of the research. To comprehensively investigate the usage of ML

algorithms to estimate the efficiency of SC a new Scopus research is conducted. Using "machine

learning", "supply chain", and "performance measurement" as keywords, 7 papers are found. Tak-

ing into account the low amount of articles available, every single one is analysed. Table 2.2

summarizes the reviewed articles.

The scarcity of documentation on this specific aspect underscores a clear gap in the literature.

This signals an opportunity for further investigation, emphasizing the unexplored potential of ML

methodologies in predicting SC efficiency

2.3 Review of literature

This section provides insights into existing studies related to the subject of this dissertation. The

author has carefully selected papers using keywords relevant to the method development discussed

in the following chapters. The work is categorized into review areas, which define the problem-

relevant context, and design areas, where systematic changes are proposed. In the Scope of the

Review and Design Table (Figure 2.1), keywords are listed in the first row and marked with hollow

or solid circles to indicate whether they are partly or fully covered.
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Figure 2.1: Comparison of the areas addressed by former researches with the ones targeted by
this work.

• Fully Addressed
◦ Partially Addressed
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Table 2.2: Machine learning on supply chain performance measurement.

Author Model Used Context Takeaways
Nilashi et al. (2024) K-means clustering

and fuzzy logic
Evaluating the perfor-
mance of Electric Ve-
hicles SC by analyz-
ing indicators related
to customer perceived
value.

ML-based method
can accurately predict
Electric Vehicle SC
efficiency.

Farchi et al. (2023) Multidimensional
performance mea-
surement model and
Artificial Neural Net-
works (ANNs)

Quantifying sustain-
able performance
in the road freight
transport sector across
economic, social,
environmental, opera-
tional, and stakeholder
dimensions.

The model is general
and applicable to var-
ious disciplines, lever-
aging ANNs to predict
global performance.

Dixit and Gupta (2023) ML (general applica-
tion)

Identifying critical
parameters for quality
control and predicting
SC performance.

ML helps improve pro-
cess efficiency by fo-
cusing on critical fac-
tors, though detailed
methodologies are not
discussed.

Mariappan et al. (2023) Ensemble of regressors
and classifiers

Predicting processing
and shipment times for
medical supply orders
in an e-Pharmacy post-
COVID-lockdown sce-
nario.

ML techniques signifi-
cantly improve predic-
tion accuracy for order
processing and ship-
ment times.

Kliangkhlao et al. (2022) Causal Bayesian Net-
works (CBNs)

Understanding market
dynamics, balancing
demand and supply,
and assisting decision-
makers in managing
the SC.

CBNs provide a
human-like approach
to explaining demand
and supply events,
aiding in decision-
making.

Ghaouta et al. (2021)) ML (general applica-
tion)

Predicting warehous-
ing efficiency by
modeling warehouse
operations and KPIs.

ML can extract generic
knowledge of ware-
house operations, en-
abling future scenario
predictions.

Shirota et al. (2021) Shapley values Relating operational
competencies to stock
price evaluation by
using operational mea-
sures as explanatory
variables.

Using Shapley values
provides more reliable
information about
management quality
competence.



Chapter 3

Method Development

This chapter aims to describe the concept behind the developed methodology as well as the formal

methods that are used to answer the research questions posed in Chapter 1. This chapter is essential

for the understanding of the subsequent ones.

3.1 Approach to Concept Development

Chapter 2.1.2 highlights ongoing studies on flow efficiency prediction and the application of per-

formance pricing to derive actionable insights from flow efficiency values. Parlak and Pescalli

(2023) contributed significantly to this field by using ML to identify flow efficiency drivers and

improve prediction model performance. Despite their contributions, inconsistencies in the selec-

tion of flow efficiency drivers across various contexts and significant data collection challenges

suggest that there is still room for improvement. A promising future research direction identified

by Parlak and Pescalli (2023) involves applying cross-validation across different product fami-

lies. This approach consists of training ML algorithms with one product family and testing them

with another to ensure robust validation. Achieving this requires large datasets with consistent

explanatory variables and sufficient sample sizes.

Building on their work, this dissertation aims to study feature importance, hypothesizing that the

predicted flow efficiency is influenced by different drivers for different materials. Additionally,

it seeks to leverage ML capabilities to enhance the accuracy of flow efficiency predictions. The

focus will be on developing a methodology that is both generalizable across diverse contexts and

ensures the interpretability of results.

The diagram presented in 3.1 describes the several stages executed during the methodological

development to answer the research questions posed in Chapter 1.

14
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Figure 3.1: Concept development stages (The author).

The methodology begins by defining the materials within the scope of analysis for which value

curves will be created. Previous master dissertations conducted in this or similar contexts within

Hilti relied on manual tasks to extract the data required for flow efficiency calculation through the

value curves, limiting the amount of data that could be gathered and potentially compromising

ML model performance. To address this, a data extraction automation is implemented to mitigate

the impact of data scarcity on model performance. The value curves are then used to calculate the

theoretical flow efficiency used as the target variable for ML models.

In parallel, a range of flow efficiency drivers are also identified and extracted from Hilti’s En-

terprise Resource Planning (ERP) to be fed as explanatory variables to the ML models. After

extracting all the required data, it goes through several steps of preparation to ensure improved

model performance.
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From this point onwards two different approaches are followed with the objective of testing differ-

ent hypotheses. In Chapter 4, ML models are developed alongside Stepwise Backward Elimination

(SBE). The entire dataset is used to explore the balance between model complexity and accuracy.

This investigation aims to determine if there is a specific set of features that consistently emerge

as the most important for predicting flow efficiency.

In Chapter 5, clustering is performed to build a ground that allows to testing of the hypothesis

that different materials have distinct drivers influencing the flow efficiency of their SC. Clustering

the data comes alongside the objective of providing visibility on the most relevant parameters in

different subsets of the original data. Subsequently, different ML models are applied, considering

the specificities of the dataset under analysis. These are evaluated based on predefined criteria

to identify the best-performing model-cluster combination. To conclude, the importance of each

parameter for the predictive capacity of the models is assessed to test the hypothesis that the flow

efficiency drivers impacting SC efficiency vary across different materials.

The results from both approaches are then evaluated and compared in Chapter 8 in order to pro-

vide clear answers to the research questions posed in Chapter 1. This multifaceted analysis not

only enhances the predictive performance but also offers valuable insights into the specific factors

affecting SC efficiency. It provides diverse perspectives on the drivers impacting these predic-

tions and how they influence the outcomes. By leveraging both feature selection techniques and

clustering, the study systematically examines model complexity, accuracy and interpretability.

3.2 Formal Methods

In this subchapter, formal methods essential for methodological development are introduced.

These methods are crucial to ensure that the resulting model yields accurate results, enabling

precise answers to the research questions.

3.2.1 Data Consolidation

This subsection outlines the initial steps of the methodological development aimed at consolidating

the necessary data to predict SC flow efficiency. Firstly, Visual Basic for Applications (VBA) is

employed to optimize the extraction of data required for the value curve creation. After drafting

the value curves, the theoretical flow efficiency is calculated.

Next, the focus shifts to identifying and select flow efficiency drivers, a crucial aspect of method-

ological development, given their role as explanatory variables in predicting flow efficiency. To

ensure precise identification, the author builds upon the methodology outlined by Bley (2022).

Finally, during the data preparation stage, data quality is validated using the criteria described

in VDI (2015). Based on the results of this evaluation, the extracted data undergoes cleaning,

transformation, and consolidation. EDA techniques, such as correlation matrices, are employed to

reduce multicollinearity in the dataset, thereby decreasing its dimensionality.
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3.2.2 Feature Selection for Supply Chain Flow Efficiency Prediction

The methodology for predicting SC efficiency encompasses several stages, each leveraging ML

capabilities to enhance prediction accuracy and develop a generalizable approach.

In the prediction stage, ML models are carefully chosen to align with the data characteristics. Two

key considerations guided the selection of the most suitable ML models.

Firstly, acknowledging the high degree of multicollinearity in the dataset, Partial Least Squares

(PLS) regression is selected. Multicollinearity refers to the presence of high correlation among

the independent variables, which can lead to unstable and unreliable estimates of the regression

coefficients in traditional multiple regression analysis (Chatterjee and Hadi, 2015). PLS regression

is able to handle data with high collinearity, noise, and numerous independent variables, improving

predictive performance by allowing all efficiency drivers to influence the dependent variable while

considering inter-variable influences (Vinzi et al., 2010).

Secondly, recognizing that the target variable, flow efficiency, is a form of bounded data — since

it is calculated through value curves and inherently limited to a range between 0 and 1 — Beta

regression is chosen. This regression is particularly well-suited when the response component is

restricted to an interval (0, 1), such as proportions, percentages, and fractions (Ferrari and Cribari-

Neto, 2004).

To complement the pool of models identified based on the specific characteristics of the dataset,

commonly used ML models are also incorporated into the methodological development.

SBE is used while developing the identified ML models. This method aims to evaluate the mod-

els’ performance with different sets of features and investigate the possibility of reducing model

complexity. It is essential to understand if there is a specific set of features consistently yielding

accurate results for predicting flow efficiency. Through the feature importance calculation em-

bedded in the SBE approach, it is possible to draw conclusions on this matter. This method is

specifically chosen because it helps reduce multicollinearity by evaluating each predictor in the

context of the others, thereby minimizing the presence of highly correlated variables in the fi-

nal model. In contrast, Stepwise Forward Elimination (SFE) adds variables one at a time based

on their individual predictive power, which can inadvertently include highly correlated predictors

early in the process. Taking into account the likelihood of the dataset under analysis having a high

degree of multicollinearity SBE is used, ensuring that the final model is less prone to issues arising

from correlated features(Theng and Bhoyar, 2024).

For each one of the identified models, and for each different set of features, K-fold cross-validation

is employed to mitigate overfitting risks, enhancing the overall reliability of the results.
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3.2.3 Clustering for Feature’s Importance Visualization

As one of the main goals of this dissertation is to provide interpretability of the results, Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) is employed as a clustering tech-

nique in a separate approach. Unlike many clustering algorithms that require the number of clus-

ters to be specified in advance, DBSCAN does not. This feature makes it highly suitable for

exploratory data analysis where the number of clusters is not known beforehand (Schubert et al.,

2017). DBSCAN identifies clusters based on the density of points, allowing it to effectively iden-

tify clusters of arbitrary shapes and handle noise and outliers (Schubert et al., 2017). By employing

this technique, the study aims to test whether the flow efficiency of different materials is influenced

by different flow efficiency drivers.

After clustering, the data is used to train the aforementioned ML models, aiming to find the best

cluster-model combination. After evaluating and identifying the best-performing model for each

cluster, the author focuses on testing the hypothesis that the importance of flow efficiency drivers

varies in predicting the flow efficiency of materials across different clusters. By calculating SHAP

values for each model within the different clusters, it is possible to quantify the contribution of each

flow efficiency driver to the model’s predictions. This approach enables a detailed comparison of

feature importance across clusters, highlighting any variations in the influence of specific drivers

on flow efficiency predictions.

To strengthen the statistical validity of these findings, the author first uses the Shapiro-Wilk test

to evaluate if the data is normally distributed. Building on those findings, ANOVA tests and the

Kruskal-Wallis test are used to evaluate the significance of the differences in the SHAP values be-

tween clusters. This rigorous approach ensures that any observed differences in feature importance

are statistically significant, providing robust evidence to support the hypothesis.



Chapter 4

Data Consolidation

This chapter provides a detailed description of the data consolidation methodology introduced in

Chapter 3. It involves the description of the value curve creation process, the systematic identi-

fication of flow efficiency drivers and data preparation techniques used to adjust the dataset with

the purpose of increasing ML models’ performance and reliability.

4.1 Value Curves Creation

Value curves are used to calculate SC flow efficiency, which then serves as the target variable for

the ML models. Some value curves drafted in the context of previous dissertations conducted at

Hilti were already available for analysis but were not enough to draw meaningful conclusions.

Therefore, the author chooses to focus on automating the creation of value curves, aiming to

mitigate the risk of data scarcity negatively impacting the model’s predictive performance. In

general, the performance of ML models is highly dependent on the quantity and quality of the

data used for training. More data typically leads to better model accuracy and robustness, as

it allows the model to learn more patterns in the data, thus improving its predictive capabilities

(Halevy et al., 2009).

The described procedure is an improvement of a method developed by Ege and Zeno in their dis-

sertation (Parlak and Pescalli, 2023). Through the ck13n transaction in Systemanalyse Program-

mentwicklung (SAP), Hilti’s ERP, it is possible to retrieve a detailed report of the steps involved

in manufacturing processes, including operations’ time and cost.

The value curve extraction method is summarized in the following steps:

• Step 1: Identify materials in scope for the analysis

The methodological development faces limitations due to the unavailability of data neces-

sary for the creation of value curves. Since this process relies on operational time and cost

data for each step, our analysis is confined to materials produced in-house, as information

19



20 Data Consolidation

for externally sourced products is unavailable. During the initial scoping phase, a vast array

of 21,829 distinct materials were flagged as available for potential inclusion in this analysis

• Step 2: SAP data collection

A Consolidated Standard Cost (KSK) transaction is performed in order to retrieve a report

containing both time and cost data. For each manufacturing operation extracted, two types

of elements are present:

– The name of the operation along with its cost and time.

– The components/raw materials name, cost and quantities.

Moreover, general cost components such as the material, production and administrative

overhead are also retrieved.

This step was the primary bottleneck in the data extraction process. For each material num-

ber, a SAP transaction is executed, followed by the manual download and analysis of an

Excel file, making it an extremely time-consuming task. To address this challenge, a VBA

script is developed. Given a list of material IDs, it is possible to output the required cost and

time data in the appropriate format for the next step.

From the initial array of materials, only 8,764 have the desired data available for extraction.

Therefore, the other 13,065 are excluded from the analysis.

• Step 3: Cost and time data calculation per operation

For each operation the time and cost are calculated as follows:

– Time Calculation: The duration of each production step, which coincides with the

operations, is determined by summing up the time of each component involved in the

operation.

– Value Calculation: The cost of each production step is calculated by summing the cost

of the components involved in that step along with the cost of running the machine.

• Step 4: Value curves drafting

The value curves are created based on production steps and their associated costs. Out of

the 8,764 materials with extracted data, only 6,595 contained the necessary information for

value curve creation, meaning that for the remaining 2,169 materials, only data on either

production time or production cost is available. Since both parameters are required to draft

value curves, these materials were excluded from the analysis.

The last two steps are executed through a VBA script developed by Rodrigues (2023) during his

dissertation and further adjusted to accommodate products with up to 50 production steps.
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4.1.1 Flow Efficiency Calculation

The flow efficiency calculation is determined using vertical slack-based weighting. In his dis-

sertation, Rodrigues (2023) evaluated 25 different methods for calculating flow efficiency and

statistically demonstrated that this method was the most consistent for the desired context. Con-

sequently, this study builds on that work, utilizing the vertical slack-based weighting formula to

compute flow efficiency values. These values serve as the target variable for the ML models.

4.2 Flow Efficiency Drivers Identification

Choosing the appropriate flow efficiency drivers to be included in the analysis is an indispensable

step, as these parameters will serve as explanatory variables for the ML models, significantly

impacting their overall performance.

4.2.1 Data Availability

The first step involves analyzing the outputs from the literature research conducted on this topic.

Considering the list of flow efficiency drivers provided by Bley (2022) in his dissertation, along

with additional parameters identified by the author, the initial pool comprises 29 different effi-

ciency drivers.

It is crucial to assess which efficiency drivers can be incorporated into the modelling process,

as companies often lack complete data for each one of the identified drivers (Wang et al., 2016).

Determining which ones to include or omit before data collection ensures that consistent efficiency

drivers are available as independent variables for all products under review. This approach aims to

save time and costs by avoiding the collection of irrelevant data.

In order to identify which flow efficiency drivers should be included in the analysis the methodol-

ogy described by Bley (2022) is followed. Bley (2022) suggests the creation of the matrix shown

as an example in Figure 4.1. One axis of the matrix contains the efficiency drivers from chapter

3.2.1 while the other axis contains the criteria used to evaluate whether an efficiency driver should

be included or not. Bley (2022) suggests the higher-level criteria to be whether data is already

available in the company and/or whether data needs to be collected. These primary criteria are

then be subdivided into further sub-criteria that refer to the parameters used for data quality as-

sessment from VDI 2187 (VDI, 2015). If the assessment identifies that data is missing or generally

not available, it is evaluated whether data collection makes sense through a cost-benefit evaluation.

To ensure a thorough and reliable assessment, leveraging the expertise within the company where

this dissertation is conducted, several meetings were held with key stakeholders, including ma-

terials managers, product managers, and material master experts. These collaborative sessions

were crucial for accurately completing the evaluation matrix while guaranteeing visibility into the

available data. This approach not only enhances the reliability of the data assessment but also

streamlines the identification of relevant efficiency drivers.
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Figure 4.1: Example of the matrix for efficiency drivers selection(Bley, 2022).

Based on the insights gathered from these experts, a new evaluation criterion - Data Suitability -

is added to the matrix. This criterion ensures that the efficiency drivers are relevant to the context

under analysis, encompassing the fact that only in-house-produced products are in scope. Drivers

deemed unsuitable are left out of the analysis.

The final evaluation matrix detailing the inclusion criteria is provided in Appendix B.

To conclude, after further leveraging the knowledge of company experts, the final pool of flow effi-

ciency drivers is still subject to some adjustments. It is recognized that certain subtleties affecting

SC flow efficiency are not fully captured during the literature research. Therefore, the following

modifications are implemented:

• Number of production steps: Introduced as a flow efficiency driver. Since the analysis

focuses solely on in-house production products and this parameter integrates the flow effi-

ciency calculation formula, it is introduced as an explanatory variable.

• Unit production cost breakdown: Previously identified as a flow efficiency driver, the unit

production cost is separated into Material Cost, Production Cost, Material Overhead Cost,

and Production Overhead Cost. This detailed breakdown is believed to better capture the

relationship between different cost components and help identify processes’ inefficiencies.

• Inventory replaced by safety stock: Inventory is replaced by safety stock due to the former

being an extremely dynamic parameter constantly changing. Determining the precise mo-

ment for data extraction would be challenging. Conversely, safety stock is a more stable

value with less time dependence.

• Response time replaced by machine time: Since manufacturing efficiency is being used as

a proxy for SC flow efficiency, replacing response time with machine time makes sense,

thereby focusing on the actual time considered relevant in this context.

The final pool of flow efficiency drivers is presented in Table 4.1.
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Table 4.1: Final pool of flow efficiency drivers.

Driver Driver

Annual demand Number of production steps
Batch size Product complexity
Forecast error Production cost
Lead time Production overhead cost
Machine time Product value density (PVD)
Machine cost Safety stock
Material overhead cost Volume
Minimum order quantity (MOQ) Weight

Once the desired data is identified, the extraction process involves the execution of specific queries

in SAP Analysis for Microsoft Excel.

4.3 Data Preparation

Conducting data evaluation and preparation tasks before developing ML models is essential to en-

sure reliable outcomes (He et al., 2016). These preliminary steps help in identifying and rectifying

errors and inconsistencies in the data, thereby enhancing its quality. Moreover, it is fundamental to

structure the data in a way that makes it suitable for analysis, which includes normalizing values,

encoding categorical variables, and addressing multicollinearity. This process not only improves

the accuracy of the models but also increases their efficiency and stability.

4.3.1 Data Validation

The validity of the generated model is related to the underlying data. Thus, checking the qual-

ity of the data for the efficiency drivers is essential to ensure good validity of the model (VDI,

2015). Additionally, it is necessary to validate the data quality outputs obtained through the flow

efficiency drivers evaluation matrix. According to VDI (2015), to ensure high quality of the data

collected, the following points must be observed:

• Error-free data - semantic: It must be checked whether the data are correct with regard to

their meaning. A value which initially appears numerical may well have a non-numerical

meaning.

• Error-free data - syntactical: Consistent use of separating characters such as period or

comma as number format or decimal separation must be checked. Furthermore, uniform

dimensions must be used to ensure comparability between different products. Last, a con-

sistent notation is essential to ensure that the model can run correctly.

• Completeness of data: In data sets, it can happen that data is completely missing or dupli-

cates are present. If data or information is missing, it must either be corrected or the product

must be excluded from the model. Duplicates can be prevented by giving each product a

unique identifier.
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• Objectivity of the data: In principle, the data collected should not depend on the judg-

ment of the person who collected it. If this is the case, the reproducibility of the data is

questionable.

4.3.2 Data Processing

Considering the data quality criteria defined in the last subsection as well as ML model require-

ments, some preparation tasks were performed to ensure that the model’s development could be

started:

• Data cleaning:

– The flow efficiency drivers identification step deemed "Weight" as an indispensable

parameter in the SC flow efficiency estimation. Thus, it is decided to leave out of the

analysis all the materials for which there is no weight recorded. The same rationale is

applied to materials in which the "Demand" parameter is missing. This step leads to

the exclusion of 4,509 data points, with the final dataset used to feed the ML models,

having the information of 2,076 different materials. This step resulted in the exclusion

of 4,509 data points, leaving a final dataset of 2,076 materials for the ML models.

Figure 4.2 summarizes the various filtering steps from the initial to the final dataset.

– Some data points presented no value for the "Safety Stock" parameter. In these, the

null value is attributed, as it is the system default.

Figure 4.2: Filtering steps.

• Data transformation: The "Forecast Error" is calculated as the percentual difference be-

tween the forecasted demand and the actual demand for the same materials during 2023.

• Feature Selection: A Spearman correlation matrix is used to tackle the existence of multi-

collinearity in the flow efficiency drivers dataset, through the definition of a threshold from

-0.85 to 0.85. The attributes with a higher positive or negative correlation between each

other are eliminated by keeping the rest without having any further filtering application to

have a variance in the data set.
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Production overhead and material overhead costs are excluded from the analysis, and the

data is eliminated from the dataset. No other dimensionality reduction techniques are ap-

plied since maintaining the interpretability of results is one of the great concerns of this

methodological development. The final pool of flow efficiency drivers and their description

is detailed in Appendix C.

• Data Normalization: To enhance the accuracy of ML models and prepare for subsequent

clustering techniques, data normalization is employed. Normalization ensures that all at-

tributes have the same weight in the analysis, a fundamental requirement for many tech-

niques. The min-max normalization method is utilized, which scales the features to a fixed

range (typically between 0 and 1) by subtracting the minimum value and dividing by the

range of each attribute. This process ensures that all features contribute equally to the anal-

ysis, preventing attributes with larger scales from dominating the results. The formula for

min-max normalization is as follows:

Xnorm =
X −Xmin

Xmax −Xmin
(4.1)

• Data Consolidation: To integrate the flow efficiency values calculated through the value

curves with the flow efficiency drivers dataset, a consolidation process is undertaken. This

consolidation ensures that the dataset contains both the explanatory variables (flow effi-

ciency drivers) and the target variable (flow efficiency values). By merging these datasets

based on common identifiers, each observation in the dataset now includes both the pre-

dictors and the corresponding flow efficiency values, providing the necessary input for the

training of ML models.



Chapter 5

Feature Selection for Supply Chain
Flow Efficiency Prediction

This chapter offers a comprehensive overview of the methods employed to predict flow efficiency,

building on the previously identified drivers. The approach aims to achieve an optimal balance

between model complexity and performance. To this end, SBE is used to identify a smaller set of

flow efficiency drivers that consistently deliver robust model performance (Khaire and Dhanalak-

shmi, 2022).

The first subsection outlines the criteria used to evaluate the models throughout the methodological

development. Following this, the models and the corresponding results are presented.

5.1 Model’s Evaluation

In predictive modelling, having a robust system for model evaluation is crucial. This importance

is magnified when multiple metrics are used, allowing for a more comprehensive assessment, and

capturing different aspects of the model’s accuracy and reliability.

In this context, R² (Coefficient of Determination) and RMSE (Root Mean Squared Error) are used

as the model’s evaluation metrics. By doing so, a balanced evaluation is ensured as this dual-

metric approach helps identify models that fit the training data well and perform consistently on

new, unseen data.

The process begins with the initial selection of the model with the highest R² value, ensuring a

strong fit to the data. This initial model serves as a starting point for further comparisons.

Next, the marginal differences between the normalized RMSE and R² values are calculated for all

the trained models. This involves determining how much each model improves or deteriorates in

terms of RMSE and R² compared to the initially selected model. The goal is to find models that

significantly improve one metric without disproportionately worsening the other.
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The selection is then iteratively updated based on these marginal differences until no better trade-

off is found, ensuring the chosen model provides the optimal balance between RMSE and R². By

following this systematic approach, the evaluation system ensures that the final selected model is

not only accurate but also generalizes well, achieving a balanced performance across both metrics.

5.2 Backward Stepwise Elimination

In this study, a diverse set of ML models is employed to predict the flow efficiency of the SC.

Firstly, the selection of these models is guided by the unique characteristics of the dataset. Specif-

ically, PLS regression is chosen due to the high degree of multicollinearity present in the dataset,

while Beta regression is selected because the target variable is bounded between 0 and 1.

Additionally, a range of commonly used ML models are incorporated to provide a comprehensive

analysis, leveraging their unique strengths. This strategic selection was informed by an in-depth

analysis of the dataset to identify models with the potential for high predictive accuracy. The full

list of models used is presented in Table 5.1.

Table 5.1: Machine learning models used for flow efficiency prediction.

Model Model

AdaBoost Neural Networks Regression
Bayesian Regression Ordinary Least Squares (OLS) Regression
Beta Regression Partial Least Squares (PLS) Regression
Decision Trees Random Forest
K-Nearest Neighbors (K-NN) XGBoost

All models are trained using k-fold cross-validation to ensure reliability and minimize the risk of

overfitting. Additionally, each model is fine-tuned by optimizing their specific hyperparameters

to achieve optimal performance. A dataset comprising information on 1,874 different materials is

used to train the models. The performance results1 are shown in Table 5.2.

Table 5.2: Machine learning models’ flow efficiency prediction performance.

Model R² RMSE

AdaBoost 0.684 0.069
Beta regression 0.396 0.106
Bayesian regression 0.274 0.108
Decision trees 0.803 0.053
K-nn 0.734 0.0614
OLS 0.219 0.110
PLS 0.213 0.110
Random forest 0.876 0.043
XGBoost 0.899 0.034

The results highlight that non-linear and ensemble methods, particularly XGBoost and Random

Forest, significantly outperform linear methods in predicting flow efficiency. These models are

1Neural Networks is excluded from the analysis as the models don’t yield a positive value for R²
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better suited to capture the complex relationships in the dataset. Linear methods like OLS, PLS

and Bayesian regression perform poorly.

The models are subsequently run using SBE to further enhance predictive performance and un-

derstand the significance of different features. The feature importance metric in this method is

calculated differently for various models.

For ensemble methods like Random Forest, XGBoost, AdaBoost, and Decision Trees, feature im-

portance is determined based on each feature’s contribution to the reduction in impurity—measured

by Gini impurity or entropy—across all trees. In contrast, linear models such as OLS and Bayesian

regression assess feature importance by the absolute values of their model parameters. For PLS

regression, the importance is derived from the absolute values of the regression parameters for

each feature.

By employing this approach, the study aimed to balance model simplicity and predictive accu-

racy, ensuring that the essential patterns in the dataset are captured effectively while maintaining

computational efficiency and interpretability.

The output of this process included R² and RMSE values for each model across every k-fold

cross-validation and for each set of features, sequentially extracted in order of importance until

only one feature remained. The detailed results illustrating the impact of feature reduction on

model performance can be found in the Appendix D.

The plots2 presented from 5.1 to 5.9 describe the evolution of the model’s performance with di-

mensionality reduction.

(a) R² for AdaBoost (b) RMSE for AdaBoost

Figure 5.1: AdaBoost model complexity vs model performance.

2Neural Networks is excluded from the analysis as the models did not yield a positive value for R²
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(a) R² for Bayesian Regression (b) RMSE for Bayesian Regression

Figure 5.2: Bayesian Regression model complexity vs model performance.

(a) R² for Beta Regression (b) RMSE for Beta Regression

Figure 5.3: Beta Regression model complexity vs model performance.

(a) R² for Decision Trees (b) RMSE for Decision Trees

Figure 5.4: Decision Trees model complexity vs model performance.
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(a) R² for K-nn (b) RMSE for K-nn

Figure 5.5: K-nn model complexity vs model performance.

(a) R² for OLS (b) RMSE for OLS

Figure 5.6: OLS model complexity vs model performance.

(a) R² for PLS (b) RMSE for PLS

Figure 5.7: PLS model complexity vs model performance.
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(a) R² for Random Forest (b) RMSE for Random Forest

Figure 5.8: Random Forest model complexity vs model performance.

(a) R² for XGBoost (b) RMSE for XGBoost

Figure 5.9: XGBoost model complexity vs model performance.

Based on the analysis of the plots, Decision Trees, Random Forest, and XGBoost have been se-

lected for further analysis due to their robust performance during dimensionality reduction. It is

observed that the performance of the three models remains stable until the 8th feature is excluded.

The optimal number of folds for each of the best-performing models was determined using the

evaluation system described in the previous section. The results indicated that K=20 is optimal

for Decision Trees and XGBoost, while K=10 is optimal for Random Forest For these specific

parameters, the models maintain R² values above 0.80 and RMSE values below 0.053, even when

more than 50% of the features are excluded from the training dataset.

The subsequent analysis aims to identify the final set of features used in each of these best-

performing models before their performance metrics started to decline. The set of features may

differ across models because the underlying algorithms assign different importance coefficients to

various features. Consequently, the order in which features are excluded is not the same for each

model, as described in Appendix E.

The features used for model training before the decline in performance metrics are listed in Table

5.3. The decline moment corresponds to the 8th iteration, during which the 8th least important
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feature was excluded. This table ranks the features by their importance, reflecting the order of

exclusion until only one feature remains, for each one of the best-performing models. Additionally,

the comparison of model performance before and after dimensionality reduction is presented in

Table 5.4.

Table 5.3: Most important features identified through stepwise backward elimination.

Iteration Decision Tree Random Forest XGBoost

8 lead time lead time machine time
9 #steps #steps material cost
10 material cost bom #steps
11 bom machine time lead time
12 machine time material cost bom
13 volume volume pvd

The analysis of Table 5.3 reveals that most of the features consistently appear across the three

models, except PVD and the volume. Their repeated importance across different models suggests

that they capture fundamental aspects of the underlying patterns in the data, contributing signif-

icantly to the predictive accuracy and robustness of the models. Focusing on these features can

improve model performance, enhance generalization, and ensure that the models are leveraging

the most informative variables.

Table 5.4: Performance of best-performing machine learning models before and after dimension-
ality reduction.

Model All features Dimensionality reduction
R² RMSE R² RMSE

Decision Trees 0.803 0.053 0.8138 0.053
Random Forest 0.873 0.044 0.879 0.042
XGBoost 0.899 0.036 0.893 0.0382

Furthermore, the examination of model performance before and after dimensionality reduction,

as shown in Table 5.4, demonstrates that all three models—Decision Trees, Random Forest, and

XGBoost relatively maintained their performance after reducing the number of features, indicating

that dimensionality reduction effectively eliminated irrelevant features and allowed the models to

concentrate on the most significant variables. This process contributes to the models’ robustness

and generability.



Chapter 6

Clustering for Feature Importance
Visualization

This chapter explores a different approach to understanding flow efficiency by investigating how

various features influence different subsets of materials. Unlike Chapter 5, in which dimension-

ality reduction is used to train the model by focusing on the most significant features across the

entire dataset, this chapter aims to delve deeper into the specific impacts of features on subsets of

data.

The first subsection describes the methods used to split the data into different subsets. Following

this, feature importance is evaluated within these subsets, testing the significance of the differences

found.

The benefits of not building upon the findings from dimensionality reduction are significant in

this context. By avoiding an overreliance on the reduced feature set identified in Chapter 5, the

risk of excluding features critical for specific data subsets is mitigated. This approach allows for

a more granular understanding of how different features impact the prediction of flow efficiency

for different materials and justifies the analysis of every feature available in the dataset that comes

from the methodology described in Chapter 4.

Gaining visibility into the specific ways in which features influence predictions within various

subsets is essential to creating actionable strategies tailored to each material subset’s unique char-

acteristics.

6.1 Clustering

Clustering is employed to partition the initial dataset that arises from data consolidation proce-

dures. Initially, the use of material groups as labels for creating clusters is considered, but this

approach was ultimately abandoned due to concerns about compromising the integrity of the re-

33



34 Clustering for Feature Importance Visualization

sults. Material groups are defined from the sales department’s perspective, categorizing products

based on their end-use for the final customer. However, clustering data according to this criterion

may lead to the loss of valuable information, as it may not be the optimal method for analyzing the

characteristics that influence SC efficiency. Materials from different material groups might exhibit

similar performance patterns, which could be overlooked using this approach. Additionally, the

uneven distribution of materials across the identified material groups poses a significant challenge

for a consistent analysis.

To address this, DBScan is used to create clusters based on the density of data points, allowing

for a more natural grouping of materials based on their inherent characteristics, rather than prede-

fined labels. This method ensures that true similarities in the data are reflected, leading to more

insightful analyses of feature importance across different subsets.

Initially, DBSCAN identifies nine clusters along with one additional cluster labelled as noise. It is

observed that the noise points, which are labelled as -1 by DBSCAN, constitute about 20% of the

total dataset. Given that the entire dataset comprises only 1854 points, this percentage of noise is

considered too high.

To ensure that the noise points are not excluded from the analysis, they are reassigned to the nearest

existing clusters. This is achieved by finding the nearest neighbours of each noise point among the

non-noise data points and reassigning each noise point to the cluster of its nearest neighbour. This

iterative process ensures that all data points are included in meaningful clusters.

Figure 6.1: Profile cluster plot.
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Table 6.1: Number of data points per cluster.

Cluster Number of Data Points

0 74
1 232
2 103
3 88
4 197
5 240
6 381
7 124
8 426

The clusters identified are depicted in Figure 6.1. Each line in this profile cluster plot represents

the average values of various features for a specific cluster. The x-axis corresponds to different

features, while the y-axis shows their normalized mean values. This visualization allows for a

comparative analysis of the clusters, highlighting their unique characteristics and differences. The

distribution of data points among the clusters is detailed in Table 6.1.

Table 6.2: Material groups in each cluster.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

ph_GEEB ph_GEEA ph_GEEA ph_GEEA ph_GEEB ph_GEDD ph_GEEB ph_GEEB ph_GEEB
ph_GEDD ph_GEEB ph_GEEB ph_GEEB ph_GEDD ph_GEEY ph_GEDD ph_GEDD ph_GEEG
ph_GEEY ph_GEDD ph_GEEN ph_GEEG ph_GEEY ph_GEEY ph_GEDC ph_GEDD
ph_GEDS ph_GEDC ph_GEDD ph_GEDD ph_GEEY ph_GEEY
ph_GEMJ ph_GEEY ph_GEDC ph_GEEY ph_GEDG
ph_GEDG ph_GEDS ph_GEEY ph_GEDS ph_GEDH
ph_GEMO ph_GEES ph_GEES
ph_GEDH ph_GEMJ
ph_GEMR ph_GEDG

ph_GEMR

Analysis of Table 6.2 reveals that materials within the same material group are not consistently

clustered together. Different clusters contain materials from the same material group, indicating

that clustering by the material group would obscure important data subtleties crucial for predicting

flow efficiency.

6.2 Model’s Development

After splitting the original dataset into clusters, each new dataset was trained using the models

presented in Table 5.1 from Chapter 5.

Once again, the methodology for model development described in Chapter 5 is employed. Each

model is trained using k-fold cross-validation and hyperparameter tuning to optimize performance.

The performance of each model is then evaluated for each cluster individually, using the evaluation

system described in Section 5.1. The results for every combination between cluster and model

are included in Appendix F1, while the results of the best-performing model for each cluster are

1Combinations that don’t yield a positive value for R² are excluded from the analysis.
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presented in Table 6.3. Most models exhibit strong predictive power, with R² values exceeding 0.8

for seven out of the nine clusters, suggesting that the models explain a significant portion of the

variance in efficiency. The AdaBoost and XGBoost models, in particular, demonstrate exceptional

accuracy, achieving R² values above 0.9 and low RMSE values, indicative of minimal prediction

errors. However, the KNN model for Cluster 7 shows comparatively lower performance with an

R² of 0.573, highlighting areas where prediction accuracy could be improved.

Table 6.3: Performance of best-Performing models for each cluster.

Cluster Model R² RMSE

0 AdaBoost 0.734 0.112
1 AdaBoost 0.956 0.031
2 AdaBoost 0.806 0.097
3 AdaBoost 0.968 0.023
4 XGBoost 0.885 0.007
5 XGboost 0.940 0.012
6 XGBoost 0.899 0.017
7 KNN 0.573 0.054
8 Random Forest 0.887 0.010

Appendix G includes plots illustrating the differences between the actual efficiency values and the

predicted values, for best best-performing model in each one of the clusters.

Comparing these results with those presented in Table 5.2, one can see that, except for Clusters 0

and 7, clustering significantly enhances the predictive accuracy of the models. This improvement

can be attributed to the fact that clustering enables the models to capture the unique patterns

within each subset of data. By focusing on more homogeneous groups, the models can achieve

higher accuracy as they are tailored to specific nuances. However, it is also important to note

that clustering can reduce the generalization capability of the models. When a model is tailored

to specific clusters, its ability to generalize across the entire dataset may be diminished, as is

portrayed in Clusters 0 and 7, where the predictive accuracy is lower, suggesting that these clusters

might be more variable or not as well-defined as others.

6.3 Shap Values for Feature Importance

After identifying the best-performing model for each cluster, SHAP values are extracted for these

specific combinations to analyze the impact of different features on the model’s predictive ability.

No feature selection was applied, as maintaining granular interpretability is essential to draw con-

clusions about the hypothesis that different sets of materials are impacted differently by the iden-

tified flow efficiency drivers.

To ensure a reliable comparison of SHAP values across different models, the Kernel explainer

is used (Stenwig et al., 2022). The Kernel explainer is a model-agnostic method that allows the

calculation of SHAP values for any model, regardless of the underlying algorithm.
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Figures 6.2 to 6.10 illustrate how the selected features affect the predictive ability of the best-

performing model in each cluster. Beeswarm plots are used to provide clear visibility of these

relationships.

Figure 6.2: Shap values distribution for AdaBoost in cluster 0.

Figure 6.3: Shap values distribution for AdaBoost in cluster 1.
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Figure 6.4: Shap values distribution for AdaBoost in cluster 2.

Figure 6.5: Shap values distribution for AdaBoost in cluster 3.

Figure 6.6: Shap values distribution for XGBoost in cluster 4.
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Figure 6.7: Shap values distribution for XGBoost in cluster 5.

Figure 6.8: Shap values distribution for XGBoost in cluster 6.

Figure 6.9: Shap values distribution for K-nn in cluster 7.
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Figure 6.10: Shap values distribution for AdaBoost in cluster 8.

From the thorough analysis of the plots, three key observations emerged:

• Feature Importance Variability: The analysis of SHAP beeswarm plots reveals that dif-

ferent clusters have distinct sets of most impactful features. This variability underscores

the hypothesis that different sets of materials have their flow efficiency being influenced

in diverse ways by the flow efficiency drivers. Such differences highlight the necessity of

considering cluster-specific characteristics when evaluating efficiency.

• Consistent Features: Despite the variability, certain features such as machine time and

machine cost consistently appear as significant across multiple clusters, corroborating the

results from the methodology described in Chapter 5. However, it is crucial to note that their

impact on efficiency is not uniform. For example, material cost generally negatively impacts

efficiency, but the degree of this impact varies from cluster to cluster. This consistency in

feature appearance, combined with varying impacts, suggests that while some drivers are

universally important, their influence depends on cluster-specific factors.

• Impact of Features: Detailed examination of the SHAP values indicates that features like

the number of steps, lead time, and batch size often negatively impact efficiency when their

values are high. Conversely, features such as weight and PVD can positively influence effi-

ciency in certain clusters. These insights reveal the complex and sometimes counterintuitive

nature of feature impacts on flow efficiency.

6.4 Statistical Validation

The SHAP beeswarm plots provide compelling evidence that, while certain features consistently

emerge as important across different clusters, their impacts on the prediction of flow efficiency can

vary significantly. However, it is crucial to statistically validate these findings to provide a higher

degree of reliability (Guleria, 2024). If it is statistically proven that the differences between the

SHAP values of the same features for different clusters are statistically significant, it is possible to



6.4 Statistical Validation 41

validate the hypothesis that the clusters are indeed affected in different ways by the flow efficiency

drivers.

To perform any kind of statistical evaluation is crucial to understand if the data under analysis is

normally distributed as this characteristic has a direct impact in the typology of tests that can be

carried out. To determine whether the data follows a normal distribution, the Shapiro-Wilk test is

applied to the SHAP values of each feature within each cluster. This test is particularly suitable

for small sample sizes and is a standard approach for assessing normality. The null hypothesis

(H0) states that the data is normally distributed, while the alternative hypothesis (H1) states that

the data is not. If the p-value from the Shapiro-Wilk test is greater than 0.05, we fail to reject the

null hypothesis, indicating that the data is normally distributed. The results for this hypothesis test

can be found in Appendix H.

Based on the results of the Shapiro-Wilk test, either an ANOVA test or a Kruskal-Wallis test is

employed to assess the variance of SHAP values between clusters with the results being included

in the Table 6.4. ANOVA is used when the SHAP values were normally distributed across clusters.

The null hypothesis for ANOVA states that the means of the SHAP values are equal across clus-

ters, while the alternative hypothesis suggests that at least one cluster has a different mean SHAP

value. Conversely, the Kruskal-Wallis test was used when the SHAP values were not normally

distributed. In this case, the null hypothesis states that the distributions of the SHAP values are

equal across clusters, whereas the alternative hypothesis indicates that at least one cluster has a

different distribution of SHAP values.

As in this case, the data for all the features in every cluster cannot be considered normally dis-

tributed, Krusdal-Wallis test is employed in every case.

Table 6.4: Kruskal-Wallis Test Results.

Feature Statistic P-Value

steps 46.240 2.140E-07
material cost 181.643 4.650E-35
production cost 126.379 1.591E-23
machine time 279.463 9.604E-56
weight 71.596 2.363E-12
volume 255.692 1.070E-50
bom 18.211 0.020
ss 309.612 3.700E-62
sales adjusted 88.764 8.285E-16
forecast error 303.058 9.201E-61
pvd 120.005 3.307E-22
batch size 189.504 1.036E-36
moq 36.327 1.530E-05
lead time 54.143 6.477E-09

The results from these statistical tests are presented in the form of test statistics and p-values. If the

p-value is less than or equal to 0.05, it is concluded that there is a statistically significant difference

in the impact of the feature between the clusters and the null hypothesis is rejected. Conversely,

if the p-value is greater than 0.05, the null hypothesis cannot be rejected, indicating no significant

difference in the feature’s impact between the clusters. Through the analysis of Table 6.4, and
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taking into account how low is the p-value in the great majority of the test, the null hypothesis is

rejected.

This rigorous approach ensures that the differences observed in the SHAP values are not merely

by chance but are statistically significant, thus confirming that the clusters are indeed affected in

different ways by the flow efficiency drivers. By validating these findings statistically, a higher

degree of confidence in conclusions is provided, supporting the tailored strategies for improving

flow efficiency based on the unique characteristics of each cluster.



Chapter 7

Case Study

In this chapter, the company profile is presented and the methodologies described in Chapter 5

and Chapter 6 are applied to a specific use case. By doing so, it is possible to illustrate how these

methodologies can be effectively implemented in a practical setting.

7.1 Company Profile

Hilti, renowned for its cutting-edge products, systems, and services, is a global leader in the build-

ing and energy sectors. Operating across 120 countries, the company boasts a workforce of over

34,000 dedicated team members. With manufacturing facilities strategically located in Europe (in-

cluding Liechtenstein, Austria, Germany, Hungary, and Norway), Asia (China, India, Malaysia,

and Taiwan), and North America (Mexico and USA), Hilti ensures efficient production and distri-

bution worldwide (Hilti, 2024).

Established in 1941 by Martin Hilti and his brother Eugen in Schaan, Liechtenstein, the company

remains family-owned, with all shares held by the Martin Hilti Family Fund. Hilti’s core values

revolve around quality, innovation, and fostering close customer relationships.

In 2023 alone, Hilti achieved sales exceeding CHF 6.5 billion, a testament to its market promi-

nence and customer trust. Operating on a direct sales model, approximately 25,000 employees

engage directly with customers, ensuring personalized service and satisfaction (Hilti, 2024).

The company holds an extensive product portfolio comprising over 10,000 items, with 60 new

product families introduced annually. This commitment to innovation drives Hilti’s continuous

evolution and reinforces its position as an industry pioneer.

The diagram in Figure 7.1 illustrates the relationship between the Sourcing Excellence department

(DOS) and various business units (BU). Each BU operates independently and is responsible for

its own performance. DOS plays a crucial role by providing support in the global procurement

process,enhancing and digitalizing their operations. This strategic positioning allows DOS to

43
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accumulate expertise in SCM, given its interactions with diverse business practices. Furthermore,

driving substantial changes that have a significant impact across the entire company.

Figure 7.1: DOS as overarching cross-BU department to facilitate procurement process (Hilti,
2024).

7.2 Data Availability

In the past few years, Hilti has been adopting a global approach to its procurement process and,

more broadly, to its SC. Contributing to this effort, is the global deployment of an ERP package

meant to cover all day-to-day operations of the enterprise. This solution is completed with a

database that stores all the information and makes it available to everyone with the required access

across the company.

Despite the abundance of data available, the methodological development described in Chapters 6

and 7 is deeply related to the quality of the data. Therefore, while identifying the data in scope for

this analysis, several constraints were taken into account.

The data chosen for this analysis encompassed all the business areas of general electric tools,

which include three different BU: Power Tools & Accessories (PT&A), Measuring, and Diamond.

The rationale behind this choice is explained by the fact that these units represent 70% of Hilti’s

total revenue, reflecting their significance (Hilti, 2024). Secondly, the greatest share of Hilti’s in-

house production also originates from these three BU. The in-house production criterion is crucial

to ensure that the materials can be used in this analysis, as data from the production steps is needed

for drafting the value curves, which are fundamental to the methodological development.

As previously mentioned, 2076 different materials have all the necessary information available

for this analysis, encompassing 16 different material groups produced in five different Hilti plants

around the globe. The diversity of this data is a key concern while defining the materials in scope,

as it is an essential criterion for building a robust model capable of performing accurately on

unseen data.

From the total dataset, 1864 materials are used for model training, while 210 materials are pur-

posely left out to test the model’s performance on unseen data. The results of the methodology
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described in Chapters 6 and 7, applied to this specific set, form the main focus of this case study.

These 210 materials represent a specific material group: rotary hammers, which are depicted

in Figure 7.2. Rotary hammers are power tools designed primarily for heavy-duty drilling and

chiselling applications in construction and industrial settings. Known for their durability and

efficiency, Hilti rotary hammers combine rotation with a powerful hammering action, making

them ideal for drilling through tough materials such as concrete, brick, and masonry.

Figure 7.2: NURON TE 4-22 Cordless Rotary Hammer SDS Plus (Hilti, 2024).

The selection of the rotary hammer material group is deliberate, as it is one of Hilti’s best-selling

power tools. Evaluating the efficiency of the SC for this product group and identifying possi-

ble areas of improvement makes strategic sense, given its significant impact on the BU PT&A

performance.

7.3 Flow Efficiency Prediction through Feature Selection Stepwise
Approach

Building on the conclusions drawn throughout Chapter 5, the data on rotary hammers is used as a

testing set for the best-performing models identified earlier. The first prediction iteration includes

all 14 different flow efficiency drivers. Subsequently, the models are trained and tested with only

the 7 most impactful features, as identified through SBE, included in Table 7.1

Table 7.1: Most important features identified in Chapter 5 after stepwise backwards elimination.

Feature

Bom
Lead Time
Machine Time
Material cost
Number of steps
PVD
Volume
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Table 7.2: Performance of best-performing machine learning models before and after dimension-
ality reduction on unseen data

Model All features Dimensionality reduction
R² RMSE R² RMSE

Decision Trees 0.401 0.174 0.321 0.185
Random Forest 0.521 0.155 0.395 0.175
XGBoost 0.571 0.147 0.596 0.143

The use of unseen data aims to validate the conclusions from Chapter 5. The results from testing

on unseen data reveal a significant drop in model performance when compared to the results that

come from cross-validation on the training set, included in Table 5.4. Specifically, while the

models performed with R² values of 0.899, 0.873, and 0.803 for XGBoost, Random Forest, and

Decision Trees, respectively, during training with all features, their performance on unseen data

fell to 0.596, 0.521, and 0.401, respectively. This substantial decline highlights a crucial challenge

in model generalization.

Two main factors could be contributing to this performance gap:

• Overfitting during training: Theoretically, the high performance on the training set, es-

pecially with all features, may suggest that the models might have overfitted. This phe-

nomenon occurs when a model learns the noise and specific patterns in the training set

rather than the underlying relationship, leading to poor performance on unseen data. How-

ever, cross-validation is used throughout all the training processes, making this hypothesis

less likely to be valid.

• Data variability and quality: The unseen data may have characteristics or variability not

present in the training set. Clear differences in data patterns can affect model performance,

as models trained on one distribution might fail to generalize to another.

Moreover, through the evaluation of results before and after dimensionality reduction, a notable

performance difference is also identified. During training, models with dimensionality reduction

either maintained or improved their prediction ability, as evidenced by their R² values, in Table

5.4. However, this trend does not hold for every model tested for unseen data. Decision Trees and

Random Forests with dimensionality reduction perform worse when compared to those using all

features. As shown in Table 7.2, XGBoost is the only model presenting a slight improvement.

This variance in performance on unseen data may suggest that the selected features during di-

mensionality reduction might not adequately capture the data patterns present in the new, unseen

dataset. While dimensionality reduction helped to avoid overfitting during training, it appears that

the reduced feature set was less effective at generalizing to unseen variations while using Decision

Trees and Random Forests. This discrepancy indicates that some relevant features may have been

excluded during the reduction process, highlighting the need for a more robust feature selection

method that can better capture the essential characteristics of both the training and unseen data.
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7.3.1 Performance Pricing in Flow Efficiency

Hilti’s supply teams frequently utilize Performance Pricing as a method for price comparison. This

analysis adopts a similar approach to make Flow Efficiency across different products comparable.

This method plots theoretical Flow Efficiency values on the y-axis and predicted values on the

x-axis.

Figure 7.3: Application of performance pricing to flow efficiency.

Figure 7.3 illustrates the results of this approach, using the outputs of XGBoost model after di-

mensionality reduction as it was the one which provided the better and most consistent results.

Products represented in green have theoretical Flow Efficiency values higher than those predicted

by the XGBoost model, indicating favourable outcomes. On the other hand, products depicted in

red have theoretical Flow Efficiency values lower than the predicted ones, which are less desirable.

Products lying along the 45-degree line, known as the average line, have identical theoretical and

predicted Flow Efficiency values, marking them as favourable. The interpretation of the model’s

outcomes is based on their placement relative to this line.

Products shown in green indicate higher theoretical Flow Efficiency than predicted, signifying

optimal efficiency and suggesting that these products do not require immediate efficiency im-

provement efforts. Conversely, products in red highlight a discrepancy where theoretical Flow

Efficiency is lower than predicted, indicating inefficiencies and room for improvements to bring

their efficiency closer to the average line. Products positioned on the average line demonstrate an

alignment between theoretical and predicted efficiencies. Although these products are perform-

ing as expected, they still present opportunities for further efficiency enhancements to maintain or
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improve performance.

In summary, by employing the Performance Pricing approach, it is possible not only to effectively

identify areas where Hilti’s SC can be optimized for better Flow Efficiency but also to define a

priority ranking by considering the gap difference in efficiency.

7.4 Clustering for Flow Efficiency Prediction and Features Impor-
tance Visualization

Building upon the findings of Chapter 6, the new data points were assigned to one of the pre-

existing clusters, through K-nn method. The distance to the central point is calculated and the

points are assigned to the nearest cluster. The new points are shown in the plots of Figures 7.4a

and 7.4b.

(a) New data points (b) Final clusters after new points allocation

Figure 7.4: Unseen data allocation to clusters.

The distribution of the new points across the clusters is described in Table 7.3. It is noteworthy

that unseen data from one specific material group is distributed across seven different clusters.

This finding corroborates the conclusions drawn in Chapter 6, which highlight that even within

the same material group, flow efficiency drivers impact efficiency in diverse ways.

Table 7.3: New data points

Cluster New Data Points Final Cluster size

0 0 74
1 78 310
2 49 152
3 43 131
4 3 200
5 3 243
6 0 381
7 10 134
8 24 450
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Taking into consideration the best model-cluster combination for predicting flow efficiency iden-

tified in Chapter 6, flow efficiency is predicted for each cluster individually, using the new data as

test data, which was not used during model training. For each cluster, the respective best model is

utilized to make predictions, ensuring that the models are appropriately tailored to the unique char-

acteristics of each cluster. After obtaining the predictions from the models across the 7 clusters

under analysis, the overall R² and RMSE are calculated to assess the performance of the predic-

tions. The results yielded an R² of 0.558 and an RMSE of 0.160, indicating similar results to the

ones yielded throughout the methodology included in Table 7.2.



Chapter 8

Discussion and Outlook

In this concluding chapter, the contributions of this dissertation to both practice and science are

discussed. The limitations of the research conducted are detailed, providing a foundation to sup-

port recommendations for future research.

8.1 Results

The proposed master thesis, "Supply Chain Efficiency Prediction: Leveraging Machine Learning

for Improved Accuracy and Interpretability" aims to develop innovative methodologies to predict

flow efficiency more precisely while offering clear insights into the features that most significantly

impact these predictions, leveraging ML techniques.

Firstly, flow efficiency values for various Hilti products are predicted using 14 different explana-

tory variables through supervised learning techniques. Two approaches are used to achieve these

results. The first approach involves analysing the entire dataset as a whole, with the best results

obtained from the XGBoost model, achieving an R² of 0.571 and an RMSE of 0.147. In the second

approach, the initial data set is divided into several clusters based on inherent data patterns, and

predictions are made at the cluster level. The best-performing models for these clusters include

AdaBoost, XGBoost, K-Nearest Neighbours (K-NN) and Random Forest, which yields combined

results of 0.588 for R² and 0.160 for RMSE. However, for the sole purpose of flow efficiency pre-

diction, the benefits of clustering the data are difficult to justify, as the improvements in prediction

accuracy are marginal compared to the overall data analysis.

Secondly, a two-fold analysis is conducted to evaluate the existence of a set of features that con-

sistently emerge as the most important to predict flow efficiency. In the first analysis, the entire

dataset is used to apply SBE to identify the most significant features by evaluating the models’ per-

formance during the dimensionality reduction process. In both training and testing, the best model

performance remains stable until one of the following features is removed: machine time, material

cost, number of steps, lead time, BoM, PVD, and volume. In parallel, SHAP values are employed
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to assess feature importance at the cluster level. Features such as machine time and material cost

are systematically identified as the most critical for flow efficiency prediction, confirming their

consistent significance for flow efficiency prediction.

Thirdly, calculating SHAP values for the best-performing models within each identified cluster

reveals that despite machine time and material cost consistently emerging as two of the most im-

portant features for flow efficiency prediction, different clusters have their flow efficiency impacted

by different drivers. In fact, even when the most important features are the same, their impact can

vary between positive and negative values. This variability supports the previously formulated

hypothesis that different sets of materials have their flow efficiency influenced by different drivers

and in different ways. These differences underscore the need to consider cluster-specific charac-

teristics when evaluating efficiency and, more importantly, when defining target improvements for

underperforming products. Although clustering does not significantly improve the predictive ac-

curacy for flow efficiency, it significantly improves model interpretability, unveiling data patterns

that remain hidden when evaluating the dataset as a whole.

On a side note, the clustering of the data into multiple subsets introduces a new question. Upon

evaluating the clusters, it becomes evident that there is no similarity between the data distribution

within the clusters and the pre-defined material groups. Materials from the same group are allo-

cated to different clusters, and each cluster contains multiple material groups. This heterogeneity

in the data distribution suggests that material group definitions based on product functionality may

not be the optimal way to evaluate and study flow efficiency. This observation builds ground for

further research, which will be discussed in the following sections.

8.2 Contribution to Practice

The objective of this master’s thesis is to achieve a robust and reliable estimation of flow efficiency

using ML techniques. While an accurate estimation is advantageous for professionals, the true

value lies in analysing the actual and predicted flow efficiencies together, enabling quick and ac-

tionable identification of improvement opportunities in production setups: from the flow efficiency

graph, the improvement potential for a specific item can be derived and related to the improvement

potential of other items. Although identifying appropriate ML techniques was the primary aim of

this thesis, the findings already have practical applications for practitioners at Hilti’s plants. They

can now efficiently assess their production setups and have already initiated the first improvement

steps, such as modifying supplier lead times, which highlights the relevance and applicability of

the research outcomes.

8.3 Contribution to Science

Due to the novelty of flow efficiency research, the body of existing literature is minimal. Consid-

ering the other Hilti-related theses on the topic, the main contribution lies in the methodical rigour
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and the data scope regarding the selection of suitable ML techniques. Whereas in previous theses,

PLS was used with a rather limited set of items, the significantly extended data scope (starting with

value curves for 8200 items extracted from the company‘s ERP system) allowed for a thorough

examination of appropriate estimation techniques.

8.4 Limitations

The value curves used in the presented methodological development are only a proxy depiction of

the overall SC, as they include only the production stages. They exclude all processes before raw

materials reach the production sites and the processes until the products reach the final customer.

As previously described, these value curves are used to calculate the target variable, which means

they only reflect production efficiency. However, the flow efficiency drivers used as explanatory

variables to predict this efficiency encompass features that reflect the entire behaviour of the SC,

such as lead time. This discrepancy may result in less accurate predictions and reduced overall

effectiveness of the models, as they do not fully capture the complexity and full scope of the SC

processes.

One significant challenge encountered in this research is related to the data collection and con-

solidation process for flow efficiency drivers. Despite extensive efforts, it was not possible to

replicate the comprehensive pool of data identified during the literature review. This shortfall is

primarily attributed to data quality issues, such as the unavailability of many desired data points

and inconsistencies in the data obtained. These data quality issues likely have a direct impact on

the performance of the ML models, as some important variables for predicting flow efficiency may

have been left out. The significant discrepancy observed between training performance and testing

on unseen data, despite using cross-validation, further corroborates the limitations inherent to the

data itself. This discrepancy highlights the challenges posed by incomplete data, underscoring

the importance of comprehensive and high-quality data collection in the development of robust

predictive models.

Moreover, the SBE approach used in this study involves starting with a full model and incre-

mentally removing predictors based on specific criteria. However, this method does not explore

all possible combinations of features, which means that it may overlook combinations that could

enhance predictive accuracy.

It is also important to highlight a key limitation related to extracting actionable insights from

SHAP values. Although SHAP values are effective in evaluating the model’s behaviour and high-

lighting which features the model considers important, they do not necessarily reflect true causal

relationships. This can pose a significant challenge in translating SHAP value insights directly into

practical actions, as the model’s importance rankings might not align with the real-world factors

affecting flow efficiency, making it difficult to derive practical strategies based solely on SHAP

values.
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8.5 Avenues for Further Research

The findings of this master dissertation open up several avenues for future research aimed at en-

hancing the accuracy and interpretability of SC efficiency predictions. These potential approaches

focus on improving data quality, exploring more sophisticated feature selection techniques, diver-

sifying data samples, and further validating key hypotheses.

Firstly, the enhancement of data collection processes is crucial. Involving multidisciplinary teams

in data collection can significantly improve data availability. These teams can bring diverse per-

spectives and expertise, facilitating cross-checks between different data sources and ensuring a

more comprehensive and reliable dataset. Improved data availability will likely enhance the per-

formance of ML models, leading to more accurate predictions of SC efficiency.

Secondly, the current SBE approach used for feature selection can be replaced with more ad-

vanced techniques. Recursive feature elimination (RFE) or ML-based approaches, such as feature

importance ranking from ensemble methods, can be explored. These techniques can examine a

broader range of feature interactions, potentially uncovering more complex relationships that step-

wise methods may overlook. This broader exploration of feature interactions could lead to models

with improved predictive power.

Furthermore, further research should be conducted to test the hypothesis that traditional material

group classifications may not be the most effective way to study flow efficiency in the SC. The

heterogeneity observed in data distribution across clusters, which did not align with pre-defined

material groups, suggests that alternative classification methods might be more appropriate. Inves-

tigating different clustering algorithms and classification criteria could provide new insights into

the drivers of flow efficiency, leading to more targeted and effective SC improvements.

Additionally, applying elastic net regression could further validate the importance of features iden-

tified in this study. Elastic net, which combines the properties of LASSO and Ridge regression, can

handle multicollinearity and perform variable selection. This validation step is crucial to ensure

the reliability of the identified most important features for predicting SC efficiency.

Moreover, the case study’s approach to data sampling can be revisited. The study utilised data from

a specific material group not included in the data used in model training, which, despite including

material groups from the same product family, may have jeopardised the model’s performance.

Future research should consider sampling random data sets instead of relying on specific material

groups.

Lastly, for practitioners, and as indicated by the experience with Performance Pricing, there is

substantial potential for further research into enhancing measurement identification techniques.

VDI (2015) clearly outlines the next steps needed to better analyze and draw conclusions from the

flow efficiency graph, therefore it should be leveraged to provide valuable insights and pave the

way for future advancements in this area.
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Appendix A

Basic Definitions

This section provides definitions of terms and relevant theoretical principles to ensure a clear
understanding of the contents focused throughout the dissertation.

A.1 Supply Chain Management

The concept of supply chain management (SCM) was first introduced by Forrester (1958), ex-
ploring how SC reacts to fluctuations in demand. The author was able to show that the dynamic
complexity involved in moving demand from the customers, through the SC to manufacturers and
raw material suppliers distorts the demand patterns. Thus, it was possible to prove the critical
interdependence between all the SC stakeholders regarding information flows.

Over the years, a lot of definitions for SCM were developed but it can be agreed that "Supply
Chain Management is the coordination of activities, within and between vertically linked firms,
for the purpose of serving end customers at a profit" (Larson and Rogers, 1998).

Even before SCM was seen as a critical tool to ensure a competitive advantage, SC managers
recognized the value of information and time (Li et al., 2006). It is crucial to reach the markets
with the right products faster than the competition, to be able to satisfy customer necessities and
to make sure that SC can be synchronized to meet demand fluctuations (Stern and Stalk Jr., 1998).

In the contemporary business environment, SCM plays a pivotal role in integrating key business
operations and processes within and across organisations, thereby establishing an efficient business
model. It facilitates the coordination of all processes and activities that can, directly or indirectly
impact the SC (Vitasek, 2013).

As evidenced by Chopra and Meindl (2006), the strategic management of SC is of paramount
importance in tailoring SC to meet specific business needs. By ensuring the strategic alignment
between the SC and the business strategy, it is possible to reduce costs and lead times, thereby
enhancing the overall performance of the company.

A.2 Supply Chain Efficiency

Prior to addressing the concept of efficiency in the context of SC, it is first necessary to provide a
universal definition.
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According to Cooper et al. (2003), efficiency refers to the measurement of the output-input ratio
within a system. Relative here indicates that an efficiency value must always be evaluated in
comparison with the efficiency values of other systems (Dyckhoff, 2003). If a system can generate
more output or achieve the same output with less input than other systems, it is deemed efficient
(Scheel, 2000).

A.2.1 Product Effects in Supply Chain Efficiency

1 Fisher (1997) was one of the first authors to provide an efficiency-focused framework that sup-
ports the selection of the most suitable SC strategy taking into account the conditions of the market
under analysis. It splits products into two categories: inventive and utilitarian. According to Fisher
(1997), an efficient SC approach is better for functional items, while a responsive SC works best
for innovative products. Fisher’s framework matrix for linking SC with goods is shown in Figure
A.1.

match mismatch

matchmismatch

E
ff

ic
ie

nt
 

Su
pp

ly
 C

ha
in

R
es

po
ns

iv
e 

Su
pp

ly
 C

ha
in

Functional 
Products

Innovative 
Products

Figure A.1: Fisher (1997) divides products into two categories and defines the supply chain con-
figuration to match them in the most effective way (Fisher, 1997) (modified).

Supported by the work developed by Fisher (1997), Huang et al. (2002) introduced a third product
category and adjusted the nomenclature for the SC types. The products can be innovative, hybrid,
or functional, and the SC can be lean, agile and hybrid. Figure A.2 shows the matrix with the
respective matches between the kind of item and the desired SC configuration type.
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Figure A.2: Huang et al. (2002) extend Fisher (1997) principle to three types of products and
supply chain strategies (Huang et al., 2002).
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A.2.2 Cost-Responsiveness Efficiency Frontier

Understanding the SC and placing it along the responsiveness spectrum is among the most cru-
cial steps in achieving strategic alignment (Chopra and Meindl, 2006). The cost-responsiveness
efficient frontier represents a curve describing the lowest possible cost for a given level of respon-
siveness. Companies not positioned on this efficient frontier can enhance both their responsiveness
and cost performance by moving in that direction. However, a company already situated on the
efficient frontier can only improve its responsiveness by increasing costs, which may result in a
loss of efficiency (Chopra and Meindl, 2006). The visual depiction of the cost-responsiveness
efficiency frontier can be seen in Figure A.3.

Figure A.3: Cost-responsiveness efficiency frontier shows the trade-off between cost and effi-
ciency both for companies on and off the frontier (Chopra and Meindl, 2006).

Every SC faces a strategic decision regarding its desired level of responsiveness, considering the
trade-off between cost and efficiency. While some SC prioritize minimizing costs, others prioritize
maximizing responsiveness. Responsive SC are designed to effectively manage both demand and
supply fluctuations, whereas efficient SC prioritize cost reduction by sacrificing some flexibility
to adapt to varying conditions (Gunasekaran et al., 2008).

A.2.3 Working Capital

Effective working capital management significantly influences the profitability of businesses. Poor
management leads to capital being tied up in idle assets, thereby reducing liquidity and profitabil-
ity (Reddy and Kameswari, 2004). Consequently, it’s crucial for businesses to maintain a working
capital level that optimizes costs and benefits while maximizing overall value. Research sug-
gests that as working capital increases up to a certain threshold, corporate performance improves.
However, beyond this threshold, the relationship between working capital and performance may
become negative (Deloof, 2003).

Achieving an optimal level of working capital involves striking a balance between costs and ben-
efits to maximize firm performance. Managers may initially prefer to increase working capital to
boost sales and take advantage of early payment discounts from suppliers. However, excessive
investment in working capital beyond the optimal level can lead to increased interest costs, higher
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bankruptcy risk, and greater credit risk for businesses. Therefore, it’s imperative for firm man-
agers to maintain this optimal level and proactively prevent deviations that can negatively impact
the firm value (Kiymaz et al., 2024).

A.3 Performance Pricing

Performance Pricing is a statistical approach used to compare purchase prices in the context of
supply. The technique is defined in the technical standard published by The German Engineers
Association VDI (2015). The goal of performance pricing is to contrast the product price provided
by the supplier with an estimated price (or technical value) based on certain value drivers identified
by supply teams.

Depending on the product, these value drivers may include characteristics like colour, weight,
thickness, size, toughness, material, and others. Based on their impact on the pricing, the projected
price will be determined. Illustrations of how one driver and price relate are shown in Figure A.4.
Through performance pricing, all value drivers can be compared simultaneously (VDI, 2015).

Figure A.4: Example of plots for 2 drivers and their influence in price (Sieben, 2023).

Value drivers can be categorized as input-oriented or output-oriented, depending on whether they
are viewed from the perspective of manufacturers or customers, encompassing both quantitative
and qualitative factors. To develop a model, these parameters are inputted into a specialized pro-
gram that performs the desired computations.

The selection of the most critical value drivers is guided by statistical indicators such as adjusted
R² and Q², depending on the selected algorithm. The program conducts multivariate regression
analysis to establish the relationship and weighting between each product and the value drivers.
This analysis calculates the impact of each value driver on the price, informing the final equation
used in the model generation process (Kärkkäinen and Huhtamäki, 2023).

A value graph is then used as a visual representation of the comparison between the predicted
price of a product, and the actual price provided by the supplier, as shown in Figure A.5.

Products, represented by dots, that are perfectly aligned with the 45-degree line have supplier
prices matching the projected price, indicating a relatively appropriate price level. Products above
the line are more expensive than anticipated, while those below the line offer better value to the
customer. This suggests customers receive a valuable product for less money than statistically
predicted. Conducting this research allows buyer-side supply teams to make informed decisions
and engage in discussions with suppliers confidently.
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Figure A.5: Example price versus estimated price (Sieben, 2023).

A.4 Value Curves

Widely used in industry, value curves are an easily comprehensible graphical method for estimat-
ing the appropriateness of a production or logistics setup. Value curves use the Bill of Materials
(BoM) as a basis. They depict the throughput time of the respective production and logistics steps
on the abscissa and the according cumulated cost of each production step, i.e., manufacturing,
assembly, transportation, or storage, on the ordinate, as described in Figure A.6
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Figure A.6: Example of a 5-step value curve representing different stages of the supply chain
(Rodrigues, 2023).

Cost curves are specific to the combination of product items and production lines. For that reason,
we refer to item-line combinations for the particular production setup for an item. Even if two dif-
ferent products were to be produced on the same production line, still two item-line combinations
and therefore two value curves would result. The area covered by all sequential steps is propor-
tional to the capital tied up in the production chain for a particular product: An efficient item-line
combination would thus reach the end-product value while covering an area as small as possible
(Danert, 1988; Nienhaus, 2004).

Within the SC, value curve analysis aids in strategic decision-making and process improvement.
Businesses can make informed decisions regarding investments in SC activities while identifying
collaboration opportunities (Porter, 2001).
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Despite widespread industry adoption since the late 1980s (Zachau, 1995), literature on value
curves remains relatively scarce (Sieben, 2023). Several doctoral theses have explored this topic
qualitatively (Slomka, 1989; Herbrüggen, 1991; Zachau, 1995). However, no quantification meth-
ods were further provided.

A.5 Flow Efficiency Calculation

The term "flow efficiency" was introduced by Sieben (2023), representing the calculated efficiency
of a value curve. Nienhaus (2004) initially highlighted the quantitative use of the area occupied by
the value curve graph in relation to the total area. Subsequently, within Sieben’s research project,
various weighting approaches for flow efficiency calculation were proposed, with contributions
from several authors. (Näf, 2015; Thampi, 2018; Wolf, 2020; Gomes, 2021; Bley, 2022; Parlak
and Pescalli, 2023; Rodrigues, 2023). These contributions include the development of new calcu-
lation methods (Näf, 2015; Sieben, 2023; Rodrigues, 2023) and the application to diverse product
portfolios (Thampi, 2018; Gomes, 2021; Bley, 2022; Rodrigues, 2023). This section provides an
overview of some of these significant contributions.

A.5.1 Nienhaus’ efficiency model

In a sidenote of his doctoral dissertation, Nienhaus (2004) suggested that efficiency, referred to
here as flow efficiency, could be deduced from value curves. According to him, the flow efficiency
of a SC, depicted by a value curve, could be calculated as the difference between one and the
quotient of the area occupied by the value curve graph and the total area, as illustrated in Figure
A.7 and Equation A.1.
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Figure A.7: Graphical representation of Nienhaus’ model (Sieben, 2023; Rodrigues, 2023).

η = 1− ∑
n
i=1 vi × (ti − ti−1)

tn × vn
(A.1)
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The underlying principle of this approach is that a lower filled area on the graph indicates lower
capital investment and therefore higher efficiency. However, as noted by Näf (2015), this assump-
tion does not hold true in all scenarios. For instance, when the initial step of the value curve
involves a longer duration and lower value compared to subsequent steps, efficiency may be mis-
represented and consequently misinterpreted.

A.5.2 Näf’s Model

Acknowledging the limitation of Nienhaus’ model, Näf (2015) developed an alternative method
aimed at identifying scenarios where such limitations occur. In such cases, the proposed method
suggests disregarding the initial step in the value chain efficiency calculation. This heuristic ap-
proach suggests that if the duration of the first step of the curve is four times longer than the
subsequent steps, then the first step is excluded from the calculation, and the Nienhaus method is
applied only to the remaining steps. This method is described by Equation A.2.

η = 1− ∑
n
i=1 vi × (ti − ti−1)

tn × vn
with

ti
t
≥ z× vi

v
and z = 4 (A.2)

A.5.3 Sieben’s Models

Sieben (2023) introduced alternative approaches, including the calculation of partial flow effi-
ciency for individual steps of the value curve. To assess the partial flow efficiency, the author
begins with the assumption that a Dirac-like bump function in the value curve represents the ideal
production setup from a flow efficiency perspective, as all value is added immediately without
binding any capital.

An efficient step, defined as one in which a substantial amount of capital is invested in a relatively
short period of time, may have the opposite effect to that intended for an efficient process in the
initial phase of the SC. Furthermore, the efficiency of a step that has a significantly longer duration
than all the others may have a much larger impact on total flow efficiency than the remaining
steps. Recognizing these nuances and the positive impact of high flow efficiency in later stages
of the SC, Sieben (2023) developed models employing weighting approaches. These methods
mathematically express the relative importance of each step in the value curve. By accounting for
these considerations, the models aim to provide a more accurate representation of SC efficiency
dynamics, ensuring that later stages receive appropriate emphasis in the analysis.

Sieben (2023) proposed eight different weighting models: value-based, time-based, combined
value-time-based, value vector-based, horizontal slack-based, vertical slack-based, exponential
and gravitational distance.

The existing proposals for flow efficiency calculation, lacked thorough testing with sufficient case
data to assess their validity. To bridge this gap, Rodrigues (2023) collected item production data
for more than 400 cases and applied an established evaluation framework for the first time. The
results showed that vertical slack-based weighting performed the best for the cases under analysis.

A.5.3.1 Vertical Slack-based Weighting

In this case, the vertically downstream areas originated by a production step when determining the
weighting are considered. With this approach, a high partial flow efficiency directly contributes to
a positive effect on the underlying surface, therefore the respective vertical residual surface should
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be positively related to the total vertical residual surface. This is visually represented in Figure
A.8 and translated by Equation A.3.
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Figure A.8: Representation of vertical slack-based weighting (Sieben, 2023; Rodrigues, 2023).

η =
n

∑
i=1

{
arctan

(
tn·(vi − vi−1)

vn·(ti − ti−1)

)
· 2·vi−1·(ti − ti−1)

π·∑n
i=1 (vi−1·(ti − ti−1))

}
(A.3)

A.6 Statistical Tests

In the realm of statistical analysis, determining the distribution and nature of your data is a fun-
damental step that influences the choice of subsequent tests for analyzing significant differences
(Fisher, 2006). This section delves into the essential concepts for assessing data normality and
testing for significant differences between datasets.

A.6.1 Data Normality Assessment

Understanding the distribution of your data is crucial for selecting appropriate statistical tests
(Fisher, 2006). A dataset is considered normally distributed if it follows a bell-shaped curve
known as the Gaussian distribution or normal distribution (Fisher, 2006). This distribution is
characterized by several key properties:

• Symmetry: The distribution is symmetric around the mean, meaning the left and right sides
of the curve are mirror images.

• Central Tendency: The mean, median, and mode of the distribution are all equal and located
at the center.

• Standard Deviation: Approximately 68% of the data falls within one standard deviation of
the mean, about 95% within two standard deviations, and nearly 99.7% within three standard
deviations.

The normal distribution is crucial in statistics due to the Central Limit Theorem (CLT) (Fischer
and Fischer, 2011). The CLT states that, under certain conditions, the sum or average of a large
number of independent, identically distributed random variables will be approximately normally
distributed, regardless of the underlying distribution. This theorem justifies the use of normal
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distribution assumptions in many statistical tests and methods, as it allows for the application of
these methods to a wide range of problems (Fischer and Fischer, 2011).

The Shapiro-Wilk test is a widely used method for evaluating whether a sample comes from a
normally distributed population(Shapiro and Wilk, 1965). This test provides a p-value:

• A p-value greater than 0.05 suggests that the data does not significantly deviate from a
normal distribution.

• A p-value less than 0.05 indicates that the data significantly deviates from a normal distri-
bution, suggesting non-normality.

The Shapiro-Wilk test is particularly powerful for small sample sizes, making it a preferred choice
in many research scenarios (Shapiro and Wilk, 1965).

A.6.2 Statistical Tests for Significant Differences

Once the distribution of the data is established, researchers can apply appropriate statistical tests
to determine significant differences between groups. The choice of test depends on whether the
data meets the assumption of normality.

ANOVA (Analysis of Variance): For normally distributed data, ANOVA is the go-to method for
comparing the means of three or more independent groups (Fisher, 2006). It assesses whether
any observed differences in means are statistically significant or if they could have occurred by
random chance. ANOVA helps in determining if at least one group mean is different from the
others, providing insight into potential factors influencing the data.

Kruskal-Wallis Test: When the data does not follow a normal distribution, the Kruskal-Wallis
test serves as a robust non-parametric alternative to ANOVA (Kruskal and Wallis, 1952), also
comparing the medians of three or more independent groups. Unlike ANOVA, the Kruskal-Wallis
test does not assume normality and is less affected by outliers and heteroscedasticity (unequal
variances). It ranks the data and evaluates whether the distribution of ranks differs significantly
between groups.

A.7 Artificial Intelligence and Machine Learning

In today’s data-driven world, every action generates vast amounts of data. Artificial Intelligence
(AI), a field of computer science, encompasses systems that mimic human-like functions and
continuously learn from their actions to improve performance (García-Arca et al., 2016). Machine
Learning (ML), a subset of AI, is particularly prominent due to its focus on analysing data and
deriving insights without explicit programming (Alzubi et al., 2018). This ability is transforming
various sectors, with businesses leveraging AI technologies to streamline operations, personalize
customer experiences, and drive innovation. In industrial settings, AI technologies play a crucial
role in sensing, analyzing, and interpreting data to solve complex problems, while uncovering
opportunities to optimize processes(Bharadiya, 2023).
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Figure A.9: Classification of machine learning algorithms and exploratory data analysis(The au-
thor).

This section will first delve into Exploratory Data Analysis (EDA), describing its importance for
data pattern discovery. Secondly, it focuses on ML, highlighting the key characteristics of the
learning methods. When discussing ML, three main categories of learning techniques emerge:
supervised learning, unsupervised learning, and reinforcement learning (Sarker, 2021). Figure A.9
illustrates the specific application areas of two of these three techniques while providing examples.
Considering the scope of the methodological development presented in the following sections,
supervised and unsupervised learning models appear to be the most suitable choices for achieving
the final objectives of this dissertation.

A.7.1 Exploratory Data Analysis

EDA can be described as a combination of statistical analysis and data visualisation techniques to
develop a better understanding of the key characteristics, patterns and potential issues in the data
(Tukey et al., 1977). EDA is normally used to reveal hidden patterns and relationships, identify
errors and inconsistencies, formulate and test hypotheses and, ultimately, prepare the data for
advanced analysis (Tukey et al., 1977). By using EDA, it is possible to gain a deeper understanding
of the data while enabling informed decision-making (Brehmer, 1992).

Within this field, it is worth highlighting some techniques used for multivariate analysis. These
techniques are the ones that better suit this thesis’s purpose as they enable the simultaneous visu-
alization of all numerical relationships across the full data set.

• Heat Map Matrix: visual representation of multivariate data organized as a matrix of rows
and columns, with each cell colour-coded to reflect the degree of correlation between vari-
ables. By converting the correlation matrix into a colour gradient, the heat map facilitates
the identification of patterns and relationships among variables. This visualization aids in
the identification of the most relevant attributes for constructing accurate machine learning
models (Tufte, 2001).
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• Scatter Plot Matrix: graphical representation that displays the relationships between mul-
tiple pairs of variables in a dataset. It consists of a grid of scatter plots, where each scatter
plot represents the relationship between two variables. The variables are typically plotted
on a two-dimensional coordinate system, with one variable on the x-axis and another on the
y-axis. This technique is highly effective for visually examining the relationships or trends
between variables in a dataset (Tufte, 2001).

A.7.2 Supervised Learning

Supervised learning relies on labelled datasets to guide algorithms in classifying data or predicting
outcomes when new inputs are introduced (Kotsiantis et al., 2007). These labelled inputs and
corresponding outputs enable the model to continuously refine its accuracy over time. Supervised
learning can be categorized into classification and regression techniques, each serving distinct
purposes:

Classification: This technique involves categorizing test data into predefined groups using algo-
rithms. Common classification methods include decision trees, support vector machines, random
forests, and linear classifiers (Soofi and Awan, 2017).

Regression: In regression, algorithms are utilized to understand the relationship between inde-
pendent and dependent variables, making predictions with numerical datasets. This is particularly
useful when forecasting numerical outcomes, such as predicting the efficiency of a SC. Polynomial
regression, logistic regression, and neural network regression models are among the commonly
employed regression algorithms (Maulud and Abdulazeez, 2020).

Throughout the following sections, machine learning concepts and techniques, crucial to this dis-
sertation’s methodological development, are described. This will provide the reader with the nec-
essary foundational understanding.

A.7.3 Unsupervised Learning

Unsupervised learning techniques encompass a set of algorithms used to analyze and extract pat-
terns from unlabeled data. These methods uncover hidden relationships within the dataset without
the need for target variables. Instead, they rely on intrinsic data properties to cluster similar data
points together. Unsupervised learning techniques play a crucial role in tasks such as clustering
and dimensionality reduction (Barlow, 1989).

Clustering

Unlabelled data can be grouped using the data mining approach of clustering, based on
some thresholds that identify the similarities or differences of the clusters (Abonyi and
Feil, 2007). DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a
clustering algorithm that identifies clusters based on the density of data points. Data points
are categorised as core, boundary or noise points (Schubert et al., 2017). Core points are
those with a sufficient number of neighbours within a specified radius, while boundary
points are those within the radius of a core point but without sufficient neighbours. Noise
points do not belong to any cluster (Schubert et al., 2017). DBSCAN is effective for
clustering datasets with different shapes and densities, as well as in the presence of noise
or outliers (Ertöz et al., 2003).
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A.7.4 High Dimensionality

High dimensionality in a dataset poses significant challenges to ML models’ ability to
accurately predict outcomes. When there are too many attributes, it becomes harder to
discern meaningful patterns from noise (L’heureux et al., 2017). Dimensionality reduc-
tion techniques address these challenges by transforming the high-dimensional data into
a lower-dimensional space while preserving essential information (Ayesha et al., 2020).
By eliminating redundant dimensions and retaining only the most informative ones, di-
mensionality reduction methods simplify the model’s representation of the data, making
it easier to learn and generalize from (Van Der Maaten et al., 2009). This process not only
improves prediction accuracy but also enhances computational efficiency and ensures bet-
ter interpretability of the results (Van Der Maaten et al., 2009).

Feature selection and dimensionality reduction are two effective strategies for mitigating
the challenges posed by high dimensionality in machine learning (Bolón-Canedo et al.,
2016).

Feature Selection: involves identifying and selecting the most relevant explanatory vari-
ables from the original dataset while discarding irrelevant or redundant ones (Cai et al.,
2018). There are three categories of feature selection techniques:

• Filter Methods: evaluate the relevance of the features independently of the learning
algorithm (Sánchez-Maroño et al., 2007). Person correlation coefficient, informa-
tion gain and R2 test are among the techniques of this group (Chandrashekar and
Sahin, 2014).

• Wrapper Methods: iterates through various feature combinations to identify the op-
timal subset (Kohavi and John, 1997). Forward selection, backward elimination
and recursive feature elimination are some of the examples of the techniques in this
category (Chandrashekar and Sahin, 2014).

– Forward stepwise selection: starts with an empty model, adding one feature at a
time that improves the model the most until no further significant improvement
is possible. (Kohavi and John, 1997)

– Backward stepwise selection: starts with the full model, removing one feature
at a time that contributes the least until further removal would degrade the
model’s performance. (Kohavi and John, 1997)

• Embedded Methods: integrate feature selection directly into the model training pro-
cess. LASSO and ridge regressions are the most commonly used (Chandrashekar
and Sahin, 2014).

Dimensionality Reduction: involves transforming the original high-dimensional dataset
into a lower-dimensional representation while preserving essential information (Van Der Maaten
et al., 2009).

The following techniques are worth to highlight:

• Principal Component Analysis (PCA): transforms the original variables into a set
of linearly uncorrelated variables called principal components (Abdi and Williams,
2010). PCA begins by computing the correlation matrix of the data set and then
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calculates the eigenvectors and eigenvalues of that matrix. Then it selects the eigen-
vectors with the largest eigenvalues as the principal components and projects the
original data onto these components (Abdi and Williams, 2010).

• t-Distributed Stochastic Neighbor Embedding (t-SNE): projects high-dimensional
data onto a lower-dimensional space (usually 2 or 3). It tries to preserve the dis-
tances between similar points in the high-dimensional space while also separating
dissimilar points in the lower dimension (Rogovschi et al., 2017).

A.8 Data Validation

Once a ML model is trained, its performance on new, unseen data cannot be guaranteed
(Issah et al., 2023). Therefore, it is uncertain whether the model will maintain the ex-
pected accuracy and variance in a production scenario (Issah et al., 2023). To ensure
the reliability of the forecasts generated by the ML model, it must undergo a validation
process which involves determining whether the model’s numerical results, quantifying
relationships between variables, are accurately reflecting the data (Polyzotis et al., 2019).

To assess a model’s performance and determine if it is well-generalized or suffering from
underfitting or overfitting, it must be tested on data that was not used during training
(Dietterich, 1995). Cross-validation (CV) is a key method for evaluating ML models,
especially useful when data is limited. In CV, a portion of the data is set aside for testing
and validation, separate from the training data. This process is repeated iteratively to
achieve accurate training and testing operations (Schaffer, 1993). Below, we will discuss
two of the most common validation approaches.

A.8.1 Test and Train Datasets

Instead of employing complex validation methods, a simpler and less computationally
intensive approach for validation is the Train/Test split (Russell and Norvig, 2016). In
this method, the complete dataset is randomly divided into a training set and a test set,
typically in proportions of 70:30 or 80:20. The training set is used to train the model,
while the test set is used for validation (Hastie et al., 2009). However, this straightforward
approach carries a significant risk of bias, particularly when dealing with limited data,
as the rows might vary extensively and important information might be excluded from
the training process (Molnar et al., 2020). If the dataset is sufficiently large and both
the training and test sets have similar distributions, this method can be considered valid
(Hastie et al., 2009).

A.8.2 K-Folds Cross Validation

The K-Folds cross-validation technique typically produces a model with less bias com-
pared to simpler data splitting methods (Molnar et al., 2020). Due to its iterative nature, it
ensures that every observation from the original dataset has a chance of appearing in both
the training and test sets (Hastie et al., 2009). This method is particularly useful when the
available data is limited, as it helps mitigate overfitting by resampling the data. According
to Hastie et al. (2009), the steps for K-Folds cross-validation are as follows:
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• Splitting the Data: The full dataset is randomly divided into K folds, where K typi-
cally ranges from 5 to 10 depending on the data size. A larger value of K generally
reduces bias but makes the approach more similar to a simple train-test split as K
decreases.

• Training and Validation: K-1 folds are used for training, while the remaining Kth
fold is used for validation. The error (E) for each iteration is recorded.

• Iteration and Averaging: The process is repeated until each of the K folds has been
used as the test set. After all iterations, the average of the recorded error values is
calculated to serve as the model’s performance metric, as shown below:

E =
1
K

K

∑
i=1

Ei (A.4)

This average error provides a comprehensive measure of the model’s performance across
all folds (Hastie et al., 2009).

A.9 Model’s Evaluation

Evaluating the performance of ML models is a critical aspect of the model develop-
ment process, providing information on the model’s capacity to make accurate predictions
(Bishop, 2006). In the context of regression problems, various metrics are employed to as-
sess the model’s performance, each offering different insights into the model’s predictive
capabilities:

• Coefficient of determination - R2: measures the proportion of the variance in the
dependent variable that is predictable from the independent variables (James et al.,
2013). Particularly useful for understanding the proportion of variance explained
by the model, which is crucial for models where the goal is to capture as much of
the variability in the data as possible (Bishop, 2006). It provides an indication of
how well the model fits the data, with values ranging from 0 to 1. A higher R2 value
indicates a better fit. The formula for R2 is:

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 (A.5)

• Mean Absolute Error - MAE: measures the average magnitude of the errors in a
set of predictions, without considering their direction. It provides a straightforward
interpretation of the prediction errors in the same units as the output variable (James
et al., 2013). The formula for MAE is:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (A.6)

• Mean Squared Error - MSE: calculates the average of the squares of the errors,
giving more weight to larger errors. This makes MSE particularly useful when we
want to penalize large errors (James et al., 2013). The formula for MSE is:
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MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (A.7)

• Root Mean Squared Error - RMSE: derived from MSE, it provides an error metric
that is in the same units as the output variable. By taking the square root of the MSE,
RMSE offers an interpretable metric that can be directly compared to the actual
values (James et al., 2013). The formula for RMSE is:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (A.8)

Evaluating these metrics collectively can provide a comprehensive view of the model’s
strengths and weaknesses. For instance, a model with a high R2 but also a high RMSE
might be capturing the overall trend well but struggling with specific outliers or large
deviations. Conversely, a low MAE but a high R2 might indicate that while the model is
generally accurate, it fails to explain much of the variability in the data (Bishop, 2006).

A.10 Machine Leaning Models’ Interpretability

Interpreting the outcomes of machine learning models often poses a challenge, particu-
larly when attempting to derive actionable conclusions from the predictions, underscoring
the significance of model interpretability. Visualizing the importance of explanatory vari-
ables in ML predictions enhances interpretability, thereby facilitating the extraction of
insights that support informed decision-making (Molnar, 2020). Moreover, such visual-
izations support feature selection by identifying the most relevant variables and excluding
those that minimally contribute to the model’s performance, enhancing performance and
reducing complexity (Samek et al., 2019). Additionally, it reveals underlying data pat-
terns, offering valuable information for model refinement and the potential discovery of
domain-specific knowledge (Hastie et al., 2009).

SHAP (SHapley Additive exPlanations) values offer a robust and theoretically grounded
approach to interpreting ML model predictions, being one of the most commonly used
techniques in this context (Rodríguez-Pérez and Bajorath, 2020). Derived from coopera-
tive game theory, SHAP values provide a method for fairly distributing the total gains (or
payout) among players based on their contributions to the overall success of the coalition
(Molnar, 2020). In the context of ML, these "players" are the features of the model, and
the "payout" is the prediction made by the model (Štrumbelj and Kononenko, 2014).

The Shapley value for a feature is the average of its marginal contributions across all
possible subsets of features. This involves calculating how the prediction changes when
the feature is added to subsets of other features, reflecting its contribution to the prediction
(Shapley et al., 1953). The formal Shapley value formula is presented in Equation A.9.

φi = ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!
|N|!

[v(S∪{i})− v(S)] (A.9)
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where:

• φi is the Shapley value for feature i.

• N is the set of all features.

• S is a subset of N not containing i.

• v(S) is the value (prediction) for the subset S.

According to Štrumbelj and Kononenko (2014), Shapley values’ properties offer a rigor-
ous and versatile approach to interpreting machine learning models:

• Efficiency: The sum of the Shapley values for all features equals the total value
of the game, which in the context of ML is the model’s prediction. This property
ensures that the contributions of all features are fairly distributed and collectively
account for the entire prediction. This is crucial for model interpretability as it
guarantees that all factors influencing the prediction are considered and quantified,
providing a comprehensive understanding of how each feature contributes to the
model’s output.

• Symmetry: If two features contribute equally to all coalitions, they receive equal
Shapley values. This property ensures that the interpretability method is fair and
unbiased, treating features with equivalent impact equally.

• Dummy: Features that do not change the prediction when added to any subset re-
ceive a Shapley value of zero. This property ensures that irrelevant features are
appropriately identified and given no weight in the interpretability analysis. This
means that features which do not contribute to the model’s predictions are recog-
nized and can be safely ignored, simplifying the model.

• Additivity: The Shapley value for combined games (or predictions from combined
models) is the sum of the Shapley values from the individual games. This prop-
erty allows Shapley values to be naturally extended to ensemble models, which are
commonly used in machine learning. For example, in a random forest or gradient-
boosting model, the overall feature importance can be derived by summing the
Shapley values from each individual tree, providing a consistent measure of fea-
ture contributions across complex models.

It is essential to take into consideration that implementing SHAP in practice can be com-
putationally intensive due to the need to calculate the contribution of each feature across
all possible subsets of features, which grows exponentially with the number of features
(Lundberg and Lee, 2017). This computational complexity implies the use of approxi-
mation techniques to make SHAP feasible for large datasets and complex models. The
Python package "shap" provides efficient algorithms to approximate Shapley values, sig-
nificantly reducing computation time. However, these approximations have drawbacks,
particularly the assumption that features are independent. In datasets with high multi-
collinearity, where features are highly correlated, this assumption can lead to unreliable
results as the interdependencies between features are not accurately captured (Lundberg
and Lee, 2017). Consequently, while "shap" makes the implementation of Shapley values
practical, caution is needed when interpreting results from datasets with significant fea-
ture dependencies. Lundberg and Lee (2017) proposes the analysis of SHAP interaction
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values to understand interdependencies between features and mitigate the risks associ-
ated with multicollinearity as these values measure how the impact of one feature on the
prediction changes depending on the value of another feature (Lundberg and Lee, 2017).

The beeswarm plot serves as a widely employed visualization method to illustrate SHAP
values and facilitate the interpretation of ML model predictions. By plotting the SHAP
values of each feature for every sample, this visualization offers a comprehensive overview
of the importance of features in the model’s decision-making process. In Figure A.10, fea-
tures are sorted based on the sum of SHAP value magnitudes across all samples, allowing
for a clear depiction of each feature’s impact on the model output. Additionally, the colour
gradient in the plot represents the feature values, with red indicating high values and blue
indicating low values. This colour scheme provides further insight into the relationship
between feature values and their corresponding SHAP values.

Figure A.10: Beeswarm plot for Shap Values visualization (The author).
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Model’s Performance in each Cluster
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Table F.1: Models’ performance metrics

Cluster SheetName # Folds R2 RMSE

0 AdaBoost 3 0.734 0.112
0 AdaBoost 5 0.592 0.120
0 AdaBoost 10 0.621 0.111
0 Bayesian Reg. 3 0.269 0.169
0 Bayesian Reg. 5 0.328 0.160
0 Bayesian Reg. 10 0.370 0.151
0 Decision Trees 3 0.232 0.173
0 Decision Trees 5 0.306 0.163
0 Decision Trees 10 0.423 0.131
0 Knn 3 0.218 0.174
0 Knn 5 0.237 0.168
0 Knn 10 0.275 0.157
0 Neural Networks 3 0.041 0.194
0 PLS 3 0.009 0.197
0 Random Forest 3 0.505 0.136
0 Random Forest 5 0.533 0.131
0 Random Forest 10 0.475 0.128
0 XGBoost 3 0.475 0.139
0 XGBoost 5 0.358 0.147
0 XGBoost 10 0.463 0.122
1 AdaBoost 3 0.956 0.031
1 AdaBoost 5 0.960 0.034
1 AdaBoost 10 0.955 0.035
1 AdaBoost 20 0.959 0.032
1 Bayesian Reg. 3 0.461 0.130
1 Bayesian Reg. 5 0.495 0.126
1 Bayesian Reg. 10 0.491 0.125
1 Bayesian Reg. 20 0.441 0.123
1 Decision Trees 3 0.861 0.062
1 Decision Trees 5 0.897 0.051
1 Decision Trees 10 0.884 0.046
1 Decision Trees 20 0.906 0.032
1 Knn 3 0.789 0.080
1 Knn 5 0.830 0.071
1 Knn 10 0.834 0.069
1 Knn 20 0.821 0.063
1 Neural Networks 5 0.143 0.158
1 Neural Networks 20 0.420 0.127
1 OLS 3 0.387 0.137
1 OLS 5 0.490 0.126
1 OLS 10 0.479 0.125
1 OLS 20 0.428 0.121
1 PLS 3 0.274 0.150
1 PLS 5 0.497 0.126
1 PLS 10 0.487 0.125
1 PLS 20 0.437 0.124
1 Random Forest 3 0.886 0.056
1 Random Forest 5 0.912 0.050
1 Random Forest 10 0.904 0.048
1 Random Forest 20 0.911 0.039
1 XGBoost 3 0.903 0.051
1 XGBoost 5 0.945 0.037
1 XGBoost 10 0.926 0.038
1 XGBoost 20 0.928 0.031
2 AdaBoost 3 0.806 0.097
2 AdaBoost 5 0.728 0.077
2 AdaBoost 10 0.701 0.071
2 AdaBoost 20 0.235 0.046
2 Bayesian Reg. 3 0.200 0.200
2 Decision Trees 3 0.460 0.165
2 Decision Trees 5 0.307 0.124
2 Decision Trees 10 0.030 0.150
2 Knn 3 0.591 0.146
2 Knn 5 0.011 0.143
2 Knn 10 0.170 0.139
2 Random Forest 3 0.673 0.129
2 Random Forest 5 0.469 0.100
2 Random Forest 10 0.392 0.102
2 XGBoost 3 0.422 0.165
2 XGBoost 10 0.356 0.101
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Table F.2: Model’s Performance Metrics

Cluster SheetName # Folds R2 RMSE

3 AdaBoost 3 0.968 0.023
3 AdaBoost 5 0.956 0.027
3 AdaBoost 10 0.964 0.021
3 AdaBoost 20 0.798 0.022
3 Bayesian Reg. 3 0.541 0.092
3 Bayesian Reg. 5 0.541 0.089
3 Decision Trees 3 0.891 0.042
3 Decision Trees 5 0.814 0.050
3 Decision Trees 10 0.809 0.041
3 Decision Trees 20 0.705 0.031
3 Knn 3 0.779 0.063
3 Knn 5 0.896 0.042
3 Knn 10 0.159 0.050
3 Neural Networks 5 0.373 0.101
3 OLS 5 0.239 0.098
3 PLS 3 0.207 0.125
3 PLS 5 0.336 0.104
3 Random Forest 3 0.913 0.039
3 Random Forest 5 0.939 0.030
3 Random Forest 10 0.943 0.028
3 Random Forest 20 0.656 0.024
3 XGBoost 3 0.920 0.039
3 XGBoost 5 0.918 0.036
3 XGBoost 10 0.840 0.039
3 XGBoost 20 0.231 0.027
4 AdaBoost 3 0.645 0.016
4 AdaBoost 5 0.674 0.015
4 AdaBoost 20 0.745 0.011
4 Bayesian Reg. 3 0.541 0.018
4 Bayesian Reg. 5 0.494 0.018
4 Bayesian Reg. 10 0.530 0.016
4 Bayesian Reg. 20 0.421 0.015
4 Decision Trees 3 0.591 0.017
4 Decision Trees 10 0.671 0.014
4 Knn 3 0.642 0.016
4 Knn 5 0.738 0.014
4 Knn 10 0.787 0.012
4 Knn 20 0.826 0.009
4 OLS 3 0.674 0.015
4 OLS 5 0.648 0.016
4 OLS 10 0.696 0.014
4 OLS 20 0.671 0.012
4 PLS 3 0.415 0.020
4 PLS 5 0.429 0.020
4 PLS 10 0.449 0.018
4 PLS 20 0.455 0.017
4 Random Forest 3 0.656 0.015
4 Random Forest 5 0.635 0.016
4 Random Forest 10 0.661 0.013
4 Random Forest 20 0.538 0.010
4 XGBoost 3 0.710 0.014
4 XGBoost 5 0.765 0.013
4 XGBoost 10 0.849 0.009
4 XGBoost 20 0.885 0.008
5 AdaBoost 3 0.920 0.017
5 AdaBoost 5 0.912 0.018
5 AdaBoost 10 0.907 0.016
5 AdaBoost 20 0.930 0.012
5 Bayesian Reg. 3 0.757 0.036
5 Bayesian Reg. 5 0.769 0.035
5 Bayesian Reg. 10 0.720 0.035
5 Bayesian Reg. 20 0.689 0.035
5 Decision Trees 3 0.831 0.030
5 Decision Trees 5 0.870 0.024
5 Decision Trees 10 0.868 0.019
5 Decision Trees 20 0.892 0.014
5 Knn 3 0.872 0.025
5 Knn 5 0.894 0.023
5 Knn 10 0.856 0.024
5 Knn 20 0.840 0.023
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Table F.3: Model’s Performance Metrics

Cluster SheetName # Folds R2 RMSE

5 Neural Networks 20 0.140 0.053
5 OLS 3 0.626 0.042
5 OLS 5 0.480 0.043
5 PLS 3 0.708 0.040
5 PLS 5 0.702 0.040
5 PLS 10 0.657 0.040
5 PLS 20 0.628 0.039
5 Random Forest 3 0.907 0.021
5 Random Forest 5 0.905 0.020
5 Random Forest 10 0.915 0.016
5 Random Forest 20 0.913 0.015
5 XGBoost 3 0.921 0.019
5 XGBoost 5 0.933 0.015
5 XGBoost 10 0.934 0.013
5 XGBoost 20 0.939 0.012
6 AdaBoost 3 0.832 0.022
6 AdaBoost 5 0.829 0.022
6 AdaBoost 10 0.828 0.022
6 AdaBoost 20 0.825 0.022
6 Bayesian Reg. 3 0.197 0.049
6 Bayesian Reg. 5 0.184 0.049
6 Bayesian Reg. 10 0.181 0.049
6 Bayesian Reg. 20 0.161 0.049
6 Decision Trees 3 0.622 0.033
6 Decision Trees 5 0.655 0.032
6 Decision Trees 10 0.715 0.027
6 Decision Trees 20 0.730 0.024
6 Knn 3 0.644 0.033
6 Knn 5 0.706 0.029
6 Knn 10 0.738 0.027
6 Knn 20 0.739 0.026
6 PLS 3 0.020 0.054
6 PLS 5 0.005 0.055
6 Random Forest 3 0.808 0.024
6 Random Forest 5 0.828 0.023
6 Random Forest 10 0.857 0.020
6 Random Forest 20 0.843 0.020
6 XGBoost 3 0.838 0.022
6 XGBoost 5 0.859 0.020
6 XGBoost 10 0.899 0.017
6 XGBoost 20 0.894 0.016
7 Knn 3 0.412 0.064
7 Knn 5 0.573 0.054
8 AdaBoost 3 0.758 0.018
8 AdaBoost 5 0.721 0.019
8 AdaBoost 10 0.776 0.017
8 AdaBoost 20 0.747 0.017
8 Bayesian Reg. 3 0.310 0.030
8 Bayesian Reg. 5 0.350 0.029
8 Bayesian Reg. 10 0.348 0.029
8 Bayesian Reg. 20 0.361 0.028
8 Decision Trees 3 0.789 0.016
8 Decision Trees 5 0.748 0.017
8 Decision Trees 10 0.726 0.018
8 Decision Trees 20 0.790 0.014
8 Knn 3 0.723 0.019
8 Knn 5 0.714 0.019
8 Knn 10 0.768 0.017
8 Knn 20 0.810 0.014
8 OLS 3 0.481 0.026
8 OLS 5 0.502 0.025
8 OLS 10 0.470 0.026
8 OLS 20 0.505 0.025
8 Random Forest 3 0.785 0.017
8 Random Forest 5 0.822 0.015
8 Random Forest 10 0.846 0.013
8 Random Forest 20 0.887 0.010
8 XGBoost 3 0.763 0.017
8 XGBoost 5 0.790 0.016
8 XGBoost 10 0.811 0.014
8 XGBoost 20 0.865 0.011



Appendix G

Theoretical Flow Efficiency vs Predicted
Flow Efficiency

Figure G.1: Theoretical flow efficiency values vs Predicted flow efficiency values for cluster 0
with XGBoost

Figure G.2: Theoretical flow efficiency values vs Predicted flow efficiency values for cluster 1
with K-nn
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Figure G.3: Theoretical flow efficiency values vs Predicted flow efficiency values for cluster 2
with OLS

Figure G.4: Theoretical flow efficiency values vs Predicted flow efficiency values for cluster 3
with Random Forest

Figure G.5: Theoretical flow efficiency values vs Predicted flow efficiency values for cluster 4
with XGBoost
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Figure G.6: Theoretical flow efficiency values vs Predicted flow efficiency values for cluster 5
with Random Forest

Figure G.7: Theoretical flow efficiency values vs Predicted flow efficiency values for cluster 6
with Decision Trees

Figure G.8: Theoretical flow efficiency values vs Predicted flow efficiency values for cluster 7
with K-nn
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Figure G.9: Theoretical flow efficiency values vs Predicted flow efficiency values for cluster 8
with AdaBoost



Appendix H

Normality Distribution Test Results
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