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Abstract: Acoustic event detection (AED) systems, combined with video surveillance systems, can
enhance urban security and safety by automatically detecting incidents, supporting the smart city
concept. AED systems mostly use mel spectrograms as a well-known effective acoustic feature. The
spectrogram is a combination of frequency bands. A big challenge is that some of the spectrogram
bands may be similar in different events and be useless in AED. Removing useless bands reduces the
input feature dimension and is highly desirable. This article proposes a mathematical feature analysis
method to identify and eliminate ineffective spectrogram bands and improve AED systems’ efficiency.
The proposed approach uses a Student’s t-test to compare frequency bands of the spectrogram from
different acoustic events. The similarity between each frequency band among events is calculated
using a two-sample t-test, allowing the identification of distinct and similar frequency bands. Re-
moving these bands accelerates the training speed of the used classifier by reducing the number of
features, and also enhances the system’s accuracy and efficiency. Based on the obtained results, the
proposed method reduces the spectrogram bands by 26.3%. The results showed an average difference
of 7.77% in the Jaccard, 4.07% in the Dice, and 5.7% in the Hamming distance between selected bands
using train and test datasets. These small values underscore the validity of the obtained results for
the test dataset.

Keywords: acoustic event detection; Student’s t-test; spectrogram; feature analysis; two-sample t-test

1. Introduction

In addition to the sense of sight, which is an important tool for interaction between
humans and their environment, understanding the environment’s acoustic signals is also
crucial for survival. Using acoustic signals, one can often prejudge a scene or event without
actually observing it. With the advancement of processors and AI systems, the proximity
of machine learning (ML) algorithms to human perception, and the emergence of the smart
city concept, urban smart monitoring systems based on audio and video have become
increasingly popular. Considering the smart city concept, the automatic processing of
audio and video data from urban areas enables city authorities to respond to incidents and
quickly improve service quality. In congested urban areas, image-based event detection
systems have long been used to monitor vehicle traffic or automatically detect events. These
systems have the advantage of never getting tired, rarely making mistakes, and providing
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comprehensive documentation of crimes and violations. Additionally, this topic is occa-
sionally used in security systems. Under several circumstances, cameras cannot cover a
scene; therefore, adding an acoustic signal can complement the monitoring system and
enhance systems’ accuracy and efficiency. So far, numerous methods have been proposed
for processing and classifying urban events using the acoustic signal spectrogram, each
with strengths and weaknesses. One aspect overlooked in spectrogram-based AED systems
is the analysis of acoustic events based on similarities and differences of spectrogram bands
related to different events separately. Considering this analysis, the trained system can use
the spectrogram bands that differ between events to enhance its efficiency. Due to the lack
of comprehensive research investigating the similarities and differences of spectrogram
bands for different events, this article introduces a method to identify similar and dissimilar
spectrogram bands for urban events from a mathematical and probabilistic perspective.
In the meantime, the proposed method can be effectively used to select compelling features
in the design and implementation of ML algorithms. The main advantages of the proposed
method can be categorized into three areas:

• By analyzing the potential similarities and differences in the spectrogram bands of
each urban event, one can focus on the similarities and dissimilarities within and
outside the group of events, thus aiding in event classification.

• Since the proposed method uses a probabilistic model and confidence interval to
evaluate the similarity and difference of spectrogram bands across different events,
there is no need for heuristic methods. Also, mathematical analysis is more reliable
than heuristic methods in ensuring accurate results.

• The proposed method can be used to identify irrelevant features in AED systems,
and in cases where there is a high degree of similarity between two or more events,
a secondary classifier can be designed using the outcomes of the proposed method to
minimize errors.

• The proposed method can be used to identify useless bands in acoustic-based systems
that use the spectrogram as a feature. Normality should be checked in each case to
ensure the accuracy of the result.

The article is structured as follows: In Section 2, recent methods for AED and feature
selection based on mathematical models are presented. Section 3 describes the proposed
method. Section 4 is devoted to the results obtained by the proposed method and its
comparison against other existing methods. Finally, a summary of the study is presented in
the conclusion.

2. Literature Review

In recent years, multiresolution analyses, such as spectrograms, mel frequency cepstral
coefficients (MFCCs), and wavelets, have been widely used in signal analysis and AED be-
cause of their suitability for finding patterns in time-varying signals. Hajihashemi et al. [1,2]
used MFCC and wavelets for sound analysis in AED and acoustic scene classification.
The authors also used wavelet scattering as another spectral feature in [1]. Roy et al. [3]
used the spectrogram as a time-frequency expression of arterial Doppler signals to predict
blood clots and microemboli. Several features were extracted from the spectrogram, such
as the root mean of the local power spectrum and the modal frequency. Ibs-von Seht [4]
aimed to provide an overview of volcanic activity using the spectrogram of seismic signals.
Hafez et al. [5] predicted the timing of an earthquake using the spectrogram of signals
obtained from the ground. Broussard and Givens [6] analyzed the oscillations of the pos-
terior parietal cortex in rats and the impact of different acoustic signals on them using
the spectrogram.

Liu et al. [7] employed the spectrogram in conjunction with the Hilbert–Huang
Transform (HHT) for sleep apnea detection. Dennis et al. [8] used spectrogram and Hough
transform features to detect acoustic events. Towsey et al. [9] used features extracted from
the spectrogram to estimate the number of birds in a natural environment. Vales et al. [10]
predicted earthquakes by analyzing data collected from the spectrogram of low-frequency
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terms of terrestrial signals. Oliveira et al. [11] proposed an efficient method to detect bird
activity using a spectrogram-based filter. The spectrogram separated the background sound
from the bird’s voice in this method.

Ghosh et al. [12] applied the spectrogram and Wigner–Ville transform of the vibration
signal for vehicle detection. Xie et al. [13] introduced an AED system that used features
extracted from spectrograms. Additionally, Xie et al. [14] used spectrograms, linear
predictive coding, and MFCCs to estimate the number of frogs based on ambient sound.
Using ambient sound, Sánchez-Gendriz and Padovese [15] analyzed biological choruses.
In this study, features were extracted using the spectrogram, and an effective graphical
expression for biological choruses was presented using the amplitude of the spectrogram
in some frequency bands. Zhaoa et al. [16] separated the sounds of different bird species
using MFCC, spectrogram, and an autoregressive model. Shervegar et al. [17] proposed a
phonocardiogram spectrogram-based system for heart disease classification.

Nobre et al. [18] measured the biological parameters of caged domestic animals
using an electric field. This research relied on the spectrogram to determine the frequency
characteristics of long recordings. Ye et al. [19] used a combination of local and global
features, including spectrogram entropy, to detect urban events. Goenka et al. [20] proposed
a method for detecting seizures using quantitative electroencephalogram spectrograms.
Hoyos-Barcelóa et al. [21] used local features of the acoustic signal spectrogram to detect
coughs. The proposed method was implemented in a smartphone application and showed
promising results. Waldman et al. [22] detected high-frequency oscillations within the
human skull using electroencephalographic (EEG) signal spectroscopy. Yan et al. [23]
used spectrograms to diagnose seizures based on a convolutional neural network (CNN)
classifier whose input was spectral images.

Oliveira et al. [24] relied on the capabilities of spectrograms and ML methods, such
as neural networks (NN) and support vector machines (SVM), to classify EEG signals
and diagnose epilepsy. In addition to the spectrogram, cross-correlation and discrete
Fourier transform were used in this study. Zhang et al. [25] employed acoustic sensors
and a phase-sensitive optical time-domain reflectometer to distinguish five different acous-
tics. The authors extracted features using the spectrogram. Sahai et al. [26] considered
spectrogram-related features for musical font separation. This method applied the spectro-
gram image as the input to the VGG network. Lin et al. [27] applied spectrogram features
as the input to a deep neural network (DNN) and trained a semi-supervised CNN as an
AED system in an urban area.

Spadini et al. [28] evaluated several acoustic features in detecting urban events, and the
spectrogram was among them. Su et al. [29] used a two-stage CNN network to classify
environmental acoustics considering features such as a log-mel spectrogram and MFCC-
based features. Gloaguen et al. [30] proposed spectrogram features and non-negative matrix
factorization to estimate road traffic levels. Satar et al. [31] proposed an AED method based
on the spectrogram of data collected by the hydrophone. The continuous wavelet transform
and spectrogram were used by Lapins et al. [32] to analyze seismic signals caused by
volcanic activity. The audio spectrogram was among the acoustic features suggested by
Vafeiadis et al. [33] for a smart home AED system. For environmental monitoring and
counting of low detectable species, Znidersic et al. [34] used the spectrogram of an acoustic
signal. Robinet et al. [35] used the spectrogram to extract transient noise characteristics in
gravitational wave detectors.

Azab and Khasawneh [36] used the spectrogram to detect malware files. Kachaa et al. [37]
analyzed the different conditions of dysarthric speech, which is a speech disorder related to
muscle weakness, using the spectrogram of voice signals to interpret the different states of this
disorder. Zeng et al. [38] extracted the spectrogram of arm movements and used this feature to
classify the movements.

Franzoni et al. [39] proposed an emotion recognition system using a human voice
spectrogram and a CNN-based classifier. Sinha et al. [40] extracted the audio spectro-
gram, and converted it to an image that was inputted into a CNN for audio classification.
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Luz et al. [41] relied on different acoustic features, such as the spectrogram, to detect events
in an urban space based on a CNN-based classifier. In analyzing the heart’s electrocardio-
gram (ECG) signals, Gupta et al. [42] used the spectrogram. Manhertz and Bereczky [43]
used the short-time Fourier transform (STFT) spectrogram to analyze vibration in a rotating
electric machine and identify faults in early stages. In a study by Lara et al. [44], seismic
and volcanic events were detected using a spectrogram and deep learning. Pham et al. [45]
used a spectrogram-based method to classify scenes based on a CNN-DNN architecture.

Liu et al. [46] combined convolutional recurrent neural networks and mel spectrogram,
delta, and delta-delta features for underwater target recognition. Kadyan and Bawa [47]
proposed a two-level augmentation scheme via the spectrogram of speech signals using
transfer learning techniques for an automatic speech recognition system. Pahuja and Avi-
jeet [48] proposed a bird sound-based recognition system for classifying eight species of
birds using the STFT spectrogram for feature extraction. Zhang et al. [49] used gradient-
weighted class activation mapping as a CNN and the mel spectrogram as a feature for
acoustic scene classification. Cheng et al. [50] suggested a spectrogram-based sound
recognition system using AlexNet, which identified passing vehicles with modified loud
exhausts. Wang et al. [51] used the spectrogram of underwater signals for time-frequency
tracking and enhancement of whistle signals. The application of whistle signals is in re-
search about cetaceans. You et al. [52] used audio spectrogram transformers and a CNN
to generate embeddings for the few-shot learning of bioacoustic AED. Bhangale et al. [53]
combined mel spectrogram and other acoustic features and used them as input for a parallel
emotion network for speech emotion recognition. Özseven [54] discussed the effective-
ness of the spectrogram as a time-frequency domain image in urban sound classification.
Latif et al. [55], Shafik et al. [56] and Mushtaq et al. [57] used the spectrogram as an effective
acoustic feature in speech emotion recognition, speaker identification, and environmental
sound classification, respectively. All of these approaches were based on deep learning.

The spectrogram has also been used in many medical applications, such as cough
detection [58], detection of cardiovascular disease and epilepsy using ECG and EEG sig-
nals [24,59], sleep spindles [60], and scalp peak ripples [61] detection using EEG signals.
It has also been used for sleep apnea–hypopnea syndrome diagnosis based on nasal air-
flow signal [62] and snoring detection system using voice [63]. In industrial applications,
the spectrogram has been used for fault detection using vibration signals [64], fault detec-
tion in gearboxes based on sound [65], and fault detection in rotary systems using data
from various sensors [66]. Verification of bird diversity [67] and the detection of shoots in
forests [68] using ambient sound, seismo-acoustic event prediction using vibration signals
and ground waves [69], and an AED system [70] are other state-of-the-art applications that
use the spectrogram as a feature extraction method.

In most of the studies mentioned above, the classifier employed was a DL network.
According to the reviewed studies, the following findings were observed:

• In some methods, the spectrogram image was used as the input to a two-dimensional
(2D) DNN;

• Various features extracted from the spectrogram are used as the input;
• In some cases, experts have analyzed spectrogram images to distinguish between

different conditions;
• Based on our best search, no quantitative methods have been proposed to determine

which frequency bands of the spectrogram are most effective for the application
under study.

In the current study, an efficient method to separate the useful from useless bands
of the spectrogram regardless of the used classifier was developed based on statistical
tests. The proposed method can be used to determine the similarities and differences in
the frequency bands of the spectrogram considering different classes. Using the results of
the proposed method, the noise is reduced by removing similar frequency bands from the
spectrogram, and the accuracy and learning speed are increased. Therefore, in an AED
system, the proposed method can provide insights into the different events associated with
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the spectrogram frequency bands relative to the background and increase the system’s
accuracy and speed.

3. Materials and Methods

This section provides an overview of the dataset used in this study and explains the
architecture of the proposed system. In addition, it gives the theoretical background for
each step of the proposed method.

3.1. Dataset

As one of the most popular datasets used in AED studies, the well-known public
URBAN-SED dataset was also used in the current study. This dataset contains ten sound
events, as shown in Figure 1: air conditioner, car horn, children playing, dog bark, drilling,
engine idling, gunshot, jackhammer, siren, and street music. In addition, there is an 11th
class, defined as the background, which does not include any of the mentioned events.

Figure 1. URBAN-SED dataset: included sound events.

The URBAN-SED dataset was generated using the Scaper library for synthesizing
and augmenting acoustic scenes and developed by incorporating background noise into
the original sounds sourced from the UrbanAcoustic8K dataset. The UrbanAcoustic8K
dataset contains 8732 trimmed acoustic clips recorded in an urban environment, with the
most extended clip lasting four seconds. To generate the URBAN-SED dataset, background
noise was added to the original sounds, and the duration of each sample was set to ten
seconds. Since the UrbanAcoustic8K sounds were recorded in a natural environment,
several events can co-occur. To standardize the comparison between the different studies
tested on the URBAN-SED, the data were divided into three categories: training, testing,
and validation. The training set consists of 6000 samples, whereas the remaining two
contain 2000 samples each.

3.2. Analysis of Spectrograms

The current study aims to separate the useful bands from the useless ones of the
spectrogram in a spectrogram-based classification system. The spectrograms of acoustic
events are analyzed to identify frequency bands that vary among different events to achieve
this objective. These bands can be used as indicators of acoustic events. Figure 2 provides
an overview of the proposed methodology, and its pseudocode is outlined in Algorithm 1.

Assume an audio sample is divided into N frames with equal length, and XM is the
spectrogram of each frame, so XM×N is the spectrogram matrix of the sample. Each column
of X denotes a frame number, i.e., a time interval, while each row represents a frequency
band. Suppose that the only difference between different time intervals, i.e., columns
of the spectrogram matrix, is the presence of an acoustic event in that column. In this
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case, the columns can be divided into two non-overlapping groups: one with and one
without an acoustic event. To avoid ambiguity, overlapping periods with more than one
event were removed from the input data (Figure 3). In statistics, the two-sample t-test
checks the equality of means between two populations, i.e., two groups, that follow a
normal distribution.

In this study, each frequency band was assumed to be a population. The normality
condition was checked and validated in each frequency band to ensure the validity of the
final result. Thus, if the equality of means between the two populations is rejected, it is
reasonable to mark the frequency band as usable in the AED. In contrast, if the test for
equality of means is accepted, frequency bands are useless due to similarity. To mitigate the
impact of transient and short-term noise on the results, all training samples were used for
analysis, and the results were averaged. Performing this analysis for all acoustic events in
the dataset and then averaging the results yields a comprehensive model of the similarities
and differences between acoustic events across the entire frequency band.

Figure 2. Overview of the proposed method.

Algorithm 1 Pseudocode of the proposed method

Require: A dataset including audio and time tags of events
1: for all acoustic signal in the dataset do
2: Extract the audio spectrogram XM×N , where M is the number of frequency bands

and N denotes the time interval
3: Divide the spectrogram into two groups: Xe—Signal with an acoustic event,

and XNe—Signal without an event, such that Xe is M × U1 and XNe is M × U2 where
U1 + U2 = N

4: for all row in the spectrogram (Frequency bands 1 to M) do
5: Each row of Xe and XNe is assumed as a population with the number of U1 and

U2 samples and called Se and SNe, respectively
6: Perform a data normality test on Se and SNe and store the result
7: Perform a mean equality test on Se and SNe and store the result
8: end for
9: end for

10: Output 1: Accept or reject data normality and mean equality test in all frequency bands
for each input.

11: Output 2: Percentage of acceptance/rejection of the data normality and mean equality
test in all input frequency bands.
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Figure 3. Process of removing time intervals containing multiple events and preparing populations.

3.2.1. Mel Spectrogram

Many studies on audio analysis and AED used the mel spectrogram and MFCC as
features. The current study analyzed mel spectrograms to identify the frequency bands that
are effective for AED systems. Knowing the effective frequency bands for each acoustic
event in the spectrogram makes it possible to annotate the presence and even the start
and end times of the acoustic event with greater accuracy than considering all frequency
bands. Moreover, identifying the dominant frequency bands for each event allows for
separating similar but not identical events, thereby reducing the possibility of errors.
Several parameters need to be set in the mel spectrogram, including the number of filters
in the filter bank, the duration of the time interval, the type of window used in the time
domain, the number of points in the Fourier transform, and the amount of overlap between
time intervals. These parameters affect the system’s accuracy. Figure 4 shows a mel
spectrogram filter bank.

It is well known that the bandwidth of mel filters is smaller at low frequencies and
increases at higher frequencies. In the analysis performed in this study, an audio sampling
frequency of 44,100 Hz was used, and the number of points in the time window was set
to 2048, with an overlap of 1024 points. This means that each time window overlaps
adjacent time slots by half of the window size. Also, the number of mel filters was set to 173.
Different windows in the time domain have two important but opposite characteristics: a
narrow “main lobe width” and a high attenuation of the side lobes. Compared to Hanning
and Hamming, the Blackman–Harris window has a wider main lobe width, which is a
disadvantage but without effect in the current application; however, it has a stronger
sidelobe attenuation than other windows, which is highly desirable, so Blackman–Harris
was used in this study [71]. Based on the fact that all clips in the dataset have a duration of
ten seconds, the final mel spectrogram matrix is a 173 × 429 matrix, where 173 frequency
bands correspond to rows and 429 columns correspond to time intervals. In this step, based
on the dataset labeling, intervals where only one audio event is present can be separated
from intervals without events. To avoid ambiguity, the intervals where the acoustic event
started or ended were excluded from the analysis.
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Figure 4. Example of a mel spectrogram filter bank (each line represents one of the filters used).

3.2.2. Student’s t-Test Analysis

To verify the effectiveness of each frequency band in detecting audio events, a two-
sample Student’s t-test is performed, as previously mentioned. It is assumed that the
spectrogram values within the frequency bands at different time intervals follow a normal
distribution (details of the normality test are discussed in the following section). Frequency
bands can be divided into two parts, with/without events, considering their time intervals,
and the means of these two parts, as two populations, can be compared using the Student’s
two-sample t-test, which is dependent on the variance of populations. If the variances of
the two populations are known, the test statistic is given by [72]:

Z =
(X1 − X2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

, (1)

where σ1, σ2 are standard deviations, and n1, n2 are the number of samples, i.e., the number
of time intervals, in each population. In cases where the variances are unknown but
assumed to be equal, the test statistic is as [72]:

t =
(X1 − X2)− (µ1 − µ2)

Sp

√
1

n1
+ 1

n2

, (2)

where S2
p is the pooled variance, which can be calculated as [72]:

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2
n1 + n2 − 2

, (3)

where S2
1 and S2

2 are the variances calculated from two populations and n1, n2 are the num-
ber of samples as in Equation (1). If the variances are unequal, the following equation [73]
can be used:
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t′ =
(X1 − X2)− (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

, (4)

where S2
1 and S2

2 are the variances of the two populations, and n1, n2 are the number of
samples. It was verified that all populations belonging to all frequency bands have equal
variances. The results indicated that, in most cases, the variances were not equal. Therefore,
Equation (4) was applied to perform the t-tests. Finally, supposing that the mean equality
test of two populations, one with an event and another without an event, in a frequency
band, is accepted, this frequency band is ineffective for detecting this event because the
values of this frequency band remained the same with and without the event. In contrast,
rejecting the test shows that this frequency band differs with and without events, which
makes it helpful in detecting the event. In cases where the test is accepted for some clips
and rejected for others, this frequency band can be used to indicate the event; however,
it is not a strong indicator. This statistic is highly efficient in feature selection because it
can determine the usefulness of a feature in a binary or multi-event classification system,
regardless of the classification method. To the best of our knowledge, there have been
no previous studies on the functionality of the frequency bands of the spectrogram in
AED systems, and the current study was the first attempt to explore the effects of each
spectrogram frequency band on AED systems.

3.2.3. Normality Tests

The normality of two populations is a necessary assumption in a test of the equality
of two means. Various tests can be used to assess data normality. Five tests were used in
this study: Kolmogorov–Smirnov, Lilliefors, Anderson–Darling, Jarque–Bera, and Shapiro–
Wilk. The Kolmogorov–Smirnov test is a nonparametric test that examines the fit of
a given probability distribution to a set of samples. This test first transforms the data
into the standard normal form: zero mean, unit variance. Subsequently, the cumulative
distribution function of the data is compared to a standard normal cumulative distribution
function. The normality of the data can be accepted or rejected based on the differences
between the two graphs. With some modifications, this test is also used to check the
goodness of fit. The Lilliefors test is similar to the Kolmogorov–Smirnov test in its initial
stage. The difference between the two tests is how the cumulative distribution function is
calculated. In the Lilliefors test, the data is not transformed into standard form, and the
cumulative distribution is calculated directly. Normality is accepted or rejected based on the
maximum discrepancy between the ideal normal cumulative distribution and the empirical
cumulative distribution function of the data. One challenge of this test is determining the
significance of the difference between the data distribution function and the ideal form.
Because the test function is calculated based on the mean and variance of the data, it appears
to be similar to the normal function, which can be considered a weakness. Nevertheless,
this test can yield better results in some cases than the Kolmogorov–Smirnov test. The third
test is the Anderson–Darling. In the general form, the Anderson–Darling test compares any
population to any possible distribution, including the normal distribution. Similar to the
Kolmogorov–Smirnov test, this test involves comparing the empirical distribution function
of the data to the ideal normal distribution function. However, the initial assumptions of
the Anderson–Darling test differ. The Anderson–Darling test has four different modes for
testing the normality of data, which are as follows:

1. The mean and variance of the data are both known;
2. The data variance is known, but the mean is unknown;
3. The mean of the data is known, but the variance is unknown;
4. Both the mean and variance of the data are unknown.

In the current study, the mode where the data’s mean and variance were unknown
was used. In such cases, the mean and variance of the data are first estimated using
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statistical relationships. The data are then transformed into a standard form according to
the following relationship [73]:

z =
x − µ

σ
. (5)

The following equation was used to estimate the cumulative distribution function of
the standardized data [73]:

A2 = −n − 1
n

n

∑
i=1

(2i − 1)(ln ϕ(Yi) + ln(1 − ϕ(Yn+1−i))). (6)

Based on this statistic, the following statistic is estimated [73]:

A∗2 = A2
(

1 +
4
n
− 25

n2

)
. (7)

It is important to note that this relationship is valid when the mean and variance are
unknown and are estimated based on the data. If any of the A2 or A∗2 values exceed the
value given in the Anderson–Darling distribution table, the assumption of data normality is
rejected. The fourth test performed to ensure data normality is the Jarque–Bera test. Unlike
previous tests, this test compares the data probability distribution with a standard normal
distribution based on skewness and kurtosis. Deviations of skewness and kurtosis from
the normal distribution values lead to the rejection of normality. If the mean and variance
of the data are not known, skewness and kurtosis can be calculated using the following
equations [74]:

S =
µ̂3

σ̂3 =
1
n ∑n

i=1 (xi − x̄)3(
1
n ∑n

i=1 (xi − x̄)2
)3/2 , (8)

K =
µ̂4

σ̂4 =
1
n ∑n

i=1 (xi − x̄)4(
1
n ∑n

i=1 (xi − x̄)2
)2 . (9)

After calculating skewness and kurtosis as the third and fourth central moments of
the data, the Jarque–Bera statistic is calculated as [75]:

JB =
n
6

(
S2 +

1
4
(k − 3)2

)
, (10)

where n is the number of samples. To accept or reject normality, the Jarque–Bera statistic is
compared with the Jarque–Bera table obtained by the Monte Carlo method or chi-square
approximation. Here, the Monte Carlo table was used based on the number of samples in
the two populations. According to [76,77], the Shapiro–Wilk test is the most appropriate
normality test for data with a sample size of less than 50:

W =
(∑n

i=1 aixI)
2

∑n
i=1 (xi − x̄)2 , (11)

where x is the samples, x̄ is the mean, and the (ai) coefficients are normalized best lin-
ear unbiased estimators that can be computed using methods such as the Monte Carlo
method [78,79]. Because of the considerable variation in population size and the depen-
dence of the normality test accuracy on the number of samples, the types of tests in this
study were selected based on the number of samples [80–82].

3.3. Validation Scheme

Figure 5 illustrates the scheme used to validate the results. In the first step, effective
bands were determined between events using the train and test data separately. Then,
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the values 1 (one) and 0 (zerp), were assigned to effective and excluded bands, respectively,
and a binarized vector with 173 elements for each pair of events was created.

Figure 5. Scheme used for the validation of the results.

In the second step, the Dice coefficient, Hamming distance, and Jaccard distance were
used. Among these metrics, the Dice coefficient measures similarity, while the Hamming
and Jaccard distances measure differences. In the proposed scheme, the 1—Dice coefficient
was used as the Dice distance to measure differences. In an ideal scenario, the results
of the training and testing data are perfectly similar, so the Dice, Hamming, and Jaccard
distances should all be zero. Given two binarized vectors, Rtrain and Rtest, each with n
binary elements, the Jaccard distance measures the missed overlap between Rtrain and Rtest
relative to the total number of bands, regardless of the excluded bands. First, the following
parameters were defined:

• E11—number of elements where both Rtrain and Rtest are equal to 1 (one);
• E01—number of elements where Rtrain is equal to 0 (zero) and Rtest to 1 (one);
• E10—number of elements where Rtrain is equal to 1 (one) and Rtest to 0 (zero);
• E00—number of elements where both Rtrain and Rtest are equal to 0 (zero).

Each binary element must fall into one of these four parameters, meaning that:

E11 + E00 + E10 + E01 = Total spectrogram bands, (12)

where Total spectrogram bands is equal to 173 in the current study. On one hand, the Jaccard
distance, dJ , is given by [83,84]:

dJ =
E01 + E10

E01 + E10 + E11
(13)

The Hamming distance measures the missed overlap between Rtrain and Rtest relative
to the total number of bands and is given by [84,85]:

dH =
E01 + E10

E01 + E10 + E11 + E00
. (14)

On the other hand, the Dice distance is defined as [83,84,86]:

dD =
E01 + E10

E01 + E10 + 2E11
. (15)

Since the Dice distance does not satisfy the triangle inequality, it can be considered a
semi-metric version of the Jaccard distance. All metrics are reported here as percentages.

4. Results and Analysis

In this study, when the number of populations was less than 50, the Shapiro–Wilk
test was used for the normality test. When samples exceed 50, alternative tests are recom-
mended to verify normality [87]. In these cases, the dominant response of the Liliefors,
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Anderson–Darling, and Jarque–Bera tests, were used. Almost all the statistical tests had a
reasonable response when the number of samples exceeded 300. In this case, the dominant
response of the four tests, Lilliefors, Anderson–Darling, Jarque–Bera, and Kolmogorov–
Smirnov, was chosen as the result, which is the typical case here. Table 1 presents the
normality test results of the four normality tests in the most common issue in the cur-
rent study. The selected normality test results are given in the hybrid column of Table 1.
The results in Table 1 confirm the validity of the assumption of normality.

Table 1. Data normality test results (KS—Kolmogorov–Smirnov test, LF—Lilliefors test, AD—
Anderson–Darling test, and JB—Jarque–Bera test).

Event Category KS LF AD JB Hybrid

Air conditioner 96.70 80.53 77.92 88.84 85.33

Car horn 99.40 95.43 77.70 95.93 93.07

Children playing 87.21 87.70 82.83 76.59 82.47

Dog bark 98.06 85.42 74.86 75.89 83.38

Drilling 99.07 93.10 76.32 80.91 99.70

Engine idling 89.36 87.36 81.06 82.51 89.36

Gunshot 93.52 80.86 67.82 74.38 82.42

Jackhammer 99.70 84.48 78.61 85.91 98.53

Siren 92.85 91.84 77.38 87.95 94.61

Street music 98.99 88.01 76.49 82.16 96.92

4.1. Mean Equality Test

To perform the two-sample test of means, the following assumptions were considered:

• The frequency bands of the spectrogram examined in this study were 173; the mean
equality test was performed separately for each frequency band;

• There was only one event in the populations selected for the test;
• The minimum number of samples in each population was equal to nine;
• The populations had an unequal number of samples;
• Each population, which consisted of consecutive samples belonging to an event,

was compared with events from the same audio file to minimize the effects of back-
ground noise;

• The percentage of rejections in the “mean equality test” was calculated separately for
each audio event compared to other events and background, i.e., no event, using all
training samples (6000 samples);

• The assumed confidence interval for all tests was equal to 95%;
• If a population failed in the normality test and its skewness and kurtosis deviated

strongly from the normal distribution, it was excluded from the test;
• The higher values in Figures 6–8 indicated frequency bands with a higher probability

of a mathematical difference between two acoustic events, as indicated by a higher
percentage of rejections in the mean equality test.

In Figure 6, four events are depicted according to the background: gunshot, jackham-
mer, siren, and street music. It can be seen that the jackhammer spectrogram differs from
the background in the bands between 10 and 150 in at least 80% of the clips. However, this
situation is not observed for the other three events. Among the four events, siren differs
from the background only in a relatively narrow range of frequency bands. Figure 7 depicts
the test result of the mean equality test between the gunshot event and other events. It
is possible to perceive that the importance of different frequency bands in distinguishing
the gunshot event from other events varies depending on the type of the second event.
In all the reported results, frequency bands with a higher rejection percentage of the mean
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equality test (value of the vertical axis of the graphs depict in the figures) are more suitable
for classification.

Figure 6. Rejection percentage (RP) of mean equality test for four events according to the background.

Based on the results depicted in Figure 7, among the events, dog bark, siren, and street
music have a smaller area under the curve than the others with gunshot, which indicates
a higher probability of classification error between these three events and gunshot when
classified by the spectrogram. Conversely, the air condition, engine idling, and jackhammer
exhibited the most significant differences. Thus, if an AED system’s confusion matrix
shows significant errors between the gunshot and dog bark classes, a new classifier can be
developed using the most appropriate bands from the spectrogram, as shown in Figure 7.
This approach enhances the AED efficiency and reduces errors. Similar analyses can
be performed for other events. For example, Figure 8 shows the results for dog bark
according to the other events, which differs from the gunshots. As an implicit rule, when
the rejection percentage of the mean equality test is less than 75%, the frequency bands are
considered ineffective.

Figure 7. Rejection percentage (RP) for mean equality test between gunshot and other events.
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Figure 8. Rejection percentage (RP) for mean equality test between dog bark and other events.

This statistical criterion can be used as an efficient method for feature selection based
on statistical patterns without the need for evolutionary or iterative techniques. The only
limitation of the proposed method is the requirement for many samples. The ratios between
the effective frequency bands, i.e., with a rejection percentage greater than 75%, and the
total frequency bands are indicated separately in Table 2. A higher ratio indicates that
more spectrogram bans can be helpful. In contrast, a smaller ratio indicates that more
spectrogram bans can be removed in developing an AED system. The weakest result in
Table 2 is 17.9% (between siren and dog bark), indicating that only 31 of the 173 spectrogram
frequency bands effectively distinguish between the dog bark and siren classes. Regarding
the weak features, the dog bark has more in common with other events, showing that for
this event, many spectrogram bans can be removed during the classifier design without
reducing the efficiency. According to the results in Table 2, many spectrogram bands
(approximately 26.3%) can be omitted during the AED design. Thus, in addition to reducing
noise, complexity, and training time, the number of samples required to train the system
is reduced.

Table 2. Percentage of effective bands to total spectrogram bands in the train set of the URBAN-SED
dataset (the listed events are: A = air conditioner, B = car horn, C = children playing, D = dog bark,
E = drilling, F = engine idling, G = gun shot, H = jackhammer, I = siren, J = street music).

Class A B C D E F G H I J

A - 87.86 78.61 78.03 93.06 84.39 80.35 90.17 91.91 84.97
B 87.86 - 71.10 58.38 80.92 80.92 48.55 83.24 62.43 75.14
C 78.61 71.10 - 65.90 84.97 88.44 69.94 86.71 79.19 71.68
D 78.03 58.38 65.90 - 70.52 87.28 32.95 86.71 17.34 53.18
E 93.06 80.92 84.97 70.52 - 93.06 73.41 91.33 78.03 87.86
F 84.39 80.92 88.44 87.28 93.06 - 82.08 91.33 82.08 84.97
G 80.35 48.55 69.94 32.95 73.41 82.08 - 82.08 45.09 45.09
H 90.17 83.24 86.71 86.71 91.33 91.33 82.08 - 87.28 80.35
I 91.91 62.43 79.19 17.34 78.03 82.08 45.09 87.28 - 76.30
J 84.97 75.14 71.68 53.18 87.86 84.97 45.09 80.35 76.30 –

Background 87.9 67.1 74.0 23.1 76.9 83.2 36.4 87.9 39.9 72.3
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4.2. Validation

Figure 5 illustrates the scheme used to validate the results in Table 2. If the results of
Table 2 are valid, the selected bands from the test samples would be relatively similar to
the training samples.

Based on the results of Table 3, it can be seen that in the Jaccard metric the average
difference in all events is 7.77%, and the greatest change occurred for the dog bark and siren
events. This great difference (25%) is due to the low number of effective bands between the
dog bark and siren events (Table 2) as E11 and its effect on the denominator of Equation (13)
does not necessarily indicate a high mismatch. The Dice and Jaccard metrics, due to the
denominator of Equations (13) and (15), when the number of effective bands between two
events E11 is small, may also show a high value in the low mismatch. According to the
results of Table 2, only 17.34% of bands (equivalent to 30 bands) between these two events
were effective. In this situation, a slight mismatch of ten bands (out of 173 bands) between
selected bands in training and testing data, showed a 25% mismatch in the Jaccard metric.
In such cases, bands with values close to but less than the specified rejection percentage of
the mean equality test can be selected as effective bands.

Table 3. Jaccard distance (%) between the results of train and test datasets (the listed events are:
A = air conditioner, B = car horn, C = children playing, D = dog bark, E = drilling, F = engine idling,
G = gun shot, H = jackhammer, I = siren, J = street music).

Class A B C D E F G H I J

A - 5.13 6.43 5.88 4.91 5.33 7.69 8.13 5.56 6.67
B 5.13 - 7.52 7.41 5.41 8.11 11.58 6.04 8.47 5.22
C 6.43 7.52 - 6.56 8.92 7.69 6.20 5.23 7.59 6.20
D 5.88 7.41 6.56 - 8.96 5.81 13.64 6.49 25.00 11.00
E 4.91 5.41 8.92 8.96 - 6.75 9.93 5.03 7.59 5.77
F 5.33 8.11 7.69 5.81 6.75 - 6.85 4.97 9.52 7.19
G 7.69 11.58 6.20 13.64 9.93 6.85 - 7.59 11.36 13.48
H 8.13 6.04 5.23 6.49 5.03 4.97 7.59 - 5.16 6.12
I 5.56 8.47 7.59 25.00 7.59 9.52 11.36 5.16 - 7.41
J 6.67 5.22 6.20 11.00 5.77 7.19 13.48 6.12 7.41 -

In the Hamming metric, the total length of the vector is taken as the denominator
(Equation (14)), so the small value of the number of effective bands between two events
E11 does not affect the response. Based on the results of Table 4, the maximum mismatch
between train and test results is 8.1%, which occurred in the drilling and gunshot events.
The average difference in all events is 5.7%, which shows that the change in the selected
bands based on train and test data is very slight, and only 10 bands (out of 173 bands) differ.

The average Dice difference obtained in the training and testing samples is 4.07%
(Table 5), which reflects the good alignment of the selected bands using the training data
and the testing data. The maximum difference in this metric is 14.3%, which occurred
between the dog bark and siren events. Similar to the Jaccard metric, the reason for this
high difference is the low number of effective bands in this case. According to Equation (15),
if there are only a few effective bands available, E11 is a small value, and a small mismatch
between the two vectors causes a large difference. To solve this problem, it is sufficient to
increase the number of effective bands by reducing the specified rejection percentage of the
mean equality test.
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Table 4. Hamming distance (%) between the results of train and test data (the listed events are:
A = air conditioner, B = street music, C = children playing, D = dog bark, E = drilling, F = engine idling,
G = gun shot, H = jackhammert, I = siren, J = street music).

Class A B C D E F G H I J

A - 4.62 5.20 4.62 4.62 4.62 6.36 7.51 5.20 5.78
B 4.62 - 5.78 4.62 4.62 6.94 6.36 5.20 5.78 4.05
C 5.20 5.78 - 4.62 8.09 6.94 4.62 4.62 6.36 4.62
D 4.62 4.62 4.62 - 6.94 5.20 5.20 5.78 5.78 6.36
E 4.62 4.62 8.09 6.94 - 6.36 8.09 4.62 6.36 5.20
F 4.62 6.94 6.94 5.20 6.36 - 5.78 4.62 8.09 6.36
G 6.36 6.36 4.62 5.20 8.09 5.78 - 6.36 5.78 6.94
H 7.51 5.20 4.62 5.78 4.62 4.62 6.36 - 4.62 5.20
I 5.20 5.78 6.36 5.78 6.36 8.09 5.78 4.62 - 5.78
J 5.78 4.05 4.62 6.36 5.20 6.36 6.94 5.20 5.78 -

Table 5. Dice distance (%) between the results of train and test data (the listed events are:
A = air conditioner, B = street music, C = children playing, D = dog bark, E = drilling, F = engine idling,
G = gun shot, H = jackhammert, I = siren, J = street music).

Class A B C D E F G H I J

A - 2.63 3.32 3.03 2.52 2.74 4.00 4.23 2.86 3.45
B 2.63 - 3.91 3.85 2.78 4.23 6.15 3.11 4.42 2.68
C 3.32 3.91 - 3.39 4.67 4.00 3.20 2.68 3.94 3.20
D 3.03 3.85 3.39 - 4.69 2.99 7.32 3.36 14.29 5.82
E 2.52 2.78 4.67 4.69 - 3.49 5.22 2.58 3.94 2.97
F 2.74 4.23 4.00 2.99 3.49 - 3.55 2.55 5.00 3.73
G 4.00 6.15 3.20 7.32 5.22 3.55 - 3.94 6.02 7.23
H 4.23 3.11 2.68 3.36 2.58 2.55 3.94 - 2.65 3.16
I 2.86 4.42 3.94 14.29 3.94 5.00 6.02 2.65 - 3.85
J 3.45 2.68 3.20 5.82 2.97 3.73 7.23 3.16 3.85 -

It can be concluded that when selecting effective frequency bands using training data
(Table 2), good results on test data could be achieved, demonstrating the effectiveness of the
proposed effective frequency band selection method. Using these tables makes it possible
to select effective spectrogram bands for AED systems. Therefore, the proposed method
can be considered a suitable scheme for feature selection in AED or classification systems
because the rejection percentage is not affected by the feature type.

5. Conclusions and Future Work

In this article, a statistical method for feature analysis was proposed. The proposed
method considers each feature value as a statistical population. The samples of each feature
are divided into two populations according to belonging or not belonging to a particular
class. The means of these two populations are compared using the two-sample t-test.
The feature is useful and otherwise useless if the rejection percentage of the mean equality
test for these two populations is sufficiently large. To demonstrate the efficiency of this
approach, different frequency bands of the acoustic signal spectrogram were analyzed
in an AED system. Since the populations in the two-sample t-tests must be expected,
various normality tests were performed, and the normality of the spectrogram features
was validated. After the normality test, the two-sample t-test was used to analyze the
mean equality between all the frequency bands of the spectrogram for every two acoustic
events. According to the results, many spectrogram features (approximately 26.3%) could
be omitted during the AED design. In this way, in addition to reducing noise, complexity
and training time, the number of samples required to train the system is reduced. Moreover,
the training and testing sets were analyzed separately, and the results showed an average
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difference of 7.77% in the Jaccard, 4.07% in the Dice, and 5.7% in the Hamming metrics.
These small values indicate the validity of the obtained results for the test set.

The assumption of normality in the input data is the only limitation of the proposed
method. As to future work, the proposed method can be applied to different AED systems,
and its efficiency can be evaluated. Further analysis is needed to show the selected fre-
quency bands are as effective as all frequency bands in machine learning or deep learning
models. In this case, the proposed approach should be applied to state-of-the-art AED
systems and the accuracy of the system with two inputs, i.e., selected bands and all bands,
should be compared.
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