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Abstract: Antimony (Sb) has gained significance as a critical raw material (CRM) within the European
Union (EU) due to its strategic importance in various industrial sectors, particularly in the textile
industry for flame retardants and as a component of Sb-based semiconductor materials. Moreover,
Sb is emerging as a potential alternative for anodes used in lithium-ion batteries, a key element in the
energy transition. This study explored the feasibility of identifying and quantifying Sb mineralisations
through the spectral signature of soils using laboratory reflectance spectroscopy, a non-invasive
remote sensing technique, and by employing convolutional neural networks (CNNs). Standard
signal pre-processing techniques were applied to the spectral data, and the soils were analysed by
inductively coupled plasma mass spectrometry (ICP-MS). Despite achieving high R-squared (0.7)
values and an RMSE of 173 ppm for Sb, the study faces a significant challenge of generalisation of
the model to new data. Despite the limitations, this study provides valuable insights into potential
strategies for future research in this field.

Keywords: antimony; exploration; reflectance spectroscopy; soil analysis; critical raw materials;
CNN; MobileNetv2; geology

1. Introduction

Antimony (Sb) is currently considered a critical raw material (CRM) to the European
Union (EU), as it is strategic to its economy in a scenario where China dominates the global
market of Sb. The element Sb is included in group 15 (VA) of the periodic table, located
in the second long period of the table between tin (Sn) and tellurium (Te). It is classified
as a non-metal or metalloid and may exhibit a valence of +5, +3, 0, or −3, with metallic
characteristics in the trivalent state [1]. Sb and its mineral sulphides are reported to have
been used by humans since at least 4000 B.C. One of its reported uses in more ancient times
is as a main ingredient of a black paste, named kohl, used for colouring eyebrows and
lining eyes by Egyptians and others in early biblical times [1]. An ornamental vase found
at Tello, Chaldea, is reported to be cast Sb and dates to 4000 B.C. The given name to the
metal, stibium, is attributed to Pliny the Elder (50 A.D.), while “antimonium” is reported to
be referred to by an Arabian alchemist, Geber, living in the eighth century [1,2]. A scientific
treatise about the element Sb was written by Nicolas Lemery (1645–1715), containing results
of his investigations about the properties and different preparations of metal Sb, which was
believed to be an important component in the alchemical lore, actuating as a magnet for
extracting mercury, a key component for making the Philosopher Stone [3].

Nowadays, the primary uses of Sb in the EU remain in the textile industry as flame
retardants, and as Sb-based semiconductor materials such as lead-acid batteries, lead alloys,
catalysts, and stabilisers for plastics, and in the glass and ceramic industry [4]. In the context
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of the growing demand for electric vehicles, Sb is also being studied as an alternative anode
for use in lithium-ion batteries [5]. Today, graphite is mainly employed as an anode in
lithium-ion batteries and sodium-ion batteries, although Sb is also considered due to its
structure, with a potential for a much better electrical conductor [6].

Several authors have applied machine learning (ML) techniques to indirectly detect
heavy metals in soils using laboratory-based reflectance spectroscopy. Kemper and Som-
mer [7] used multiple linear regression (MLR) and artificial neural network (ANN) on
reflectance spectra spanning 350–2500 nm to predict As, Cd, Cu, Fe, Hg, Pb, S, Sb, and
Zn concentrations from samples collected after a mine tailings dam break in Spain. This
accident resulted in a very contrasting mineralogy between the background soil and the
contaminated zone. They report good predictions, with R2 of 0.84, 0.72, 0.96, 0.95, 0.87,
and 0.93 for As, Fe, Hg, Pb, S, and Sb, respectively, and of 0.51 for Cd, 0.43 for Cu, and
0.24 for Zn. Nanni and Demattê [8] utilised multiple regression equations on reflectance
spectra (400–2500 nm) measured with a laboratory sensor to predict soil properties and
obtained an R2 above 0.79 for Fe2O3 and TiO2. Cheng, et al. [9] employed partial least
squares regression (PLSR) on soil reflectance spectra (350–2500 nm) from a suburban area
of Wuhan City, China, determining metal concentrations (Cd, Pb, As, Cr, Cu, and Zn)
using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Different
pre-processing methods affected model performance, with the Savitzky–Golay treatment
showing promise. Statistical analysis focused on relationships between soil reflectance
spectra and SOM, Fe, and heavy metals. Results regarding internal relationships between
heavy metal concentrations and spectrally active elements were inconclusive, warranting
further study.

Rodríguez-Pérez, et al. [10] used PLSR on reflectance spectra (350–2500 nm) of air-
dried soil samples to estimate Mn, soil nutrients, pH, and electrical conductivity from
vineyards in Spain. They reported good performance only for phosphorus, pH, and electri-
cal conductivity, with R2 of 0.92 and above. Pyo, et al. [11] used a CNN and compared it to
ANN and random forest regression (RFR) employed on reflectance spectra (749–2400 nm)
to estimate As, Cu, and Pb from soil samples taken from a mining area located in the
Geum River watershed of South Korea, and obtained the best results (R2 of 0.86 for As,
0.74 for Cu, and 0.82 for Pb) with the CNN model, but also achieved reasonable soil heavy
metal estimation accuracy with the other machine learning models. RFR was used by Guo,
et al. [12] on reflectance spectra (350–2500 nm) to infer the Zn and Ni concentrations based
on the relationship between heavy metals with soil criteria and clay. RFR together with
PLSR and support vector machine (SVM) were used to predict Mn, Cu, Zn, Pb, Cr, and Ni
content, obtaining the best results (R2 of 0.60 for Zn, and 0.30 for Ni), with RFR.

CNNs are well-established in various domains, including object detection, image
classification, and spectral analysis [13]. By leveraging sparse local connections and weight
sharing, CNNs have proven to be effective in learning and extracting local and abstract
features from raw spectral data. By stacking multiple convolutional and pooling layers, the
CNN model can efficiently capture intricate patterns within the data, making it well-suited
for soil content prediction tasks [13,14].

The objective of this study was to verify the possibility of identifying Sb mineralisation
through the spectral signature of soils. Previous studies have estimated heavy metals
from soil laboratory spectroscopy, but Sb is not usually included in those studies. The
exception is the work of [7], which predicted Sb taking into account the band centre and
the full-width half-maximum related to Sb. However, the research methodology could not
be reproduced, since specific band centres of the absorption features were not provided.
This work addresses the attempt to use soil reflectance spectroscopy through an alternative
approach, with the application of state-of-the-art algorithms like CNN, a deep learning
technique, to make this estimation. Therefore, this is the first study to apply CNN to
estimate soil Sb content.
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The major advantage of developing ML and deep learning (DL) methods to quantify
and qualify heavy metals in soils is the possibility of analysing large-scale zones faster,
avoiding the high cost and time demand that is implicit in the traditional approach of
geochemical analysis. CNNs are being employed as nonlinear methods to capture features
on the spectra to differentiate soil proprieties and offer advantages due to their capacity
to identify patterns in data that humans cannot yet identify [15]. Padarian, et al. [16]
applied deep learning to predict soil proprieties from a data set of 20,000 samples of raw
spectral data from topsoils and obtained R2 of 0.77 for total carbon, 0.72 for clay, and 0.58
for clay and sand, showing the potential for application in works on soil spectral data. Ng,
et al. [17] compared the performance of PLSR, Cubist tree model, and CNN in predicting
soil proprieties using spectral data from 14,569 samples. They had better performance with
CNN mode, obtaining R2 values above 0.9. However, they highlight that the application of
these models can be limited due to the requirement of computational power, difficulty in
preventing overfitting, and the requirement for large amounts of data.

Reflectance spectroscopy is a non-invasive remote sensing technique that is capable of
identifying targets for mineral exploration, thus reducing costs and avoiding environmental
impacts. In this study, reflectance spectroscopy was applied in the laboratory, although
it can be employed in situ. Despite Sb itself not having specific absorption features in
the visible and near-infrared to short-wave infrared (VNIR–SWIR) region, however, other
soil proprieties present in the soil can serve as diagnostic features [13]. Sulphur has an
absorption feature due to an electronic process called conduction bands [18,19]. Antinomy
and sulphur form a mineral called stibnite or antimonite, which occurs in the study area and
can be present in its original form in the soils. Hunt [18] analysed the spectra of antimonite
and described a well-defined conduction band in VNIR (300–800 nm). The advantage
of CNN algorithms, like the one employed in this study, is that they can exploit feature
representations that are learned exclusively from data and do not require hand-crafted
features based on a priori knowledge [20]. Thus, the methodology employed relies on
the principle that if antimony can be predicted by any feature(s) in the soils’ reflectance
spectra, the CNN can extract that information by itself by training on distinct samples with
distinct antimony contents. Additionally, this study conducts a multivariate approach in
which different elements analysed (As and Pb, for example) are used as pathfinders for Sb
exploration.

2. Background
2.1. Study Area

The study area encompasses the two former Sb-Au mining concessions of Ribeiro
da Serra and Tapada, located in northern Portugal, approximately 30 km east of the city
of Porto (Figure 1). The Ribeiro da Serra and Tapada mines were opened in 1880 and
1881, respectively, producing thousands of tonnes of antimonite concentrates annually for
exportation [21,22]. The exploitation of Sb hit its peak in the 19th century, but in the first
years of the 20th century, the competition with the Asiatic countries led to the closure of
the Portuguese Sb mines. During the Second World War, there was an increase in mining
activity, and since the 1960s, some prospecting campaigns and reconnaissance studies have
been executed [23]. The mining structures are now abandoned (Figure 2), and many waste
piles and tailings remain in the zone.
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Figure 1. (a) Location of the study area; (b) sampling points (green dots) and geology of the study 
area. 

Geologically, those Sb deposits are located on the western flank of a Variscan struc-
ture, the Valongo Anticline, in the Dúrico-Beirão Mining District, situated within the Ibe-
rian Central Zone [22,24–26]. The lithostratigraphic succession consists of Cambrian/Pre-
Cambrian (pre-Ordovician) rocks with very low-grade metamorphism; Ordovician and 
Carboniferous sequences, composed of schists and some quartzites, and the Upper Car-
boniferous formation comprising breccias, conglomerates, and intercalated quartzites. 
The lithologies vary from east to west, with ages corresponding to Lower Ordovician, 
Middle and Upper Ordovician, Lower Carboniferous, and pre-Ordovician. 

Figure 1. (a) Location of the study area; (b) sampling points (green dots) and geology of the study area.

Geologically, those Sb deposits are located on the western flank of a Variscan structure,
the Valongo Anticline, in the Dúrico-Beirão Mining District, situated within the Iberian Cen-
tral Zone [22,24–26]. The lithostratigraphic succession consists of Cambrian/Pre-Cambrian
(pre-Ordovician) rocks with very low-grade metamorphism; Ordovician and Carbonifer-
ous sequences, composed of schists and some quartzites, and the Upper Carboniferous
formation comprising breccias, conglomerates, and intercalated quartzites. The lithologies
vary from east to west, with ages corresponding to Lower Ordovician, Middle and Upper
Ordovician, Lower Carboniferous, and pre-Ordovician.
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Figure 2. Ribeiro da Serra mine infrastructure pictured in the late 19th century [27] (a), and recent 
photo of ruins (b). 
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Figure 2. Ribeiro da Serra mine infrastructure pictured in the late 19th century [27] (a), and recent
photo of ruins (b).

The Sb mineralisation occurs in low volume in discontinuous quartz veins that are
mainly hosted in Silurian schists and greywackes [26]. The quartz veins have a hydrothermal
nature and are associated with Variscan granitic intrusions, or due to fluid mixing of CO2-rich
metamorphic fluids by surface-derived H2O–NaCl fluids [21]. The dominant directions of
the country rocks range from N to NW dipping to W. The most productive veins occur in the
E–W direction dipping to N (Tapada) and N–S dipping to W (Ribeiro da Serra).

2.2. Spectral Reflectance

Reflectance spectroscopy offers a means to extract multiple soil properties, both di-
rect and indirect, as well as metal content [28]. The abundant data generated by soil
spectroscopy, whether in the form of point measurements or images, necessitates the
implementation of data-modelling procedures.

Materials may reflect or absorb electromagnetic radiation at varying wavelengths,
governed by factors such as surface absorption, emissivity, and reflectance characteristics.
The spectral range employed for soil reflectance analysis encompasses the VNIR–SWIR
region, spanning from 400 to 2500 nm. This range is further divided into two sub-ranges:
VNIR (400 to 1100 nm) and SWIR (1100 to 2500 nm). The interactions between light
and matter are intricately tied to the wavelength. Though pure metals do not exhibit
absorption within the VNIR–SWIR region, their presence can be indirectly detected through
associations with organic matter (OM), interactions with compounds like hydroxides,
sulphides, carbonates, or oxides that manifest detectable properties, or adsorption to light-
absorbing clays [28]. Even if Sb does not have a specific feature that can be identified, this
principle can be applied to estimate the Sb content through general parameters of the soil.

2.3. Convolutional Neural Network

The geosciences field has a slow but crescent incorporation of ML and DL techniques.
ML data analysis methods can automate the creation of analytical models and perform tasks
such as classification, regression, or clustering [29–32] that are useful in geosciences. The
difficulty in the availability of labelled data is exactly what makes the implementation of ML
and DL remote sensing applications to geosciences a challenging task. Frequent problems
of this nature are the limitation of possibilities in the data collection; the large number
of physical variables associated with a limited number of samples; and the difficulty of
obtaining high-quality measurements of several geoscience variables that can only be taken
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by overly expensive or time-consuming techniques [33]. The heterogeneity of the data
and the multi-resolution are often associated with the already challenging multiconnected
nature of geoscience processes [33]. Despite those challenges, the capacity for ML and
DL methods to actuate in geoscience tasks that were only possible to be executed with
dispendious human work, and even in tasks that were not possible to be executed before,
make their implementation increasingly attractive.

Currently, CNNs are the most used type of deep learning network [34–37]. The capac-
ity of a CNN to capture nonlinear behaviours makes it suitable for geological problems.
CNNs demonstrate powerful abstraction capabilities in the field of geosciences, with the
first applications in the field focused on seismic interpretation, more recently being in-
corporated in broader geoscience applications such as global water storage modelling,
landslide prediction, and earthquake arrival time estimation [14,29]. The constitution of
CNNs primarily involves three types of layers: convolutional layers, pooling layers, and
fully connected layers [13].

3. Materials and Methods
3.1. Soil Collection and Preparation

The present study benefited from the soil samples collected in the scope of the AU-
REOLE project-ERA-MIN/0005/2018 (https://aureole.brgm.fr/; accessed on 25 January
2024). The soil sampling campaigns covered the area where the underground works in
Ribeiro da Serra and Tapada took place and the surrounding areas. The soil sampling
aimed to test the mineralisation distribution and identify possible new mineralised struc-
tures, while assessing soil contamination distribution. The first soil sampling campaign
was carried out in the Ribeiro da Serra Sb-Au mine zone in 2021, while the second soil
sampling campaign in the Tapada mine zone took place in 2022. In total, 309 samples were
collected. The sampling campaigns follow a plan on a grid of 50 × 50 m in the area with
an orientation according to the mining structures. Soils were collected from horizons B
and C when there was no horizon B, which is relatively common in the study area. All
samples underwent spectral signature collection and XRF analysis. From the totality of
samples, 54 samples from Ribeiro da Serra and 53 samples from Tapada were sent to the
Bureau Veritas laboratory in Vancouver (Canada), certified to ISO 17025 [38], to be analysed
by ICP-MS (inductively coupled plasma mass spectrometry analysis). The data quality
was assessed by inserting reference materials (STD OREAS45H, STD OREAS501D, and
STD OREAS25A-4A), replicates, and blanks into randomly assigned positions within each
analytical rack. Only a subset of the samples was chosen for laboratory analysis due to
the elevated cost of such analysis. The selection of samples was performed randomly to
ensure a representative subset. Before sending the samples to ICP-MS analysis, the samples
were dried in a muffle furnace for at least 48 h and at a temperature of 55 ◦C. With the
samples dry, after rifling, the soil samples were ground to a size <200 µm. In the study,
we utilised only the samples sent to a certified laboratory for calibration purposes. From
the samples sent to ICP-MS analysis, eight samples were sent in their totality to perform
complementary analyses and were no longer available for reflectance spectroscopy studies.
In the end, 99 samples were available to train and evaluate the model. After outlier removal
(see Section 3.3), 92 samples were used in the present analysis. The samples with ICP-MS
results for Sb above 1000 ppm were considered as outliers.

3.2. Soil Reflectance Measuring

The raw soil, previously dried, with gravel and pieces of plants removed, was used
to take the reflectance measurements. The soil was spread in a watch glass above a black
surface, and five different points of the sample were measured, resulting in five spectra per
sample. Each spectrum collected is a result of an average of several measurements. For
this work, an average of five measurements was used, and each measurement resulted
in 40 scans. A periodic wavelength check was performed using an external reference
material (Mylar) to ensure instrument calibration. The standard deviation for the average

https://aureole.brgm.fr/
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computation of the five measurements was assessed from the Mylar reference material,
with a standard deviation ranging from 0.0001 to 0.0039, depending on the wavelength.

The FieldSpec 4 standard resolution spectroradiometer equipment (ASD Inc., Boulder,
CO, USA) using a Contact Probe with an internal light source provided by a halogen
bulb and a spot size of 10 mm was used to collect the spectral data in the laboratory. The
spectroradiometer has three sensors (one VNIR and two SWIR sensors), with the spectral
resolution of 3 nm at 700 nm, 10 nm at 1500, and 10 nm at 2100 nm [39]. All measurements
were conducted in a dark room. The proceeding included “heating” the equipment for
30 min before starting the measurements as recommended by the manufacturer due to
sensor sensitivity to ambient temperature. Heating time is necessary to ensure the three
sensors are at the same temperature [39]. Moreover, splice correction was applied to smooth
the splicing points between each instrument, resulting from the differences in temperature
sensitivity of the three sensors. Normalisation with a perfect albidum (white plate) also is
needed every time a new measurement project is started and every two hours of work. The
software used was Indo Pro [39].

Selected spectra are graphically depicted in Figure 3, representing samples with
varying Sb content. There is no correlation between the Sb content and the reflectance
magnitude. However, there are visible differences between the spectral behaviour of the
curves. There are no shoulders in the visible range for high Sb samples, and sample RS052
shows a ramp-like Fe2+ absorption feature in the VNIR [18]. There is also a tendency for
samples with higher Sb content to show less pronounced absorption features at ~1910 nm
and ~2200 nm, which correspond to the water and Al-OH features, respectively [40].
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3.3. Spectral Pre-Processing

The first step was removing from the dataset samples with Sb content above 1000 ppm,
obtained by ICP-MS analysis, which were considered outliers (n = 7) for being primarily
associated with contaminated areas that do not represent the Sb concentrations found
related to the natural occurrence of mineralisation (see Section 4.1), common spectral pre-
processing was implemented to improve the results obtained by eliminating noise and
highlighting spectral features. The wavelengths before 400 nm were removed due to the
excessive noise in this zone of the spectra. The pre-processing steps included: converting the
reflectance to absorption; removing the continuum; smoothing the signal and calculating
the first or second derivatives; and converting the waveform spectrogram.

The order of the spectral pre-processing is given in the diagram (Figure 4).
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3.3.1. Continuum Removal for Normalisation

Continuum removal is a standard technique that allows the extraction of characteristic
absorption bands on the reflectance spectrum curves and the correct identification of the
wavelength position of the absorption feature by eliminating the noise [41]. The convex
hull forms a polygon connecting the outermost points within the sample while ensuring
that this polygon’s internal angles are less than 180 degrees, creating the smallest convex
shape that encloses all the points in a given set [42]. The continuum-removed data were
obtained using a Python script by [39].

3.3.2. Spectral Pre-Treatment

After the continuum removal, the absorption was calculated from the data using a
Python function, as mentioned in [7], based on reflectance using the logarithmic relationship.
After converting to absorption, the data were smoothed by applying the Savitzky–Golay
filter from the savgol_filter function in the scipy.signal module in Python. To smooth the
signal data, the Savitzky–Golay filter calculates a polynomial fit of each window based on
polynomial degree and window size. The obtained smoothed data are used to calculate the
first or second derivatives by applying the np.gradient function from the NumPy library
(Figure 5). This study set the polynomial degree to 2, and the window size was 31 nm.
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3.3.3. Convert Waveform to Spectrogram

This step involves applying the short-time Fourier transform (STFT) to the equal_length
tensor using tf.signal.stft. A new dimension is added to the spectrogram (initially 2D) ten-
sor using spectrogram [..., tf.newaxis] (Figure 6). This dimension is included in the data to
make the spectrogram suitable as input with convolution layers in the CNN. This step is
essential to convert the two-dimensional data into three-dimensional data, as such structure
is required for the application of a CNN. This methodology can be replicated by applying
the Python script available in the Supplementary Materials (Code S1).
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3.4. Application of Convolutional Neural Network

In the present work, to deal with limited computational capacity, a MobiletNetV2
model was used. In a preliminary evaluation, PLSR and RF models were tested and com-
pared with the CNN, which outperformed those methodologies [43], and in this study,
only the results for this network are shown. MobileNets are a class of highly efficient
CNN models built upon a streamlined architecture that leverages depth-wise separable
convolutions, being a deep neural network with significantly reduced computational de-
mand [34]. The model was chosen to be suitable for development on devices with limited
resources, making it easier to apply in projects without requiring more sophisticated com-
putational resources [44–46]. The model was implemented using the open-source libraries
of TensorFlow and Sklearn and is available in the Supplementary Materials (Code S2). The
model was tested for Sb and other elements, As, Pb, Mn, and Zn, that also are not directly
detected in the VNIR–SWIR spectral range and have exhibited different Person’s correlation
with Sb in the study area (Table 1). The model input data consisted of the spectral data
after conversion to spectrogram (see Code S1 and Supplementary Materials for additional
information) and the target features corresponding to the selected element values. The
function of the Sklearn library, train_test_split was employed to randomly split the data
into two-thirds of the samples for training and one-third for validation, with a random
state of 42.

Table 1. Person’s correlation for the selected elements in the study area.

Element Sb As Pb Mn Zn

Sb 1 - - - -

As 0.9 1 - - -

Pb 0.63 0.73 1 - -

Mn 0.15 0.28 0.42 1 -

Zn 0.25 0.41 0.72 0.66 1
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The model’s output data comprised an estimation of the element content for a given
sample based on the provided spectrogram. During the model training, the batch size pa-
rameter was set to 64, limiting the number of input features, and the shuffle buffer size was
set to 100. To diminish the overfitting, an early stopping mechanism was implemented. The
MobileNetV2 [47] implemented corresponds to one convolution layer and three inverted
residual blocks. Each convolutional block applies a 2D convolution operation followed by
batch normalisation and ReLU6 activation (Figure 7).
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The metrics for evaluating the model performance were the R2 and RMSE. Both are
standard metrics for model performance evaluation [48]. R2, or coefficient of determination,
is a measure that quantifies how much the independent variables explain the variance in
the dependent variable in a regression model. It ranges from 0 to 1, where 0 indicates that
the independent variables do not explain the variability in the dependent variable, and 1
indicates the independent variables can explain all the variability. R2 is calculated as the
ratio of the explained variance to the total variance (Equation (1)) [49].

R2 = 1 − ∑m
i=1(Xi − Yi)

2

∑m
i=1

(
Y − Yi

)2 (1)

RMSE is a natural derivation of the mean squared error, which calculates the averaged
squared difference between the predicted values and the actual values [49] and can be
interpreted in the same units as the original data, helping to access the typical magnitude
of errors made by the model. RSME is given by Equation (2).

RMSE =

√
1
n

n

∑
i=l

(
Yi − Ŷi

)2 (2)
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4. Results
4.1. ICP-MS Analysis

The results obtained from the ICP-MS analysis are shown in Table A1, which indicates
which samples were discarded from the training set. The distribution of Sb concentrations
in the study area is depicted in Figure 8. The descriptive statistics for the selected elements
are also presented (Table 2).
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Table 2. Descriptive statistics for the selected elements.

Sb (ppm) As (ppm) Pb (ppm) Mn (ppm) Zn (ppm)

Mean 132 69 30 75 36

Std. Deviation 184 156 38 123 23

Minimum 6.3 15 9 9 11

Maximum 895 1431 360 844 146

Q1 26 23 20 27 23

Q2 59 34 24 39 30

Q3 155 69 29 72 42
Note: Q1, Q2, Q3 refer to first, second, and third quartiles.

The higher concentrations of Sb, the values above 1000 ppm, which were 10% of the
totality of the samples, are related to the soils collected in tailings, near the tailings, or in
the streamlines. Mostly, the values of Sb are between 10 and 100 ppm and are not related to
the adits, but some are related to veins or streams. Values between 500 and 1000 ppm are
related to known veins, and others can be associated with the presence of unknown veins.
Also, some of those soils are close to the tailings, and higher values of Sb can be influenced
by contamination left by the mining works that took place in the last century.

4.2. Spectral Pre-Processing and CNN Results

Removing the outliers based on the Sb concentrations and training the model with
only the samples that contained up to 1000 ppm of Sb content had a positive impact on the
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performance of the model, leading to higher values for R2 when the values with the outliers
were 0.4 for R2 and 700 ppm for RMSE. Similarly, the application of the pre-processing steps
and removal of the wavelengths before 400 nm successfully improve the results. Oppositely,
removing other portions of the spectra (1500–2400) did not improve the model performance.
Regarding the pre-processing steps, the best results were obtained by applying the first
derivative, while the second derivative did not improve the results.

Only the results of the best combination of pre-processing methods are presented.
These results correspond to the signal used as input (wavelengths between 400 and
2400 nm), using the reflectance converted to absorption; spectra after removing the con-
tinuum; and signal smoothing and calculation of the first derivative. The input was this
processed signal converted to a waveform spectrogram. Training the model using multiple
elements instead of a single element was tested for making the predictions. Still, it did not
improve the results or reduce the overfitting, so only the results for single elements are
presented (Table 3).

Table 3. Elements and R2, RMSE (ppm) for train and validation and the number of training epochs.

Element R2 RMSE Train RMSE Validation Training Epochs

Sb 0.7 0.0014 173 1000
As 0.96 0.01 46 1000
Pb 0.83 0.04 20 750
Mn 0.93 0.0006 41 600
Zn 0.78 0.0002 18 1000

In the results obtained, despite achieving relatively high R2 values, there is a notable
overfitting issue. The model learned to predict the values of Sb for the training set but with
a high validation error (Figure 9).
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Overfitting occurs when the model learns the training data too well, capturing patterns
specific to the training set but failing to generalise well to new, unseen data [50]. In this
context, despite the promising R2 values obtained for the elements As, Pb, Mn, and Zn, the
disparity between the RMSE values for the validation set is considerably large (Figure 10).
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The observation of the discrepancy in the RMSE between train and validation, while
the R2 values for the training set are notably high, indicating a good fit to the training data,
signifies that the model could not achieve a good generalisation performance. However,
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some elements experiment better results for the generalisation, namely As and Mn. The
overfitting tendency is more pronounced for Sb and Zn. We can observe in the graphics in
Figure 10 that, for all the elements, the model learns very well how to predict the training
set in the first epochs while the validation error stays at a plateau. It is worth mentioning
that while the validation error may appear to have a tendency to decrease, tests executed
with a few thousand epochs more show that there is no improvement in the predictions.
Those results may indicate that there is a limit in the generalisation that the model can
reach with the present data set.

5. Discussion

The soil samples for this study were obtained and analysed in previous studies to
characterise the Sb distribution in the former mining areas of Ribeiro da Serra and Tapada,
in Northern Portugal. The existence of high-concentration samples (outliers) is an inherent
issue of soil spectroscopy, although they make regression problems challenging to solve.
Removal of outliers is a standard practice in chemometric studies based on reflectance spec-
troscopy [51,52]. In our research, outliers represented only seven samples, but removing
them from the dataset improved R2 for the Sb prediction from 0.4 to 0.7 and the RMSE
from 700 ppm to 173 ppm. The continual removal, smoothing, and application of the first
derivative also improved the results, but not the application of the second derivative.

Despite achieving relatively good R2 values, the presence of significant overfitting
weakens the reliability and generalizability of the model’s predictions in the present study.
Additionally, the observation that incorporating additional elements into the model training
process did not improve results or mitigate overfitting further underscores the challenge of
addressing this issue. This suggests that simply increasing the complexity of the model
or incorporating more features does not necessarily yield better performance and may
exacerbate overfitting instead. Kemper and Sommer [7] used a methodology to degrade
the spectra considering the band centre and the full-width half-maximum to resolve the
overfitting issue. The band centre refers to the central wavelength or position of a spectral
feature or band of interest. This approach was not possible to replicate in the current study
because the band centre for the target element is unknown. In addition, in their study area,
they have a big contrast between the region’s soil and the contaminated soil, which was
from a mine dump and had a high concentration of heavy metals. In the present study,
there is no big contrast between the soils that present Sb and those that do not; the Sb
content is relatively discrete. Wu, et al. [53] found that the correlation with total Fe, active
and residual, was a major predictive mechanism for heavy metals in soils. OM and clay also
have a correlation. The soil analysis in the current study did not include those proprieties,
which can be a way to obtain better results.

As the soil sampling campaigns executed focused on capturing the general distribution
of the Sb, they did not capture the progressive increment in Sb in mineralised zones.
Moreover, many soil samples capturing anomalous values of Sb are sourced from the mine
tailings existent in the region, and their properties may not be representative. Another
sampling methodology, focusing on the soils near the known Sb veins and the progressive
content of Sb in the soils associated with the veins could be more appropriate for this study
and work as a solution for the overfitting in the CNN model. In addition, obtaining OM
and clay data from the soils can be a different approach that can help better understand
the features in the spectral signature of soils containing Sb that can be employed for its
identification.

Although this study applies a light CNN that can be easily implemented without
special computational demands, there are limitations in the application due to the small
number of samples available, as is expected in this kind of methodology, a high number
of samples is often necessary. Nonetheless, the sample size used in this study aligns
with what is mentioned in the literature [7,54–59]. Some studies even present smaller
datasets [51,60,61]. Another limitation is that there are no specific features in the literature
to identify the absorption of Sb in soils. Also, like all neural networks, the CNN is a
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black-box method. Even though CNN can learn from patterns in the data, and despite its
application in a Python environment allowing greater control of the model’s parameters, the
specific wavelengths that contribute the most to the model’s prediction cannot be directly
accessed, although [62] did determine active areas of the spectra through the activation
filters. Future studies can address the poor interpretability of neural network models by
using post-hoc techniques, such as SHapley Additive exPlanations (SHAP), based on game
theory, that explain the output of machine learning models and allow visualisation of the
features in which the convolutional layers focus [62]. Other methods like RF, while still
being a black-box method, allow the assessment of feature importance on the model’s
performance. On the other hand, PLSR is not a black box, with transparency on how the
prediction is achieved [61]. Both RF and PLSR were previously accessed, but they did not
achieve satisfactory results and were outperformed by CNN [43].

Despite having a larger number of samples available, not all samples were analysed in
the laboratory due to the high costs of such analysis, which adds to the study’s limitations.
It is advised that future research should incorporate more samples. The CNN model shows
promising results, but in this study, the overfitting of the model could not be avoided.
Despite not having highly satisfactory results for the Sb predictions, this study provides
insights about which strategies could be incorporated into future studies. This study did
not have access to parameters such as SOM, texture, organic matter, and clay from the
soils. Future studies could incorporate those parameters to better understand the features
in the spectral signature of soils containing Sb. Additionally, those parameters can be
useful for exploring multi-input and multi-output CNNs [59] and enhancing the model
robustness and simultaneous multiple pre-treatments. We previously explored [43] various
combinations of input elements with multi-elements, but the prediction accuracy for the
individual elements was degraded when this multiple input was applied.

6. Conclusions

This study found varying concentrations of Sb in the sampled area, with the higher
values of Sb influenced by historical mining activities and potential contamination. Im-
plementing a CNN with low computational demand, MobileNetV2 model, for predicting
Sb values shows promising results with a good fit for the training data, but with issues in
generalising to new data. However, challenges emerged regarding its ability to generalise to
new data. Notably, pre-processing steps remain essential for enhancing model performance.
Future studies should consider alternative sampling methodologies and the increment and
diversification of the available dataset, as the incorporation of other soil proprieties such
as OM and clay into the analysis could provide more insight into the topic. This study
provides insights into applying CNNs to predict Sb concentrations using spectral data
while challenges remain to overcome.
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Appendix A

Table A1. Samples analysed by ICP-MS from Ribeiro da Serra (RSXXX) and Tapada (TPXXX) mining
areas and the values obtained for the elements used in this study, MDL (minimum detection limit) of
the analysis for the given elements, BLK (blank reference), STD (Stardart) reference materials and
pulp duplicates. The standard deviation for duplicate samples is below 6 ppm, and the relative
standard deviation is below 3%.

Sample Sb
(ppm)

As
(ppm)

Pb
(ppm)

Mn
(ppm)

Zn
(ppm) Sample Sb

(ppm)
As

(ppm)
Pb

(ppm)
Mn

(ppm)
Zn

(ppm)

MDL 0.02 0.2 0.02 1 0.2 MDL 0.02 0.2 0.02 1 0.2

RS001 13.38 25 33.49 13 12.7 TP004 298.55 146.9 38.91 36 31.9
RS004 12.79 24.5 17.05 41 25.1 TP007 80.07 67.9 21.95 29 42.9
RS007 10.71 18.7 22.23 68 24.5 TP008 184.61 189.9 35.35 24 17.8
RS013 23.4 24.6 22.19 56 22.7 TP009 31.39 46 18.38 29 34.6
RS015 14.55 16 28.89 60 49.1 TP011 27.01 32.5 30.96 299 64.4
RS017 9.95 17.4 23.97 44 23.7 TP013 251 167.4 24.41 17 30.8
RS019 9.5 21.3 21.08 22 14.7 TP016 357.04 50.7 26.71 37 29.1
RS021 33.94 22.6 28.76 53 36.5 TP017 1446 467.8 35.95 376 47.2
RS023 30.32 21 26.2 68 41.1 TP027 52.6 70.3 25.98 23 19.7
RS027 16.87 17.9 24.53 51 31.1 TP033 68.45 166.5 27.97 59 40.7
RS029 9.54 14.8 20.64 34 29.1 TP035 715.49 78 49.92 142 68
RS031 25.73 20.3 20.93 57 29.8 TP038 116.33 50 25.42 27 22.1
RS034 47.03 112.9 19.54 40 24.5 TP040 258.4 74.5 62.37 63 26.9
RS037 575.47 1431.2 47.29 76 49.8 TP044 259.18 65.7 42.6 844 146
RS040 59.42 28.6 33.97 261 50.9 TP048 14.87 23.4 23.87 229 54.1
RS045 19.46 47.8 17.06 13 15 TP049 207.65 30.9 25.6 27 19.7
RS049 162.61 111 24.82 35 28.3 TP051 * >4000 571.8 325.79 35 26.4

RS051 * 2653 225 31.82 31 26.1 TP055 50.4 27 25.04 51 31.3
RS052 2215 120.9 40.35 95 38.6 TP064 103.82 34.8 33.38 106 65.3
RS055 50.68 21.2 12.64 15 23.6 TP065 352.47 71 22.64 26 26
RS057 30.04 20.8 20.98 73 39.7 TP068 217.94 47.9 20.33 37 31
RS061 82.11 30.8 25.48 24 25.9 TP070 891.09 99.7 25.65 132 67

RS066 * >4000 501.9 197.01 28 17.5 TP072 6.3 16.4 29.52 57 33
RS067 * 1103 129.6 28.5 18 21 TP075 50.02 51.3 20.59 13 22.8
RS069 170.9 29.6 23.63 36 26.3 TP077 258.22 27.4 22.34 26 29.4
RS073 342.44 84.8 34.84 27 36.1 TP079 85.29 33.8 22.7 37 30.1
RS076 59.27 85.2 20.77 17 14 TP082 31.88 22.8 14.67 51 32.7

RS078 * >4000 680.5 171.89 143 51.8 TP084 22.03 23.9 32.51 82 40.8

https://www.mdpi.com/2306-5729/6/3/33/s1
https://github.com/ctherien
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Table A1. Cont.

Sample Sb
(ppm)

As
(ppm)

Pb
(ppm)

Mn
(ppm)

Zn
(ppm) Sample Sb

(ppm)
As

(ppm)
Pb

(ppm)
Mn

(ppm)
Zn

(ppm)

MDL 0.02 0.2 0.02 1 0.2 MDL 0.02 0.2 0.02 1 0.2

RS084 59.11 21.1 17.59 38 22.3 TP087 619.71 92.3 103.39 78 38
RS088 89.74 34.8 20.79 30 22.8 TP091 464.24 130.1 17.55 34 22.6
RS090 101.96 76.7 22.39 48 25 TP093 38.45 19 9.26 767 128.8
RS094 79 91.5 24.93 29 26.5 TP094 13.69 21.6 29.53 72 47.9
RS096 119.56 53.9 25.81 27 19.4 TP099 * >4000 1208.1 1040.14 143 110.8
RS100 127.62 43.8 18.54 35 28.3 TP106 45.26 38.8 22.23 119 45.5
RS106 252.69 63.4 103.51 139 95.3 TP109 * 3786 240.8 190.75 387 55.4
RS108 61.45 72 30.65 28 28.9 TP111 895 499 29.82 197 66.7

RS112 * 1712 313.1 125.76 27 43.9 TP115 93.15 37.9 18.36 271 76.2
RS115 118.07 147 25.04 49 33.4 TP122 33.43 21.6 24.65 124 58.4

RS118 * >4000 966.6 449.03 442 74.9 TP125 44.84 19.4 19.12 44 22
RS126 131.8 48.8 23.47 22 25.5 TP132 10.99 23.4 28.35 139 55.2
RS128 99.13 33.6 15.16 28 14.5 TP133 38.25 25.5 26.92 61 33.9
RS129 565.34 81.6 359.75 88 26.7 TP136 33.92 42 27.22 72 43.5

RS131 * >4000 895.5 228.86 90 34.7 TP138 48.68 17.7 20.54 41 42.9
RS134 151.98 91.1 37.56 78 30.1 TP140 16.53 25.1 19.3 17 18.1
RS135 103.69 60.4 30.77 35 23.3 TP147 26.18 30.8 43.43 116 78.4

RS143 * >4000 671.9 221.68 163 41.1 TP154 17.61 23.3 16.89 28 34.5
RS144 217.65 47.3 25.37 28 20.1 TP156 13.44 27 15.95 33 27.4
RS148 48.3 36.2 16 11 11.1 TP159 13.91 17.2 36.37 143 74.9
RS151 45.82 37.6 12.26 9 16.6 TP167 11.39 20.3 12.68 15 20.6

RS156 * 3500 361.7 50.46 46 28.6 TP173 6.53 20.8 21.16 115 51.8
RS159 69.45 31 15.37 18 11.3 TP175 16.54 17.9 15.22 16 18.2
RS162 68.91 28.6 26.37 55 34.2 TP177 176.98 44.5 18.68 23 50.2
RS164 79.33 24.6 19.59 57 31.3 TP179 10.66 50.7 15.55 17 23.3
RS169 72.12 20.7 15.76 21 24.8 BLK <0.02 0.3 0.04 <1 0.3

Reference Material STD OREAS45H 1.12 16.3 11.39 416 38.9
Reference Material STD OREAS501D 2.56 13.4 24.43 379 81.7
Reference Material STD OREAS45H 0.84 16.1 11.49 426 39.3
Reference Material STD OREAS501D 2.43 11.4 24.3 371 83.2

Soil Pulp RS090 101.96 76.7 22.39 48 25
Soil Replicate RS090 96.97 76.5 22.25 46 24.9

Soil Pulp RS037 575.47 1431.2 47.29 76 49.8
Soil Replicate RS037 564.07 1426.4 48.43 77 50.8

* Samples excluded from the training set.
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