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A B S T R A C T   

Central robust network functional rearrangement is a characteristic of several neurological conditions, including 
chronic pain. Preclinical and clinical studies have shown the importance of pain-induced dysfunction in both 
orbitofrontal cortex (OFC) and nucleus accumbens (NAc) brain regions for the emergence of cognitive deficits. 
Outcome information processing recruits the orbitostriatal circuitry, a pivotal pathway regarding context- 
dependent reward value encoding. The current literature reveals the existence of structural and functional 
changes in the orbitostriatal crosstalk in chronic pain conditions, which have emerged as a possible underlying 
cause for reward and time discrimination impairments observed in individuals affected by such disturbances. 
However, more comprehensive investigations are needed to elucidate the underlying disturbances that underpin 
disease development. In this review article, we aim to provide a comprehensive view of the orbitostriatal 
mechanisms underlying time-reward dependent behaviors, and integrate previous findings on local and network 
malplasticity under the framework of the chronic pain sphere.   

1. Introduction 

Chronic pain adversely disrupts the daily lives of patients and con-
tinues to impose a burden on modern-day societies. With no survival 
benefits, chronic pain instead entraps individuals in an unceasing cycle 
characterized by catastrophizing and suffering, profoundly eroding their 
quality of life (Elman and Borsook, 2018; Woolf, 2011). The myriad of 
animal and human studies has fostered a deeper comprehension of how 
pain hijacks multiple neurophysiological mechanisms, ultimately lead-
ing to a spectrum of cognitive impairments – particularly manifesting as 
deficits in decision-making (Bushnell et al., 2013; Dourado et al., 2016; 
Leite-Almeida et al., 2009; Moriarty et al., 2017), attention (Bushnell 
et al., 2013; Moriarty et al., 2017), learning (Bushnell et al., 2013), and 
memory (Alemi et al., 2023; Cardoso-Cruz et al., 2013; Cardoso-Cruz 

et al., 2019; Leite-Almeida et al., 2009). The capacity to adapt our 
behavior within an ever-changing environment hinges on the contin-
uous maintenance, manipulation, and updating of information. Conse-
quently, organisms strive to optimize their success by ensuring that their 
decisions yield the most desirable and advantageous outcomes across 
both short-term and long-term scales. Integrated value, specifically the 
intricate interplay between time and reward, operates as currency for 
ensuring optimal decision-making (Hirokawa et al., 2019). However, 
chronic pain is considered to disturb this neural trade-off by rendering 
previously rewarding stimuli less gratifying, diminishing the attrac-
tiveness of delayed rewards, and amplifying the cost associated with 
waiting for postponed rewards to an excessive degree. This shift in 
preference tilts the balance towards instant gratification (Borsook et al., 
2016; Martucci et al., 2018). 
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The orbitofrontal cortex (OFC) is a key region participating in 
numerous cognitive processes, including associative learning 
(Izquierdo, 2017; O’Doherty et al., 2017; Stalnaker et al., 2015), 
expectation representation (Izquierdo, 2017; Rudebeck and Murray, 
2014), and emotional risk assessment (Pais-Vieira et al., 2009; Rolls, 
2019). In addition, the OFC also contextualizes pain levels, integrating 
them with rewarding events and corresponding emotional states (Rolls, 
2023; Wakaizumi et al., 2019). The intersection of emotional and 
reward frameworks within the OFC makes this region a hallmark for 
optimizing outcomes and discerning valence. Moreover, there is evi-
dence indicating alterations in orbitostriatal communication strength in 
chronic pain conditions (Chang et al., 2014; Ong et al., 2019). Given its 
strong connection with gratification, the OFC exerts top-down modu-
latory effects over reward-related areas, such as the nucleus accumbens 
(NAc), to determine the selection and sustainment of the contextually 
most advantageous options (Knutson et al., 2001; Stopper and Floresco, 
2011). The NAc complex compiles and integrates information from 
cortical, temporal, and limbic regions, thereby facilitating efficient 
reward-seeking behaviors (Salgado and Kaplitt, 2015; West et al., 2018). 
Beyond its primary role as a pleasure center, the NAc is also engaged in 
pain modulation and the processing of pain-related emotional events 
(Harris and Peng, 2020). Collectively, the orbitostriatal circuitry can 
therefore be considered a dominant neural underpinning of integrated 
value encoding. 

The core focus of this short review centers on the OFC-to-NAc circuit, 
encompassing its structural and functional connections, serving as a 
pivotal interface for the emergence of time-reward cognitive impair-
ments within chronic pain states. The initial section will delve into the 
distinct contributions of the OFC and NAc to reward valence and tem-
poral encoding, followed by an integrated overview of orbitostriatal 
circuitry-related disturbances in the context of chronic pain. 

2. Functional contributions of the orbitostriatal circuit in 
reward and pain processing 

2.1. Orbitofrontal cortex 

The OFC is a crucial brain area in emotional and reward processing 
where multiple external sensory information and reward information 
converge. Located in the ventral portion of the prefrontal cortex (PFC), 
the OFC in human and other primates includes brodmann areas 11, 47/ 
12 and 13 (Öngür and Price, 2000). Although functionally related, it can 
be distinguished from other regions of the PFC, such as the dorsolateral 
PFC, the ventrolateral PFC and medial PFC, through neural connections 
and participation in specific functions (Öngür and Price, 2000). 
Conversely, the OFC in rodents is located in the dorsal bank of the rhinal 
sulcus and has completely agranular properties (Izquierdo, 2017). 
Despite the differences between species, its location and connectivity 
suggest the rat OFC is partially homologous to non-human primates OFC 
(Öngür and Price, 2000; Price, 2007; Rudebeck and Rich, 2018). 
Furthermore, the OFC can be subdivided into different cytoarchitectonic 
regions with specific functional differences (Izquierdo, 2017). Several 
animal neurotracing studies have elegantly demonstrated the variety of 
anatomic and neurochemical afferents to the OFC from cortical and 
subcortical regions (Fig. 1) (Barreiros et al., 2021; Cavada et al., 2000; 
Morecraft et al., 1992; Murphy and Deutch, 2018). These inputs provide 
representations of the stimuli’s identities, independent of its reward 
value, and include the amygdala, prelimbic and infralimbic cortices, 
hypothalamus, thalamus, pyriform cortex, inferior temporal cortex, so-
matosensory cortex, and insula. Additionally, midbrain dopaminergic 
and non-dopaminergic neurons also innervate the OFC and medial PFC 
without collateralization (Murphy and Deutch, 2018). This supports the 
observations of selectivity concerning distinct cognitive components, 
such as the significant role of the medial PFC in working memory 
maintenance/manipulation mechanisms, and the involvement of the 
OFC in cognitive judgement bias and reward valuation (Goldman-Rakic, 

1995; Golebiowska and Rygula, 2017). Conversely, the OFC neural 
output is modulated by a local inhibitory network composed of fast- 
spiking GABAergic interneurons (Varga et al., 2017; Wright et al., 
2021). In addition, glutamatergic projections originating from the OFC 
densely target regions such as the olfactory tubercle, medial PFC, NAc, 
amygdala, thalamus, hypothalamus, periaqueductal gray, laterodorsal 
tegmentum and ventral tegmental area (VTA) (Fig. 1) (Hoover and 
Vertes, 2011). This dense convergence of limbic, sensory and motor 
networks reinforces the role of the OFC in action-outcome learning and 
emotional regulation (Rudebeck and Murray, 2014). Based on its unique 
positioning, the OFC serves as a hub for encoding information related to 
emotional states, time-reward dependencies, and outcome expectancy 
(Rolls, 2023). It accomplishes this by transmitting updates to key 
structures, signalling the current valuable options (Roesch and Olson, 
2004; Rolls, 2023; Schoenbaum and Roesch, 2005; Simon et al., 2015). 
Over time, distinct neuronal ensembles within the OFC refine their firing 
patterns in anticipation of receiving desired or undesired outcomes, 
while also begin firing when predictive cues are exhibited (Roesch et al., 
2007; Schoenbaum et al., 2003; Schoenbaum et al., 2009; Takahashi 
et al., 2009) 

Several rodent studies have shown that lesioning the OFC or 
inducing transient/permanent inactivation results in reduced risk 
assessment (Barrus et al., 2017; Pais-Vieira et al., 2007), preference for 
high-magnitude rewards (Mar et al., 2011; Pais-Vieira et al., 2007), 
impaired reversal learning (Dalton et al., 2016; Winstanley et al., 2004), 
and diminished confidence based on waiting time without disruption of 
choice accuracy (Lak et al., 2014; Miyazaki et al., 2020). Animals with 
OFC lesions also exhibit an inability to devalue reinforcers, indicating 
deficits in accessing the newly updated value of cue-evoked rewards 
(Gallagher et al., 1999; Izquierdo et al., 2004; Schoenbaum et al., 2003). 
However, contrasting findings have suggested that OFC damage can lead 
to risk aversion and a preference for smaller and immediate rewards 
(Orsini et al., 2015; Sellitto et al., 2010). These divergent observations 
might be attributed to the specific OFC region targeted (e.g. medial, 
ventral or lateral), the type of task employed (such as delay discounting, 
appetitive or monetary risky decision-making), and the timing of inac-
tivation. Together, these complexities could offer insights into the 
multifaceted and time-sensitive functions of the OFC within varying 
contexts. Furthermore, OFC is considered to play a role in predicting 
errors by sharing updates on outcome value information with other 
brain regions, such as the VTA and the NAc (Stalnaker et al., 2018). By 
performing computations that compare expected versus actual outcome 
values and maintaining a continuous representation of subjective 
reward value, animals adjust their behavioral expression to optimally 
align with changing environmental conditions. This hypothesis may 
help explain behavioral flexibility impairments observed in studies 
involving OFC lesions or inactivation, which encompass deficits in tasks 
requiring reversal learning based on time-reward dependencies (Mar 
et al., 2011; Schoenbaum et al., 2009; Takahashi et al., 2009). The link 
between stimuli and their corresponding emotional states can also exert 
direct modulation over goal-directed behaviors (Rolls, 2023). Con-
straints related to the timing and magnitude of reward delivery, com-
bined with the anticipated affective state induced by the reward, may 
impact the decision to opt for immediate rewards or to postpone im-
mediate action in favour of larger, delayed rewards. In this context, the 
OFC has been observed to become activated during the assessment of 
value, choice, and expectancy of present and past events (Kimmel et al., 
2020; Sosa et al., 2021). 

2.2. Nucleus accumbens 

The NAc is a subcortical structure significantly linked with reward- 
seeking behaviors, reward encoding, motivation, and emotional pro-
cessing (Day et al., 2011). The NAc is primarily composed of GABAergic 
medium spiny neurons (MSNs) that contain either D1 or D2 receptors 
(D1R and D2R) (Kauer and Malenka, 2007; Soares-Cunha et al., 2020), 
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Fig. 1. A simplified schematic diagram depicting the most relevant cortical and subcortical connections of the orbitofrontal cortex and nucleus accumbens to the 
initiation of actions and responses to reward stimuli. The orbitostriatal pathway involves mono-synaptic projection and multi-synaptic connections: AMY, amygdala; 
HIP, hippocampus; IC, insular cortex; LH, lateral hypothalamus; OFC, orbitofrontal cortex; PAG, periaqueductal gray; PFC, prefrontal cortex; MDth, mediodorsal 
nucleus of the thalamus; and VTA, ventral tegmental area. 
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and a small fraction of cholinergic interneuron populations (Meredith 
et al., 1993). Traditionally, D1- and D2-MSN were categorized as par-
ticipants in direct (reward encoding) and indirect (aversion encoding) 
pathways respectively. However, recent research has offered an updated 
perspective on this dichotomy, suggesting that both D1- and D2-MSNs 
can encode reward and aversion, with both types involved in direct 
and indirect pathways of information transmission to the thalamus 
(Klawonn and Malenka, 2018; Soares-Cunha et al., 2020; Soares-Cunha 
et al., 2022). Previous research portrays the NAc as the primary input 
kernel of the basal ganglia. Animal studies employing retrograde, 
anterograde and immunohistochemistry methods have unveiled several 
afferent connections (along with their respective neurotransmitters) to 
this region (Li et al., 2018; Wright et al., 1996). These connections 
encompass the PFC, hippocampus, VTA, locus coeruleus, motor and 
sensory cortices, laterodorsal tegmentum, habenula, amygdala, thal-
amus, hypothalamus, substantia nigra pars compacta, and dorsal raphe 
nuclei (Fig. 1) (Li et al., 2018; Phillipson and Griffiths, 1985; Salgado 
and Kaplitt, 2015). Conversely, the projecting MSNs primarily establish 
connections with other subcortical regions, including the ventral pal-
lidum, bed nucleus striata terminalis, and amygdala; as well as several 
diencephalon regions, including the thalamus, hypothalamus, and 
habenula (Salgado and Kaplitt, 2015). Moreover, the NAc output also 
extends to midbrain areas such as VTA and substantia nigra, as well as 
brain stem areas like the pedunculopontine nucleus (Fig. 1) (Salgado 
and Kaplitt, 2015; Williams et al., 1977) 

Functional and cytoarchitectural investigations have led to the di-
vision of the NAc into two distinct subregions: the core area (NAcC) and 
the shell area (NAcSh) (Baliki et al., 2013; Richard et al., 2013). Dif-
ferences in the innervation and projections of NAcC and NAcSh have 
been documented, encompassing variations in the origin and target, as 
well as the density of inputs and outputs (Salgado and Kaplitt, 2015). 
Research indicates that while the NAcC is involved in regulating 
appropriate responses by assessing behavioral performance and effort 
costs during decision-making (Ghods-Sharifi and Floresco, 2010), the 
NAcSh plays a role in integrating and updating outcome information, 
responding differently to both rewarded and non-rewarded cues, as well 
as to changes in incentive value (Ambroggi et al., 2011; Floresco et al., 
2008; West and Carelli, 2016). The effects of NAcC lesions and inacti-
vation have yielded mixed results. Excitotoxic lesions have led to a 
reduced preference for high rewards as a function of time delay, while 
regional deactivation has resulted in a decrease in delay discounting 
(Cardinal et al., 2001; Moschak and Mitchell, 2014; Steele et al., 2018). 
Conversely, NAcSh selective lesion or inactivation resulted in attention 
impairments, excessive reinstatement of appetitive-related conditioned 
stimulus, reduction of impulse control, and impairments in waiting ca-
pacity in animals performing tasks such as the T-maze and 5-CSRTT 
(Dutta et al., 2021; Feja et al., 2014; Floresco et al., 2008). These find-
ings support the hypothesis that the distinct afferents and efferents of the 
NAc subregions underlie different roles for each parcel. These roles 
could either complement the input from the other subregion for a spe-
cific role or be entirely selective to either NAcC or NAcSh (Bossert et al., 
2007; Feja et al., 2014). Nonetheless, our understanding of specific roles 
of NAcC and NAcSh in delay discounting tasks – whether through lesion, 
pharmacological blockade, or modulation – is still limited. Only a few 
studies have directly compared the region-specific contributions of 
NAcC and NAcSh to time-reward dependency during decision-making 
on the same behavioral task (Feja et al., 2014; Pothuizen et al., 2005). 

2.3. Orbitostriatal circuit in time-reward dependence and chronic pain 

At cellular and network levels, the OFC sends monosynaptic gluta-
matergic projections to the NAc (both NAcC and NAcSh) (Hirokawa 
et al., 2019; Li et al., 2018). Through this connection, the OFC can exert 
influence on encoding reward value and outcomes by temporally- 
specific activation of GABAergic ensembles in the NAc area (Knutson 
et al., 2001; Sesack and Grace, 2010; Stopper and Floresco, 2011). 

Additionally, there is a strong functional connectivity shared between 
the OFC and the NAc (Chang et al., 2014). To best evaluate the inter-
action between these two areas, Jenni and colleagues used a pharma-
cological approach to sever communications, and elucidated the 
importance of OFC-NAc pathway in the maintenance of decision biases 
through transmission of reward history information. This OFC-NAc 
stabilization of task states may allow for facilitation of reward- and 
risk-related decision-making, and help discern optimal strategies to 
obtain rewards (Jenni et al., 2022). However, the modulatory drive from 
the OFC to the NAc competes also with inputs from other cortical areas, 
contributing to a fine power balance during information processing 
(Asher and Lodge, 2012; Jenni et al., 2022) 

The OFC connections with insular, anterior cingulate, somatosen-
sory, and subcortical (namely the NAc) areas indicate a role in pain 
processing and modulation, as these are commonly reported as active 
during noxious stimulation (Apkarian et al., 2005). Human studies have 
shown that pain-inhibitory effects of rewards have been associated with 
increased OFC activity (Becker et al., 2017). In this regard, this mediator 
function is possibly due to the crosslink of information concerning pain 
value and importance, rather than noxious processing, shared between 
OFC and other brain regions (Winston et al., 2014). Moreover, recent 
clinical research has even proposed the OFC as a potential biomarker for 
chronic pain states (Shirvalkar et al., 2023). Individuals with chronic 
neuropathic pain presented temporally-specific and long-term stable 
OFC power differences between transient, evoked pain and sustained, 
spontaneous pain states (Shirvalkar et al., 2023). This can indicate that 
OFC greatly participates in integration of pain in chronic conditions, and 
could be used as a therapeutic target for prospect treatments. Further-
more, studies have demonstrated that selective activation of the OFC can 
lead to a reduction in anxio-depressive behaviors induced by neuro-
pathic pain (Sheng et al., 2020). Due to its anatomical placement, the 
OFC can act as a gating system for subjective classification of stimuli in a 
pleasure-pain spectrum, participating in noxious information integra-
tion and transmission to the NAc for expression of adequate behavioral 
responses (Becker et al., 2017; Chang et al., 2014). Notably, rewarding 
or pleasurable stimuli (such as receiving monetary or appetitive re-
wards), have been shown in both humans and rats to exert an overriding 
effect on painful stimuli if they are deemed more valuable (Becker et al., 
2013; Becker et al., 2017; Dum and Herz, 1984). The ultimate behav-
ioral response is determined by the revised subjective value assigned to 
external stimuli, considering factors such as pleasure, relief, aversion, or 
pain (Rolls, 2004; Rolls, 2023). However, the lack of comprehensive 
studies evaluating the specific role of the OFC in pain processing 
mechanisms has constrained our current understanding. Therefore, 
further research is imperative to unveil the intricate involvement of the 
OFC in pain-related processes, including pain information integration 
and transmission to the NAc. 

Apart from its well-established role in reward processing, the NAc 
has also been implicated in the assessment and encoding of persistent 
pain (Becerra et al., 2001; Becerra and Borsook, 2008; Harris and Peng, 
2020; Makary et al., 2020). Due to the large local presence of opioid 
receptors, the NAc reacts heavily to painful stimuli (Altier and Stewart, 
1999; Harris and Peng, 2020; Massaly et al., 2019; Navratilova et al., 
2015; Skirzewski et al., 2022). Functional magnetic resonance imaging 
(fMRI) studies have revealed that the ventral striatum can exhibit 
distinct connectivity clusters during the processing of nociceptive and 
rewarding information (Baliki et al., 2010; Baliki et al., 2013). In tasks 
involving the perception of thermal pain, different subregions within the 
NAc also showed varied activity patterns: the NAcSh signalled 
impending pain, while activation of the NAcC was associated with the 
anticipation of the end of thermal pain (Baliki et al., 2013). At a broader 
network level, activation of D2R or local administration of lidocaine in 
rats led to a reduction in neuropathic pain-related behaviors (Sato et al., 
2022). This finding suggests that the GABAergic MSN neurons in the 
NAc play a crucial role in pain modulation and the transmission of pain 
signals through descending pain pathways (Chang et al., 2014; Sato 
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et al., 2022; Taylor et al., 2016). 
Both the OFC and the NAc have been found to exhibit dysfunctional 

patterns and altered communications under chronic pain conditions 
(Fig. 2) (Chang et al., 2014; Ong et al., 2019). Persistent sensory noci-
ceptive overload in rodent models has been shown to lead to an increase 
in GABAergic activity in the OFC and disrupt emotional decision-making 
processes (Huang et al., 2021; Pais-Vieira et al., 2009; Pais-Vieira et al., 
2012). More specifically, chronic pain onset severely disrupted the 
encoding of reward magnitude and drastically diminished the fraction of 
risk-sensitive neurons, leading animals to alter risk preference on a 
gambling task (Pais-Vieira et al., 2012). In patients with chronic pain, 
there are significant structural and functional alterations in both brain 
regions. For instance, chronic pain has been associated with a decrease 
in grey matter volume in the OFC and NAc, compromising their neural 
integrity (Ong et al., 2019; Taylor et al., 2016), as well as an abnormal 
increase in functional connectivity between NAc and prefrontal regions 
(Baliki et al., 2012; Cardoso-Cruz et al., 2022). These changes in the NAc 
could potentially underlie the preference for immediate and smaller 
rewards observed in these individuals (Jenni et al., 2022). 

Furthermore, chronic pain has also been shown to lead to local DA 
depletion in the OFC (Huang et al., 2021; Pais-Vieira et al., 2009) and 
NAc (Ren et al., 2016). DA activity in these brain regions is recognized as 
a primary substrate for the expression of goal-directed behaviors and the 
encoding of reward value (Borsook et al., 2016; Cetin et al., 2004; 
Martucci et al., 2018; Winstanley et al., 2006). In animal studies, it has 
been observed that DA depletion specifically in the OFC does not 
significantly affect the sensitivity to changes in probability for obtaining 
large/risky rewards, but it does impair the ability to respond to more 
delayed long-term rewards and leads to impulsive choices in rats 
(Kheramin et al., 2004; Mai and Hauber, 2015). This suggests that DA 
signalling in the OFC plays a crucial role in decision-making processes 
related to delayed reward outcomes. Conversely, humans and animals 
with chronic pain displayed altered DA signalling in the NAc in response 
to painful and rewarding stimuli (Kato et al., 2016; Martikainen et al., 
2015; Wood et al., 2007). More specifically, DA release in the NAc eli-
cited from pain relief gradually diminished after neuropathy onset in a 

time-dependent manner (Kato et al., 2016). The changes in DA avail-
ability could consequently explain the lower binding potential of DA 
receptors 2 and 3 in the ventral striatum of patients with chronic pain 
(Martikainen et al., 2015). This dysregulation in the mesolimbic system 
over time can potentially compromise several cognitive processes 
associated with encoding reward information, including delayed re-
wards (Kobayashi and Schultz, 2008; Saddoris et al., 2015). Since DA 
neurons increase their activity to reward retrieval with longer delays, 
the deficiency of DA in the OFC and NAc could be a significant factor 
contributing to impairments in evaluating time-reward relationships, 
specifically delayed gratification. The effects of this disruption are more 
evidenced in delay discounting and risky decision-making behavioral 
tasks, with more immediate reward-prone and impulsive profiles 
observed in both animals and humans under pain conditions (Becker 
et al., 2017; de Visser et al., 2011; Pais-Vieira et al., 2009; Pais-Vieira 
et al., 2012). Ultimately, this supports the hypothesis that prefrontal- 
striatal dysfunctions may contribute to an emotionally-driven state 
and potentially increase vulnerability to opioid addiction in the context 
of chronic pain conditions (Borsook et al., 2016). Further information 
regarding OFC and NAc time-reward dysfunctions in pain can be found 
in Table 1. 

Understanding the factors contributing to altered impulsive control 
during chronic pain is crucial for guiding treatment strategies. Although 
several studies have reported the individual and communal contribution 
of these areas to temporal- and reward-related behaviors, the combi-
nation of OFC-NAc circuitry dysfunction and time-reward dependency 
relations under chronic pain contexts is currently deficient. This limited 
exploration is particularly relevant in clinical settings involving mani-
festation of impulsive traits and addiction proneness in neural diseases 
(Tompkins et al., 2016). Eventually, chronic pain may transform regular 
motivational and decision-making processes into heightened incentive 
salience, with hedonic systems as prospective player in mediating 
impulsivity and preference for immediate rewarding or pleasurable ac-
tions (Borsook et al., 2016; Tompkins et al., 2016). These short-term 
effects only exacerbate over time the chronicity and comorbidities 
associated with chronic pain syndromes, and give rise to anxiety, fear 

Fig. 2. Main behavioral pain-associated alterations in the orbitostriatal pathway related to cognitive processing.  
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and depression-prone affective states (Elman and Borsook, 2018). In the 
future, real-time prediction of chronic pain state will potentially allow 
personalisation of on-going therapeutic paradigms, such as deep brain 
stimulation or pharmacological interventions. Alternatively, recent 
studies have found that other circuit-unspecific interventions including 
cognitive behavioral therapy and physical exercise can lead to higher 
OFC activation in healthy and chronic pain patients (Bao et al., 2022; 
Miyashiro et al., 2021). Further investigation to robustly understand the 
therapeutical effects of these paradigms on OFC-NAc circuitry and its 
associated behavioral function is therefore imperative. 

3. Conclusions and future perspectives 

Overall, the alterations observed in various brain regions as a 
consequence of chronic pain, encompassing changes in chemistry, vol-
ume and connectivity, underlie cognitive impairments like deficits in 
mnemonic encoding and alterations in decision-making processes 
(Baliki et al., 2014; Baliki et al., 2012; Pereira et al., 2023; Yang et al., 
2020). The orbitostriatal circuitry, benefiting from its strategic location 
and extensive connections, plays a crucial role in encoding time-reward 
information and regulating appropriate behavioral responses. Although 

human and animal studies have provided valuable insights into the 
functional contributions of the OFC and NAc brain regions to cognitive 
and pain-related mechanisms, our understanding remains incomplete. 
Ongoing investigations into the specific role of this circuitry in pro-
cessing reward values based on delays, particularly in the context of 
chronic pain, as well as its involvement in pain perception and modu-
lation, will contribute to a deeper comprehension of orbitostriatal 
function and the underlying neurotransmitter systems in both normal 
and pathological conditions. 
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Table 1 
Example of human and animal studies involving the orbitofrontal cortex and ventral striatum during the encoding of time-dependent reward associations under 
chronic pain conditions.  

Reference Target Subject/ 
model 

Approach Behavioral contingency Main findings 

Becker et al., 
2017 

OFC Human fMRI, thermal pain Monetary risk Increased OFC activity mediates increased pain- 
inhibitory effects of monetary rewards. 

Pais-Vieira 
et al., 2012 

OFC Rat Inflammatory pain, 
electrophysiology 

Risky decision-making Increased preference for large and high-risk outcomes, 
and decreased capacity to estimate value under 
ambiguity. 

Sheng et al., 
2020 

OFC, submedius 
thalamic nucleus, 
PAG 

Mice Neuropathic pain, 
chemogenetics, optogenetics, 
pharmacological modulation 

Anxiodepressive tests, 
Reward preference 

Increased activity of excitatory neurons or decreased 
activity of inhibitory neurons in OFC lead to anti- 
anxiodepressive effects; 
Unaltered reward preference with chemogenetic 
modulation of OFC excitatory neurons. 

Martucci et al., 
2018 

ACC, mPFC, OFC, 
NAc, VTA 

Human fMRI, chronic pain Monetary incentive delay Increased mPFC activity in reward and non- 
punishment outcomes, but not present in NAc and 
ACC. 

Pais-Vieira 
et al., 2009 

OFC, AMY, NAc Rat HPLC, inflammatory pain Risky decision-making Decreased OFC DA and 5-HT activity lead to an 
increased preference for large and high- risk rewards. 

Simon et al., 
2015 

OFC, NAc Human fMRI Reward incentive delay Increased NAc activity during reward expectation, and 
OFC activity during reward receipt. 

Wakaizumi 
et al., 2019 

Dorsolateral PFC Human fMRI, chronic pain, 
questionaires 

Time discounting Dorsolateral PFC-temporal lobe functional 
connectivity oscillations correlates pain intensity and 
time-reward encoding. 

Cardoso-Cruz 
et al., 2022 

mPFC, NAcC Rat Neuropathic pain, optogenetics Integrated value 
associated with working 
memory 

Increased NAcC-mPFC functional connectivity during 
delay lead to decreased performance, but inhibition of 
mPFC-NAcC neurons reversed working memory 
deficits  

Baliki et al., 
2013 

NAcC, NAcSh Human fMRI, thermal pain Monetary risk NAcSh is responsible for encoding pain and value 
predictions during monetary reward, while NAcC 
participates in anticipation of analgesia 

Kato et al., 
2016 

NAc Rat Neuropathic pain, in vivo 
microdialysis, pharmacological 
modulation 

n/a Increased DA release associated with reward and pain 
relief during the early but not late phase of 
neuropathic pain. 

Sato et al., 
2022 

NAc Mice 
(transgenic) 

Neuropathic pain, 
pharmacological inactivation 

n/a Increased relief of neuropathic pain by activation of 
D1R-MSN and suppression of D2R-MSN. 

Knutson et al., 
2001 

NAc, medial 
caudate, TH 

Human fMRI Monetary incentive delay Increased NAc activity associated with increased 
anticipation of reward. 

Becker et al., 
2013 

Systemic Human Thermal pain, dopamine D2R 
antagonism 

Monetary risk Increased perception of nociceptive stimuli 
potentiated by monetary losses and systemic D2R 
blockade. 

Dum and Herz, 
1984 

Systemic Rat Pharmacological modulation Reward incentive Increased endogenous opioid released under 
rewarding conditions leads to increased consumption, 
analgesia and behavioral arousal. 

Abbreviations: ACC, anterior cingulate cortex; DA, dopamine; D1R, dopamine type 1 receptor; D2R, dopamine type 2 receptor; fMRI, functional magnetic resonance 
imaging; HPLC, high performance liquid chromatography; MSN, medium spiny neurons; NAc, nucleus accumbens; NAcC, nucleus accumbens core area; NAcSh, 
nucleus accumbens shell area; OFC, orbitofrontal cortex; PAG, periaqueductal grey; PFC, prefrontal cortex; TH, thalamus; VTA, ventral tegmental area; 5-HT, 
serotonin. 
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