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Abstract: Antimony (Sb) has gained significance as a critical raw material (CRM) within the European Union 

(EU) due to its strategic importance in various industrial sectors, particularly in the textile industry for flame 

retardants and as a component of Sb-based semiconductor materials. Moreover, Sb is emerging as a potential 

alternative for anodes used in lithium-ion batteries, a key element in the Energy transition. This study focused 

on exploring the feasibility of identifying and quantifying Sb mineralizations through the spectral signature of 

soils using reflectance spectroscopy, a non-invasive remote sensing technique, and by employing deep learning 

algorithms such as Convolutional Neural Networks (CNNs). Common signal preprocessing techniques were 

applied to the spectral data, and the soils were analyzed by Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS). Despite achieving high R-squared values, the study faces a significant challenge of generalization of 

the model to new data. Despite the limitations, this study provides valuable insights into potential strategies 

for future research in this field. 

Keywords: Antimony; exploration; reflectance spectroscopy; soil analysis; critical raw materials; deep learning; 

geology  

 

1. Introduction 

Antimony (Sb) is currently considered a critical raw material (CRM) to the European Union (EU), 

being strategic to its economy, in a scenario where the global market of Sb is dominated by China. 

The element Sb is included in group 15 (VA) of the periodic table, located in the second long period 

of the table between tin (Sn) and tellurium (Te). It is classified as a non-metal or metalloid and may 

exhibit a valence of +5, +3, 0, or -3, with metallic characteristics in the trivalent state [1]. Sb and its 

mineral sulfides are reported to have been used by humans at least since 4000 B.C. One of its reported 

uses in more ancient times is as a main ingredient of a black paste, named kohl, used for colouring 

eyebrows and lining eyes by Egyptians and others in early biblical times [1]. An ornamental vase 

found at Tello, Chaldea, is reported to be cast Sb and dates to 4000 B.C. The given name to the metal, 

stibium, is attributed to Pliny the Elder (50 AD), while “antimonium” is reported to be referred to by 

an Arabian alchemist, Geber, living in the eighth century [2] [1]. A scientific treatise about the element 

Sb was written by Nicolas Lemery (1645–1715), containing results of his investigations about the 

proprieties and different preparations of metal Sb, which was believed to be an important component 

in the alchemical lore, actuating as a magnet for extracting mercury, a key component for making the 

Philosopher Stone [3]. 

Nowadays the main uses of Sb in the EU remain in the textile industry as flame retardants, and 

as Sb-based semiconductor materials such as lead-acid batteries, lead alloys, catalysts, and stabilisers 

for plastics, and in the glass and ceramic industry [4]. In the context of the growing demand for 

electric vehicles, Sb is also being studied as an alternative anode for use in lithium–ion batteries [5]. 
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Today, graphite is mainly employed as an anode in lithium-ion batteries and sodium-ion batteries, 

although Sb is also considered due to its structure, with a potential for a much better electrical 

conductor [6]. 

Several authors have applied machine learning (ML) techniques to detect the presence of heavy 

metals in soils indirectly through reflectance spectroscopy. Multiple Linear Regression (MLR) and 

Artificial Neural Network (ANN) were used by Kemper and Sommer [7] to predict the contents of 

As, Cd, Cu, Fe, Hg, Pb, S, Sb, and Zn, using samples from an area  flooded with sludge that resulted 

from a break of a mine tailings dam in Spain. This accident resulted in a very contrasting mineralogy 

between the background soil and the contaminated zone. They obtained good predictions for As, Fe, 

Hg, Pb and Sb. Multiple regression equations were used by Nanni and Demattê [8] to effectively 

predict Fe2O3 and TiO2 between other soil properties. Partial Least Squares Regression (PLSR) was 

employed by Cheng et al. [9] to estimate Cd, Pb, As, Cr, Cu and Zn and by Rodríguez-Pérez, et al. 

[10] for estimating Mn, soil nutrients and other properties such as pH and electrical conductivity. 

Cheng et al. [9] examined the feasibility of using soil reflectance spectra to estimate the concentrations 

of the metals in a suburban area of Wuhan City, Hubei Province, China. The concentration of the 

metals Pb, As, Cr, Cu and Zn in the soil samples were determined by Inductively coupled plasma 

atomic emission spectroscopy (ICP-AES). They observed how different preprocessing treatments 

interfere with the results of the prediction model and applied statistical analysis to ascertain the 

estimation mechanism, focusing on relationships between soil reflectance spectra and concentrations 

of Soil Organic Matter (SOM), Fe, and heavy metals (Cd, Pb, As, Cr, Cu, and Zn). They concluded 

that employing Savitzky-Golay spectral pre-treatment yielded favorable PLSR models, however, 

additional studies were needed to establish internal relationships between the heavy metal 

concentrations and spectrally active elements, as the authors did not achieve satisfactory results. 

Rodríguez-Pérez et al. [10] were able to obtain a good performance only for phosphorus, pH and 

electrical conductivity. Pyo et al. [11] used a CNN and compared it to ANN and Random Forest 

Regression (RFR) to estimate As, Cu and Pb soil samples taken from a mining area, located in the 

Geum River watershed of South Korea, and obtained the best results with the CNN model, but also 

achieving reasonable soil heavy metal estimation accuracy with the other machine learning models. 

RFR was used by Guo et al. [12] to successfully infer the Zn and Ni concentrations based on the 

relationship between heavy metals with soil criteria and clay. RFR together with PLSR and Support 

Vector Machine (SVM) were used to predict Mn, Cu, Zn, Pb, Cr and Ni contents, obtaining the best 

results with RFR.  

CNNs are well-established in various domains, including object detection, image classification, 

and spectral analysis [13]. By leveraging sparse local connections and weight sharing, CNNs have 

proven to be effective in learning and extracting local and abstract features from raw spectral data. 

By stacking multiple convolutional and pooling layers, the CNN model can efficiently capture 

intricate patterns within the data, making it well-suited for soil content prediction tasks [13, 14].  

The objective of this study was to verify the possibility of identifying Sb mineralization through 

the spectral signature of soils with the application of a CNN, a deep learning technique. The major 

advantage of developing ML and deep learning (DL) methods to quantify and qualify heavy metals 

in soils is the possibility of analyzing large-scale zones faster, avoiding the high cost and time 

demanded that is implicit in the traditional approach of geochemical analysis. Reflectance 

spectroscopy is a remote sensing technique, non-invasive, capable of identifying targets for mineral 

exploration reducing costs and avoiding environmental impacts. The soils samples for this study 

were obtained and analyzed in previous studies for characterizing the Sb distribution in the former 

mining areas of Ribeiro da Serra and Tapada, in Northern Portugal. The CNN model shows 

promising results, but in this study the overfitting of the model couldn’t be avoided. Despite not 

having achieved good results for the Sb predictions, this study provides insights about which 

strategies could be incorporated into future studies. 
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2 Background 

2.1 Study area 

The study area encompasses the two former Sb-Au mining concessions of Ribeiro da Serra and 

Tapada, located in northern Portugal, approximately 30 km East from the city of Porto (Figure 1). The 

Ribeiro da Serra and Tapada mines were opened in 1880 and 1881, respectively, producing thousands 

of tonnes of antimonite concentrates annually for exportation [15, 16]. The exploitation of Sb hit its 

peak in the 19th century, but in the first years of the 20th century, the competition with the Asiatic 

Countries led to the closure of the Portuguese Sb mines. During the Second World War, there was an 

increase in mining activity, and since the 1960s some prospecting campaigns and reconnaissance 

studies were executed [17]. Nowadays the mining structures are abandoned (Figure 2) and many 

waste piles and tailings remain in the zone. 

 

 

Figure 1. (a) Sampling points (green dots) and geology of the study area. 

a 

b 
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Geologically, those Sb deposits are located on the western flank of a Variscan structure, the 

Valongo Anticline, in the Dúrico-Beirão Mining District, situated within the Iberian Central Zone  

[16, 18-20]. The lithostratigraphic succession consists of Cambrian/Pre-Cambrian (pre-Ordovician) 

rocks with very low-grade metamorphism; Ordovician and Carboniferous sequences, composed of 

schists and some quartzites, and the Upper Carboniferous formation comprising breccias, 

conglomerates, and intercalated quartzites. The lithologies vary from east to west, with ages 

corresponding to Lower Ordovician, Middle and Upper Ordovician, Lower Carboniferous, and pre-

Ordovician. 

The Sb mineralization occurs in low volume in discontinuous quartz veins that are mainly hosted 

in Silurian schists and greywackes [20]. The quartz veins have a hydrothermal nature and are 

associated with Variscan granitic intrusions, or due to fluid mixing of CO2-rich metamorphic fluids 

by surface-derived H2O–NaCl fluids [15]. The dominant directions of the country rocks range from 

N to NW dipping to W. The most productive veins occur in the EW direction dipping to N (Tapada) 

and NS dipping to W (Ribeiro da Serra). 

  

(a) (b) 

Figure 2. Ribeiro da Serra mine infrastructures picture in the late 19th century [21] (a) and 

nowadays ruins (b). 

2.2. Spectral reflectance 

Reflectance spectroscopy offers a means to extract multiple soil properties, both direct and 

indirect, as well as metal contents [22]. The abundant data generated by soil spectroscopy, whether 

in the form of point measurements or images, necessitates the implementation of data-modelling 

procedures. 

Materials may reflect or absorb electromagnetic radiation at varying wavelengths, governed by 

factors such as surface absorption, emissivity, and reflectance characteristics. The spectral range 

employed for soil reflectance analysis encompasses the Visible and Near-Infrared to Short-Wave 

Infrared (VNIR-SWIR) region, spanning from 400 to 2,500 nm. This range is further divided into two 

sub-ranges: VNIR (400 to 1,100 nm) and SWIR (1,100 to 2,500 nm). The interactions between light and 

matter are intricately tied to the wavelength. Though pure metals don't exhibit absorption within the 

VNIR-SWIR region, their presence can be indirectly detected through associations with organic 

matter (OM), interactions with compounds like hydroxides, sulphides, carbonates, or oxides that 

manifest detectable properties, or adsorption to light-absorbing clays [22]. 

2.2. Convolutional Neural Networks 

The field of geosciences is having a slow but crescent incorporation of ML and DL techniques. 

ML data analysis methods can automate the creation of analytical models and perform tasks such as 

classification, regression, or clustering [23-26] that are useful in the geosciences. The improvement of 

the model is given by its training with a data set that will condition the results, and evaluation metrics 
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are implemented to quantify the performance of the model with the given data set. Additional 

samples of data often can improve the model performance and the aim is to obtain a good model that 

can generalize to new data [23]. The difficulty in the availability of labelled data is exactly what makes 

the implementation of ML and DL remote sensing applications to geosciences a challenging task. 

Frequent problems of this nature are the limitation of possibilities in the data collection; the large 

number of physical variables associated with a limited number of samples; and the difficulty of 

obtaining high-quality measurements of several geoscience variables, that can only be taken by overly 

expensive or time-consuming techniques[27]. The heterogeneity of the data and the multi-resolution 

are often associated with the already challenging multiconnected nature of the different processes in 

geosciences [27]. Despite those challenges, the capacity for ML and DL methods to actuate in 

geosciences tasks that were only possible to be executed with dispendious human work, and even in 

tasks that were not possible to be executed before, make their implementation increasingly attractive.  

The capacity of CNN to capture nonlinear behaviors makes it suitable for geological problems. 

CNN demonstrated powerful abstraction capabilities in the field of geosciences, with the first 

applications in the field focused on seismic interpretation, more recently being incorporated in 

broader geosciences applications such as global water storage modeling, landslide prediction, and 

earthquake arrival time picking [14] [23]. The constitution of CNNs primarily involves three types of 

layers: convolutional layers, pooling layers, and fully connected layers [13]: 

1. Convolutional Layer: In this layer, input features are convolved with learnable kernels, 

generating various output feature maps. Each kernel has a fixed length and slides over the input 

feature map with a stride of 1, performing convolution with local regions where the kernel overlaps 

the input feature map. Non-linear activation functions are then applied to the convolution results to 

produce output feature maps. This layer's key advantage lies in its ability to learn local patterns while 

significantly reducing the number of model parameters through weight sharing. 

2. Pooling Layer: After convolution, the pooling layer is employed to progressively reduce the 

spatial size of the output feature maps generated by the convolutional layer. 

3. Fully Connected Layer: The fully connected layer comprises neurons that connect to all 

activations extracted from the convolutional and pooling layers. This layer plays a crucial role in 

generating the final output results. 

3. Materials and Methods 

3.1. Soil collection and preparation 

The present study benefited from the soil samples collected in the scope of the AUREOLE 

project-ERA-MIN/0005/2018 (https://aureole.brgm.fr/; access on 25 January 2024). The soil sampling 

campaigns were carried out covering the area where the underground works in Ribeiro da Serra and 

Tapada took place and the surrounding areas. The soil sampling aimed to test the mineralization 

distribution and identify possible new mineralized structures and soil contamination distribution. 

The first soil sampling campaign was carried out in the Ribeiro da Serra Sb-Au mine zone in 2021, 

with 157 samples collected, while the second soil sampling campaign, in the Tapada mine zone took 

place in 2022, with 152 samples collected. The sampling campaigns follow a plan on a grid of 50x50 

meters in the area that with an orientation according to the mining structures. Soils were collected 

from horizon B and horizon C when there was no horizon B which is relatively common in the study 

area. From the totality of samples, 54 samples from Ribeiro da Serra and 53 samples from Tapada 

were sent to Bureau Veritas laboratory in Vancouver (Canada) to be analyzed by ICP-MS (Inductively 

coupled plasma mass spectrometry analysis). Before sending the samples to ICP-MS analysis, the 

samples were dried in a muffle furnace or at least 48 hours and at a temperature of 55 °C. With the 

samples dry, after rifling the soil samples were grounded to a size < 200 μm. From the samples sent 

to ICP-MS analysis, only 99 had their spectral signature collected, due to some samples no longer 

being available. 
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3.2. Soil reflectance measuring  

The raw soil, previously dried with gravel and pieces of plants removed, was used for taking 

the reflectance measurements. The soil was spread in a watch glass above a black surface and five 

different points of the sample were measured, resulting in five spectra per sample. Each spectrum 

collected is a result of an average of several measurements. For this work an average of 5 

measurements was used, each measurement resulted in 40 scans. 

The FieldSpec 4 standard resolution spectroradiometer equipment (ASD Inc., Boulder, CO, USA) 

was used to collect the spectral data. The proceeding included “heating” the equipment for 30 

minutes before starting to measure. The spectroradiometer has three sensors, one VNIR and two 

SWIR sensors. The time of “heating” is necessary to ensure that the three sensors are at the same 

temperature [28]. Normalization with a perfect albidum (white plate) also is needed every time a new 

measurement project is started and every two hours of work. The software used was Indo Pro [28]. 

3.2. Spectral preprocessing 

The first step was removing from the dataset samples with Sb content above 1000 ppm, that were 

considered outliers, for being mostly associated with contaminated areas that don’t represent the Sb 

concentrations found related with the natural occurrence of mineralization (see section 3.1), common 

spectral preprocessing was implemented to improve the results obtained by eliminating noise and 

highlighting spectral features. The wavelengths before 400 nm were removed due to the excessive 

noise in this zone of the spectra. The pre-processing steps included: convert the reflectance to 

absorption; remove the continuum; smoothing the signal and calculate the first and second 

derivatives; convert the waveform spectrogram. 

The order of the spectral preprocessing is given in the diagram (Figure 3). 

 

Figure 3. Preprocessing steps followed in this study. 

3.2.1. Continuum removal using convex hull 

Continuum removal is a technique that allows the extraction of characteristic absorption bands 

on the reflectance spectrum curves [29]. The convex hull forms a polygon connecting the outermost 

points within the sample while ensuring that all the internal angles of this polygon are less than 180 

degrees, forming the smallest convex shape that encloses all the points in a given set [30]. The 

continuum-removed data was obtained using a Python script by [28]. 

3.2.2. Reflectance to absorption, Smoothing the data and calculate the First and Second derivatives 

The absorption was calculated from the data, after the continuum removal, using a function 

implemented in Python, as mentioned in [7], based on reflectance using the logarithmic relationship. 

After the conversion to absorption, the data was smoothed by applying the Savitzky-Golay filter from 

the savgol_filter function in the scipy.signal module in Python. To smooth the signal data, the 

Savitzky-Golay filter calculates a polynomial fit of each window based on polynomial degree and 

window size. The obtained smoothed data is used to calculate the First and Second derivatives by 

applying the np.gradient function from the NumPy library.  
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3.2.3. Convert waveform to spectrogram 

This step consists on the application of the Short-Time Fourier Transform (STFT) to the 

equal_length tensor using tf.signal.stft. A new dimension is added to the spectrogram tensor using 

spectrogram [..., tf.newaxis]. This dimension is included to the data to make the spectrogram suitable 

as input with convolution layers in the CNN. This step is essential to convert the two-dimensional 

data in a three-dimensional data, such structure is required for the application of a CNN. This 

methodology can be replicated by the application of the Python script available in the supplementary 

materials (Code S1). 

3.3. Application of Convolutional Neural Network 

In the present work, to deal with limited computational capacity, a MobiletNet model was used. 

MobileNets are a class of highly efficient CNN models, built upon a streamlined architecture that 

leverages depth wise separable convolutions, being a deep neural network with significantly reduced 

computational demand [31]. The model was implemented using the open-source libraries of 

TensorFlow and Sklearn and is available in the supplementary materials (Code S2). The model was 

tested for Sb and other elements, As, Pb, Mn, Zn, that also are not directly detected in the SWIR-VNIR 

spectral range and have exhibit different Person’s correlation with Sb in the study area (Table 2). The 

metrics for evaluate the model performance consist in the analyzes of the R2 and RMSE obtained.  

Table 2. Person’s correlation for the selected elements in the study area. 

Element Sb As Pb Mn Zn 

Sb 1 - - - - 

As 0.9 1 - - - 

Pb 0.63 0.73 1 - - 

Mn 0.15 0.28 0.42 1 - 

Zn 0.25 0.41 0.72 0.66 1 

3. Results 

3.1. ICP-MS analysis  

The results obtained from the ICP-MS analysis are shown in Table A1 with the indication of 

which samples were discarded from the training set. The distribution of Sb concentrations in the 

study area are depicted in Figure 4.  
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Figure 4. Distribution of Sb concentrations in the study area, and the position of old mining adits, the 

known veins, tailings and local streams. 

The higher concentrations of Sb, the values above 1000 ppm, which were 10% of the totality of 

the samples, are related to the soils collected in tailings, near the tailings, or in the streamlines. Mostly 

the values of Sb are between 10 and 100 ppm and are not related to the adits and some are related to 

veins or streams. Values between 500 and 1000 ppm are related to known veins and others can be 

associated with the presence of unknown veins. Also, some of those soils have proximity to the 

tailings and higher values of Sb can be influenced by contamination left by the mining works that 

took place in the last century. 

3.2. Preprocessing and Deep Learning Model Results  

Removing the outliers based on the Sb concentrations, training the model with only the samples 

that contained up to 1000 ppm of Sb content, had a positive impact in the performance of the model, 

leading to higher values for R2. Similarly, the application of the preprocessing steps and removal of 

the wavelengths before 400 nm successfully improve the results. Oppositely, removing other portions 

of the spectra (1500-2400) did not improve the model performance. Regarding the preprocessing 

steps, the best results were obtained by applying the first derivative, while the second derivative did 

not improve the results. 

Only the results of the best combination of preprocessing methods are presented. These results 

correspond to the signal used has input using the wavelengths between 400 and 2400 nm, using the 

reflectance converted to absorption; spectra after removing the continuum; signal smoothing and 

calculation of the first derivative. The input was this processed signal converted to waveform 

spectrogram. Training the model using multiple elements instead of a single element was tested for 

making the predictions, but it did not improve the results or reduce the overfitting, so, only the results 

for single elements are presented (Table 3).  

Table 3. Elements and R2, RMSE for train and validation and the number of epochs of training. 

Element R2 RMSE train RMSE validation Training epochs 

Sb 0.7 0.0014 173 1000 

As 0.96 0.01 46 1000 

Pb 0.83 0.04 20 750 

Mn 0.93 0.0006 41 600 

Zn 0.78 0.0002 18 1000 
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In the results obtained, despite achieving relatively high R2 values, there is a notable issue of 

overfitting. The model learned to predict the values of Sb for the training set, but with a high 

validation error (Figure 5). 

 

Figure 5. (a) train error versus validation error by epoch for Sb. (b) R2 for Sb predicted and measured. 

Overfitting occurs when the model learns the training data too well, capturing patterns specific 

to the training set but failing to generalize well to new, unseen data [32]. In this context, despite the 

promising R2 values obtained for the elements As, Pb, Mn, and Zn, the disparity between the RMSE 

values for the validation set is considerably large (Figure 6).  
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Figure 6. (a) train error versus validation error by epoch and R2 for a) As, b) Pb, c) Mn, d) Zn. 

The observation of the discrepancy in the RMSE between train and validation, while the R2 

values for the training set are notably high, indicating a good fit to the training data, signifies that the 

model couldn’t achieve a good generalization performance. However, some elements experiment 

better results for the generalization, namely As and Mn. The overfitting tendency is more pronounced 

for Sb and Zn. We can observe in the graphics in Figure 7 that, for all the elements, the model learns 

very well how to predict the training set in the first epochs, while the validation error stays in a 

plateau. It is worth mention that while the validation error may appear to be in a tendency to 

decrease, tests executed with a few thousand of epochs more show that there is no improvement in 

the predictions. Those results may indicate that there is a limit in the generalization that the model 

can reach with the present data set. 

4. Discussion 

Despite achieving relatively good R2 values, the presence of significant overfitting weakens the 

reliability and generalizability of the model's predictions in the present study. Additionally, the 

observation that, incorporating additional elements into the model training process did not lead to 
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improved results or mitigate overfitting, further underscores the challenge of addressing this issue. 

This suggests that simply increasing the complexity of the model or incorporating more features does 

not necessarily yield better performance and may exacerbate overfitting instead. Kemper and 

Sommer [7] to resolve the overfitting issue, used a methodology to degrade the spectra considering 

the band center and the full-width half-maximum. The band center refers to the central wavelength 

or position of a spectral feature or band of interest. This approach was not possible to replicate in the 

current study, because the band center for the target element is unknown. Also, in their study area, 

they have a big contrast between the soil of the region, and the contaminated soil, which was from a 

mine dump and had a high concentration of heavy metals. In the present study, there is no big 

contrast between the soils that present Sb and the soils that don’t, and the Sb contents are relatively 

discrete. Wu, et al. [33] found the correlation with total Fe, active and residual, was a major predictive 

mechanism for heavy metals in soils. Also, OM and clay have a correlation. The soil analysis in the 

current study didn’t include those proprieties, which can be a way to obtain better results.  

As the soil sampling campaigns executed focused in capturing the general distribution of the Sb, 

they do not capture the progressive increment in Sb in mineralized zones. Moreover, many soil 

samples capturing anomalous values of Sb are sourced from the mine tailings existent in the region, 

and their properties may not be representative. Another sampling methodology, focusing on the soils 

near the known Sb veins and on the progressive contents of Sb in the soils associated with the veins 

could be more appropriate for this study and can work as a solution for the overfitting in the CNN 

model. And, also, obtaining organic matter and clay data from the soils can be a different approach 

that can help to better understand the features in the spectral signature of soils containing Sb that can 

be employed for its identification. 

5. Conclusions 

This study found varying concentrations of Sb in the sampled area, with the higher values of Sb 

influenced by the historical mining activities and potential contamination. The implementation of a 

CNN with low computational demand, MobileNet model, for predicting Sb values shows promising 

results with a good fit for the training data, but with issues in to generalize to new data. However, 

challenges emerged regarding its ability to generalize to new data. Notably, preprocessing steps 

remain essential for enhancing model performance. Alternative sampling methodologies and the 

increment in the dataset available, as the incorporation of another soil proprieties such as OM and 

clay into the analysis could provide more insides to the topic. This study provides insights into the 

application of deep learning models to predict Sb concentrations using spectral data, while there are 

still challenges to overcome. 
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Appendix A 

Table A1. Samples analised by ICP-MS from Ribeiro da Serra (RSXXX) and Tapada (TPXXX) mining 

areas and the values obtained for the elements used in this study. 

Sampl

e 

Sb 

(ppm

) 

As 

(ppm

) 

Pb 

(ppm

) 

Mn 

(ppm

) 

Zn 

(ppm

) 

Sampl

e 

Sb 

(ppm

) 

As 

(ppm

) 

Pb 

(ppm) 

Mn 

(ppm

) 

Zn 

(ppm

) 

RS001 13.38 25 33.49 13 12.7 TP004 
298.5

5 
146.9 38.91 36 31.9 

RS004 12.79 24.5 17.05 41 25.1 TP007 80.07 67.9 21.95 29 42.9 

RS007 10.71 18.7 22.23 68 24.5 TP008 
184.6

1 
189.9 35.35 24 17.8 

RS013 23.4 24.6 22.19 56 22.7 TP009 31.39 46 18.38 29 34.6 

RS015 14.55 16 28.89 60 49.1 TP011 27.01 32.5 30.96 299 64.4 

RS017 9.95 17.4 23.97 44 23.7 TP013 251 167.4 24.41 17 30.8 

RS019 9.5 21.3 21.08 22 14.7 TP016 
357.0

4 
50.7 26.71 37 29.1 

RS021 33.94 22.6 28.76 53 36.5 TP017 1446 467.8 35.95 376 47.2 

RS023 30.32 21 26.2 68 41.1 TP027 52.6 70.3 25.98 23 19.7 

RS027 16.87 17.9 24.53 51 31.1 TP033 68.45 166.5 27.97 59 40.7 

RS029 9.54 14.8 20.64 34 29.1 TP035 
715.4

9 
78 49.92 142 68 

RS031 25.73 20.3 20.93 57 29.8 TP038 
116.3

3 
50 25.42 27 22.1 

RS034 47.03 112.9 19.54 40 24.5 TP040 258.4 74.5 62.37 63 26.9 

RS037 575.47 
1431.

2 
47.29 76 49.8 TP044 

259.1

8 
65.7 42.6 844 146 

RS040 59.42 28.6 33.97 261 50.9 TP048 14.87 23.4 23.87 229 54.1 

RS045 19.46 47.8 17.06 13 15 TP049 
207.6

5 
30.9 25.6 27 19.7 

RS049 162.61 111 24.82 35 28.3 TP051* >4000 571.8 325.79 35 26.4 

RS051* 2653 225 31.82 31 26.1 TP055 50.4 27 25.04 51 31.3 

RS052 2215 120.9 40.35 95 38.6 TP064 
103.8

2 
34.8 33.38 106 65.3 

RS055 50.68 21.2 12.64 15 23.6 TP065 
352.4

7 
71 22.64 26 26 

RS057 30.04 20.8 20.98 73 39.7 TP068 
217.9

4 
47.9 20.33 37 31 

RS061 82.11 30.8 25.48 24 25.9 TP070 
891.0

9 
99.7 25.65 132 67 

RS066* >4000 501.9 
197.0

1 
28 17.5 TP072 6.3 16.4 29.52 57 33 

RS067* 1103 129.6 28.5 18 21 TP075 50.02 51.3 20.59 13 22.8 
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RS069 170.9 29.6 23.63 36 26.3 TP077 
258.2

2 
27.4 22.34 26 29.4 

RS073 342.44 84.8 34.84 27 36.1 TP079 85.29 33.8 22.7 37 30.1 

RS076 59.27 85.2 20.77 17 14 TP082 31.88 22.8 14.67 51 32.7 

RS078* >4000 680.5 
171.8

9 
143 51.8 TP084 22.03 23.9 32.51 82 40.8 

RS084 59.11 21.1 17.59 38 22.3 TP087 
619.7

1 
92.3 103.39 78 38 

RS088 89.74 34.8 20.79 30 22.8 TP091 
464.2

4 
130.1 17.55 34 22.6 

RS090 101.96 76.7 22.39 48 25 TP093 38.45 19 9.26 767 128.8 

RS094 79 91.5 24.93 29 26.5 TP094 13.69 21.6 29.53 72 47.9 

RS096 119.56 53.9 25.81 27 19.4 TP099* >4000 
1208.

1 

1040.1

4 
143 110.8 

RS100 127.62 43.8 18.54 35 28.3 TP106 45.26 38.8 22.23 119 45.5 

RS106 252.69 63.4 
103.5

1 
139 95.3 TP109* 3786 240.8 190.75 387 55.4 

RS108 61.45 72 30.65 28 28.9 TP111 895 499 29.82 197 66.7 

RS112* 1712 313.1 
125.7

6 
27 43.9 TP115 93.15 37.9 18.36 271 76.2 

RS115 118.07 147 25.04 49 33.4 TP122 33.43 21.6 24.65 124 58.4 

RS118* >4000 966.6 
449.0

3 
442 74.9 TP125 44.84 19.4 19.12 44 22 

RS126 131.8 48.8 23.47 22 25.5 TP132 10.99 23.4 28.35 139 55.2 

RS128 99.13 33.6 15.16 28 14.5 TP133 38.25 25.5 26.92 61 33.9 

RS129 565.34 81.6 
359.7

5 
88 26.7 TP136 33.92 42 27.22 72 43.5 

RS131* >4000 895.5 
228.8

6 
90 34.7 TP138 48.68 17.7 20.54 41 42.9 

RS134 151.98 91.1 37.56 78 30.1 TP140 16.53 25.1 19.3 17 18.1 

RS135 103.69 60.4 30.77 35 23.3 TP147 26.18 30.8 43.43 116 78.4 

RS143* >4000 671.9 
221.6

8 
163 41.1 TP154 17.61 23.3 16.89 28 34.5 

RS144 217.65 47.3 25.37 28 20.1 TP156 13.44 27 15.95 33 27.4 

RS148 48.3 36.2 16 11 11.1 TP159 13.91 17.2 36.37 143 74.9 

RS151 45.82 37.6 12.26 9 16.6 TP167 11.39 20.3 12.68 15 20.6 

RS156* 3500 361.7 50.46 46 28.6 TP173 6.53 20.8 21.16 115 51.8 

RS159 69.45 31 15.37 18 11.3 TP175 16.54 17.9 15.22 16 18.2 

RS162 68.91 28.6 26.37 55 34.2 TP177 
176.9

8 
44.5 18.68 23 50.2 

RS164 79.33 24.6 19.59 57 31.3 TP179 10.66 50.7 15.55 17 23.3 

RS169 72.12 20.7 15.76 21 24.8       
* Samples excluded of the training set. 
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