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Abstract

Viscoelastic materials, such as polymer melts, polymer solutions and biofluids display complex
behaviour described by rheological constitutive models. These models can be classified as diffe-
rential and/or integral. Differential models are based on partial differential equations and use the
local deformation field whereas integral models use direct information from the past history of
deformation. Both types have advantages and disadvantages: differential models usually allow a
faster numerical solution of the differential equations involved, while integral models are compu-
tationally expensive and may lead to error propagation, but otherwise allow a better rheological
modelling. A new generation of models that attempts to improve the situation by providing a better
description of fluid rheology, while keeping the cost of computations under control, is based on
fractional calculus. One such constitutive equation is the generalised Phan-Thien–Tanner (gPTT)
model and one contribution from this thesis is in providing semi-analytical and numerical solutions
in canonical flows for the purpose of benchmarking. The gPTT viscoelastic model considers the
Mittag–Leffler function instead of the classical linear and exponential functions of the trace of the
extra-stress tensor and uses two new fitting parameters. The Mittag–Leffler function allows a wider
range of variation in the rates of destruction of network junctions of the polymer network, providing
additional fitting flexibility. In this work, semi-analytical solutions were developed for Couette-
Poiseuille flows (with no-slip and with asymmetric slip), for electro-osmotic flow in microchannels
of viscoelastic fluids and in annular flows, and a parametric study was also carried out on the
influence of the new parameters of model. The derived solutions allow a better understanding of
how a fluid described by this model behaves with the considered flows. These solutions are used
to validate the numerical methods used in computational fluid dynamics (CFD) codes.

CFD investigations can produce vast amounts of data that often overwhelm the user while
hiding important information. In particular it is important to identify and characterise relevant
flow structures, and this is especially expensive under transient flow conditions, where the structures
are continuously evolving in space and time. To overcome this problem, the entire dataset can
be decomposed into smaller sets and important structures present in the main flow and structures
with periodic behaviour, like vortices, can be identified. One way to do it is through model
order reduction methods such as the proper orthogonal decomposition (POD) method that is very
popular in CFD. POD enables the decomposition of any flow into a infinite set of eigenfunctions
or modes, effectively reducing the problem, capturing the essential information using less data and
less computational resources. After the analytical studies presented in the first part of this work,
the POD method was applied to the flow around two parallel side-by-side cylinders with different
radii, where a Newtonian fluid and two non-Newtonian power-law fluids, with 𝑛 = 0.7 and 𝑛 = 1.3,
were considered. In addition, the flow past one cylinder of a fluid described by a gPTT model
at very low Reynolds number (𝑅𝑒 = 0.01) and two different Weissenberg numbers (𝑊𝑖 = 1.2 and
1.25) were also investigated through the use of POD method. In both studies a reconstruction of
the flows was conducted, followed by a frequency analysis of specific modes. Additionally, for the
flow past a cylinder, using the POD analysis made for the flow with 𝑊𝑖 = 1.2, a prediction of the
reconstruction of the flow at 𝑊𝑖 = 1.25 was obtained and compared with the original simulation
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at𝑊𝑖 = 1.25. The performed analysis showed that the POD method can be used to better identify
meaningful flow structures and to obtain new data at different conditions with significantly lower
cost.



Resumo

Materiais viscoelásticos, como polímeros fundidos, soluções poliméricas e biofluidos, apresentam
um comportamento complexo descrito por modelos reológicos constitutivos. Esses modelos podem
ser classificados como diferenciais e/ou integrais. Os modelos diferenciais são descritos pelo uso
de equações diferenciais parciais e o campo de deformação local é utilizado, enquanto os modelos
integrais usam informação direta da história de deformação. Ambos os tipos têm vantagens e
desvantagens: os modelos diferenciais geralmente permitem uma solução numérica mais rápida
das equações diferenciais envolvidas, enquanto os modelos integrais são computacionalmente
mais demorados e podem levar à propagação de erros, mas por outro lado permitem uma melhor
modelação reológica. Uma nova geração de modelos que tenta melhorar a situação, fornecendo uma
melhor descrição da reologia dos fluidos, ao mesmo tempo que mantém os cálculos computacionais
controlados, é baseada no cálculo fracionário. Uma dessas equações constitutivas é o modelo
generalizado de Phan-Thien-Tanner (gPTT) e uma contribuição desta tese é fornecer soluções
semi-analíticas e numéricas em escoamentos canónicos para fins de referência. Este modelo
considera a função Mittag-Leffler, em vez das funções lineares e exponenciais clássicas, do traço
do tensor de tensão e usa dois novos parâmetros de ajuste. A função Mittag–Leffler permite uma
maior variação nas taxas de destruição das junções da rede de polímero, proporcionando um ajuste
mais flexível. Neste trabalho, foram desenvolvidas soluções semi-analíticas para escoamentos
de Couette–Poiseuille (sem escorregamento e com escorregamento assimétrico), para escoamento
eletro-osmótico em microcanais de fluidos viscoelásticos e em escoamentos anelares, e foi também
realizado um estudo paramétrico sobre a influência dos novos parâmetros do modelo. As soluções
obtidas permitem um melhor conhecimento de como um fluido descrito por este modelo se
comporta nos escoamentos considerados. Estas soluções podem ser utilizadas para validar os
métodos numéricos usados em códigos de dinâmica de fluidos computacional (CFD).

As investigações de CFD podem produzir grandes quantidades de dados que muitas vezes
sobrecarregam o utilizador, ao mesmo tempo que ocultam informações importantes. Em particular,
é importante identificar e caracterizar estruturas de escoamento relevantes, e isto é especialmente
custoso em condições de escoamento transitório, onde as estruturas estão em constante evolução
no espaço e no tempo. Para superar este problema, todo o conjunto de dados pode ser decomposto
em conjuntos menores e estruturas importantes presentes no escoamento principal e estruturas
com comportamento periódico, como vórtices, podem ser identificadas. Uma maneira de o fazer
é através de métodos de redução de ordem, como a decomposição ortogonal própria (POD),
que é muito popular em CFD. O POD permite a decomposição de qualquer escoamento num
conjunto infinito de funções próprias ou modos, reduzindo efetivamente o problema, capturando
as informações essenciais usando menos dados e menos recursos computacionais. Após os estudos
analíticos apresentados na primeira parte deste trabalho, o POD foi aplicado ao escoamento em
torno de dois cilindros paralelos e lado-a-lado com raios diferentes, onde um fluido Newtoniano e
dois fluidos não-Newtonianos descritos por um modelo de lei de potência, sendo 𝑛 = 0.7 e 𝑛 = 1.3,
foram considerados. Também se analisou o escoamento em torno de um cilindro, de um fluido
descrito pelo modelo gPTT em que o número de Reynolds é muito baixo (𝑅𝑒 = 0.01) e onde foram
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considerados dois números de Weissenberg diferentes (𝑊𝑖 = 1.2 e 1.25). Em ambos os estudos
foi realizada uma reconstrução dos escoamentos, seguida de uma análise de frequência de modos
específicos. Adicionalmente, para o escoamento em torno de um cilindro, utilizando a análise
realizada com o POD para o escoamento com 𝑊𝑖 = 1.2, foi obtida uma previsão da reconstrução
do escoamento para 𝑊𝑖 = 1.25 e comparada com a simulação original para 𝑊𝑖 = 1.25. A análise
realizada mostrou que o POD pode ser utilizado para identificar estruturas relevantes do escoamento
e obter novos dados em diferentes condições com um custo significativamente menor.
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Chapter 1

Introduction

To mimic and predict the behavior of physical phenomena, mathematical modelling can be applied.
This is also true when dealing with complex fluids, and along the years, several rheological
constitutive models were proposed to predict their behavior. These models can be more or less
complex, and rely on the physical properties of the fluids that are considered.

For this work, the main interest is viscoelastic materials [1], such as polymer melts, polymer
solutions and bio-fluids, like blood, saliva, synovial fluid and solutions containing long molecules
like proteins. For such fluids, many constitutive models have been proposed in the past. The
constitutive models used to describe viscoelastic fluids can be classified as: differential, when
described by partial differential equations that make use of the local deformation rate field; integral,
which need to integrate over time the past history of deformations. These two types of models have
advantages and disadvantages. The differential models normally allow a faster numerical solution
of the differential equations involved, improving the modelling of complex viscoelastic materials,
whereas integral models can perform better, but are computationally more expensive and may lead
to error propagation, in this way influencing the fitting quality of the model and the computational
effort to numerically solve them [2].

In this work the concern is with differential type models, and a new type of equation is adopted
that provides flexibility through the use of fractional calculus. In particular, new semi-analytical
and numerical solutions for viscoelastic fluids described by the generalised Phan-Thien–Tanner
(gPTT) [3] viscoelastic model are presented, which serves the purpose of providing benchmark
results for canonical flows, while showing the advantages of this new type of model relative to
classical rheological equations.

The gPTT model was first presented by Ferrás et al. [3], where a generalization form of the
Phan-Thien and Tanner (PTT) model was proposed, considering a new function of the trace of
the stress tensor. This new function includes the generalized Mittag–Leffler function [4], that
includes the exponential form of the PTT, but has two new fitting constants, providing additional
fitting flexibility. Ferrás et al. [3] showed that the gPTT model provide a better fit to experimental
rheological data, when compared with the exponential PTT (expPTT), to the shear viscosity and first
normal stress difference, when steady simple shear flows were considered and also to extensional
deformations. In that same work, Ferrás et al. [3] presented the analytical solution for the gPTT

3
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model in rectilinear channel/pipe flows and studied the influence of the new parameters of the model
on the velocity and in stress profiles. In what concerns the gPTT model, more considerations on
the model will be presented in the Section 2.1.

When considering physical problems, the large number of dependent and independent di-
mensions that appear, is one of the prominent disadvantages in scientific computing. The di-
mensionality curse [5], a well-known constraint, has significantly hindered the adoption of direct
computation methods for complex materials in favor of more simplified approaches. However,
several mathematical techniques can be employed to overcome this challenge of dimensionality [6,
7], including the use of model order reduction (MOR) methods, which aim to capture the fundamen-
tal
characteristics of a problem. Therefore, when the reduction process starts, the fundamental
characteristics of the original problem must already be present, but with the smallest of approxi-
mations. At some point, the reduction process stops, and at that moment all essential properties of
the original problem must be captured with enough precision. This whole process is done automat-
ically [8]. In this work, one of the most popular MOR methods is applied: the proper orthogonal
decomposition (POD) method, also known as Karhunen–Loève decomposition, principal com-
ponents analysis (PCA), singular systems analysis (SSA) or singular value decomposition (SSV).
The POD method was first introduced by Lumley in 1967 [9] for the analysis of coherent flow
structures under turbulent conditions, and it enables the decomposition of any flow into an infinite
set of eigenfunctions or modes. The aim of the POD method is to effectively reduce the size of the
model data set, capturing essential information using less data and computational resources. The
technique remained rather limited, and only gained momentum in computational fluid dynamics
(CFD) especially as machine learning (ML) methods started to be developed, due to its ability to
reduce the simulation time and accurately reproduce coherent structures in turbulent flows based
on the most significant modes. Identifying these flow structures, particularly in transient situations,
presents a complex challenge, because such structures change in time and space, with new structures
continuously being formed while others are destroyed. By decomposing the entire data set into
smaller sets, important structures present in the main flow and structures with periodic behaviour,
like vortices, can be identified. So, by analysing the frequency of each of these components and
using a smaller number of components, a better and global understanding of the flow is obtained.

1.1 Objectives

Being the gPTT a relatively new rheological model, there is a lack of analytical solutions for
canonical flows in the literature. Therefore, one of the main objectives of this thesis is to obtain
new analytical, semi-analytical and numerical solutions of flows of viscoelastic fluids governed by
the gPTT viscoelastic model. In particular this is carried out through a parametric study on the
influence of the rheological constitutive model parameters, on canonical flows, such as, Couette–
Poiseuille flows, with no-slip and under asymmetric slip, in annular flow and electro-osmotic (EO)
flows in microchannels, with symmetric and asymmetric zeta potentials. The solutions allow the
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full characterization of the velocity and stress profiles of a gPTT fluid in different types of flows
and can be used to validate the numerical methods used in CFD codes.

Another objective is to numerically study Newtonian and non-Newtonian fluid flows and apply
MOR methods to reduce the huge amount of data that comes out of a numerical simulation, by
performing a decomposition of the entire data set into smaller sets and then to identify important
structures that are present in the main flow. For that, the study of the flow past two parallel side-by-
side cylinders with different radii is performed, and by grouping specific modes, a reconstruction
is done and an identification of complex flow structures is analyzed. For this study the fluids
considered are a Newtonian fluid and two non-Newtonian power-law fluids with 𝑛 = 0.7 and 𝑛 = 1.3,
for a Reynolds number (𝑅𝑒, a non-dimensionless parameter that measures the ratio between inertial
and viscous forces [10]) equal to 100. For this Reynolds number, it is expected to occur periodic
oscillation. So, the idea is to fully understand the mode decomposition in an oscillatory flow
around two parallel cylinders of different dimensions. The MOR method applied in this work is
the POD method, which is used to identify important flow structures that appear in the numerical
simulations of viscoelastic flows.

Next, the analysis is extended to a gPTT fluid, with low Reynolds number and two different
Weissenberg number (𝑊𝑖, a non-dimensional parameter that measures the elasticity of a fluid
and indicates the degree of anisotropy or orientation generated by the deformation [10]) equal to
1.2 and 1.25, but now considering the flow around a single cylinder at low 𝑅𝑒. Furthermore, the
performed analysis for the gPTT fluid with𝑊𝑖 = 1.2 will be used to predict the reconstruction of the
flow for the gPTT fluid with𝑊𝑖 = 1.25. A root mean squared error (RMSE), between the original
and the reconstructed normal stresses field, below 1 was obtained. The outcomes derived from
these studies are to apply the original POD method for decomposing complex flows, better identify
significant flow structures and to use it as a step to obtain new data with much less information.

1.2 Dissertation outline

The present dissertation falls into the category of multi-paper (or paper-based) dissertations, built up
as a collection of seven peer-review journal papers, published or under evaluation, in international
scientific journals. A complete list of the included papers can be found in page vii. The included
papers were prepared in the course of this PhD thesis and correspond to specific stages and parts
of the above mentioned objectives.

The present dissertation is organized in four main parts:

Part I: Introduction

Part II: Theoretical and numerical studies of viscoelastic fluid flows

Part III: More on theoretical and numerical studies of viscoelastic fluid flows

Part IV: Conclusions and outlook



6 Introduction

The present section closes the introductory part (Part I). In Part II the main contributions of
each paper will be described, on the following topics: Chapter 2 is dedicated to the theoretical
studies, where the analytical solutions with the gPTT model are presented; Chapter 3 is dedicated
to the numerical studies, where the MOR methods are presented and applied. Part III presents
the integral versions of the papers already published, or in the process of submission or review
(Chapter 4 and 5). The conclusion and the outlook of the thesis are presented in Part IV, including
suggestions for future work.



Part II

Theoretical and numerical studies of
viscoelastic fluid flows
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Chapter 2

Theoretical studies

2.1 Mathematical modelling of complex fluids

For modelling physical phenomena of complex polymeric materials, the governing equations
describing the phenomena, including the mass conservation and the momentum equations, together
with the thermal energy equation if heat transfer is involved, which is not the case in this thesis,
need to be solved. In addition, the momentum equation requires a description of the material stress
tensor, which is provided by the rheological constitutive equation. The whole set of equations is
normally complex and difficult to solve analytically, therefore a numerical study is usually required.
However, for flows in simple geometries it is often possible to benefit from simplifications of the
governing equations that allow fully analytical or at least semi-analytical solutions for specific
fluids to be obtained [11]. In this section, the governing equations are presented and also the types
of fluids and the corresponding rheological mathematical models are described.

2.1.1 Governing equations

The main physical laws required to describe a flow field are the:

- the conservation of mass;

- the conservation of momentum (Newton’s second law of motion);

- the conservation of energy (first law of thermodynamics).

The first two laws are the ones used to solve an isothermal problem and the last one is essential
to solve non-isothermal problems [12].

The conservation of mass states that in a closed system, the system mass must be the same as
time goes by, which means that the mass is preserved over time. This law is given, in differential
form by the following equation:

𝜕𝜌

𝜕𝑡
+∇ · 𝜌u = 0, (2.1)

9
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where u is the velocity vector, 𝜌 is the fluid density and 𝑡 is the time. This equation is known as
the continuity equation, and for incompressible fluids reduces to:

∇ ·u = 0. (2.2)

The momentum balance states that the quantity of momentum only changes by the action of forces,
as described by Newton’s law of motion. This law is given by the Cauchy equation:

𝜌
Du
D𝑡

= −∇𝑝 +∇ · 𝝉 +F, (2.3)

where 𝑝 is the pressure, F represents a body force per unit volume and 𝝉 is the extra-stress tensor.
D
D𝑡

is the material derivative of a general property 𝜙,

D𝜙
D𝑡

=
𝜕𝜙

𝜕𝑡
+u · ∇𝜙. (2.4)

2.1.2 Complex fluids

The main interest when developing new analytical equations is that they are capable of modelling
the flow of complex polymeric materials, like the flow of viscoelastic fluids.

The motion of fluids is the result of the transfer of momentum to and between molecules. If
the length scale of flows is much larger than the size of molecules, those fluids are described as a
continuous medium (continuum hypothesis) [13].

The measure of the resistance of a fluid to deformation is the viscosity. Viscosity is one of the
most important properties of a fluid, because not only describes the nature of the fluid, but also
relates the behavior of the shear stress with respect to the deformation of the fluid [11].

Rheology is the scientific field that studies the deformation and the flow of matter. In this
field the main concern is the study of the flow behavior of complex fluids, like polymers, pastes,
emulsions and other materials [12]. So, the principal object of study in Rheology is between the
Newton’s law of viscosity and the Hooke’s law of elasticity. In fact any fluid can be considered
as Newtonian fluid or approaching the behavior of an elastic solid, depending on the shear, on the
deformation process applied and on time scales [10].

There are several models to deal with the relationship between the stress and the deformation
tensors of complex fluids. These models are the constitutive equations, that depend on the structure
of the fluid [10]. These models also depend on the nature of the fluid. In that way, fluids can
be Newtonian or non-Newtonian. The most common non-Newtonian effect on fluids is the shear
thinning behavior, that is the tendency of some materials to decrease the viscosity when they are
driven into flow at high deformation rates. Some examples of fluids that show this effect are
ketchup, paints and blood. Other materials show shear thickening, that is when the materials show
higher viscosity when they are made to flow at high deformation rates [12]. An example that shows
this effect is the mixture of cornstarch and water. Other common behavior is the Bingham plastic
(named after Eugene C. Bingham [14]) where the fluid will not flow until a stress exceeding a
yield stress is applied [12]. An example of fluid showing this behaviour is toothpaste. Fig. 2.1
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represents a classification of fluids with shear stress as a function of the shear rate, according with
the referred behaviors.

Shear rate -
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-

Figure 2.1: Classification of fluids with shear stress as a function of shear rate: shear thinning,
shear thickening, Newtonian fluids and Bingham plastic.

Other effect is thixotropy, which is the decreasing of the viscosity over time, when a constant
shear stress is applied [11, 13]. The non-Newtonian fluids can also be inelastic or viscoelastic
fluids, and as described before, the latter ones being the object of study of this thesis. In the next
section, different types of fluids and their constitutive equations are presented.

2.1.3 Constitutive equations

The stress tensor 𝝉, can be described by different rheological models depending on the fluid. When
an equation is specified for 𝝉, that equation is known as the constitutive equation for that fluid. The
simplest constitutive equation for incompressible Newtonian fluids (like water, air, etc) is given by:

𝝉 = 2𝜇D, (2.5)

where D = 1
2

(
∇u+ (∇u)𝑇

)
is the rate of deformation tensor, ∇u is the velocity gradient tensor and

𝜇 is the viscosity. For a Newtonian fluid, the viscosity, 𝜇, is constant (for a given temperature and
pressure). This means that, the applied stress is linearly proportional to the rate of deformation,
as originally hypothesized by Newton [15], and the viscosity, 𝜇, is the constant of proportionality.
For a Newtonian fluid, the Reynolds number, 𝑅𝑒, that is a dimensionless parameter that relates
inertial forces with viscous forces [10] is given by:

𝑅𝑒 =
𝜌𝑈𝐿

𝜇
(2.6)

where𝑈 is the characteristic velocity and 𝐿 is a characteristic length scale.
There are other constitutive equations where the viscosity is not constant (for a given temper-

ature and pressure), and depend on the invariants of the rate of deformation tensor. The fluids
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following this constitutive equation are known as generalised Newtonian fluids (GNF). In this case,
the constitutive equation for 𝝉 is given by:

𝝉 = 2𝜂 ( ¤𝛾)D, (2.7)

where 𝜂 ( ¤𝛾) is the viscosity function and ¤𝛾 is the second invariant of the rate of deformation tensor.
For simple shear flows, ¤𝛾 is just the shear rate.

There are many viscosity functions for the GNF, with different degrees of complexity. One of
such model is the power-law model [1], where viscosity is a power law function of ¤𝛾:

𝜂 ( ¤𝛾) = 𝑎 ¤𝛾𝑛−1, (2.8)

where 𝑎 is the consistency index and 𝑛 is the power-law index.
Another viscosity model is the Carreau-Yasuda model [1], given by:

𝜂 ( ¤𝛾) = 𝜂∞ + (𝜂0 −𝜂∞)
[
1+ (𝜆 ¤𝛾)𝑏

] 𝑛−1
𝑏 , (2.9)

where 𝜂∞ is the infinite-shear-rate viscosity, 𝑏 is a parameter describing the smoothness of the
transition between the first Newtonian plateau and the power-law region and 𝜆 is a time constant
for the fluid, that determines the shear rate at which the transition from the zero-shear-rate plateau
to the power-law region occurs.

The GNF models are not suitable for flows where elastic effects are relevant [11], like the case
of viscoelastic fluids. So, for viscoelastic fluids, the constitutive equations have in consideration
the viscosity and the elastic (memory) effects.

For viscoelastic fluids, the stress tensor 𝝉 of Eq. (2.3) is given by 𝝉 = 𝝉𝑝 + 𝝉𝑠, with 𝝉𝑝

representing the polymeric contribution and 𝝉𝑠 the solvent contribution. Since the stress tensor is
the sum of the solvent and polymer stress contributions, the viscosity ratio, 𝛽𝜂 , can be defined as
the ratio between the Newtonian solvent viscosity, 𝜂𝑠, and the zero shear-rate viscosity, 𝜂0. The
viscosity ratio is given by:

𝛽𝜂 =
𝜂𝑠

𝜂0
=

𝜂𝑠

𝜂𝑠 +𝜂𝑝
(2.10)

where 𝜂𝑝 is the polymeric viscosity coefficient. 𝜂0, the total zero shear-rate viscosity, is equal to
𝜂𝑝 +𝜂𝑠. So, for a viscoelastic fluid, the Reynolds number, 𝑅𝑒, is usually defined by:

𝑅𝑒 =
𝜌𝑈𝐿

𝜂0
. (2.11)

From now on, the notation 𝝉 will be used for 𝝉𝑝.

One well known viscoelastic model is the Maxwell model. Maxwell [16] combined the ideas
of viscosity and elasticity to obtain an equation for a viscoelastic fluid, because he initially thought
that gases might be viscoelastic [1]. The main idea behind this model is that a fluid behaves as
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a purely Hookean elastic material, with modulus of elasticity 𝐺, for fast deformations, and as
Newtonian fluid for slow deformations. Therefore, for linear solids the stress is given by:

𝜏 = 𝐺𝛾𝑒, (2.12)

that means that the stress is proportional to the deformation (𝛾𝑒). When the deformation is slow and
the material behaves like a liquid, the rate of deformation, ¤𝛾𝑣 , is used instead of the deformation,
so the stress is given by:

𝜏 = 𝜂𝑝 ¤𝛾𝑣 . (2.13)

This lead us to the total rate of deformation:

¤𝛾 = ¤𝛾𝑒 + ¤𝛾𝑣 . (2.14)

So, the scalar version of the Maxwell model is:

¤𝛾 = 1
𝐺

d𝜏
d𝑡

+ 𝜏

𝜂𝑝
. (2.15)

Integrating Eq. (2.15), the following equation is obtained:

𝜏 (𝑡) =
∫ 𝑡

−∞

𝜂𝑝

𝜆
exp

(
−

( 𝑡 − 𝑠
𝜆

))
¤𝛾 (𝑠) d𝑠. (2.16)

Therefore, this equation means, that at certain moment, the stress depends on the strain (deforma-
tion) history. The dependence is controlled by 𝜂𝑝

𝜆
exp

(
−

(
𝑡−𝑠
𝜆

) )
, that is a memory function and

𝜆 =
𝜂𝑝

𝐺
is the relaxation time [11]. Using a tensor form, the Maxwell model given by Eq. (2.15)

can be rewritten as,

𝝉 +𝜆𝜕𝝉
𝜕𝑡

= 2𝜂𝑝D. (2.17)

To measure the influence of the relaxation time, the Deborah number, 𝐷𝑒, is used, and is given
by:

𝐷𝑒 =
𝜆𝐿

𝑈
, (2.18)

where 𝜆 is the characteristic relaxation of a fluid and 𝐿/𝑈 is the time scale of an observed
phenomena. When talking about the relaxation time, another dimensionless parameter appears,
the Weissenberg number,𝑊𝑖, that is a parameter that measures the elasticity of a fluid and indicates
the degree of anisotropy or orientation generated by the deformation [10]. For a steady simple
shear flow, for example, the dominant elastic force is due to the first normal-stress difference,
Ψ1 = 𝜏𝑥𝑥 −𝜏𝑦𝑦 , and the viscous force is simply the shear stress 𝜏𝑥𝑦 [17]. This way, the Weissenberg
number is given by:
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𝑊𝑖 =
Ψ1
𝜏𝑥𝑦

. (2.19)

So, depending on the rheological model used, the Weissenberg number can be:

𝑊𝑖 =
𝜆𝑈

𝐿
, (2.20)

which depends on the characteristic relaxation of a fluid and on the velocity and length scales.
Deborah number and Weissenberg number have different origins and they quantify different effects,
but they are frequently used as synonyms. To know more about this subject, please see the work
of Poole [17].

The Maxwell model was applicable for small deformations, so later Oldroyd [18] generalised
it for large deformations [11, 19]. Since then is called upper-convected Maxwell (UCM) model
and the equation gets the following form:

𝝉 +𝜆▽𝝉 = 2𝜂𝑝D, (2.21)

where ▽𝝉 is the upper-convected derivative, given by

▽
𝝉 =

D𝝉

D𝑡
−𝝉 · ∇u− (∇u)𝑇 · 𝝉. (2.22)

The upper-convected derivative allows a frame-invariant method by taking into account the defor-
mation that the fluid particles experience in flow [12].

Oldroyd [18] also proposed another constitutive model based on Jeffreys model [1]. Jeffreys
model is the model formed by adding a Newtonian solvent stress to the polymer stress given by the
Maxwell model, that is the time derivative of the rate deformation tensor, and is given by:

𝝉 +𝜆𝜕𝝉
𝜕𝑡

= 2𝜂𝑝
(
D+𝜆𝑟

𝜕D
𝜕𝑡

)
(2.23)

where 𝜆𝑟 = 𝜆 𝜂𝑠
𝜂𝑝

is the retardation time.

So, the model proposed by Oldroyd for invariant conditions is given by:

𝝉 +𝜆▽𝝉 = 2𝜂𝑝
(
D+𝜆𝑟

▽
D
)
, (2.24)

and is known as Oldroyd-B model.

There are other constitutive equations, like the ones that can be derived from the molecular
theory. One of those models is the Giesekus model [20] and its constitutive equation is given by:

𝝉 + 𝛼𝐺𝜆
𝜂𝑝

(𝝉 · 𝝉) +𝜆▽𝝉 = 2𝜂𝑝D, (2.25)

where 𝛼𝐺 is the so-called mobility parameter. This model reproduces well many of the
characteristics of polymeric fluids [11].
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Phan-Thien and Tanner derived a model from the Lodge–Yamamoto type of network theory for
polymeric fluids, in which the network junctions of the polymeric network allow a certain effective
slip and the rate of destruction of junctions depends on the state of stress in the network [21]. The
constitutive equation proposed by Phan-Thien and Tanner, for the case of an isothermal flow, is
given by:

𝑓 (𝜏𝑘𝑘) 𝝉 +𝜆
□
𝝉 = 2𝜂𝑝D (2.26)

with

𝑓 (𝜏𝑘𝑘) = 1+ 𝜀𝜆
𝜂𝑝
𝜏𝑘𝑘 , (2.27)

where 𝑓 (𝜏𝑘𝑘) is the function that represents the rate of destruction of junctions, 𝜏𝑘𝑘 = 𝜏𝑥𝑥 +𝜏𝑦𝑦 +𝜏𝑧𝑧
is the trace of the extra-stress tensor, 𝜀 represents the extensibility parameter and □𝝉 represents the
Gordon–Schowalter derivative, defined by:

□
𝝉 =

𝜕𝝉

𝜕𝑡
+u · ∇𝝉− (∇u)𝑇 · 𝝉−𝝉 · (∇u) + 𝜉 (𝝉 ·D+D · 𝝉) (2.28)

and parameter 𝜉 accounts for the slip between the molecular network and the continuous medium.
This model is known as the linear Phan-Thien–Tanner (PTT) model (linearPTT).

Later, Phan-Thien proposed a new model, based on an exponential function form [22] and
showed that this new function would be quite adequate to represent the rate of destruction of
junctions, but the parameter 𝜀 should be of the O

(
10−2) . Therefore, for that model function

𝑓 (𝜏𝑘𝑘) is now given by:

𝑓 (𝜏𝑘𝑘) = exp
(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
(2.29)

and this model is known as exponential PTT (expPTT) model.

These classical functions of PTT have been frequently used in the literature, and in fact Ferrás et
al. [23] considered a new quadratic version of the PTT (quadraticPTT) model, i.e. a second-order
expansion of the exponential model, given by:

𝑓 (𝜏𝑘𝑘) = 1+ 𝜀𝜆
𝜂𝑝
𝜏𝑘𝑘 +

1
2

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)2
. (2.30)

In 2019, Ferrás et al. [3] considered a more general function for the rate of destruction of
junctions, that explores the generalities of the Mittag–Leffler function. This new function has two
fitting constants, in order to achieve additional fitting flexibility [3]. The Mittag–Leffler function
is defined by,

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑗=0

𝑧 𝑗

Γ (𝛼 𝑗 + 𝛽) , (2.31)
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with 𝛼, 𝛽 real and positive and Γ is the Gamma function, defined by Γ (𝑡) =
∫ ∞

0
𝑥𝑡−1𝑒−𝑥𝑑𝑥. When

𝛼 = 𝛽 = 1, the Mittag–Leffler [24] function reduces to the exponential function and when 𝛽 = 1,
the original one-parameter Mittag–Leffler function, 𝐸𝛼, is obtained. Thus, the new function of
the trace of stress tensor, that now will be denoted by 𝐾 (.) instead of 𝑓 (.) (to distinguish from the
classical cases) and that describes the network destruction of junctions is written as:

𝐾 (𝜏𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
, (2.32)

where the normalisation Γ (𝛽) is used to ensure that 𝐾 (0) = 1, for all choices of 𝛽.

Fig. 2.2 presents the variation of function 𝐾 (𝑧), considering 𝑧 = 𝜀𝜆
𝜂𝑝
𝜏𝑘𝑘 , for different values of

𝛼 and 𝛽. When the values of 𝛼 and 𝛽 decrease, different rates of increase in the rate of destruction
of junctions are obtained. Notice that when the exponential function (𝛼 = 𝛽 = 1) is compared with
different values of 𝛼 and 𝛽, the Mittag–Leffler function allows for a wider range of variation of
such rates and thus more flexibility in fitting the experimental data [3].

(a) (b)

Figure 2.2: Influence of 𝛼 and 𝛽 in the shape of 𝐾 (𝑧) with 𝑧 = 𝜀𝜆
𝜂𝑝
𝜏𝑘𝑘 : (a) 𝛼 = 1; (b) 𝛽 = 1.

Now, the gPTT model, given by Eq. (2.32), will be compared with the linear, the exponential
and the quadratic versions of the PTT, given by Eqs. (2.27), (2.29) and (2.30), respectively.

To compare these models, the dimensionless material properties in steady shear flow of the
three versions of the PTT model are studied and compared with the gPTT model, considering
different values of 𝛼 and 𝛽.

The material functions can be obtained considering a steady-state flow in the 𝑥-direction, with
the velocity vector, u = ( ¤𝛾𝑦,0,0), where ¤𝛾 is the shear rate. For this canonical flow, considering
the parameter 𝜉 = 0, the constitutive Eq. (2.26) reduces to:
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
𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑥 = 2𝜆 ¤𝛾𝜏𝑥𝑦
𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑦 = 𝜂𝑝 ¤𝛾.

𝜏𝑦𝑦 = 𝜏𝑧𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0

(2.33)

From Eq. (2.33), 𝜏𝑘𝑘 = 𝜏𝑥𝑥 and applying some algebra in the first two equations, a relationship
between the shear stress and the normal stress is found,

𝜏𝑥𝑥 = 2
𝜆

𝜂𝑝
𝜏2
𝑥𝑦 . (2.34)

The viscometric material functions can also obtained: the steady shear viscosity, 𝜇 ( ¤𝛾), the first
normal stress difference coefficient, Ψ1 ( ¤𝛾), and the second normal stress difference coefficient,
Ψ2 ( ¤𝛾), which are given by:

𝜇 ( ¤𝛾) =
𝜏𝑥𝑦

¤𝛾 , (2.35)

Ψ1 ( ¤𝛾) =
𝜏𝑥𝑥 − 𝜏𝑦𝑦

¤𝛾2 , (2.36)

Ψ2 ( ¤𝛾) =
𝜏𝑦𝑦 − 𝜏𝑧𝑧

¤𝛾2 . (2.37)

As for other versions of the PTT models for which 𝜉 = 0, the second normal stress coefficient is
null, Ψ2 ( ¤𝛾) = 0, so, it is only needed to find 𝜇 ( ¤𝛾) and Ψ1 ( ¤𝛾). Therefore, manipulating the second
equation of the system of equations (Eq. (2.33)) the shear stress can be obtained,

𝜏𝑥𝑦 =
𝜂𝑝 ¤𝛾
𝐾 (𝜏𝑥𝑥)

. (2.38)

The dimensionless expression for the steady shear viscosity becomes,

𝜇 ( ¤𝛾)
𝜂𝑝

=
𝜏𝑥𝑦

𝜂𝑝 ¤𝛾
=

1
𝐾 (𝜏𝑥𝑥)

(2.39)

and the dimensionless first normal stress coefficient is given by,

Ψ1 ( ¤𝛾)
2𝜂𝑝𝜆

=
𝜏𝑥𝑥

2𝜂𝑝𝜆 ¤𝛾2 =
1

[𝐾 (𝜏𝑥𝑥)]2 . (2.40)

Ferrás et al. [23], showed that, for the linearPTT, the quadraticPTT and the expPTT, the
dimensionless material functions depend on the generalised Deborah number,

√
𝜀 (𝜆 ¤𝛾). Here, it

will shown that the same happens for the gPTT model. To obtain the material functions for the
gPTT model, the non-linear system of equations (Eq. (2.33)) is solved, and is written in terms of
𝜏𝑥𝑥 in the non-linear form:

1
2
𝐾 (𝜏𝑥𝑥)2 𝜀𝜆

𝜂𝑝
𝜏𝑥𝑥 = 𝜀 (𝜆 ¤𝛾)2 . (2.41)
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Giving values to 𝜀𝜆
𝜂𝑝
𝜏𝑥𝑥 ,

√
𝜀 (𝜆 ¤𝛾) is found using Eq. (2.41). Then, the function 𝐾 (𝜏𝑥𝑥) is

directly calculated, allowing us to obtain the material functions given by Eqs. (2.39) and (2.40).
Fig. 2.3 presents the dimensionless material properties for a steady-state planar Couette flow

using the three versions of the PTT (linear, quadratic, and exponential) and also the gPTT model.
In Fig. 2.3 (a), 𝛽 = 1 and different values of 𝛼 are used, and, in Fig. 2.3 (b), 𝛼 = 1 and different
values of 𝛽 are used.

(a) (b)

Figure 2.3: Dimensionless material functions in a steady-state Couette flow using the three versions
of the PTT and the gPTT model: (a) 𝛽 = 1; (b) 𝛼 = 1.

It is observed that the gPTT model allows a broader description of the thinning properties of
the fluid. Both the thinning rate and the onset of the thinning behavior can be controlled by the
new model parameters. Therefore, this new model must be further explored for canonical flows.

This model was extensively studied for strong flows in [3], where an explanation on the influence
of the new model parameters was provided.

Note that the expPTT model was developed to take into account the strong destruction of
network junctions, which occurs, for example, in strong flows (e.g., extensional flows). Although
the expPTT model was derived for such strong flows, it was shown in [3] that the gPTT model
could slightly improve the fitting for shear (weak) flows, considering polymer solutions. In this
thesis will be considered polymer melts.

Fig. 2.4 shows that the gPTT model provides a much better fitting to weak flows of polymer
melts (low density polyethylene melt [25]), even when using only one extra parameter (𝛼).

To quantify the error incurred during the fitting process, a mean square error was used, given
by:

𝑒𝑟𝑟𝑜𝑟 =

𝑁𝜇∑︁
𝑖

[
log𝜇( ¤𝛾)𝑖 − log𝜇( ¤𝛾) 𝑓 𝑖𝑡𝑖

]2 +
𝑁Ψ1∑︁
𝑗

[
logΨ1( ¤𝛾) 𝑗 − logΨ1( ¤𝛾) 𝑓 𝑖𝑡 𝑗

]2
, (2.42)

𝑒𝑟𝑟𝑜𝑟𝜇 =

𝑁𝜇∑︁
𝑖

[
log𝜇( ¤𝛾)𝑖 − log𝜇( ¤𝛾) 𝑓 𝑖𝑡𝑖

]2
, (2.43)
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𝑒𝑟𝑟𝑜𝑟Ψ1 =

𝑁Ψ1∑︁
𝑗

[
logΨ1( ¤𝛾) 𝑗 − logΨ1( ¤𝛾) 𝑓 𝑖𝑡 𝑗

]2
, (2.44)

with 𝑁𝜇 and 𝑁Ψ1 representing the number of experimental points obtained for 𝜇( ¤𝛾) and Ψ1( ¤𝛾),
respectively. The notation 𝑓 𝑖𝑡 is used to denote the fitted results.
A better fit was obtained for the gPTT model when compared to the original expPTT model. The
total mean square error obtained for the expPTT was 29.7, being five times the error obtained for
gPTT, for which a value of 6.0 was obtained. The gPTT model allows a better fit for low and
high shear rates for the first normal stress difference (where the 𝑒𝑟𝑟𝑜𝑟Ψ1 obtained for the expPTT
model is 20 times higher than the error obtained for the gPTT). For the shear viscosity, the gPTT
model predicts a lower value (when compared to experimental data) for high shear rates (although
it should be remarked that the 𝑒𝑟𝑟𝑜𝑟𝜇 is four times smaller when compared to the expPTT model).

Figure 2.4: Fitting of the shear viscosity and the first normal stress difference coefficient
to rheological data from Laun [25]. The gPTT model only considers the one-parameter
Mittag–Leffler function, 𝐸𝛼. By adding only one parameter, a fitting error (Eq. (2.42)) of
29.7 and 6 for the expPTT and gPTT models, respectively, was obtained. The symbols represent
the experimental data from Laun [25] for a low density polyethylene melt.

Based on what is described above, this thesis presents analytical and semi-analytical solutions
for canonical flows, described by the gPTT constitutive equation. In the next sections, the gPTT
model is applied to the Couette-Poiseuille flow in section 2.2, to annular flow in section 2.3 and to
EO flow in section 2.4. The capability of this model to describe such flows is studied by performing
a parametric study on the influence of the gPTT parameters.
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2.2 Couette-Poiseuille flow

In this section, new semi-analytical solution for Couette-Poiseuille flow using the gPTT constitutive
model are presented. A parametric study is performed, studying the influence of the gPTT
parameters.

Each contribution related to the work objectives, presented in section 2.2, are explained in
detail. Given that the present dissertation falls into the category of multi-paper dissertation, and
in order to keep repetition of information at a minimum level, the complete paper related to this
section is presented in Part III of this thesis.

2.2.1 Problem definition

The Couette flow is the flow of a fluid in the space between two parallel plates in which one of the
plates is moving tangentially to the other. The motion of the plate creates a shear stress on the fluid,
so the flow is driven by the action of the viscous forces that act on the fluid. Fig. 2.5 illustrates the
geometry of the Couette flow.
Fig. 2.5 (a) represents a planar Couette flow, where the pressure gradient is null. If a pressure
gradient is applied to the flow, a planar Couette-Poiseuille flow is obtained, as it is represented in
Fig. 2.5 (b). There can also be some slip between the fluid and the wall, and that is the situation
represented in Fig. 2.5 (c).

(a) (b) (c)

Figure 2.5: Illustration of the geometry of: (a) planar Couette flow; (b) Couette flow with an
imposed pressure gradient (Couette–Poiseuille flow); (c) Couette flow with an imposed pressure
gradient and asymmetric wall slip (Couette–Poiseuille flow with wall slip).

To obtain the velocity profile for the Couette–Poiseuille flow, the following no-slip boundary
conditions, are applied, that is null velocity at the immobile wall:

𝑢 (0) = 0 (2.45)

and an imposed constant velocity,𝑈, at the moving wall,

𝑢 (ℎ) =𝑈. (2.46)

To obtain the velocity profile for the Couette–Poiseuille flow under asymmetric slip, the slip
boundary conditions applied are the linear and nonlinear Navier slip laws. The nonlinear Navier
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slip law [26] states that the friction coefficient, 𝑘 , is a function of the shear stress 𝜏𝑥𝑦 , providing a
non-linear power function given by:

𝑢𝑤 = 𝑘
(
∓𝜏𝑥𝑦,𝑤

)𝑚
, (2.47)

where 𝑚 > 0 (𝑚 ∈ R+), the signs ∓ stand for the upper − and bottom + walls, assuming there is
flow between parallel plates, and the coordinate system is given as in Fig. 2.5 (c). Note that, when
𝑚 = 1, the Navier linear slip law [27] is recovered.

2.2.2 Analytical solution

The equations governing the flow of an isothermal incompressible fluid are the continuity,

∇ ·u = 0 (2.48)

and the momentum equation,

𝜌
Du
D𝑡

= −∇𝑝 +∇ · 𝝉, (2.49)

where u is the velocity vector, 𝜌 is the density, D
D𝑡

is the material derivative, 𝑝 is the pressure, 𝝉 is
the extra-stress tensor and 𝑡 is the time.

The constitutive equation for the gPTT model is given by:

𝐾 (𝜏𝑘𝑘) 𝝉 +𝜆
□
𝝉 = 2𝜂𝑝D (2.50)

where
𝐾 (𝜏𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
, (2.51)

is the function of the trace of extra-stress tensor and

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑗=0

𝑧 𝑗

Γ (𝛼 𝑗 + 𝛽) , (2.52)

is the Mittag–Leffler function with 𝛼, 𝛽 real and positive and Γ is the Gamma function.
𝜏𝑘𝑘 is the trace of the extra-stress tensor, 𝜂𝑝 is the polymeric viscosity coefficient, D is the
rate of deformation tensor, 𝜀 represents the extensibility parameter and 𝜆 is the relaxation time of
the fluid. □𝝉 represents the Gordon–Schowalter derivative (Eq. (2.28)).

Considering a Cartesian coordinate system where 𝑥, 𝑦, and 𝑧 are the streamwise, transverse
and spanwise directions, respectively, and assuming that the flow is fully-developed, the governing
equations can be further simplified since:

𝜕

𝜕𝑥
= 0 (except for pressure),

𝜕𝑣

𝜕𝑦
= 0,

𝜕𝑝

𝜕𝑦
= 0. (2.53)
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Therefore, Eq. (2.49) can be integrated, leading to the following general equation for the shear
stress:

𝜏𝑥𝑦 = 𝑃𝑥𝑦 + 𝑐1, (2.54)

where 𝑃𝑥 is the pressure gradient in the 𝑥 direction, 𝜏𝑥𝑦 is the shear stress and 𝑐1 is a stress constant.
This equation is valid regardless of the rheological constitutive equation.

The constitutive equations (Eq. (2.50)) describing this flow can be further simplified leading
to:

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑥 = (2− 𝜉) (𝜆 ¤𝛾)𝜏𝑥𝑦 , (2.55)

𝐾 (𝜏𝑘𝑘)𝜏𝑦𝑦 = −𝜉 (𝜆 ¤𝛾)𝜏𝑥𝑦 , (2.56)

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑦 = 𝜂𝑝 ¤𝛾 + (1− 𝜉
2
) (𝜆 ¤𝛾)𝜏𝑦𝑦 −

𝜉

2
(𝜆 ¤𝛾)𝜏𝑥𝑥 , (2.57)

where the shear rate ¤𝛾 is a function of 𝑦 ( ¤𝛾(𝑦) ≡ d𝑢
d𝑦 ) and 𝜏𝑘𝑘 = 𝜏𝑥𝑥 +𝜏𝑦𝑦 +𝜏𝑧𝑧 . Under fully developed

flow conditions 𝜏𝑧𝑧 = 0. Assuming that 𝜉 = 0, Eq. (2.56) implies that 𝜏𝑦𝑦 = 0, and the trace of the
extra-stress tensor becomes 𝜏𝑘𝑘 = 𝜏𝑥𝑥 . Dividing Eq. (2.55) by Eq. (2.57), 𝐾 (𝜏𝑥𝑥) cancels out, and
a explicit relationship between the streamwise normal stress and the shear stress is obtained:

𝜏𝑥𝑥 = 2
𝜆

𝜂𝑝
𝜏2
𝑥𝑦 . (2.58)

Now, combining Eq. (2.57), (2.58), (2.54) and (2.51) the following shear rate profile is obtained,

¤𝛾(𝑦) = Γ(𝛽)𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

(𝑃𝑥𝑦 + 𝑐1)2

)
(𝑃𝑥𝑦 + 𝑐1)

𝜂𝑝
. (2.59)

2.2.3 Couette-Poiseuille flow: no-slip case

Now, applying the no-slip boundary conditions given by Eq. (2.45) and Eq. (2.46) and after some
simplifications, the dimensionless velocity profile is obtained:

𝑢(𝑦) = Γ(𝛽)
𝑃𝑥

∞∑︁
𝑗=0

©­­«
(
2𝜀𝑊𝑖2

) 𝑗 1
Γ(𝛼 𝑗 + 𝛽)

(
𝑃𝑥𝑦 + 𝑐1

)2 𝑗+2
− 𝑐1

2 𝑗+2

2 𝑗 +2
ª®®¬ (2.60)

with 𝑦 = 𝑦

ℎ
, 𝑢 (𝑦) = 𝑢(𝑦)

𝑈
, 𝑐1 =

𝑐1ℎ
𝜂𝑝𝑈

, 𝑃𝑥 =
𝑃𝑥ℎ

2

𝜂𝑝𝑈
and𝑊𝑖 = 𝜆𝑈

ℎ
representing the Weissenberg number.

The stress constant 𝑐1 is obtained, by solving numerically the following equation:

1 =
Γ(𝛽)
𝑃𝑥

∞∑︁
𝑗=0

©­­«
(
2𝜀𝑊𝑖2

) 𝑗 1
Γ(𝛼 𝑗 + 𝛽)

(
𝑃𝑥 + 𝑐1

)2 𝑗+2
− 𝑐1

2 𝑗+2

2 𝑗 +2
ª®®¬ . (2.61)

Now, the influence of the Mittag–Leffler function parameters 𝛼 and 𝛽 on the velocity profile
of the Couette–Poiseuille flow is investigated.
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(a) (b)

Figure 2.6: Velocity profiles calculated using Eq. (2.60) for Couette–Poiseuille flow considering
two different values of 𝜀𝑊𝑖2 and 𝑃𝑥 = −1: (a) 𝛽 = 1; (b) 𝛼 = 1. The velocity profiles with 𝛼 = 𝛽 = 1
correspond to the expPTT model.

Fig. 2.6 shows the velocity profiles obtained for the Couette–Poiseuille flow considering two
different 𝜀𝑊𝑖2 values, 𝑃𝑥 = −1 and different values of 𝛼 (Fig. 2.6 (a)) and 𝛽 (Fig. 2.6 (b)). In
Fig. 2.6 (a), with 𝛽 = 1, the flow rate decreases for 𝛼 > 1, while for 𝛼 < 1 it increases. As expected,
for a constant pressure gradient, the flow rate increases with the increasing of 𝜀𝑊𝑖2 due to shear
thinning. In Fig. 2.6 (b), with 𝛼 = 1, the trends are similar to the ones obtained in Fig. 2.6 (a), but
now the velocity profile is less sensitive to large values of 𝛽 (with 𝛽 > 1).

2.2.4 Couette-Poiseuille flow: asymmetric slip

For the Couette-Poiseuille flow under asymmetric slip, the velocity profile can be obtained inte-
grating the shear rate subject to the nonlinear Navier slip law. Using Eq. (2.47) at the immobile
bottom wall, the boundary condition is:

𝑢 (0) = 𝑘1(𝜏𝑥𝑦)𝑚1 , (2.62)

and at the moving upper wall,

𝑢 (ℎ) = 𝑘2(−𝜏𝑥𝑦)𝑚2 , (2.63)

where 𝑘1 and 𝑘2 correspond to friction coefficients. At the immobile bottom wall, 𝑦 = 0, and the
shear stress constant 𝑐1 is recovered, becoming:

𝑢 (0) = 𝑘1(𝑐1)𝑚1 . (2.64)
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At the moving upper wall, 𝑦 = ℎ, it is obtained:

𝑢 (ℎ) = 𝑘2(−(𝑃𝑥ℎ+ 𝑐1))𝑚2 . (2.65)

After some simplifications, this leads to the following dimensionless velocity profile:

𝑢(𝑦) = 𝑘2(−(𝑃𝑥 + 𝑐1))𝑚2 + Γ(𝛽)
𝑃𝑥

∞∑︁
𝑗=0

©­­«
(
2𝜀𝑊𝑖2

) 𝑗 (
𝑃𝑥𝑦 + 𝑐1

)2 𝑗+2
−

(
𝑃𝑥 + 𝑐1

)2 𝑗+2

(Γ(𝛼 𝑗 + 𝛽)) (2 𝑗 +2)
ª®®¬ , (2.66)

and the stress constant 𝑐1 can be obtained numerically, by solving the following equation:

𝑘2(−(𝑃𝑥 + 𝑐1))𝑚2 − 𝑘1(𝑐1)𝑚1 =
Γ(𝛽)
𝑃𝑥

∞∑︁
𝑗=0

©­­«
(
2𝜀𝑊𝑖2

) 𝑗 (
𝑃𝑥 + 𝑐1

)2 𝑗+2
− 𝑐1

2 𝑗+2

(Γ(𝛼 𝑗 + 𝛽)) (2 𝑗 +2)
ª®®¬ , (2.67)

with 𝑘 𝑖 = 𝑘𝑖𝑈𝑚𝑖−1 ( 𝜂𝑝

ℎ

)𝑚𝑖 , for 𝑖 = {1,2}.
Now, the influence of the Mittag–Leffler function parameters 𝛼 and 𝛽 on the velocity profile

of this flow is investigated.

Fig. 2.7 shows the velocity profiles obtained for the Couette–Poiseuille flow under asymmetric
slip, for 𝑘1 = 0.1, 𝑚1 = 2, 𝑃𝑥 = −1 and two different values of 𝜀𝑊𝑖2 are considered.

(a) (b)

Figure 2.7: Velocity profiles calculated using Eq. (2.66) for Couette–Poiseuille flow under
asymmetric slip considering two different values of 𝜀𝑊𝑖2, 𝑃𝑥 = −1, 𝑘1 = 0.1 and 𝑚1 = 2: (a)
𝛽 = 1; (b) 𝛼 = 1. The velocity profiles with 𝛼 = 𝛽 = 1 correspond to the expPTT model.
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Fig. 2.7 shows the velocity profiles obtained for the Couette–Poiseuille flow under asymmetric
slip considering two different values of 𝜀𝑊𝑖2, 𝑃𝑥 = −1, 𝑘1 = 0.1, 𝑚1 = 2 and different values of 𝛼
(Fig. 2.7 (a)) and 𝛽 (Fig. 2.7 (b)). In Fig. 2.7 (a), with 𝛽 = 1, as 𝜀𝑊𝑖2 increases, the influence of
the other parameters on the velocity profile also increases. This effect is enhanced as 𝛼 decreases.
From Fig. 2.7 (b), with 𝛼 = 1, it is observed that the effect of decreasing 𝛽 is similar to the one
presented in Fig. 2.7 (a).

Fig. 2.8 presents the variation of 𝑐1 obtained numerically from Eq. (2.67), as a function of 𝑘1,
for 𝑃𝑥 = −1 and 𝑚1 = 1. It is observed that the increase of the slip velocity, implies the decrease
of the shear stress coefficient. This effect is more significant for lower values of 𝜀𝑊𝑖2, presenting
(almost) linear dependence for 𝜀𝑊𝑖2 = 1.

(a) (b)

Figure 2.8: Variation of 𝑐1 as a function of slip coefficient 𝑘1 for Couette–Poiseuille flow with slip
at the immobile wall and no-slip at the moving wall. (a) Variation of 𝛼 with 𝛽 = 1; (b) variation of
𝛽 with 𝛼 = 1. The velocity profiles with 𝛼 = 𝛽 = 1 correspond to the expPTT model.

These works are published on papers [28] and [29], which can be found in Part III of this thesis.
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2.3 Annular flow

Annular fluid flows are usually found in industrial processes such as cable coating, food processing
and drilling. Usually in the drilling process, there is rotation of the inner cylinder together with
cylinder eccentricity, but in this thesis is going to be considered the simplified case. In these
processes, the fluids are mixtures of various substances, such as water, particles, oils, and other
long-chain molecules, that gives the fluid non-Newtonian properties.

Many analytical and numerical solutions for annular flows using different constitutive
rheological models or different boundary conditions can be found in the literature [19, 23, 30–38].
Among these works, all the different variants of the PTT model have already been studied: linear,
quadratic and exponential. The exception is for the gPTT model [3], that uses the Mittag–Leffler
function (Eq. 2.31).

In this section, new semi-analytical solution for the annular flow using the gPTT constitutive
model are presented. For that, a parametric study is performed studying the influence of the gPTT
parameters.

Each contribution related to the work objectives, presented in section 2.3, is explained in detail.
Given that the present dissertation falls into the category of multi-paper dissertation, and in order
to keep repetition of information at a minimum level, the complete paper related to this section is
presented in Part III of this thesis.

2.3.1 Problem definition

Fig. 2.9 illustrates a pressure-driven annular flow of a viscoelastic gPTT fluid, being 𝑅 the radius
of the outer cylinder and 𝑎𝑅 the radius of the inner cylinder, with 0 < 𝑎 < 1.
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r
R

aR
q

𝛿

bR

Figure 2.9: Schematic of the flow in an annular region.

The boundary conditions considered are the no-slip boundary conditions at the inner and the
outer cylinders, that means, 𝑢 (𝑅) = 0 and 𝑢 (𝑎𝑅) = 0.

2.3.2 Analytical solution

To derive the analytical solution for the gPTT model, a steady fully-developed pressure-driven
annular flow is considered (cf. Fig. 2.9). For that, a unidirectional flow in cylindrical coordinates
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is considered, where the outer radius is 𝑅 and the inner radius is 𝑎𝑅.

The equations governing the flow of an isothermal incompressible fluid are the continuity,

∇ ·u = 0 (2.68)

and the momentum equation,

𝜌
Du
D𝑡

= −∇𝑝 +∇ · 𝝉, (2.69)

where u is the velocity vector, 𝜌 is the density, D
D𝑡

is the material derivative, 𝑝 is the pressure, 𝝉 is
the extra-stress tensor and 𝑡 is the time.

The constitutive equation for the gPTT model is given by:

𝐾 (𝜏𝑘𝑘) 𝝉 +𝜆
□
𝝉 = 2𝜂𝑝D (2.70)

where
𝐾 (𝜏𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
, (2.71)

is the function of the trace of extra-stress tensor and

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑗=0

𝑧 𝑗

Γ (𝛼 𝑗 + 𝛽) , (2.72)

is the Mittag–Leffler function with 𝛼, 𝛽 real and positive and Γ is the Gamma function.
𝜏𝑘𝑘 is the trace of the extra-stress tensor, 𝜂𝑝 is the polymeric viscosity coefficient, D is the
rate of deformation tensor, 𝜀 represents the extensibility parameter and 𝜆 is the characteristic
relaxation of the fluid. □𝝉 represents the Gordon–Schowalter derivative (Eq. (2.28)).

The momentum equation, Eq. (2.69), simplifies to

1
𝑟

d (𝑟𝜏𝑟 𝑧)
d𝑟

= 𝑃𝑧 , (2.73)

where 𝑃𝑧 ≡ d𝑝
d𝑧 is the constant streamwise pressure gradient and 𝜏𝑟 𝑧 is the shear stress.

In order to obtain closed form analytical solutions, the slip parameter in the Gordon-Schowalter
derivative (Eq. 2.28) is set to 𝜉 = 0. Therefore, the constitutive equation for the gPTT model for
this flow can be further simplified, leading to:

𝐾 (𝜏𝑘𝑘)𝜏𝑧𝑧 = 2𝜆 ¤𝛾𝜏𝑟 𝑧 , (2.74)

𝐾 (𝜏𝑘𝑘)𝜏𝑟𝑟 = 0, (2.75)

𝐾 (𝜏𝑘𝑘)𝜏𝑟 𝑧 = 𝜂𝑝 ¤𝛾, (2.76)
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where the velocity gradient ¤𝛾 is a function of 𝑟 ( ¤𝛾(𝑟) ≡ d𝑢
d𝑟 ) and 𝜏𝑘𝑘 = 𝜏𝜃 𝜃 + 𝜏𝑧𝑧 + 𝜏𝑟𝑟 is the trace of

the extra-stress tensor. Under fully-developed flow conditions, 𝜏𝜃 𝜃 = 0 and 𝜏𝑟𝑟 = 0, thus the trace
of the extra-stress tensor becomes 𝜏𝑘𝑘 = 𝜏𝑧𝑧 .

Integrating the momentum equation results in,

𝜏𝑟 𝑧 =
𝑃𝑧

2
𝑟 + 𝑐

𝑟
(2.77)

where 𝑐 is a constant that results from the integration. Assuming that 𝜏𝑟 𝑧 = 0 at 𝑟 = 𝑏𝑅 (the location
of the velocity maximum, see Fig. 2.9), with 𝑎 < 𝑏 < 1, the integration constant (𝑐 =−(𝑃𝑧/2)𝑏2𝑅2),
is calculated, resulting in the following shear stress distribution,

𝜏𝑟 𝑧 =
−𝑃𝑧𝑏𝑅

2

(
𝑏𝑅

𝑟
− 𝑟

𝑏𝑅

)
. (2.78)

Dividing Eq. (2.74) by Eq. (2.76) results in the following relationship between normal and shear
stresses,

𝜏𝑧𝑧 =
2𝜆
𝜂𝑝
𝜏2
𝑟 𝑧 . (2.79)

Solving Eq. (2.74) for ¤𝛾, and using Eq. (2.78) and Eq. (2.79), results in the following velocity
gradient distribution:

d𝑢
d𝑟

= −Γ(𝛽)
𝜂𝑝

𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

(
𝑃𝑧𝑏𝑅

2

(
𝑏𝑅

𝑟
− 𝑟

𝑏𝑅

))2
)
𝑃𝑧𝑏𝑅

2

(
𝑏𝑅

𝑟
− 𝑟

𝑏𝑅

)
. (2.80)

The velocity gradient is written in dimensionless form, using the Weissenberg number, that for this
case is defined as, 𝑊𝑖 = 𝜆𝑈𝑐/𝛿, where 𝑈𝑐 = −𝑃𝑧𝛿

2/𝜂𝑝 is a characteristic velocity of the flow and
𝛿 is the gap between the two cylinders in the annulus. It is also defined that 𝑢 = 𝑢/𝑈𝑐 and 𝑟 = 𝑟/𝛿
as the normalized radius/distance between the inner and outer cylinders (𝑅 = 𝑅/𝛿). This gives the
following dimensionless velocity gradient:

d𝑢
d𝑟

=
Γ(𝛽)

2

(
𝑏2𝑅

2

𝑟
− 𝑟

)
𝐸𝛼,𝛽

©­«𝜀𝑊𝑖
2

2

(
𝑏2𝑅

2

𝑟
− 𝑟

)2ª®¬ . (2.81)

The velocity profile is now obtained numerically, solving the nonlinear problem, where given
𝜀𝑊𝑖2 and 𝑎, the value of 𝑏 needs to be found and satisfies,∫ 𝑅

𝑎𝑅

d𝑢
d𝑟

d𝑟 = 0. (2.82)

Using the value of 𝑏, then the velocity profile is computed:

𝑢(𝑟) =
∫ 𝑟

𝑎𝑅

Γ(𝛽)
2

(
𝑏2𝑅

2

𝑟
− 𝑟

)
𝐸𝛼,𝛽

©­«𝜀𝑊𝑖
2

2

(
𝑏2𝑅

2

𝑟
− 𝑟

)2ª®¬ d𝑟, (2.83)
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where 0 < 𝑎 < 1 is defined by the user. Eq. (2.83) results from the no-slip boundary condition,
𝑢(𝑅) = 0. The velocity profile, Eq. (2.83), can be easily approximated numerically by a simple
quadrature rule. The solution of Eq. (2.82) can be obtained by defining 𝐹 (𝑏) =

∫ 𝑅

𝑎𝑅

d𝑢
d𝑟 𝑑𝑟. So,

there exists 0 < 𝑎 < 𝑏 < 1 such that 𝐹 (𝑏) = 0.

Eq. (2.81) is further expanded using the definition of the Mittag–Leffler function, resulting in:

d𝑢
d𝑟

=
Γ(𝛽)

2

(
𝑏2𝑅

2

𝑟
− 𝑟

) ∞∑︁
𝑗=0

1
Γ (𝛼 𝑗 + 𝛽)

©­«𝜀𝑊𝑖
2

2

(
𝑏2𝑅

2

𝑟
− 𝑟

)2ª®¬
𝑗

(2.84)

=
Γ(𝛽)

2

∞∑︁
𝑗=0

1
Γ (𝛼 𝑗 + 𝛽)

(
𝜀𝑊𝑖2

2

) 𝑗
(
𝑏2𝑅

2

𝑟
− 𝑟

)2 𝑗+1

(2.85)

and the velocity profile is obtained from the integration of each term in this sum, leading to the
following expression:

𝑢(𝑟) = Γ(𝛽)
2

∞∑︁
𝑗=0

1
Γ (𝛼 𝑗 + 𝛽)

(
𝜀𝑊𝑖2

2

) 𝑗 ∫ 𝑟

𝑎𝑅

(
𝑏2𝑅

2

𝑟
− 𝑟

)2 𝑗+1

d𝑟. (2.86)

The integral
∫ (

𝐴
𝑟
− 𝑟

)2 𝑗+1
d𝑟, with 𝐴 = 𝑏2𝑅

2, is easily computed using the Newton’s binomial.
So, the velocity profile, is given by:

𝑢(𝑟) = Γ(𝛽)
2

∞∑︁
𝑗=0

1
Γ (𝛼 𝑗 + 𝛽)

(
𝜀𝑊𝑖2

2

) 𝑗 
2 𝑗+1∑︁
𝑘=0

(
2 𝑗 +1
𝑘

) ∫ 𝑟

𝑎𝑅

(
𝑏2𝑅

2

𝑟

)2 𝑗+1−𝑘

(−𝑟)𝑘d𝑟
 (2.87)

and is rewritten as:

𝑢(𝑟) = Γ(𝛽)
2

∞∑︁
𝑗=0

1
Γ (𝛼 𝑗 + 𝛽)

(
𝜀𝑊𝑖2

2

) 𝑗
[2 𝑗+1∑︁
𝑘=0

(
2 𝑗 +1
𝑘

)
(−1)𝑘

(
𝑏2𝑅

2)2 𝑗+1−𝑘
𝑓𝑘 𝑗 (𝑎,𝑟)

]
(2.88)

where:

𝑓𝑘 𝑗 (𝑎,𝑟) =


ln

(
𝑟

𝑎𝑅

)
, if 𝑘 = 𝑗

𝑟2(𝑘− 𝑗)−(𝑎𝑅)2(𝑘− 𝑗)

2(𝑘− 𝑗 ) , if 𝑘 ≠ 𝑗

. (2.89)

Although Eq. (2.88) is an infinite series, a solution with a fair number of correct decimal
places is obtained (depending on the problem and the parameters used). The numerical solution
of the velocity profile given by Eq. (2.83) is compared with the analytical solution of Eq. (2.88).
These results are obtained using the Mathematica software version 13.3 and first it is considered a
high-precision numerical solution, where the value of 𝑏 is obtained using the secant method, and
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then Eq. (2.81) is numerically integrated. This highly accurate numerical solution of the velocity
profile is then used as a reference to perform an investigation of the influence of the number of
terms in the series on the error of the solution. The new truncated solution is obtained from
Eq. (2.88), truncating the sum with 𝑗 +1 terms. It is considered 200 equidistant mesh points along
the cylinder gap and the maximum relative error obtained at these points (boundaries excluded) is
measured.

The error is calculated by |𝑢(𝑟 )𝑛𝑢𝑚−𝑢(𝑟 )𝑡 |
𝑢(𝑟 )𝑛𝑢𝑚 , where 𝑢(𝑟)𝑛𝑢𝑚 is the approximate value of the

velocity and 𝑢(𝑟)𝑡 is the velocity value from the truncated series. Three different values of 𝜀𝑊𝑖2

are considered: 0.05, 3.2 and 5. It is assumed that 𝛽 = 1, and two different values of 𝛼, 0.5 and 1.5,
are tested. The values of 𝛼 are the ones changed, because this parameter induces more changes in
the series. The value of 𝑎 = 0.5 is used in all cases.

Table 2.1 shows the maximum relative errors, in percentage. For 𝜀𝑊𝑖2 = 0.05, the error is
low, even when considering a single term in the series (Eq. (2.88)). For 𝛼 = 1.5 the error is much
smaller, with the decrease in error becoming less pronounced as the number of terms in the series
increases. This is due to the number of significant digits considered.

Table 2.1: Maximum relative errors (in percentage) for 𝜀𝑊𝑖2 = 0.05.

𝑗 𝛼 = 0.5 𝛼 = 1.5
1 5.669×10−1 9.405×10−2

2 1.342×10−2 4.757×10−4

4 4.550×10−4 4.432×10−4

Tables 2.2 and 2.3 show the maximum relative errors in percentage for 𝜀𝑊𝑖2 = 3.2 and 5, respec-
tively. As 𝜀𝑊𝑖2 increases, the series solution shows convergence problems, and as 𝛼 increases
(see Table 2.3) the error decreases faster as the number of terms in the series increases (note also
that in this case, a higher 𝜀𝑊𝑖2 value is considered). The corresponding velocity profiles are
shown in Fig. 2.10, where 𝑢/𝑈𝑐 is the velocity profile normalised by the characteristic velocity,
using the highly accurate numerical solution. These particular results indicate that the velocity
profile converges to the correct profile as the number of terms in the series increases, and that this
convergence is slower for low values of 𝛼.

Table 2.2: Maximum relative errors (in percentage) for 𝜀𝑊𝑖2 = 3.2.

𝑗 𝛼 = 0.5
2 1.782×102

4 1.580×102

8 5.874×101

16 8.681×10−1

Therefore, the sum of Eq. (2.88) is truncated with 𝑗 +1 terms, and to present the results 𝑗 = 15
is considered.
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Table 2.3: Maximum relative errors (in percentage) for 𝜀𝑊𝑖2 = 5.

𝑗 𝛼 = 1.5
1 1.414×102

2 4.773×101

4 1.409×100

8 4.275×10−4
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Figure 2.10: Velocity profiles for 𝛽 = 1, two different values of 𝛼, 0.5 and 1.5 and two different
values of 𝜀𝑊𝑖2, 3.2 and 5: (a) 𝛼 = 0.5; (b) 𝛼 = 1.5.

Now, the influence of the Mittag–Leffler function parameters 𝛼 and 𝛽 on the velocity profile
of this flow is studied. Fig. 2.11 shows the velocity profiles for 𝛽 = 1, three different values of 𝛼,
0.5, 1 and 3 and three different values of the 𝜀𝑊𝑖2, 0.05, 1 and 3.2.
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Figure 2.11: Velocity profiles calculated using Eq. (2.88) for the annular flow considering 𝛽 = 1,
different values of 𝜀𝑊𝑖2 and different values of 𝛼: (a) 𝜀𝑊𝑖2 = 0.05 and 1; (b) 𝜀𝑊𝑖2 = 1 and 3.2.
The velocity profiles with 𝛼 = 𝛽 = 1 correspond to the expPTT model.
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For 𝜀𝑊𝑖2 = 0.05 (Fig. 2.11 (a)) the velocity profiles almost overlap, but when 𝜀𝑊𝑖2 increases
to 1, that does not happen, and the highest velocity and flow rate is obtained for 𝛼 = 0.5. This
behaviour is more pronounced when the elasticity increases (see Fig. 2.11 (b)). When 𝜀𝑊𝑖2 = 3.2,
the differences in the flow rates are obvious, except for 𝛼 = 3, where the velocity profile almost
overlaps with the case with 𝜀𝑊𝑖2 = 1. It is interesting to see that for 𝛼 = 𝛽 = 1 a parabolic velocity
profile typical of Newtonian fluids still appears, while decreasing 𝛼 a very pronounced plug-like
profile is observed.

Figures 2.12 (a), (b) and (c) show the influence of 𝛽 on the velocity profile. The results are
similar to the ones obtained for the variation of 𝛼. For a small value of 𝜀𝑊𝑖2 (Fig. 2.12 (a)), the
velocity profiles almost overlap for all values of 𝛽, but as 𝜀𝑊𝑖2 increases (Fig. 2.12 (b) and (c)), the
velocity and the flow rate increase when the values of 𝛽 decrease. This effect is more pronounced
for 𝛽 = 0.5.
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Figure 2.12: Velocity profiles calculated using Eq. (2.88) for the annular flow considering 𝛼 = 1,
different values of 𝜀𝑊𝑖2 and different values of 𝛽: (a) 𝜀𝑊𝑖2 = 0.05 and 1; (b) 𝜀𝑊𝑖2 = 1 and 3.2;
(c) 𝜀𝑊𝑖2 = 3.2 and 5. The velocity profiles with 𝛼 = 𝛽 = 1 correspond to the expPTT model.
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Figure 2.13: Variation of 𝑏 with the variation 𝜀𝑊𝑖2 for different values of 𝛼. The dotted symbol
corresponds to value of 𝑏 obtained for a Newtonian fluid [30, 39].
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Another aspect studied is the value obtained for 𝑏 when 𝜀𝑊𝑖2 increases (see Fig. 2.13). Three
different values of 𝛼, 0.5, 1 and 3, are considered and 𝑏 is calculated for different values of 𝜀𝑊𝑖2.
It can be seen that the value of 𝑏 decreases with the increase of 𝜀𝑊𝑖2, and that for 𝛼 = 3 the relation
is almost linear. Notice also that, when 𝛼 = 0.5, the decrease is more pronounced. Figure 2.13
shows that 𝑏 decreases with the increase of the fluid elasticity, a trend also observed on the velocity
profiles of Figs. 2.12, since the values of 𝑏 represent the radial position of the maximum value for
the velocity profile. Therefore, the point of maximum velocity approaches the inner cylinder walls
as the elasticity of the fluid increases.

This work is published on paper [40], which can be found in Part III of this thesis.
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2.4 Electro-osmotic flow

Electro-osmosis (EO) is a type of flow that occurs at micro- and nano-devices and is particularly
useful for applications in medicine, biochemistry and miniaturised industrial processes. Generi-
cally, EO is a basic electrokinetic phenomenon, where the flow of an electrolyte is driven by an
external potential difference between the inlet and outlet of the channel, acting on ions that are
imbalanced in the near-wall region of the fluid due to the interaction between the dielectric channel
walls and the fluid, as represented in Fig. 2.14.
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Figure 2.14: Schematic of the flow in a planar microchannel. (a) EO flow with symmetric zeta
potentials at the walls; (b) EO flow with asymmetric zeta potentials at the walls.

Specifically, these are layers of higher concentration of counter-ions within the fluid, that move
under the action of the applied electric field, which then drags by viscous forces the neutral core
as a solid body [41].

As can be seen in Fig. 2.14 (a), the ion separation appears due to the interaction between
the walls and the fluid. Here, the illustrated negatively charged walls of the microchannel
attract counter-ions forming layers of positively charged fluid near the walls and with the co-ions
predominantly staying at the core. At such dilute concentrations, the fluid core remains essentially
neutral. The Stern layers, that are very thin layers of immobile counter-ions that remain at the
walls, are followed by thicker more diffuse layers of mobile counter-ions. The electric double layer
(EDL) is formed by these two layers near the wall.

A DC potential difference between the two electrodes at the inlet and outlet generates an
external electric field that exerts a body force on the counter-ions of the EDL, which flow along the
channel dragging the neutral liquid core. The pressure difference that can also be applied between
the inlet and outlet can act in the same direction of the electric field or in the opposite direction.

There is a vast literature dealing with EO flow for Newtonian fluids [42–49] and as reviewed
by Zhao and Yang [50], there is also a fair amount of literature that deals with EO flows of non-
Newtonian fluids, as can be seen in [51–57]. In what concerns EO flow where the zeta potentials
at the walls are asymmetric, Afonso et al. [58] provided analytical solutions for combined EO
and pressure-driven flows, where asymmetric boundary conditions with unequal zeta potentials at
the channel walls were considered, and the analyzed fluids were characterized by the linearPTT
model and the finite extensible nonlinear elastic model with Peterlin’s approximation (FENE-P).
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Escandón et al. [59] presented both analytical and numerical solutions for transient EO flows
in microchannels, using a Maxwell fluid and they covered symmetric and asymmetric uniform
zeta potentials. Sadek and Pinho [60] presented analytical solutions for the oscillatory shear
flow of viscoelastic fluids induced by EO forcing, specifically exploring the case of a straight
microchannel with asymmetric wall zeta potentials, considering for the rheological behavior of
the fluid, a multi-mode UCM model. Sanchez et al. [61] obtained analytical solutions for an
electrokinetic battery comprising parallel plates, driven by osmotic flow, where the Debye–Hückel
approximation to calculate the EDL potential coupled with asymmetric hydrodynamic slippage
were used. The authors explicitly addressed both asymmetries in the Navier slip lengths and zeta
potentials, providing insights into the interplay of these boundary conditions.

There are new recent studies where the gPTT model has been studied for EO flow. Teodoro et al.
[62] derived an approximate solution for laminar viscoelastic fluid flow through a parallel flat plate
microchannel driven by EO and external pressure forces, and incorporated a nonlinear Navier slip
law at the wall, depicting a power-law behavior on shear stress. The Debye–Hückel approximation
for the EDL is applied, assuming symmetric zeta potentials at the wall. Furthermore, Hernandez
et al. [63] investigated EO flow in a microchannel with a viscoelastic fluid, using the gPTT model
as a constitutive equation, where the thermodiffusion effect is explored and the results compared
with those obtained through the linearPTT model (as seen in [64]).

In this section, new analytical and numerical equations for the EO flow of a gPTT fluid are
presented and a parametric study is performed, studying the influence of the gPTT parameters on
this flow. For that, it is considered the case where the zeta potentials at the walls are symmetric
and the case where the zeta potentials at the walls are asymmetric.

Each contribution related to the work objectives, presented in section 2.4, are explained in
detail. Given that the present dissertation falls into the category of multi-paper dissertation, and
in order to keep repetition of information at a minimum level, the complete papers related to this
section is presented in Part III of this thesis.

2.4.1 Problem definition

Fig. 2.14 illustrates a combined EO/pressure-driven channel flow of a viscoelastic gPTT fluid in
a microchannel. Here 𝑥, 𝑦 and 𝑧 represent the streamwise, transverse and spanwise directions,
respectively, and the channel width is 2𝐻. The channel size in the spanwise direction is much
larger than 𝐻, so the flow is assumed to be fully-developed.

The boundary conditions applied to obtain the analytical solution are the no-slip condition
at the walls. Since the flow is fully-developed, the velocity and stress fields only depend on the
transverse coordinate 𝑦 [51, 52].

2.4.2 Analytical solution

The equations governing the flow of an isothermal incompressible fluid are the continuity equation,

∇ ·u = 0 (2.90)
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and the momentum equation, that for EO flow has a new term that accounts the electric part and is
given by:

𝜌
Du
D𝑡

= −∇𝑝 +∇ · 𝝉 + 𝜌𝑒E, (2.91)

where u is the velocity vector, 𝜌 is the density, D
D𝑡

is the material derivative, 𝑝 is the pressure, 𝝉 is
the extra-stress tensor, 𝑡 is the time, E is the electric field and 𝜌𝑒 is the electric charge density in
the fluid.

The constitutive equation for the gPTT model is given by:

𝐾 (𝜏𝑘𝑘) 𝝉 +𝜆
□
𝝉 = 2𝜂𝑝D (2.92)

where
𝐾 (𝜏𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
, (2.93)

is the function of the trace of extra-stress tensor and

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑗=0

𝑧 𝑗

Γ (𝛼 𝑗 + 𝛽) , (2.94)

is the Mittag–Leffler function with 𝛼, 𝛽 real and positive and Γ is the Gamma function.
𝜏𝑘𝑘 is the trace of the extra-stress tensor, 𝜂𝑝 is the polymeric viscosity coefficient, D is the
rate of deformation tensor, 𝜀 represents the extensibility parameter and 𝜆 is the relaxation time of
the fluid. □𝝉 represents the Gordon–Schowalter derivative (Eq. (2.28)).

2.4.2.1 Electric potential

The electrostatic field, E is related with the electric potential, Φ, through:

E = −∇Φ (2.95)

where Φ is governed by:

∇2Φ = − 𝜌𝑒
𝜖

(2.96)

with 𝜖 representing the dielectric constant of the solution. The electric potential includes two
different contributions, Φ = 𝜙 +𝜓, where 𝜙 is the electric potential generated by the electrodes,
placed at the inlet and outlet of the flow geometry, and 𝜓 is associated with the charge distribution
near the walls. Therefore, the imposed potential is described by a Laplace equation, ∇2𝜙 = 0, and
the induced potential is described by a Poisson equation:

∇2𝜓 = − 𝜌𝑒
𝜖
. (2.97)

In some circumstances, such as when the flow and the ion distributions are fully-developed, the
EDLs are thin and do not overlap at the centre of the channel. Significant variations of 𝜓 only
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occur in the transverse direction, and a stable Boltzmann distribution of ions occurs in the EDL.
So, the net electric charge density, 𝜌𝑒, for an electrolyte in equilibrium near a charged surface is
given by the following Boltzmann distribution [41]:

𝜌𝑒 = −2𝑛0𝑒𝑧 sinh
(
𝑒𝑧

𝑘𝐵𝑇
𝜓

)
, (2.98)

where 𝑛0 is the ion density, 𝑒 the elementary charge, 𝑧 the valence of the ions, 𝑇 the absolute
temperature and 𝑘𝐵 the Boltzmann constant.
Combining Eq. (2.97) for the induced potential equation, that for fully-developed steady flow
becomes,

d2𝜓

d𝑦2 = − 𝜌𝑒
𝜖
, (2.99)

with Eq. (2.98), leads to the Poisson-Boltzmann equation, given by:

d2𝜓

d𝑦2 =
2𝑛0𝑒𝑧

𝜖
sinh

(
𝑒𝑧

𝑘𝐵𝑇
𝜓

)
. (2.100)

Assuming the Debye-Hückel linearization principle, a valid approximation for low values of 𝜓
[51, 52, 65], the Poisson-Boltzmann equation (Eq. (2.100)) for the, two-dimensional (2D) channel
flow becomes,

d2𝜓

d𝑦2 = 𝜅2𝜓, (2.101)

where 𝜅2 = 2𝑛0𝑒
2𝑧2/𝜖 𝑘𝐵𝑇 is the Debye-Hückel parameter, which is related to the thickness of the

Debye layer, 𝜆𝐷 = 1/𝜅, also called the EDL thickness.

2.4.3 EO flow: under symmetric zeta potentials

In this section, the analytical solution for the gPTT model considering fully-developed pure EO
flow is derived assuming symmetric zeta potentials at the walls (see Fig. 2.14 (a)).

When symmetric zeta potential at the walls are assumed, for the Poisson-Boltzmann equation,
the boundary conditions are: at the symmetry plane, d𝜓

d𝑦 |𝑦=0 = 0 and the zeta potential at the wall is
𝜓𝑤𝑎𝑙𝑙 = 𝜓0. Integrating Eq. (2.101) and applying these boundary conditions, leads to the following
induced electric field, 𝜓:

𝜓 (𝑦) = 𝜓0
cosh (𝜅𝑦)
cosh (𝜅𝐻) , (2.102)

for |𝑦 | ≤ 𝐻. So, the electric charge density, 𝜌𝑒 is given by:

𝜌𝑒 = −𝜖𝜓0𝜅
2 cosh (𝜅𝑦)

cosh (𝜅𝐻) . (2.103)

The momentum equation, Eq. (2.91), becomes:
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d𝜏𝑥𝑦
d𝑦

= 𝑃𝑥 − 𝜌𝑒𝐸𝑥 , (2.104)

where 𝐸𝑥 ≡ d𝜙
d𝑥 is the imposed constant streamwise gradient of electric potential. This equation is

valid regardless of the rheological constitutive equation considered.

Using Eq. (2.103) and considering that the shear stress at the centreline is zero, Eq. (2.104) is
integrated, leading to the following shear stress distribution:

𝜏𝑥𝑦 = 𝜖𝜓0𝐸𝑥𝜅
sinh (𝜅𝑦)
cosh (𝜅𝐻) +𝑃𝑥𝑦. (2.105)

The constitutive equations for the gPTT model are Eq. (2.55), (2.56) and (2.57) (see section 2.2).
In order to obtain closed form analytical solutions, the slip parameter in the Gordon-Schowalter
derivative (Eq. (2.28)) is set to 𝜉 = 0. So, with the same procedure described in section 2.2, Eq.
(2.106) is obtained:

𝜏𝑥𝑥 = 2
𝜆

𝜂𝑝
𝜏2
𝑥𝑦 . (2.106)

Now combining Eqs. (2.57), (2.106), (2.105) and (2.93) the following velocity gradient profile is
obtained,

¤𝛾(𝑦) = Γ(𝛽)
𝜂𝑝

𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

(
𝜖𝜓0𝐸𝑥𝜅

sinh (𝜅𝑦)
cosh (𝜅𝐻) +𝑃𝑥𝑦

)2
) (
𝜖𝜓0𝐸𝑥𝜅

sinh (𝜅𝑦)
cosh (𝜅𝐻) +𝑃𝑥𝑦

)
. (2.107)

The dimensionless velocity gradient becomes:

d𝑢
d𝑦

= Γ(𝛽)𝐸𝛼,𝛽

(
2𝜀𝑊𝑖2

𝜅2

(
Υ𝑦− 𝜅 sinh (𝜅 𝑦)

cosh (𝜅)

)2
) (

Υ𝑦− 𝜅 sinh (𝜅 𝑦)
cosh (𝜅)

)
, (2.108)

where 𝑊𝑖 = 𝜆𝜅𝑢𝑠ℎ is the Weissenberg number and 𝑢𝑠ℎ is the Helmholtz-Smoluchowski electro-
osmotic velocity, defined as 𝑢𝑠ℎ = − 𝜖 𝜓0𝐸𝑥

𝜂𝑝
, 𝑢 = 𝑢

𝑢𝑠ℎ
, 𝑦 = 𝑦

𝐻
and 𝜅 = 𝜅𝐻. The non-dimensional

parameter Υ = − 𝐻2

𝜖 𝜓0

(
𝑃𝑥

𝐸𝑥

)
represents the ratio of pressure to EO driving forces.

Eq. (2.108) has an analytical solution only for pure EO flow and provided further assumptions
are made, whereas for the combined situation with a pressure gradient, the solution is obtained
numerically (see [56]).

For pure EO flow, Υ = 0 and the velocity profile is obtained integrating the velocity gra-
dient profile, subjected to the no-slip boundary condition at the top (+) or bottom (-) walls,
𝑢 (𝑦 = ±1) = 0. Simplifying Eq. (2.108), the equation to be integrated is:

𝑢 (𝑦) =
∫ 1

𝑦

©­«Γ(𝛽)𝜅
∞∑︁
𝑗=0

(
2𝜀𝑊𝑖2

) 𝑗 ( sinh (𝜅 𝑧)
cosh (𝜅)

)2 𝑗+1 1
Γ (𝛼 𝑗 + 𝛽)

ª®¬d𝑧. (2.109)
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To compute the integral in Eq. (2.109), the approximation sinh (𝜅 𝑦) ≈ 1
2 exp (𝜅 𝑦) is used,

which is usually accurate because in most micro-devices the thickness of the EDL is very small,
about 1 to 3 orders of magnitude smaller than the width of the microchannel, so 𝜅 is a large value.
However, close to the centreline (𝑦 ∼ 0) the approximation becomes less adequate (in this case, the
Simpson’s quadrature rule is used to obtain the approximate solution of the differential equation).

Assuming sinh(𝜅𝑧) ≈ 1
2 exp(𝜅𝑧), 𝑧 ∈ (𝑦,1), the integration (Eq. (2.109)) gives the following

velocity profile:

𝑢 (𝑦) ≈ Γ (𝛽)
2cosh (𝜅)

∞∑︁
𝑗=0

(
𝜀𝑊𝑖2

2cosh2 (𝜅)

) 𝑗

(
(exp (𝜅))2 𝑗+1 − (exp (𝜅 𝑦))2 𝑗+1

)
2 𝑗 +1

1
Γ (𝛼 𝑗 + 𝛽) . (2.110)

Before doing a study on the influence of the different parameters on the fluid flow, first a
discussion on the validity of the approximate analytical solution given by Eq. (2.110) will be
performed. Fig. 2.15 presents a comparison between the results obtained with this equation and
the results obtained numerically by discretizing Eq. (2.109) with the Simpson’s quadrature rule.
For the approximation of the infinite series performing numerical tests, it was observed that the
use of 20-40 terms would allow to obtain an accurate sum up to the sixth decimal place.

(a)

1.5

2.5

2

3

3.5
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Figure 2.15: Velocity profiles calculated using Eqs. (2.110) (lines) and (2.109) (symbols) for the
pure EO flow considering 𝜀𝑊𝑖2 = 0.5 and different values of 𝜅 for 𝛼 = 1/4 and 𝛽 = 1: (a) 𝜅 = 10
and 30; (b) 𝜅 = 2.5 and 5.

From Fig. 2.15, it can be seen that only for low values of 𝜅 (𝜅 ≤ 5) the thin layer approximation
of the analytical solution fails to predict the correct velocity profile. Therefore, the values of 𝜅
used along this work are greater or equal to 10.

Now, an investigation on the influence of the Mittag–Leffler function parameters, 𝛼 and 𝛽, on
the velocity profile distribution across the channel, for different values of 𝜀𝑊𝑖2 and 𝜅 is presented.
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Fig. 2.16 compares the velocity profiles obtained for EO flow considering two different 𝜀𝑊𝑖2

values and different values of 𝛼 (Fig. 2.16 (a)) and 𝛽 (Fig. 2.16 (b)) at 𝜅 = 10.

(a) (b)

Figure 2.16: Velocity profiles calculated using Eq. (2.110) for the pure EO flow considering two
different values of 𝜀𝑊𝑖2 and different values of 𝛼 and 𝛽 for 𝜅 = 10: (a) 𝛽 = 1; (b) 𝛼 = 1. The
velocity profiles with 𝛼 = 𝛽 = 1 correspond to the expPTT model.

In Fig. 2.16 (a), with 𝛽 = 1, it is observed that for increasing 𝜀𝑊𝑖2 and decreasing 𝛼 the flow rate
increases, which is due to enhanced shear-thinning at the shear rates prevailing within the EDL. In
Fig. 2.16 (b), with 𝛼 = 1, on increasing 𝜀𝑊𝑖2 and decreasing 𝛽, the flow rate increases, but there
are quantitative differences with the effect of 𝛽 being stronger than the effect of 𝛼. Note that both
𝛼 and 𝛽 play a role similar to 𝜀 in the classical PTT model, that is, increasing 𝛼 and 𝛽, leads to an
increase of the net rate of destruction of network junctions in the physical model of the polymer,
and therefore the fluid becomes more thinning, reducing the friction between junctions [3]. The
fact that 𝛽 plays a stronger role on the thinning effect is actually because the new function of the
trace of the extra-stress tensor presents higher numerical values for 𝛽 ≪ 1 when the argument is
smaller than ≈ 1 (the case of the EO flow presented here).

Fig. 2.17 compares transverse velocity profiles for the EO flow considering three different
values of 𝜅, at fixed 𝜀𝑊𝑖2 = 0.5: Fig. 2.17 (a) refers to fixed 𝛽 = 1, and by increasing 𝜅 the expected
thinning of the EDL is observed. Similar results are observed in Fig. 2.17 (b). The highest
shear rates occur near the walls and in this region the effects of 𝛼 and 𝛽 are felt more strongly, as
discussed in [3]. Smaller values of these parameters mean that the rate of destruction of junctions
increases, that is, the friction between the molecules of the polymer solution decreases, leading
to a less resistive flow (stronger shear-thinning). These effects are qualitatively similar to those
observed with other shear thinning fluids, even if quantitatively different.
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(a) (b)

Figure 2.17: The effect of 𝜅 on transverse velocity profiles for EO at 𝜀𝑊𝑖2 = 0.5: (a) 𝛽 = 1; (b)
𝛼 = 1. The velocity profiles were obtained from Eq. (2.110). The velocity profiles with 𝛼 = 𝛽 = 1
correspond to the expPTT model.

2.4.4 EO flow: under asymmetric zeta potentials

In this section, the analytical solution for the gPTT model considering fully-developed pure EO
flow is derived, considering asymmetric zeta potentials at the walls (see Fig. 2.14 (b)).

When asymmetric zeta potentials at the walls are assumed, for the Poisson-Boltzmann equation,
the boundary conditions are: at the walls, 𝜓 | |𝑦=−𝐻 = 𝜉1 and 𝜓 | |𝑦=𝐻 = 𝜉2, that leads to the following
induced electric field, 𝜓:

𝜓 (𝑦) = 𝜉1 (Ψ1e𝜅𝑦 −Ψ2e−𝜅𝑦) (2.111)

with Ψ1 =
𝑅𝜉 e𝜅𝐻−e−𝜅𝐻
2sinh(2𝜅𝐻 ) and Ψ2 =

𝑅𝜉 e−𝜅𝐻−e𝜅𝐻
2sinh(2𝜅𝐻 ) , where 𝑅𝜉 =

𝜉2
𝜉1

denotes the ratio of zeta potentials of
the two walls. This equation is valid for −𝐻 ≤ 𝑦 ≤ 𝐻, and when 𝑅𝜉 = 1, the symmetric potential
profile obtained in section 2.4.3 is recovered [51, 56].

In this case, the electric charge density, 𝜌𝑒, is given by:

𝜌𝑒 = −𝜖𝜅2𝜉1 (Ψ1e𝜅𝑦 −Ψ2e−𝜅𝑦) = −𝜖𝜅2𝜉1Ω
− (𝑦) (2.112)

where the operator Ω± (𝑦) = Ψ1e𝜅𝑦 ±Ψ2e−𝜅𝑦 is a hyperbolic function of the transverse variable 𝑦
which depends on the ratio of zeta potentials and the thickness of the Debye layer.

The momentum equation is given by Eq. (2.104) and using Eq. (2.112), Eq. (2.104) is
integrated resulting in the following shear stress distribution:

𝜏𝑥𝑦 = 𝜖𝜅𝜉1𝐸𝑥Ω
+ (𝑦) +𝑃𝑥𝑦 + 𝑐1, (2.113)
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where 𝑐1 is a shear-stress integration constant that will be obtained later from the boundary
conditions.

The constitutive equations are for the gPTT model Eq. (2.55), (2.56) and (2.57) (see section 2.2).
In order to obtain closed form analytical solutions, the slip parameter in the Gordon-Schowalter
derivative (Eq. (2.28)) is set to 𝜉 = 0. So, with the same procedure described in section 2.2,
Eq. (2.114) is obtained:

𝜏𝑥𝑥 = 2
𝜆

𝜂𝑝
𝜏2
𝑥𝑦 . (2.114)

Now combining Eqs. (2.57), (2.114), (2.113) and (2.93) the following velocity gradient profile
is obtained,

¤𝛾(𝑦) = Γ(𝛽)
𝜂𝑝

𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

(
𝜖𝜅𝜉1𝐸𝑥Ω

+ (𝑦) +𝑃𝑥𝑦 + 𝑐1
)2

) (
𝜖𝜅𝜉1𝐸𝑥Ω

+ (𝑦) +𝑃𝑥𝑦 + 𝑐1
)
. (2.115)

The dimensionless velocity gradient becomes:

d𝑢
d𝑦

= Γ(𝛽)𝐸𝛼,𝛽

(
2𝜀𝑊𝑖2

𝜅2

(
Υ𝑦− 𝜅Ω+ (𝑦) + 𝜏1

)2
) (

Υ𝑦− 𝜅Ω+ (𝑦) + 𝜏1

)
, (2.116)

where 𝜏1 =
𝜏1𝐻
𝑢𝑠ℎ

(𝜏1 = 𝑐1/𝜂𝑝), Ω
+ (𝑦) = Ψ1e𝜅 𝑦 +Ψ2e−𝜅 𝑦 , with Ψ1 =

𝑅𝜉 e𝜅−e−𝜅
2sinh(2𝜅 ) and Ψ2 =

𝑅𝜉 e−𝜅−e𝜅
2sinh(2𝜅 ) .

Eq. (2.116) has an analytical solution only for pure EO flow and the velocity profile can be
obtained by integrating the velocity gradient profile, subjected to the no-slip boundary condition
at both walls, 𝑢 (𝑦 = ±1) = 0. Simplifying Eq. (2.116) and applying integration, the following
equation is obtained:

𝑢 (𝑦) =
∫ 𝑦

−1

©­«Γ(𝛽)
∞∑︁
𝑗=0

(
2𝜀𝑊𝑖2

𝜅2

) 𝑗 1
Γ (𝛼 𝑗 + 𝛽)

(
−𝜅Ω+ (𝑧) + 𝜏1

)2 𝑗+1ª®¬d𝑧, (2.117)

with 𝑧 a dummy variable.

This way, the velocity profile is given by:

𝑢 (𝑦) = Γ(𝛽)
( ∞∑︁
𝑗=0

2𝜀𝑊𝑖2

𝜅2 (Γ(𝛼 𝑗 + 𝛽))
2 𝑗+1∑︁
𝑚=0

(
2 𝑗 +1
𝑚

)
(𝜏1

𝑚)
{2 𝑗+1−𝑣∑︁

𝑖=0

(
2 𝑗 +1−𝑚

𝑖

) (
−𝜅Ψ1

)2 𝑗−𝑚−𝑖+1 (
−𝜅Ψ2

) 𝑖
𝜅 (2 𝑗 −2𝑖−𝑚 +1) e(2 𝑗−2𝑖−𝑚+1)𝜅 𝑦

}
)
+𝑐2.

(2.118)

with 𝑐2 obtained using 𝑢 (1) = 0, and given by,
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𝑐2 = −Γ(𝛽)
( ∞∑︁
𝑗=0

2𝜀𝑊𝑖2

𝜅2 (Γ(𝛼 𝑗 + 𝛽))
2 𝑗+1∑︁
𝑚=0

(
2 𝑗 +1
𝑚

)
(𝜏1

𝑚)
{2 𝑗+1−𝑣∑︁

𝑖=0

(
2 𝑗 +1−𝑚

𝑖

) (
−𝜅Ψ1

)2 𝑗−𝑚−𝑖+1 (
−𝜅Ψ2

) 𝑖
𝜅 (2 𝑗 −2𝑖−𝑚 +1) e(2 𝑗−2𝑖−𝑚+1)𝜅

}
)
. (2.119)

𝜏1 is obtained by solving numerically 𝑢 (−1) = 0.

Although Eq. (2.118) is an infinite series, a solution with a fair number of correct decimal
places can be obtained (depending on the problem and the parameters used).

Therefore, now the velocity profile given by Eq. (2.117) (obtained by a numerical quadrature
rule, and referred to as numerical solution), will be compared with the analytical solution given by
Eq. (2.118). The numerical results were obtained using the Mathematica software version 13.3.

For the numerical solution, first 𝜏1 is obtained using the secant method to find the root of,

Γ(𝛽)
∞∑︁
𝑗=0

(
2𝜀𝑊𝑖2

𝜅2

) 𝑗 1
Γ (𝛼 𝑗 + 𝛽)

(∫ 1

−1

(
−𝜅Ω+ (𝑧) + 𝜏1

)2 𝑗+1
d𝑧

)
= 0. (2.120)

The 𝜏1 value obtained is then substituted in Eq. (2.117), and the numerical velocity profile is
finally obtained.

The analytical solution given by Eq. (2.118) is composed by an infinite series. Therefore, it
is important to access the number of terms required in the series to achieve a precise and accurate
solution. To do this, the numerical solution is used as a reference.

The new truncated solution is obtained from Eq. (2.118), truncating the sum with 𝑗 +1 terms.
To validate the solution it was considered 201 equidistant mesh points along the channel height
(2𝐻) and measured the root mean squared error (RMSE) obtained at these points. The error is
calculated by,

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑢(𝑦)𝑛𝑢𝑚−𝑢(𝑦)𝑡 )2,

where 𝑢(𝑦)𝑛𝑢𝑚 is the numerical value of the velocity and 𝑢(𝑦)𝑡 is the velocity value for the truncated
series.

Three different values of 𝜀𝑊𝑖2 are considered (𝜀𝑊𝑖2 = 0.5, 1 and 2) and two different values
for 𝑅𝜉 (𝑅𝜉 = −1 and 0.5), considering 𝛽 = 1 and two different values of 𝛼 (𝛼 = 0.5 and 1.5). The
values of 𝛼 are varied, because this parameter is the most sensitive to changes in the series.

Tables 2.4, 2.5, 2.6 show the RMSE, in percentage, for 𝜀𝑊𝑖2 = 0.5, 1 and 2 respectively, and
considering 𝛼 = 0.5, 𝑅𝜉 = 0.5 and −1. As the number of terms in the series (Eq. (2.118)) increase,
the error decreases. This parametric study provides insights into the behavior of the truncated
solution. For instance, when 𝜀𝑊𝑖2 increases (Table 2.5 and 2.6) and 𝑅𝜉 = 0.5, the series solution
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Table 2.4: RMSE (in percentage) for 𝜀𝑊𝑖2 = 0.5 and 𝛼 = 0.5.

𝑗 𝑅𝜉 = 0.5 𝑅𝜉 = −1
2 8.834×100 5.197×100

4 1.819×100 8.889×10−1

8 4.78×10−2 1.597×10−2

16 2.207×10−4 1.472×10−4

Table 2.5: RMSE (in percentage) for 𝜀𝑊𝑖2 = 1 and 𝛼 = 0.5.

𝑗 𝑅𝜉 = 0.5 𝑅𝜉 = −1
2 1.038×102 4.550×101

4 5.23×101 1.889×101

8 9.679×100 2.433×100

16 1.092×10−1 1.198×10−2

20 6.757×10−3 5.342×10−4

Table 2.6: RMSE (in percentage) for 𝜀𝑊𝑖2 = 2 and 𝛼 = 0.5.

𝑗 𝑅𝜉 = 0.5 𝑅𝜉 = −1
2 1.503×103 2.660×102

4 1.226×103 1.585×102

8 6.571×102 4.63×101

16 7.132×101 2.118×100

20 1.546×101 3.042×10−1

shows slower convergence. On the other hand, for lower 𝜀𝑊𝑖2 values, the series solution converges
much more rapidly.

Table 2.7 shows the RMSE in percentage, for 𝜀𝑊𝑖2 = 2, 𝛼 = 1.5 and considering 𝑅𝜉 = 0.5 and
−1. Notably, as 𝛼 increases (see Table 2.7), the error decreases more rapidly with an increase in
the number of terms in the series (even for high values of 𝜀𝑊𝑖2). It was also experimented with a
higher number of terms in the series for cases with high 𝜀𝑊𝑖2 and low 𝛼, and found that a favorable
balance between computation time, simplicity, and solution accuracy could be achieved for 𝑗 = 20.

Table 2.7: RMSE (in percentage) for 𝜀𝑊𝑖2 = 2 and 𝛼 = 1.5.

𝑗 𝑅𝜉 = 0.5 𝑅𝜉 = −1
2 7.898×100 4.268×100

4 2.231×10−1 9.7×10−2

8 2.635×10−4 1.927×10−4

The velocity profiles computed by the numerical solution of Eq. (2.117) and the analytical
solution obtained by Eq. (2.118) for different 𝑗 are shown in Figs. 2.18 and 2.19, where 𝑢/𝑢𝑠ℎ is
the normalised velocity profile. These particular results indicate that the velocity profile converges
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to the correct profile as the number of terms in the series increases, and that this convergence is
slower for lower values of 𝛼.
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Figure 2.18: Velocity profiles for 𝛽 = 1, 𝑅𝜉 = 0.5 and 𝜅 = 20: (a) 𝛼 = 0.5, 𝜀𝑊𝑖2 = 1; (b) 𝛼 = 1.5,
𝜀𝑊𝑖2 = 2.
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Figure 2.19: Velocity profiles for 𝛽 = 1, 𝑅𝜉 = −1 and 𝜅 = 20: (a) 𝛼 = 0.5, 𝜀𝑊𝑖2 = 1; (b) 𝛼 = 1.5,
𝜀𝑊𝑖2 = 2.

Now, the influence of the Mittag–Leffler function parameters 𝛼 and 𝛽 on the velocity profile
is studied. Fig. 2.20 shows the velocity profiles for 𝛽 = 1, different values of 𝛼, 0.5, 1 and 1.5,
𝑅𝜉 = 0.5, 𝜅 = 20 and different values of 𝜀𝑊𝑖2, 0.5 and 1.

In Fig. 2.20 (a), with 𝛽 = 1, it is observed that for increasing 𝜀𝑊𝑖2 and decreasing 𝛼 the flow
rate increases, leading to an increase of the skewed pluglike profile. In Fig. 2.20 (b), with 𝛼 = 1,
a similar behaviour is obtained, i.e., on increasing 𝜀𝑊𝑖2 and decreasing 𝛽, the flow rate increases.
However, there are some differences with the effect of 𝛼 being stronger than the effect of 𝛽.
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Figure 2.20: Velocity profiles calculated using Eq. (2.118) for pure EO flow with 𝑅𝜉 = 0.5
considering two different values of 𝜀𝑊𝑖2 and different values of 𝛼 and 𝛽 for 𝜅 = 20: (a) 𝛽 = 1; (b)
𝛼 = 1. The velocity profiles with 𝛼 = 𝛽 = 1 correspond to the expPTT model.

Fig. 2.21 shows the velocity profiles for 𝛼 = 1, different values of 𝛽, 0.5, 1 and 1.5, 𝑅𝜉 = −1,
𝜅 = 20 and different values of 𝜀𝑊𝑖2, 0.5 and 1.
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Figure 2.21: Velocity profiles calculated using Eq. (2.118) for pure EO flow with 𝑅𝜉 = −1
considering two different values of 𝜀𝑊𝑖2 and different values of 𝛼 and 𝛽 for 𝜅 = 20: (a) 𝛽 = 1; (b)
𝛼 = 1. The velocity profiles with 𝛼 = 𝛽 = 1 correspond to the expPTT model.

In Fig. 2.21 (a), with 𝛽 = 1, it is observed that for increasing 𝜀𝑊𝑖2 and decreasing 𝛼 the
flow rate increases, leading to an increase of an anti-symmetric pluglike profile. In Fig. 2.21 (b),
with 𝛼 = 1 a similar behaviour is obtained, i.e., on increasing 𝜀𝑊𝑖2 and decreasing 𝛽, the flow
rate increases. However, there are some differences, with the effect of 𝛼 being stronger than the
effect of 𝛽. The pronounced flow with the increasing of 𝜀𝑊𝑖2 is associated with the shear-thinning
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behaviour of the fluid.
These works are published on paper [56] and on manuscript [66], which can be found in Part

III of this thesis.
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Chapter 3

Numerical studies

3.1 Model order reduction (MOR)

One of the most popular model order reduction (MOR) methods is the proper orthogonal decompo-
sition (POD) method. The method was first introduced by Lumley [9], and it allows to decompose
almost any flow into a infinite set of eigenfunctions or modes. The objective of the POD method is
to reduce the model in a way that it can capture the most important and reliable information with
much less data and effort. In recent years, because of the development of machine learning (ML)
techniques, this method became very popular in CFD problems, because it reduces the simulation
time and allows to predict the fluid flow based only on the most important modes.

Performing a numerical simulation produces a huge amount of data and some important flow
structures can be ignored. To identify these flow structures, mainly in transient situations, is a
complex task, because such structures change in time and space, with new structures continuously
being formed while others are destroyed. Performing a decomposition of the entire data set into
smaller sets, important structures present in the main flow and structures with periodic behaviour,
like vortices, can be identified. Therefore, through the analysis of the frequency of each of these
components and using a smaller number of components, a better and global understanding of the
flow can be achieved.

In this section an introduction of the POD model is done and then the mathematical theory
behind the POD method used in this thesis is described.

3.1.1 Introduction

The method has become very popular and has been applied to a large variety of engineering
problems, from fluid mechanics to bio-engineering, having different names for the same procedure:
Karhunen–Loève decomposition, principal components analysis (PCA), singular systems analysis
(SSA) or singular value decomposition (SSV) (for more details, please see the review papers
[67, 68]).

Several versions of the POD method, and even new methods, were proposed in the literature,
since its first introduction in 1967, being adapted to specific cases and branches of engineering. In

49
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the first fifteen years, the only works on this topic are from Lumley itself and some co-workers [69].
One of these new methods is from Aradag et al. [70] who developed a couple of methods: the hybrid
filtered POD (HFPOD) approach (see also [71]) and the fast Fourier transform (FFT)-based 3D
filtered POD (FFTPOD). These methods deal with the difficulty encountered when using simple
POD for three-dimensional (3D) structures. Using the HFPOD method, large-scale structures
associated with von Kármán’s vortex street, as well as their phase and amplitude variations, can
be identified quantitatively, and FFTPOD enables modelling 3D flows without being contaminated
by small-scale turbulent structures while capturing the large-scale features of the flow, like von
Kármán’s vortex street. Another new method based on POD is the spectral POD (SPOD) method,
which is used for a space-time POD problem for statistically stationary flows, and it was investigated
by Aaron et al. [72]. This model produces modes that oscillate at a single frequency, and in their
study the authors demonstrated how SPOD modes articulate coherently with development in space
and time, in contrast to general POD space-modes. Moreover, SPOD modes were found to be
optimally averaged dynamic mode decompositions (DMD), resulting from an ensemble model
DMD problem for stationary flows. So, SPOD modes represent dynamic structures in the same
sense as DMD modes, while also incorporating the statistical variability of turbulent flows.

Another method based on POD was presented by Mendez et al. [73–75], that developed the
multi-scale POD (mPOD), which uses multiresolution analysis (MRA) on the correlation matrix
to produce a set of PODs at multiple scales.

In recent years, new methods appeared in the literature to predict complex fluid flows with less
effort, like ML techniques, and POD being a feature selection method that reduces the dimension
of the process [76], has become a valuable tool. In this area, the POD method goes by the name of
PCA. This way, by combining the CFD simulations and ML algorithms to simultaneously reduce
computational cost and time, retain physical insight by focusing on the prediction of flow-fields,
and keep the ability to access information or to make adjustments is already a reality [77].

In the literature, new works have been published with the combination of POD and ML
methods. Hĳazi et al. [78] recently presented a model for solving inverse problems for the
Navier–Stokes equations, in a reduced order setting by integrating the structure of the POD-
Galerkin reduced order models (ROMs) into physics informed neural networks (PINNs). They
incorporated the POD-Galerkin reduced order equations into the loss function of the PINNs. This
way, the reduced model is able to approximate unknown parameters, such as physical constants or
boundary conditions. Another study is from Wu et al. [79] that proposed a method that obtains
a snapshot of the solution through numerical simulation, then uses the POD method to generate
basis functions that optimally represent the solution and a transformer neural network learns the
physical dynamics.

In the next section, the mathematical theory behind the POD method is introduced.

3.1.2 Proper orthogonal decomposition (POD)

To implement the POD method, it is assumed that all data are saved in a matrix with 𝑁𝑝 by 𝑁𝑡

entries, each column representing one time step:
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M =


𝑀1,1 𝑀1,2 · · · 𝑀1,𝑁𝑡

𝑀2,1 𝑀2,2 · · · 𝑀2,𝑁𝑡

...
...

. . .
...

𝑀𝑁𝑝 ,1 𝑀𝑁𝑝 ,2 · · · 𝑀𝑁𝑝 ,𝑁𝑡


(3.1)

where 𝑁𝑝 is the number of rows of data and 𝑁𝑡 the number of time steps.
Each column of M can be written as a linear combination of orthonormal, i.e. unitary and

orthogonal, vectors or modes, w. Therefore, the matrix of the modes, W, is given by

W =


𝑤1,1 𝑤1,2 · · · 𝑤1,𝑁𝑚

𝑤2,1 𝑤2,2 · · · 𝑤2,𝑁𝑚

...
...

. . .
...

𝑤𝑁𝑝 ,1 𝑤𝑁𝑝 ,2 · · · 𝑤𝑁𝑝 ,𝑁𝑚


(3.2)

where 𝑁𝑚 is the number of modes. This way, matrix M can be rewritten as the product of two
matrices:

M = W ·A (3.3)

where each element of M is given by:

𝑀𝑖,𝑡 =

𝑁𝑚∑︁
𝑚=1

𝑤𝑖,𝑚𝑎𝑚,𝑡 (3.4)

with 𝑖 ∈ {1,2, . . . , 𝑁𝑝}, 𝑡 ∈ {1,2, . . . , 𝑁𝑡 } and 𝑎𝑚,𝑡 are the time coefficients and the elements of
matrix A:

A =


𝑎1,1 𝑎1,2 · · · 𝑎1,𝑁𝑡

...
...

. . .
...

𝑎𝑁𝑚,1 𝑎𝑁𝑚,2 · · · 𝑎𝑁𝑚,𝑁𝑡

 . (3.5)

Matrices W and A are obtained from the calculation of the autocovariance matrix S, that is a 𝑁𝑝

by 𝑁𝑝 matrix given by:

S = M ·M𝑇 . (3.6)

By definition, S is a symmetric positive definite matrix with real, nonnegative ordered eigenvalues
𝜆1 ≥ ... ≥ 𝜆𝑁𝑝

≥ 0. The corresponding eigenvectors 𝑤𝑖 , 𝑖 = 1, ..., 𝑁𝑝, are given by [8]:

S𝑤𝑖 = 𝜆𝑖𝑤𝑖 , 𝑖 = 1, ..., 𝑁𝑝 . (3.7)

Due to the special structure of S, vectors 𝑤𝑖 , 𝑖 = 1, .., 𝑁𝑝 represent the desired orthonormal vectors
or modes, which together form matrix W. However, obtaining these modes by directly solving the
eigenvalue problem for the 𝑁𝑝 by 𝑁𝑝 matrix S would be computationally expensive. Therefore, the
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method of snapshots proposed by Sirovich [80] is employed, which involves solving the eigenvalue
problem using the autocovariance matrix R instead of S, i.e.,

R𝑣 𝑗 = 𝜆 𝑗𝑣 𝑗 , 𝑗 = 1, ..., 𝑁𝑡 (3.8)

where 𝑣 𝑗 , 𝑗 = 1, ..., 𝑁𝑡 are the eigenvectors of R, which are computed as follows:

R = M𝑇 ·M. (3.9)

The autocovariance matrix R has dimensions 𝑁𝑡 by 𝑁𝑡 and has the same non-zero eigenvalues as
S [8]. Matrix W of the modes is now given by,

W = M ·V · (L)−
1
2 , (3.10)

where the columns of matrix V are the eigenvectors of R and L is the matrix of eigenvalues of R,
sorted by descending order. Finally, matrix A is obtained by:

A = W𝑇 ·M. (3.11)

The distribution of the matrix W columns is directly related to the corresponding eigenvalues,
with the first columns corresponding to higher variations of the time coefficients, and therefore
those gathering more relevant information. Thus, the reconstruction of matrix M is performed,
but keeping only the first more relevant modes (the user decides on the number of modes, which
affects both accuracy and cost). Since 𝑁𝑚 < 𝑁𝑝, it brings:

M ≈ W̃ · Ã = M̃ (3.12)

where the tilde is used to denote the matrices reconstructed only with data corresponding to the
more relevant modes.

In the next sections, two problems are presented where the POD method is applied.
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3.2 Flow structures identification through POD for the flow around
two distinct cylinders

In the literature many studies have been made of the flow around one cylinder (e.g. [81]).
Concerning recent literature on the use of POD to study the flow around bluff bodies, Bergmann et
al. [82] studied the optimal rotary control of the cylinder wake using POD and Huan Ping et al. [83]
also studied the wake dynamics behind a rotary oscillating cylinder. They used POD to extract the
energetic modes that govern the dynamics of the flow, and also to characterize the spatially evolving
nature of the forced wake as it undergoes a transition from the near-wake two-layer shedding pattern
to the far-wake Kármán-like shedding pattern. They concluded that only a few modes allowed for
reconstructing the near-wake accurately, while more modes must be retained to ensure an accurate
approximation of the far-wake. Riches et al. [84] used POD to analyze the wake-dynamics of
a low-mass ratio circular cylinder undergoing vortex-induced vibrations. Recently, most of the
works are in flow around cylinders with different surface texture/geometry.

For the flow around two cylinders, there are works on flows around side-by-side circular
cylinders with the same dimensions [85–87], and also a study with two cylinders in a staggered
configuration, where the data processed by the POD method were obtained from experimental
measurements of flow fields using particle image velocimetry [88].

In this section, a simple POD method is used to compute the 2D flow around two parallel
side-by-side cylinders with different radii. The main idea is:

• to use the POD not to reduce and compile the amount of information on the flow as happens
in most studies, but instead to show that the POD can be used to capture flow structures and
flow physics that would be impossible to observe without a mode analysis, highlighting, in
this way, this ability of the POD method;

• to understand the flow around two parallel side-by-side cylinders with different radii, through
the use of POD and classical CFD. Thus, by decomposing this complex 2D flow, a better
understanding of the impact of a given obstacle on the areas of interest can be achieved.

Therefore, a detailed study on complex 2D flow is presented, and it is shown that the energy
drop-off for higher order modes is much less steep when the complexity of the 2D flow increases.

It should be mentioned that turbulent flows are not studied in here. The main idea is to
fully understand the mode decomposition in an oscillatory flow around two parallel side-by-side
cylinders of different dimensions.

This section is organized as follows: a numerical study for the 2D flow past two parallel
side-by-side cylinders of different radii is performed, considering a Newtonian fluid and two
non-Newtonian power-law fluids with 𝑛 = 0.7 and 𝑛 = 1.3. Then, the most important modes are
identified and a reconstruction with the main modes is performed. Using this specific flow, destroys
the possibility of forming a symmetric pattern over time and increases the difficulty in grouping
different modes. Finally, a discussion of the dynamics of the fluid flow and of the reconstruction
procedure is detailed.
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Each contribution related to the work objectives, presented in section 3.2, are explained in
detail. Given that the present dissertation falls into the category of multi-paper dissertation, and
in order to keep repetition of information at a minimum level, the complete paper related to this
section is presented in Part III of this thesis.

3.2.1 Governing equations, numerical method and POD

The equations governing the flow of an isothermal incompressible fluid, are the continuity,

∇ ·u = 0 (3.13)

where u is the velocity vector, and the momentum equation,

𝜌
Du
D𝑡

= −∇𝑝 +∇ · 𝝉, (3.14)

where 𝜌 is the density, D
D𝑡

is the material derivative, 𝑝 is the pressure, 𝝉 is the extra-stress tensor
and 𝑡 is the time.

A Newtonian fluid and a power-law fluid were considered. For the Newtonian fluid, the
constitutive equation is given by:

𝝉 = 2𝜇D, (3.15)

where D is the rate of deformation tensor and 𝜇 is the viscosity. For the power-law fluid, the
constitutive equation is:

𝝉 = 2𝜂 ( ¤𝛾)D, (3.16)

where ¤𝛾 is the second invariant of the rate of deformation tensor and 𝜂 ( ¤𝛾) is the viscosity function
given by:

𝜂 ( ¤𝛾) = 𝑎 ¤𝛾𝑛−1, (3.17)

where 𝑎 is the consistency index and 𝑛 is the power-law index.
In this section, for the power-law fluid, a generalised Reynolds number [89, 90] is considered:

𝑅𝑒𝑔𝑒𝑛 =
6𝜌𝑈 (2−𝑛)𝐿𝑛

𝑎 [(4𝑛+2) /𝑛]𝑛 , (3.18)

where𝑈 is the imposed mean velocity at the inlet and 𝐿 is a characteristic linear dimension.
When studying the von Kármán vortex street, that is a repeating pattern of swirling vortices

occurring due to vortex shedding, which is responsible for the unsteady separation of the fluid flow
around a blunt body, another important dimensionless numbers appears: the Strouhal number. The
Strouhal number is a key parameter for oscillating flows, because it describes the relation between
the length-scale of the blunt body, the vortex shedding frequency and the flow velocity [77], and is
defined as:
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𝑆𝑡 =
𝑓 𝐿

𝑈
, (3.19)

where 𝑓 is the vortex shedding frequency. This dimensionless number depends on the Reynolds
number, 𝑅𝑒. According to Roshko [91], for the range 50 < 𝑅𝑒 < 150, the relationship between 𝑆𝑡
and 𝑅𝑒 is given by

𝑆𝑡 = 0.212
(
1− 21.2

𝑅𝑒

)
. (3.20)

The system of equations, Eqs. (3.13), (3.14), together with the constitutive equations (3.15) for
the Newtonian fluid and (3.16) for the power-law fluid, are solved numerically using the software
ANSYS Fluent version 2020 R2. To perform the simulations, the velocity and pressure fields at
𝑡 = 0 are obtained in the following manner:

• First, a steady-state solution is calculated for 𝑅𝑒 = 100;

• Second, the previous solution is used as an initial guess (𝑡 = 0) for the velocity and pressure
fields, in the steady-state numerical simulation considering 𝑅𝑒 = 500. This simulation allows
the development of the characteristic von Kármán vortex street.

• Third, the steady-state solution obtained for 𝑅𝑒 = 500 is used as the initial guess for the
transient simulation with 𝑅𝑒 = 100.

The pressure–velocity coupling is done using the SIMPLE method. To discretize the pressure
gradient, the least squares cell based scheme is used, and for the discretization of the advective
terms, the second-order upwind scheme is considered. The transient term is approximated by a
first order implicit scheme.

The POD analysis is performed with MATLAB R2018a. The data saved in matrix M
correspond to the velocity components, 𝑢 and 𝑣, and the pressure field, 𝑝, that are obtained
after performing the CFD simulation. Thus, each column of matrix M, contains the following data:

(
𝑢1, 𝑢2, ..., 𝑢𝑁𝐸

, 𝑣1, 𝑣2, ..., 𝑣𝑁𝐸
, 𝑝1, 𝑝2, ..., 𝑝𝑁𝐸

)𝑇
where 𝑁𝐸 is the number of control volumes of the mesh.

In this study, the implementation of the POD method is a little different of the one presented
in section 3.1.2. For this work the autocovariance matrix S, is computed in the following form:

S =
1
𝑁𝑝

M ·M𝑇 (3.21)

where 𝑁𝑝 is the number of rows of data. This way, the matrix of modes are the eigenvectors
of matrix S and the time coefficients are obtained by Eq. (3.11). With these two matrices, the
reconstruction is then performed using Eq. (3.12).

In the next section, more details are presented regarding the geometry, the mesh and the
rheological properties of the fluids used for this study.
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3.2.2 Problem definition

The geometry is represented in Fig. 3.1. There are two cylinders with different radii that are
parallel and side-by-side, one at the bottom of the channel and other at the top of the channel.
Assuming that the characteristic linear dimension considered here is the diameter, i.e. 𝐿 = 𝐷, the
bottom cylinder has a diameter 𝐷 = 0.1 m and is placed 5𝐷 away from the inlet and 15𝐷 from the
outlet. The inlet has a 10𝐷 height.

Figure 3.1: Geometry of the flow around two cylinders. The left dashed line represents the inlet
and the right dashed one the outlet.

Fig. 3.2 (a) presents a global view of the chosen mesh and Fig. 3.2 (b) shows a zoomed view
around the two cylinders. The cell size is set to 0.025𝐷 along the cylinders’ surface region, 0.1𝐷
along bold lines of Fig. 3.2 (a) and 0.2𝐷 on the rest of the domain. The cell size growth rate is
1.2. Along the bold edges (Fig. 3.2 (b)), a bias type procedure is used with a bias factor of 10.
The mesh obtained has 23944 elements.

(a) (b)

Figure 3.2: Mesh of the flow around two cylinders with 23944 elements. (a) Global view with
black lines with 0.1𝐷 mm elements; (b) close view around and between the cylinders.

For the boundary conditions, an imposed pressure at the outlet is considered, and at the inlet
an imposed uniform velocity profile that is constant in time. Full slip is considered at the top and
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bottom walls of the channel, and the usual empirical no-slip boundary condition is assumed at the
walls of the cylinders.

The numerical simulations are performed considering a Newtonian fluid and a non-Newtonian
power-law fluid. For the Newtonian case, the rheological properties of water at a temperature of
20 ◦C are considered, (𝜌 = 103 kg.m−3 and 𝜇 = 10−3 Pa.s), and it is assumed that near the bottom
cylinder, 𝑅𝑒 = 100 and near the top cylinder, 𝑅𝑒 = 150. For the non-Newtonian power-law case, is
assumed 𝑅𝑒𝑔𝑒𝑛 = 100, where 𝜌 = 103 kg.m−3, 𝐷 = 0.1 m and 𝑈 = 10−3 m.s−1. Considering two
fixed values for the power-law index 𝑛, 0.7 and 1.3, from Eq. (3.18), where 𝐿 = 𝐷, 𝑎 = 0.00039
Pa.s0.7 and 0.0026 Pa.s1.3 are obtained, respectively.

3.2.3 Results and discussion

The transient simulation is performed, and the first 10𝜆𝑡 seconds
(
𝜆𝑡 =

20𝐷
𝐷×𝑈 s

)
are neglected

to avoid the strong influence of the initial conditions. The subsequent 10𝜆𝑡 seconds of data
are then analysed. Note that 𝜆𝑡 is an approximate measure of the residence time, that is, the
average time a element takes to go from the inlet to the outlet. The study and analysis is
focused on the subsequent 10𝜆𝑡 seconds of data. To set the maximum time step of the nu-
merical simulation, a maximum Courant number (𝐶) of 1 is considered. Using 𝐶 ≤ 1 leads to
𝛿𝑡𝐶𝐹𝐷 ≤ 𝛿𝑥

𝑢𝑚𝑎𝑥
= 0.0025

0.001 = 2.5 s. To use the POD method, the data of every 20 time-steps is
considered, i.e., 𝛿𝑡𝑃𝑂𝐷 = 50 s, resulting into 400 time-steps to be analyzed.

Fig. 3.3 (a)–(c) presents the streamlines and the vorticity sign map for the flow around two
cylinders, for the Newtonian fluid and of the power-law fluids with 𝑛 = 0.7 and 𝑛 = 1.3, respectively.
The oscillatory behaviour downstream the cylinders is perceptible and the vortices detach from
each cylinder rear, with different sizes. Later in time, the vortices that arise from both cylinders
interact and new structures are formed, where the individual influence of each cylinder is no more
clear. From Eq. (3.20) for 𝑅𝑒 = 100, that corresponds to the smaller cylinder, 𝑆𝑡 ≈ 0.17 and
consequently the structures behind the cylinder are about six times bigger than the cylinder itself.
Near the bigger cylinder, with diameter 1.5𝐷, a 𝑅𝑒 = 150 corresponds to 𝑆𝑡 ≈ 0.18 and vortices
are slightly bigger.

(a) (b) (c)

Figure 3.3: Streamlines and vorticity sign (blue represents positive values and grey negative values)
at 𝑡 = 20𝜆𝑡 for: (a) Newtonian fluid; (b) power-law fluid with 𝑛 = 0.7; (c) power-law fluid with
𝑛 = 1.3.

Some snapshots/instants of the evolution in time of the velocity component 𝑢 are shown in
Fig. 3.4. The figures are numbered from 1 to 15, with 1 representing 𝑡 ≈ 0 s and 15 representing
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𝑡 ≈ 2.3 s of simulation. From instants 1 to 5, the flow in the wake of the cylinders is similar, although
the different scales generate different structures that lead to the asynchronous flow verified at instant
6. These asynchronous flow resulted in the formation of higher-velocity structures that (detached)
from the main flow in the wake of the cylinder. This analysis alone is still insufficient to fully
understand the influence of one cylinder on the other. Therefore, a detailed analysis based on POD
is presented, which shows that these methods allow to unveil the origin and evolution of different
structures.

1                                                    2                                                     3                 4

5                                                    6                                                     7                 8

10                                                  11                                                  12                   13

14                                                  15

Figure 3.4: Evolution, in time, of the first component, 𝑢, of the velocity profile for the Newtonian
fluid. The numbers 1 to 15 establish the order of occurrence, with 1 representing 𝑡 ≈ 0 s and 15
representing 𝑡 ≈ 2.3 s.

3.2.3.1 Eigenvalues, modes and partial reconstruction

For this study only the first 20 eigenvalues and modes are considered. Fig. 3.5 shows the relative
weight of the eigenvalues associated with each mode, for a Newtonian fluid, a power-law fluid
with 𝑛 = 0.7 and a power-law fluid with 𝑛 = 1.3, respectively. In the three cases, a fast decay of
the relative weight of the eigenvalues associated with each mode can be seen. For the Newtonian
fluid, the weights attributed to the first, second and third eigenvalues are 95.7%, 1.21% and 0.98%,
respectively. For the power-law fluid with 𝑛 = 0.7, the weights are 97.5%, 0.79% and 0.67%. And,
for the power-law fluid with 𝑛 = 0.7, the weights are 94.5%, 1.5% and 1.2%. The existence of
a second cylinder with different frequencies associated and the interaction of the structures that
emerge from the distinct cylinders lead to the use of a higher number of frequencies and modes, to
correctly predict/reconstruct the flow.

Table 3.1 shows the most important modes of 𝑢, 𝑣 and 𝑝, for the flow around two cylinders (for
each component 𝑢, 𝑣 and 𝑝, from left to right, it is represented: a Newtonian fluid, a power–law
fluid with 𝑛 = 0.7 and a power–law fluid with 𝑛 = 1.3).
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Figure 3.5: Relative weight of the eigenvalues associated with each mode.

Table 3.1: Most important modes (1 to 7) of 𝑢, 𝑣 and 𝑝 for the flow around two cylinders. For each
component 𝑢, 𝑣 and 𝑝, from left to right it is represented: a Newtonian fluid, a power-law fluid
with 𝑛 = 0.7 and a power-law fluid with 𝑛 = 1.3.

u v p

1

2

3

4

5

6

7

From the analysis of Table 3.1, the first mode has the main features of the flow, but without the
oscillating components. Mode 1 is in close agreement with the ensemble average (as expected).
Notice that the values of 𝑢, 𝑣 and 𝑝 for mode 1 are symmetrical of what is supposed to happen,
because this mode is multiplied by the time coefficients that, in this case, are negative. Modes
2 and 3 are related to vortices that detach from the top cylinder, whereas modes 4 and 5 can be
associated with the bottom cylinder. In modes 2 and 3, flow structures of the top cylinder in front of
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Table 3.2: Comparison between the original (first row of images) data versus the partial recon-
struction at 𝑡 = 20𝜆𝑡 (the modes used in the reconstruction are shown in the first column). For each
component 𝑢, 𝑣 and 𝑝, from left to right it is considered: a Newtonian fluid, a power-law fluid with
𝑛 = 0.7 and a power-law fluid with 𝑛 = 1.3.

u v p

Original

2,3

4,5

1-3

1-5

the bottom cylinder can be seen, and that type of influence is hard to see without a decomposition
by modes like is performed in this study. Modes after mode 5 are not similar by pairs neither easily
associated with some meaningful flow structure.

To better understand this phenomena, Table 3.2 shows a comparison between the original
data and the partial reconstruction at 𝑡 = 20𝜆𝑡 , for the three fluids (for each component 𝑢, 𝑣 and
𝑝 from left to right it is represented: a Newtonian fluid, a power-law fluid with 𝑛 = 0.7 and a
power-law fluid with 𝑛 = 1.3). From these results, it is concluded that the partial reconstruction
with just modes 2 and 3 recovers the bigger vortices traveling along the domain associated with
the top cylinder. When modes 4 and 5 are considered, the smaller vortices downstream the bottom
cylinder are captured, in a short distance from the cylinder. In the reconstruction with the first five
modes almost all the structures are perceptible, although slight corrections are missing.

Due to the different vortices that are formed along time and space, the task of finding a direct
relationship between the modes and the exact structures is really hard to perform. However the
velocity fields obtained for the Newtonian fluid at 𝑡 = 10𝜆𝑡 , 𝑡 = 15𝜆𝑡 and 𝑡 = 20𝜆𝑡 were plotted,
together with the velocity fields obtained for modes 2 and 3, and, modes 4 and 5. These results are
shown in Fig. 3.6.

From Fig. 3.6, it is clear that the relationship between modes 2,3 and modes 4,5 and the top and
bottom cylinders prevails along time. In addition, it may be concluded that both reconstructions
still have information on both cylinders. The isolated vortices are not completely retrieved, but
the association is clear. It is also noticeable that if the spatial characteristics are preserved, the
temporal ones are merged. The intensity of each vortex pattern (represented by the vector lengths)
is proportional to the vortices at this position in the decomposed dataset. When the velocity
components are decomposed, the intensity of the vectors (vector length) coincides with the local
averaged kinetic energy. Notice that the original data for variables 𝑢, 𝑣 and 𝑝, with 23944 elements
along 400 time steps are saved into a matrix with (3×23944×400) about 28.7 million values that
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Figure 3.6: Velocity fields obtained for the Newtonian fluid at 𝑡 = 10𝜆𝑡 , 𝑡 = 15𝜆𝑡 and 𝑡 = 20𝜆𝑡
(together with the velocity fields obtained for modes 2 and 3, and, modes 4 and 5).

need to be stored. Due to computational limitations of the MATLAB software in the calculations
of the elements applying the POD method it was considered one fifth of the elements. The data
were saved into a matrix of (3×4789×400) about 5.7 million entries. The reconstruction made
with just five modes only needs (3×4789×5) 71835 values to be stored. This is a reduction of
98.75% with no significant loss of information, resulting in significant savings. Next, a frequency
analysis on the modes is performed.

3.2.3.2 Analysis of the frequencies of the modes time coefficients

Fig. 3.7 represents an analysis of the frequencies of the modes time coefficients. The Strouhal
numbers presented in the figures are calculated considering the frequency with higher energy, the
diameter of the bottom cylinder, 𝐷, and the mean velocity𝑈.

By Eq. (3.20), the Strouhal number for 𝑅𝑒 = 100 is about 0.17 and for 𝑅𝑒 = 150 the Strouhal
number is 0.18. These predicted Strouhal numbers can be related to the ones presented in Fig. 3.7
(a) for the Newtonian fluid. Therefore, analysing the frequencies of modes 2 and 3, it can be seen
that 𝑆𝑡 = 0.155 and the difference to the predicted Strouhal for the top cylinder (considering the
diameter 1.5𝐷) is about 30%. For modes 4 and 5, 𝑆𝑡 = 0.22, that when compared with the value
predicted by Eq. (3.20) for the bottom cylinder, shows a deviation of about 30%.

Fig. 3.7 also shows that modes greater than one seem to be organized in pairs, revealing the
need for the combination of two structures to correctly model the evolution of the flow structures
along the domain.

From Fig. 3.7, it is also seen that for the three fluids the Strouhal numbers are very similar,
meaning that the flow characteristics induced by the two cylinders are more important than the
rheology of the fluids.



62 Numerical studies

Tables 3.1 and 3.2 show that modes 2 and 3 were associated with the top cylinder. Thus, taking
that into account, some conclusions related to the Strouhal numbers and how do they relate with the
other modes represented in Fig. 3.7 can be derived. Therefore, it is seen that modes 6 and 7 have
a Strouhal number approximately half the Strouhal number of modes 2 and 3 (𝑆𝑡6,7 ≈ 0.5𝑆𝑡2,3),
whereas the Strouhal number of modes 10 and 11 is twice the value obtained for modes 2 and 3
(𝑆𝑡10,11 = 2𝑆𝑡2,3). So, it is concluded that modes 6 and 7 and modes 10 and 11 are related to the
same flow structures of modes 2 and 3.

(a) (b) (c)

Figure 3.7: Analysis of frequencies of the modes time coefficients: (a) Newtonian fluid; (b) power-
law fluid with 𝑛 = 0.7; (c) power-law fluid with 𝑛 = 1.3.

In Fig. 3.7 (a), that is the case of a Newtonian fluid, it can also be noticed that the Strouhal
number calculated for the second most important frequency of modes 2 and 3 is the Strouhal number
associated with modes 4 and 5, and vice versa. This means that the flow structure associated with
modes 4 and 5 interferes with the flow structures associated with modes 2 and 3, and vice versa.
The same happens to modes 6 and 7 and modes 8 and 9. This means that the flow structures
associated with modes 8 and 9 interfere with the flow structure associated with modes 6 and 7, and
vice versa.

In Fig. 3.7 (b), that is the case of a power-law fluid with 𝑛 = 0.7, it is noticed that the Strouhal
number calculated for the second most important frequency of modes 2 and 3 is the Strouhal
number associated with modes 4 and 5 (the flow structure associated with modes 4 and 5 interferes
with the flow structure associated with modes 2 and 3, and vice versa), but this relationship is
not observed for the other modes. This is due to the use of a different constitutive model for the
viscosity.
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Finally, for Fig. 3.7 (c), the case of the power-law fluid with 𝑛 = 1.3, it can be seen that the
Strouhal number calculated for the second most important frequency of modes 2 and 3 is the
Strouhal number associated with modes 4 and 5, but not the other way around. However, for modes
6 and 7, the Strouhal number calculated for the second most important frequency is associated with
modes 8 and 9, and vice versa. This means that the flow structure associated with modes 8 and 9
interferes with the flow structures associated with modes 6 and 7, and vice versa. This is again due
to the use of a different constitutive model for the viscosity.

Visually, it seems that the different modes are related to the upper or lower cylinder, thus
allowing to use POD to detect and predict flow feature with much less information.

Fig. 3.8 (a)–(c) shows the pairs of time coefficients of consecutive modes, according to the
frequencies represented in Fig. 3.7 for the Newtonian fluid, the power-law fluid with 𝑛 = 0.7 and
the power-law fluid with 𝑛 = 1.3, respectively.
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Figure 3.8: Pairs of time coefficients of consecutive modes: (a) Newtonian fluid; (b) power-law
fluid with 𝑛 = 0.7; (c) power-law fluid with 𝑛 = 1.3.

Fig. 3.8 shows the oscillatory and alternating behaviour for pairs of time coefficients 𝑎2 and
𝑎3, 𝑎4 and 𝑎5, and 𝑎6 and 𝑎7, that have similar frequency and amplitude, but with a phase between
them. Therefore, to compare their relative contribution, if the values

√︁
𝑎12,

√︁
𝑎22 + 𝑎32,

√︁
𝑎42 + 𝑎52

and
√︁
𝑎62 + 𝑎72 are considered, they remain similar along time. So, Eq. (3.22) is considered to

compare the time coefficients of the modes having into account their oscillatory behaviour:√︁
𝑎12 +

√︁
𝑎22 + 𝑎32 +

√︁
𝑎42 + 𝑎52 +

√︁
𝑎62 + 𝑎72. (3.22)

Modes higher than 7 were not considered due to their small contributions. For the Newtonian
fluid, mode 1, without the oscillatory information, has about 75% of the information in Eq. (3.22),
whereas modes 2 and 3 have approximately 11.2% of the information in Eq. (3.22) (referring to√︁
𝑎22 + 𝑎32), modes 4 and 5 have approximately 8% of the information in Eq. (3.22) (referring to√︁
𝑎42 + 𝑎52) and modes 6 and 7 have approximately 6% of the information in Eq. (3.22) (referring

to
√︁
𝑎62 + 𝑎72).
For the non-Newtonian power-law fluid with 𝑛 = 0.7, mode 1, without the oscillatory informa-

tion, has about 79.5% of the information in Eq. (3.22), whereas modes 2 and 3 have approximately
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9.7% of the information in Eq. (3.22) (referring to
√︁
𝑎22 + 𝑎32), modes 4 and 5 have approximately

6.5% of the information in Eq. (3.22) (referring to
√︁
𝑎42 + 𝑎52) and modes 6 and 7 have approxi-

mately 4.3% of the information in Eq. (3.22) (referring to
√︁
𝑎62 + 𝑎72). When comparing with the

Newtonian fluid, the time weights show a smaller decrease, for pairs of modes after mode 1, but
an increase for mode 1.

Finally, for the non-Newtonian power-law fluid with 𝑛 = 1.3, mode 1, without the oscillatory
information, has about 72.7% of the information in Eq. (3.22), whereas modes 2 and 3 have
approximately 12.1% of the information in Eq. (3.22) (referring to

√︁
𝑎22 + 𝑎32), modes 4 and 5

have approximately 8.8% of the information in Eq. (3.22) (referring to
√︁
𝑎42 + 𝑎52) and modes 6

and 7 have approximately 6.3% of the information in Eq. (3.22) (referring to
√︁
𝑎62 + 𝑎72). When

comparing with the Newtonian fluid and with the non-Newtonian power-law where 𝑛 = 0.7, the
time weights show a smaller decrease on mode 1, but an increase on the pairs of modes after mode
1.

Looking at the results obtained for the Newtonian fluid, the non-Newtonian power-law fluid
with 𝑛 = 0.7, and with the non-Newtonian power-law fluid with 𝑛 = 1.3, it can be concluded that
the first modes are the ones that carry most of the information and with only a few modes, the
simulation can be reconstructed.

By using two cylinders with different radii, different hidden structures in the flow are obtained,
and using the modes and the frequencies of the modes time coefficients, some structures can be
related to the influence of one cylinder over the other. This gives a better understanding of the flow.

This work is published on paper [92], which can be found in Part III of this thesis.
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3.3 Flow of complex fluids past a cylinder in a channel

The planar flow past a cylinder is a benchmark problem proposed nearly three decades ago
[93]. Numerous numerical studies have been published since then, predominantly employing the
Oldroyd-B model to investigate creeping flow conditions, with a solvent viscosity ratio of 0.59.
This selection is primarily driven by the simplicity of the problem, the availability of precise
benchmark data, and the lack of singular points in the flow domain, particularly within the low
Weissenberg range [94].

Within the creeping flow regime, the fluid elasticity becomes the primary cause of nonlinear
behaviour, leading to the emergence of various flow phenomena that have received limited attention.
These include, but are not limited to, flow instabilities, such as symmetry breaking, secondary flow,
time dependency, elastic instability and elastic turbulence [95]. Several studies have already been
conducted on the flow of non-Newtonian fluids around confined cylinders, and it is important to
highlight some recent findings from the literature.

Varchanis et al. [96] carried out an investigation to assess how fluid rheological properties
influence the development of laterally asymmetric flows past confined cylinders. They considered
three non-Newtonian constitutive models: a shear-thinning inelastic Carreau–Yasuda model, which
showed that shear-thinning alone is insufficient to cause flow asymmetry; a non-linear elastic
dumbbell model, leading to a thin layer of highly elastic stresses downstream of the cylinder rear
stagnation point, but no significant lateral asymmetries of the flow around the sides of the cylinder;
and a viscoelastic shear-thinning linearPTT model, where lateral symmetry is retained, only below
a critical low flow rate, together with the growth of an elastic downstream wake. Above the critical
flow rate, this flow bifurcates to one of two steady laterally asymmetric states. These numerical
results were compared with experimental data, and the conclusion was that both shear thinning
and fluid elasticity are essential for the occurrence of flow asymmetry.

Recently, Peng et al. [95] investigated numerically the viscoelastic fluid flow instabilities
observed experimentally upstream of the front stagnation point of the cylinder in a narrow channel.
They used the FENE-P model to describe the rheological behaviour of a dilute polymer solution.

In this section, an extended work on the investigation of section 3.2 is presented. For that
purpose, simulations in a planar flow past a 2D cylinder confined in a channel for a gPTT fluid
are carried out at a low Reynolds number (𝑅𝑒 = 0.01) and Weissenberg numbers of 1.2 and 1.25.
Visualization of the transient flow during the simulations showed the presence of vortex shedding,
bearing similarities with the von Kármán vortex street downstream of a cylinder for Newtonian
fluids at higher Reynolds numbers. The presence of such coherent structures makes this problem a
good candidate for applying the POD method. For each of the fluids, a reconstruction is performed
and a frequency analysis of specific modes is obtained.

By applying the POD method, it was possible to detect and characterize large coherent structures
through the flow decomposing into a generator base and the corresponding time coefficients and
then by performing a frequency analysis of a limited number of modes for each of the flows, the
one 𝑊𝑖 = 1.2 and the other with 𝑊𝑖 = 1.25. These values were used for the Weissenberg number,
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because they are within a range that contains the transition from a steady state to the appearance
of small vortices.

This section is organized as follows: first, the governing equations for the fluid and the
constitutive model used in the simulations are presented, followed by the numerical method and
the POD method applied. Following that, numerical simulations are conducted for the planar
flow past a cylinder, considering two fluids: one with 𝑊𝑖 = 1.2 and other with 𝑊𝑖 = 1.25. The
identification of the most significant modes is carried out, followed by a reconstruction of the flow
and frequency analysis of specific modes. Finally, a change in the frequencies of the modes time
coefficients of the POD for the fluid with 𝑊𝑖 = 1.2 are applied, resulting in a new reconstruction.
This reconstructed flow is then compared to the simulation results for the fluid with𝑊𝑖 = 1.25.

Each contribution related to the work objectives, presented in section 3.3, are explained in
detail.

3.3.1 Governing equations, numerical method and POD

The equations governing the flow of an isothermal incompressible fluid, are the continuity,

∇ ·u = 0 (3.23)

where u is the velocity vector, and the momentum equation,

𝜌
Du
D𝑡

= −∇𝑝 +∇ · 𝝉, (3.24)

where 𝜌 is the density, D
D𝑡

is the material derivative, 𝑝 is the pressure, 𝝉 is the extra-stress tensor
and 𝑡 is the time. The fluid considered is a gPTT fluid, whose constitutive equation is given by

𝐾 (𝜏𝑘𝑘) 𝝉 +𝜆
□
𝝉 = 2𝜂𝑝D, (3.25)

where

𝐾 (𝜏𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
, (3.26)

is the function of the trace of stress tensor and

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑗=0

𝑧 𝑗

Γ (𝛼 𝑗 + 𝛽) , (3.27)

is the Mittag–Leffler function with 𝛼, 𝛽 real and positive and Γ is the Gamma function. 𝜏𝑘𝑘 is the
trace of the extra-stress tensor, 𝜂𝑝 is the polymeric viscosity coefficient, D is the rate of deformation
tensor, 𝜀 represents the extensibility parameter and 𝜆 is the relaxation time of the fluid. □𝝉 represents
the Gordon–Schowalter derivative (Eq. (2.28).

Equations (3.23) and (3.24) together with the constitutive equation Eq. (3.25) are solved
numerically using RheoTool, an open-source toolbox based on OpenFOAM® to simulate GNF and
viscoelastic fluids under pressure-driven and/or electrically-driven flows [97–99].
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The POD analysis is performed with MATLAB R2018a, whose implementation is described
in section 3.1.2. The data saved in matrix M corresponds to the velocity components, 𝑢 and 𝑣, the
pressure field, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 , that are obtained after performing the CFD simulation. Thus, in
each column of matrix M, the following vector is saved:(

𝑢1, 𝑢2, ..., 𝑢𝑁𝐸
, 𝑣1, 𝑣2, ..., 𝑣𝑁𝐸

, 𝑝1, 𝑝2, ..., 𝑝𝑁𝐸
, 𝜏𝑥𝑥1 , 𝜏𝑥𝑥2 , ..., 𝜏𝑥𝑥𝑁𝐸

, 𝜏𝑥𝑦1 , 𝜏𝑥𝑦2 , ..., 𝜏𝑥𝑦𝑁𝐸

)𝑇
where 𝑁𝐸 is the number of elements of the mesh.

In the planar flow around a cylinder, a von Kármán vortex street can be observed above a
sufficently high Reynolds number that depends on blockage ratio and other relevant dimensionless
numbers, such as the Weissenberg number if the fluid is viscoelastic. To quantify the periodic
behaviour, the dimensionless Strouhal number is usually employed. The Strouhal number is defined
by Eq. (3.19) and in this section, the characteristic linear dimension considered to calculate this
non-dimensional number is the radius of the cylinder, 𝑅. Later, this definition is also used to
normalise the frequencies obtained from the frequency analysis of the modes that come out of the
POD method.

3.3.2 Problem definition

To the best of our knowledge, there were no studies published in the literature on numerical
simulations performed with the gPTT model. Since a fundamental part of this thesis concerns that
rheological model, to perform the numerical simulations, a gPTT fluid is considered with 𝜉 = 0,
𝛽𝜂 = 0.9, 𝜀 = 0.02, 𝛼 = 1.26 and 𝛽 = 1.2, at 𝑅𝑒 = 0.01 and𝑊𝑖 = {1.2,1.25}. The values for 𝛼 and
𝛽 are defined in accordance with the results presented by Ferrás et al. [3], that by performing a
fitting to the extensional viscosity using the expPTT model and the gPTT model with 𝛼 = 1.26 and
𝛽 = 1.2, showed that the gPTT model was a better fitting to the rheological data. In that fitting the
mean square error was calculated being the error with the gPTT model 24 times smaller than the
fitting with the expPTT model.

The geometry used in this study is a benchmark problem in computational rheology, corre-
sponding to a planar flow past a confined cylinder [93]. This geometry, shown in Fig. 3.9, includes
a channel with a cylinder of radius 𝑅, that is vertically centered between its walls, spaced apart 4𝑅
and placed at a distance of 20𝑅 downstream the inlet. The channel has a length of 60𝑅 downstream
of the cylinder.

A 2D flow in the 𝑥𝑦-plane is assumed and the following boundary conditions: at the inlet, the
polymeric extra-stresses are null, and a zero-gradient is applied to the pressure; at the walls of
the channel and of the cylinder, no-slip and non-porous conditions were set (velocity is null, the
polymeric extra-stresses are linearly extrapolated to the walls and a zero-gradient is imposed for
pressure); at the outlet, all variables have a zero-gradient, except for pressure that is fixed at 𝑝 = 0.
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Figure 3.9: Flow around one cylinder with 50% blockage ratio. (a) Geometry; (b) closure view of
the mesh around the cylinder. See user guide of RheoTool [100].

3.3.3 Results and discussion

The mesh considered for the numerical simulations and POD analysis has 24894 elements and
is the one considered in the tutorial of the RheoTool [97]. For this mesh and with 𝑅𝑒 = 0.01,
simulations at different Weissenberg numbers (𝑊𝑖) are performed, to obtain the drag coefficient
(𝐶𝑑) for each simulation. The results are presented in Fig. 3.10.

linearPTT
Newtonian

gPTT

Figure 3.10: Variation of 𝐶𝑑 with 𝑊𝑖. The circle (◦) corresponds to a Newtonian fluid [101],
triangles (△) correspond to values of Afonso et al. [102] for the linearPTT (𝜀 = 0.02 and a mesh
with 45120 elements), and the cross (×) are the results for the gPTT. The error bars represent the
amplitude of the oscillations for the unsteady cases and lines are a guide to the eye.

A maximum value for 𝑊𝑖 at 1.25 was used because the simulation at 𝑊𝑖 = 1.3 diverged. The
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values for 𝐶𝑑 in each simulation are calculated until the flow becomes steady. Fig. 3.10 shows that
the drag coefficient decreases as the Weissenberg number increases, which aligns with the results
obtained from the linearPTT model [102]. It is worth noting that these results for the gPTT model
differ from those of Afonso et al. [102] for a linearPTT model with 𝛽𝜂 = 0.59 due to the change of
rheology of the model.

3.3.3.1 POD with Wi=1.2 and Wi=1.25

To apply the POD method, transient simulations with 1200 time-steps are performed, considering
Δ𝑡/𝜆 ≈ 0.0083 for 𝑊𝑖 = 1.2 and Δ𝑡/𝜆 = 0.008 for 𝑊𝑖 = 1.25, so that a periodic flow without
the strong influence of the initial conditions could be obtained. Then the simulation continued
and 800 snapshots of our simulation are saved with increments of 10 time-steps each. To better
understand the presence of a vortex shedding bearing similarities with the von Kármán vortex street
downstream of the cylinder for Newtonian fluids at higher Reynolds number, Fig. 3.11 presents
the drag coefficient as a function of 𝑡/𝜆.

Figure 3.11: Variation of 𝐶𝑑 with 𝑡/𝜆 for the fluid with𝑊𝑖 = 1.2 and𝑊𝑖 = 1.25.

Fig. 3.11 shows that the flow is periodic at𝑊𝑖 = 1.2 and 1.25.

To perform the POD, only 400 snapshots are considered, i.e. the data of every 20 time-steps is
read.

For this study, only the first 20 eigenvalues and modes are considered. Fig. 3.12 shows
the relative weight of the eigenvalues associated with each mode, for 𝑊𝑖 = 1.2 and 𝑊𝑖 = 1.25,
respectively. In both cases, and as expected, there is a fast decay of the relative weight associated
with each mode. For the fluid with 𝑊𝑖 = 1.2, the weights of the first, second and third modes are
99.9996%, 0.0004% and 0.0000205% respectively and for the fluid with 𝑊𝑖 = 1.25 the weights
of the first, second and third modes are 99.9987%, 0.00121% and 0.0000605%, respectively. For
both cases the weights attributed to the remaining modes are residual, showing that these first three
modes may be sufficient to perform the reconstruction of the flow.
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Figure 3.12: Relative weight of the eigenvalues associated with each mode.

Table 3.3 presents the most important modes for 𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 (for each component 𝑢,
𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 , from left to right, represents the case simulation with𝑊𝑖 = 1.2 and𝑊𝑖 = 1.25).

Table 3.3: Most important modes (1 to 7) of 𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 for the flow around the cylinder.
For each component 𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 , from left to right, represents the case simulation with
𝑊𝑖 = 1.2 and𝑊𝑖 = 1.25.

𝑢 𝑣 𝑝 𝜏𝑥𝑥 𝜏𝑥𝑦

1

2

3

4

5

6

7

−2.3 × 10−3 3.2 × 100

u/𝑈

1.5 × 100 −9.9 × 10−1 9.9 × 10−1

𝑣/𝑈

0 1.3 × 102 8.6 × 1034 × 103
𝑝

𝜂𝑈/𝑅2

−5.3 × 10−1 5.6 × 101
𝜏𝑥𝑥

𝜂𝑈/𝑅

2.5 × 101 −2.7 × 101 2.7 × 1010
𝜏𝑥𝑦

𝜂𝑈/𝑅

By analysing Table 3.3, it is seen that the first mode is symmetric and has the main features of
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the flow without the oscillating part, having the same behaviour of the study presented in section
3.2. The results are similar between the cases with𝑊𝑖 = 1.2 and𝑊𝑖 = 1.25, but analysing the modes
there are some differences between them. For both cases, the modes after mode 1 are similar by
pairs (meaning 2,3 and 4,5) with some delay between them. For modes 6 and 7, comparing the two
fluids, a different behaviour is observed. Specifically for 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 , the case with 𝑊𝑖 = 1.25
shows some structures downstream of the cylinder, which seem to be absent for𝑊𝑖 = 1.2.

In Table 3.4 a comparison is made between the original data obtained from the simulation and
a partial reconstruction at the last time step, for each quantity, 𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 . From left to
right, the simulation cases with 𝑊𝑖 = 1.2 and 𝑊𝑖 = 1.25 are represented. The value shown below
each reconstruction is the RMSE at the last time step, for each quantity 𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 relative
to the corresponding original data for each flow simulation. Various reconstructions are shown,
namely with modes 2 and 3, modes 4 and 5, modes 1 and 5, modes 1 to 3 and modes 1 to 5.

Table 3.4: Comparison between the original (first row of images) data versus the partial recon-
struction (the modes used in the reconstruction are shown in the first column). For each component
𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 , from left to right it is considered the simulation case with 𝑊𝑖 = 1.2 and
𝑊𝑖 = 1.25 and the RMSE for each reconstruction.

𝑢 𝑣 𝑝 𝜏𝑥𝑥 𝜏𝑥𝑦

Original

2,3
RMSE2,3 1.184 1.183 0.313 0.313 5754.705 5722.864 15.043 14.968 6.012 6.013

4,5
RMSE4,5 1.183 1.183 0.312 0.311 5754.722 5722.869 15.053 14.958 6.003 5.992

1,5
RMSE1,5 0.006 0.008 0.015 0.015 14.581 8.511 0.381 0.376 0.183 0.191

1-3
RMSE1−3 0.007 0.005 0.021 0.015 3.630 3.637 0.160 0.192 0.188 0.144

1-5
RMSE1−5 0.001 0.002 0.004 0.002 1.913 2.888 0.084 0.170 0.062 0.076

−2.3 × 10−3 3.2 × 100

u/𝑈

1.5 × 100 −9.9 × 10−1 9.9 × 10−1

𝑣/𝑈

0 1.3 × 102 8.6 × 1034 × 103
𝑝

𝜂𝑈/𝑅2

−5.3 × 10−1 5.6 × 101
𝜏𝑥𝑥

𝜂𝑈/𝑅

2.5 × 101 −2.7 × 101 2.7 × 1010
𝜏𝑥𝑦

𝜂𝑈/𝑅

RMSE is calculated with Eq. (3.28):

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(P−Prec)2 (3.28)
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where P can be 𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 and Prec (“rec” indicates reconstruction) is the corresponding
reconstructed value. For any fields, the reconstruction with modes 2 and 3, does not show any
hidden structures of the flow, but in the reconstruction with modes 4 and 5, for 𝑣 and 𝜏𝑥𝑦 , small
vortices downstream of the cylinder are perceptible. The best reconstructions are with modes 1
and 5, modes 1 to 3, and modes 1 to 5, where all reconstructed fields approach the original data
and exhibit the lowest RMSE. When comparing to the work in section 3.2, the reconstruction with
modes 1 and 5 was added to assess if only with modes 1 and 5 the reconstruction was good enough
to identify all the structures of the flow. It is seen that the reconstruction is very similar to the
original, but some differences can be noted, mainly for the𝑊𝑖 = 1.25 case. The best reconstruction
is with modes 1 to 5, where the differences are not visible. By looking at the RMSE for each
quantity, it is verified what the figures represented on the table show, and can be concluded that the
best prediction of the flow is for the reconstruction with modes 1 to 5 since in that case the RMSE
is lower.

Fig. 3.13 presents an analysis of the frequencies of the modes time coefficients for the two
fluids. The Strouhal numbers (Eq. (3.19)) plotted in Fig. 3.13 are calculated considering the
frequency with higher energy in each mode.

In Fig. 3.13 mode 1 was not considered because the time coefficient of this mode is constant
in time. By analysing Fig. 3.13, it can be seen that pairs of modes 2 and 3, 4 and 5, 6 and 7, 8 and
9 have common Strouhal numbers, for both flows, which shows that each pair is associated with
the same flow structure, being in agreement with the conclusions of section 3.2. For the fluid with
𝑊𝑖 = 1.2, the Strouhal number of modes 4 and 5 is about 8 times the Strouhal number of modes
2 and 3 (𝑆𝑡4,5 ≈ 8𝑆𝑡2,3) and the Strouhal number of modes 8 and 9 is twice the Strouhal number
of modes 2 and 3 (𝑆𝑡8,9 = 2𝑆𝑡2,3). For the fluid with 𝑊𝑖 = 1.25, the Strouhal number of modes
4 and 5 is about 8 times the Strouhal number of modes 2 and 3 (𝑆𝑡4,5 ≈ 8𝑆𝑡2,3) and the Strouhal
number of modes 6 and 7 is about twice the Strouhal number of modes 2 and 3 (𝑆𝑡6,7 ≈ 2𝑆𝑡2,3).
Comparing the fluids, it can be seen that the Strouhal numbers are similar, except for modes 6 and
7, and modes 8 and 9 that are swapped, from one fluid to the other, i.e. the Strouhal number of
modes 6 and 7 in the fluid with 𝑊𝑖 = 1.2 is equal to the Strouhal number of modes 8 and 9 in the
𝑊𝑖 = 1.25 case, and the Strouhal number of modes 8 and 9 in the𝑊𝑖 = 1.2 case is approximated to
the Strouhal number of modes 6 and 7 for𝑊𝑖 = 1.25.

The modes obtained from the POD are unitary vectors that when combined with the time
coefficients form the original data set. These coefficients can provide information regarding the
importance of the modes. Considering Fig. 3.13, the modes can be grouped by consecutive pairs
according to the Strouhal number, and those pairs are plotted in 3.14.

Fig. 3.14 shows that the oscillatory and alternating behaviour is observed for modes higher than
3. Looking, to modes 6 and 7, in Fig. 3.14 (a) the elliptical shape of curves of the time coefficients
is characteristic of two sinusoidal waves, its vertical stretch is due to different amplitudes and
their rotation is a phase influence, both on correspondent time coefficients. It can be noticed in
Fig. 3.13 (a) that they have a single peak. For modes 2 and 3 the representation is not elliptical, as
a consequence of some secondary peaks close to the main frequencies as seen in Fig. 3.13 (a) for
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Figure 3.13: Analysis of frequencies of the time coefficients of the modes through fast Fourier
transform: (a)𝑊𝑖 = 1.2; (b)𝑊𝑖 = 1.25.

modes 2 and 3.

The pairs of coefficients 𝑎2 and 𝑎3, 𝑎4 and 𝑎5 and 𝑎6 and 𝑎7 vary into an oscillatory way, with
a phase between them, as can be seen in Fig. 3.14. However, they have similar frequency and
amplitude, so to compare their relative contribution, if the values

√︁
𝑎12,

√︁
𝑎22 + 𝑎32,

√︁
𝑎42 + 𝑎52

and
√︁
𝑎62 + 𝑎72 are considered, they remain similar along time. Therefore, to compare the time

coefficients of the modes having into account their oscillatory behaviour, Eq. (3.29) is considered:

√︁
𝑎12 +

√︁
𝑎22 + 𝑎32 +

√︁
𝑎42 + 𝑎52 +

√︁
𝑎62 + 𝑎72. (3.29)

As seen before, modes greater than 7 have small contributions, so they are not considered. For
the fluid with𝑊𝑖 = 1.2, mode 1, that is the one where doesn’t appear the oscillating part, has about
99.7% of the information in Eq. (3.29) (regarding

√︁
𝑎12), while modes 2 and 3 have approximately
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Figure 3.14: Pairs of time coefficients of consecutive modes: (a)𝑊𝑖 = 1.2; (b)𝑊𝑖 = 1.25.

0.18% of the information in Eq. (3.29) (regarding
√︁
𝑎22 + 𝑎32), modes 4 and 5 have approximately

0.051% of the information in Eq. (3.29) (regarding
√︁
𝑎42 + 𝑎52), and finally, modes 6 and 7 have

approximately 0.026% of the information in Eq. (3.29) (regarding
√︁
𝑎62 + 𝑎72). For the fluid with

𝑊𝑖 = 1.25, mode 1, has about 99.6% of the information in Eq. (3.29) (regarding
√︁
𝑎12), while

modes 2 and 3 have approximately 0.33% of the information in Eq. (3.29) (regarding
√︁
𝑎22 + 𝑎32),

modes 4 and 5 have approximately 0.052% of the information in Eq. (3.29) (regarding
√︁
𝑎42 + 𝑎52),

and finally, modes 6 and 7 have approximately 0.034% of the information in Eq. (3.29) (regarding√︁
𝑎62 + 𝑎72). When both fluids are compared, there is a small increase for the fluid with𝑊𝑖 = 1.25.

3.3.3.2 Changing the POD of the fluid with Wi=1.2 to reconstruct the simulation of the fluid
with Wi=1.25.

In this section, a reconstruction of the simulation of the flow with𝑊𝑖 = 1.25 having as initial data
the POD of the flow with𝑊𝑖 = 1.2 is conducted. For that, a change of the modes frequencies in the
POD of the fluid with𝑊𝑖 = 1.2 is applied, by multiplying the interval considered of the frequencies
by 1.25/1.2, followed by an inverse of the fast Fourier transform, to obtain a new matrix for the
time coefficients. Then, with that new matrix, a new reconstruction is obtained and compared with
the original simulation case of𝑊𝑖 = 1.25.

Table 3.5 presents the obtained results. The original data for the fluid with 𝑊𝑖 = 1.25 is
represented on the first row and in Table 3.5 the reconstruction with modes 2 and 3, modes 4 and
5, modes 1 and 5, modes 1 to 3 and modes 1 to 5, for 𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 are represented. RMSE
is calculated for each variable for the last time step, by considering the 𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 from
the original data of the simulation case with 𝑊𝑖 = 1.25, with 𝑢, 𝑣, 𝑝, 𝜏𝑥𝑥 and 𝜏𝑥𝑦 reconstructed
with modes 2 and 3, modes 4 and 5, modes 1 and 5, modes 1 to 3 and modes 1 to 5. RMSE is
calculated by Eq. (3.28).
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Table 3.5: Comparison between the original data (first row of images) for 𝑊𝑖 = 1.25 versus the
partial reconstruction (the modes used in the reconstruction are shown in the first column) with the
change in the frequencies and the RMSE for each reconstruction.

𝑢 𝑣 𝑝 𝜏𝑥𝑥 𝜏𝑥𝑦

Original

2,3
RMSE2,3 1.183 0.312 5722.899 14.955 6.001

4,5
RMSE4,5 1.183 0.312 5722.869 14.958 5.993

1,5
RMSE1,5 0.008 0.018 34.023 0.394 0.211

1-3
RMSE1−3 0.006 0.016 38.749 0.501 0.210

1-5
RMSE1−5 0.005 0.012 38.720 0.499 0.196

−2.3 × 10−3 3.2 × 100

u/𝑈

1.5 × 100 −9.9 × 10−1 9.9 × 10−1

𝑣/𝑈

0 1.3 × 102 8.6 × 1034 × 103
𝑝

𝜂𝑈/𝑅2

−5.3 × 10−1 5.6 × 101
𝜏𝑥𝑥

𝜂𝑈/𝑅

2.5 × 101 −2.7 × 101 2.7 × 1010
𝜏𝑥𝑦

𝜂𝑈/𝑅

Looking at Table 3.5 it can be seen that the reconstructions that are similar to the original
data are the ones with modes 1 and 5, modes 1 to 3 and modes 1 to 5. Looking at the RMSE
and comparing these three reconstructions, the one that shows in the majority of the variables a
better prediction for the last time step is the reconstruction with modes 1 to 5. So, considering that
reconstruction and to better understand the results, the RMSE for all time steps was calculated, for
𝜏𝑥𝑥 from the original data of the simulation case with𝑊𝑖 = 1.25 and 𝜏𝑥𝑥 reconstructed with modes
1 to 5. The error was calculated with Eq. (3.28), where P was 𝜏𝑥𝑥 .

It was also considered 𝜏𝑥𝑥 from the original data of the simulation case with 𝑊𝑖 = 1.25 and
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𝜏𝑥𝑥 reconstructed with modes 1 to 5, for point (1.7,0.004,0), that is a point placed downstream of
the cylinder.
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Figure 3.15: RMSE calculated for the original 𝜏𝑥𝑥 of the simulation with 𝑊𝑖 = 1.25 and for the
𝜏𝑥𝑥 reconstructed with modes 1 to 5 (left vertical axis). In the right vertical axis it is represented
the values of 𝜏𝑥𝑥 from the original data of the simulation for the fluid with 𝑊𝑖 = 1.25 and 𝜏𝑥𝑥
reconstructed with modes 1 to 5, for point (1.7,0.004,0), that is a point placed downstream the
cylinder.

The results are plotted in Fig. 3.15. Looking at Fig. 3.15, the RMSE is greater when stresses
are at their maximum. This is expected, but with this representation is more evident. So, it can
be concluded that the forecast is worst when the fields are close to the maximum value of the
oscillations. Comparing 𝜏𝑥𝑥 from the original data of the simulation case with𝑊𝑖 = 1.25 and 𝜏𝑥𝑥
reconstructed with modes 1 to 5, in point (1.7,0.004,0), that effect is best visualized, but also, a
good prevision of the fluid flow with this reconstruction is obtained.



Part III

More on theoretical and numerical
studies of viscoelastic fluid flows

77





The present dissertation falls into the category of multi-paper dissertations, and in the Part III of
this dissertation, called “More on theoretical and numerical studies of viscoelastic fluid flows”,
includes the complete and integral version of the papers written in the course of this PhD work.
These papers where explained and contextualized in the previous Part II in section 2.2, 2.3, 2.4 and
3.2.

Part III is further divided into six main sections. In section 4.1, the following paper, related with
analytical and semi-analytical solutions for the Couette and Poiseuille–Couette flows, described by
the viscoelastic model gPTT are presented.

➢ A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, and A.M. Afonso. Semi-Analytical
Solutions for the pure Poiseuille-Couette Flow of a Generalised Phan-Thien–Tanner Fluid.
Fluids, 4(3):129, jul 2019.

In section 4.2, the following paper, related with analytical and semi-analytical solutions for the
pure Couette and Poiseuille–Couette flows under slip, described by the viscoelastic model gPTT
are presented.

➢ A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, and A.M. Afonso. Analytical and
numerical studies for slip flows of a generalised Phan-Thien–Tanner fluid. ZAMM - Journal of
Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,
100(3), jan 2020.

In section 4.3, the following paper, related with analytical and semi-analytical solutions for the
annular flow, described by the viscoelastic model gPTT are presented.

➢ A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, F.T. Pinho, and A.M. Afonso. Ana-
lytical study of the annular flow of a generalised Phan-Thien–Tanner fluid. Acta Mech 235,
1307–1317, 2024.

In section 4.4, the following paper, related with semi-analytical solutions for the combined fully-
developed electro-osmotic pressure-driven flow in microchannels of viscoelastic fluids, described
by the gPTT model are presented.

➢ A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, M.A. Alves, F.T. Pinho, and A.M.
Afonso. A study on mixed electro-osmotic/pressure-driven microchannel flows of a gener-
alised Phan-Thien–Tanner fluid. Journal of Engineering Mathematics, 127(1), mar 2021.
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In section 4.5, the following paper, related with semi-analytical solutions for the combined
fully-developed electro-osmotic pressure-driven flow in microchannels of viscoelastic fluids under
asymmetric zeta potentials, described by the gPTT model are presented.

➢ A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, F.T. Pinho, and A.M. Afonso. The
effect of asymmetric zeta potentials on the electro-osmotic flow of complex fluids. Submitted
to Journal of Engineering Mathematics.

In section 5.1, the following paper, related with the decomposition of the von Kármán vortex
street into a generator base and the correspondent analysis through the POD for the 2D flow around
a cylinder and the 2D flow around two cylinders with different radii are presented.

➢ A.M. Ribau, N.D. Gonçalves, L.L. Ferrás, and A.M. Afonso. Flow structures identification
through proper orthogonal decomposition: The flow around two distinct cylinders. Fluids,
6(11):384, 2021.



Chapter 4

More on theoretical studies

4.1 Semi-analytical solutions for the Poiseuille–Couette flow of a gene-
ralised Phan-Thien–Tanner1

Abstract: This work presents new analytical and semi-analytical solutions for the pure Couette
and Poiseuille–Couette flows, described by the recently proposed (Ferrás et al., A Generalised
Phan-Thien–Tanner Model, JNNFM 2019) viscoelastic model, known as the generalised Phan-
Thien–Tanner constitutive equation. This generalised version considers the Mittag–Leffler function
instead of the classical linear or exponential functions of the trace of the stress tensor, and provides
one or two new fitting constants in order to achieve additional fitting flexibility. The analytical
solutions derived in this work allow a better understanding of the model, and therefore contribute
to improve the modelling of complex materials, and will provide an interesting challenge to
computational rheologists, to benchmarking and to code verification.

Keywords: generalised simplified PTT; Phan-Thien–Tanner (PTT) model; Mittag–Leffler;
Couette flow; Poiseuille–Couette flow

4.1.1 Introduction

It is well known that much can be learned about a physical phenomenon if a mathematical model
exists that can mimic and predict its behavior. The world of complex fluids is no different, and,
therefore, several models have been proposed over the years for that purpose. These models can
be more or less complex, depending on the properties of the fluids that are taken into account.

In this work, we are interested in viscoelastic materials [1], for which several models have been
proposed in the past. One can classify these models as: differential (that make use of the local
deformation field only) and integral (that take into account all the past deformation at each instant).
Differential models usually allow a faster numerical solution of the differential equations involved,

1A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, and A.M. Afonso. Semi-analytical solutions for the Poiseuille-
Couette flow of a generalised Phan-Thien–Tanner fluid. Fluids, 4(3):129, jul 2019.
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while integral models are computationally expensive and may lead to error propagation. On the
other hand, integral models allow a better modelling, since they incorporate the real world fluid
memory (the present state is influenced by all past weighted deformations). It is therefore of major
importance to improve the fitting capabilities of differential models and reduce the computational
effort needed to compute integral models.

In a recent work, Ferrás et al. [3] proposed an improved differential model based on the model
by Nhan Phan-Thien and Roger Tanner (PTT [21]), derived from the Lodge–Yamamoto type of
network theory for polymeric fluids. The constitutive equation proposed by Nhan Phan-Thien and
Roger Tanner, for the case of an isothermal flow, is given by:

𝑓 (𝜏𝑘𝑘) 𝝉 +𝜆𝝉̊ = 2𝜂𝑝D (4.1)

with

𝑓 (𝜏𝑘𝑘) = 1+ 𝜀𝜆
𝜂𝑝
𝜏𝑘𝑘 , (4.2)

where D is the rate of deformation tensor, 𝝉 is the stress tensor, 𝜆 is a relaxation time, 𝜂𝑝 is the
polymeric viscosity, 𝜏𝑘𝑘 is the trace of the stress tensor, 𝜀 represents the extensibility parameter
and 𝝉̊ represents the Gordon–Schowalter derivative defined as

𝝉̊ =
𝜕𝝉

𝜕𝑡
+u · ∇𝝉− (∇u)𝑇 · 𝝉−𝝉 · (∇u) + 𝜉 (𝝉 ·D+D · 𝝉) . (4.3)

Here, u is the velocity vector, ∇u is the velocity gradient and the parameter 𝜉 accounts for the
slip between the molecular network and the continuous medium (it should be remarked that for the
derivation of the analytical solutions we will consider 𝜉 = 0). Later, Phan-Thien proposed a new
model, based on an exponential function form [22] and showed that this new function would be
quite adequate to represent the rate of destruction of junctions, but the parameter 𝜀 should be of
the order 0.01. The function 𝑓 (𝜏𝑘𝑘) is given by:

𝑓 (𝜏𝑘𝑘) = exp
(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
. (4.4)

Ferrás et al. [3] considered a more general function for the rate of destruction of junctions,
the Mittag–Leffler function where one or two fitting constants are included, in order to achieve
additional fitting flexibility [3]. The Mittag–Leffler function is defined by,

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑘=0

𝑧𝑘

Γ (𝛼𝑘 + 𝛽) , (4.5)

with 𝛼, 𝛽 real and positive. When 𝛼 = 𝛽 = 1, the Mittag–Leffler [24] function reduces to the
exponential function. When 𝛽 = 1, the original one-parameter Mittag–Leffler function, 𝐸𝛼, is
obtained. Thus, the new function of the trace of stress tensor (now denoted by 𝐾 (.) instead of 𝑓 (.),
to distinguish from the classical cases) describing the network destruction of junctions is written
as:
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𝐾 (𝜏𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
, (4.6)

where Γ is the Gamma function and the normalisation Γ (𝛽) is used to ensure that 𝐾 (0) = 1, for all
choices of 𝛽.

The linear and the exponential model of the Phan-Thien–Tanner has been frequently used in
the literature, and in fact Ferrás et al. [23] considered a new quadratic version of the PTT model,
i.e., a second-order expansion of the exponential model given by:

𝑓 (𝜏𝑘𝑘) = 1+ 𝜀𝜆
𝜂𝑝
𝜏𝑘𝑘 +

1
2

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)2
. (4.7)

Here, we compare the generalised Phan-Thien–Tanner (gPTT), given by Eq. (4.6), with
the linear, the exponential and the quadratic versions of the PTT (Eqs. (4.2), (4.4) and (4.7),
respectively).

To compare these models, we study the dimensionless material properties in steady shear flow
of the three versions of the PTT model and compare them with the new gPTT model, considering
different values of 𝛼 and 𝛽.

The material functions can be obtained considering a steady-state Couette flow in the 𝑥-
direction, u = ( ¤𝛾𝑦,0,0), where ¤𝛾 is the shear rate. For this flow, considering the parameter 𝜉 = 0,
the constitutive Eq. (4.1) reduces to:


𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑥 = 2𝜆 ¤𝛾𝜏𝑥𝑦
𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑦 = 𝜂𝑝 ¤𝛾.

𝜏𝑦𝑦 = 𝜏𝑧𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0

(4.8)

From the system of Eq. (4.8), 𝜏𝑘𝑘 = 𝜏𝑥𝑥 and applying some algebra in the first two equations,
a relationship between the shear stress and the normal stress is found,

𝜏𝑥𝑥 = 2
𝜆

𝜂𝑝
𝜏2
𝑥𝑦 . (4.9)

We can also obtain the viscometric material functions: the steady shear viscosity, 𝜇 ( ¤𝛾), the
first normal stress difference coefficient, Ψ1 ( ¤𝛾), and the second normal stress difference coefficient,
Ψ2 ( ¤𝛾), which are given by:

𝜇 ( ¤𝛾) =
𝜏𝑥𝑦

¤𝛾 , (4.10)

Ψ1 ( ¤𝛾) =
𝜏𝑥𝑥 − 𝜏𝑦𝑦

¤𝛾2 , (4.11)

Ψ2 ( ¤𝛾) =
𝜏𝑦𝑦 − 𝜏𝑧𝑧

¤𝛾2 . (4.12)

As for other versions of the simplified PTT models for which 𝜉 = 0, the second normal stress
coefficient is null, Ψ2 ( ¤𝛾) = 0, so, we only need to find 𝜇 ( ¤𝛾) and Ψ1 ( ¤𝛾). Therefore, manipulating
the second equation of the system of Eqs. (4.8) we get,
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𝜏𝑥𝑦 =
𝜂𝑝 ¤𝛾
𝐾 (𝜏𝑥𝑥)

. (4.13)

The dimensionless expression for the steady shear viscosity becomes,

𝜇 ( ¤𝛾)
𝜂𝑝

=
𝜏𝑥𝑦

𝜂𝑝 ¤𝛾
=

1
𝐾 (𝜏𝑥𝑥)

(4.14)

and the dimensionless first normal stress coefficient is given by,

Ψ1 ( ¤𝛾)
2𝜂𝑝𝜆

=
𝜏𝑥𝑥

2𝜂𝑝𝜆 ¤𝛾2 =
1

[𝐾 (𝜏𝑥𝑥)]2 . (4.15)

In [23], it was shown that, for the linear PTT, the quadratic PTT and the exponential PTT, the
dimensionless material functions depend on the generalised Deborah number,

√
𝜀 (𝜆 ¤𝛾). We show

that the same happens for the gPTT model. To obtain the material function for the gPTT model,
we need to solve the non-linear system of equations (Eq. (4.8)), which can be written in terms of
𝜏𝑥𝑥 in the non-linear form:

1
2
𝐾 (𝜏𝑥𝑥)2 𝜀𝜆

𝜂𝑝
𝜏𝑥𝑥 = 𝜀 (𝜆 ¤𝛾)2 . (4.16)

Giving values to 𝜀𝜆
𝜂𝑝
𝜏𝑥𝑥 , we can find

√
𝜀 (𝜆 ¤𝛾) using Eq. (4.16). Then, the function 𝐾 (𝜏𝑥𝑥) is

directly calculated, allowing us to obtain the material functions given by Eqs. (4.14) and (4.15).

Fig. 4.1 presents the dimensionless material properties for the steady-state Couette flow using
three versions of the PTT (linear, quadratic, and exponential) and also the gPTT model. In Fig. 4.1
(a), we set 𝛽 = 1 and use different values of 𝛼, and, in Fig. 4.1 (b), we set 𝛼 = 1 and use different
values to 𝛽.

(a) (b)

Figure 4.1: Dimensionless material properties in steady-state Couette flow using the three versions
of the sPTT and for the gPTT model: (a) 𝛽 = 1; and (b) 𝛼 = 1.



4.1 Semi-analytical solutions for the Poiseuille–Couette flow of a gPTT 85

We observe that the new generalised function allows a broader description of the thinning
properties of the fluid. Both the thinning rate and the onset of the thinning behavior can be
controlled by the new model parameters. Therefore, this new model must be further explored for
weak flows, such as Couette flows.

This model was extensively studied for strong flows in [3], where an explanation on the influence
of the new model parameters was provided.

Note that the exponential version of the model was developed to take into account the strong
destruction of network junctions, which occurs, for example, in strong flows (e.g., extensional
flows). Although the exponential model was derived for such strong flows, it was shown in [3]
that the gPTT model could slightly improve the fitting for shear (weak) flows, considering polymer
solutions. Here, we consider polymer melts.

Fig. 4.2 shows that the gPTT model provides a much better fitting to weak flows of polymer
melts (low density polyethylene melt [25]), even when using only one extra parameter (𝛼).
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Figure 4.2: Fitting of the shear viscosity and the first normal stress difference coefficient to
rheological data from Laun [25]. The generalised PTT model only considers the one-parameter
Mittag–Leffler function, 𝐸𝛼. By adding only one parameter, we obtain a fitting error (Eq. (4.17))
of 29.7 and 6 for the exponential and gPTT models, respectively. The symbols represent the
experimental data from Laun [25] for a low density polyethylene melt.

To quantify the error incurred during the fitting process, we used a mean square error given by

𝑒𝑟𝑟𝑜𝑟 =

𝑁𝜇∑︁
𝑖

[
log𝜇( ¤𝛾)𝑖 − log𝜇( ¤𝛾) 𝑓 𝑖𝑡𝑖

]2 +
𝑁Ψ1∑︁
𝑗

[
logΨ1( ¤𝛾) 𝑗 − logΨ1( ¤𝛾) 𝑓 𝑖𝑡 𝑗

]2
, (4.17)

𝑒𝑟𝑟𝑜𝑟𝜇 =

𝑁𝜇∑︁
𝑖

[
log𝜇( ¤𝛾)𝑖 − log𝜇( ¤𝛾) 𝑓 𝑖𝑡𝑖

]2
, (4.18)
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𝑒𝑟𝑟𝑜𝑟Ψ1 =

𝑁Ψ1∑︁
𝑗

[
logΨ1( ¤𝛾) 𝑗 − logΨ1( ¤𝛾) 𝑓 𝑖𝑡 𝑗

]2
, (4.19)

with 𝑁𝜇 and 𝑁Ψ1 the number of experimental points obtained for 𝜇( ¤𝛾) and Ψ1( ¤𝛾), respectively.
A better fit was obtained for the new generalised model when compared to the original ex-

ponential PTT model. The total mean square error obtained for the exponential PTT model was
29.7, being five times the error obtained for its generalised version (for which a value of 6.0 was
obtained). The new model allows a better fit for low and high shear rates for the first normal stress
difference (where the 𝑒𝑟𝑟𝑜𝑟Ψ1 obtained for the exponential PTT model is 20 times higher than
the error obtained for the gPTT). For the shear viscosity, the gPTT model predicts a lower value
(when compared to experimental data) for high shear rates (although it should be remarked that
the 𝑒𝑟𝑟𝑜𝑟𝜇 is four times smaller when compared to the exponential model).

Based on what is described above, this work presents analytical and semi-analytical solutions
for pure Couette and Poiseuille–Couette flows, described by the generalised Phan-Thien–Tanner
constitutive equation. It is well known that the rate of destruction of junctions increases for strong
flows (e.g., extensional flows), but, in this case, we consider weak flows, and study the capability of
this new model to describe them. This is done by performing a parametric study for the influence
of the gPTT parameters.

4.1.2 Analytical solution for the gPTT model in Couette flow

In this section, we derive the analytical solution for the fully developed flow of the gPTT model
considering both Couette and Poiseuille–Couette flows (cf. Fig. 4.3). To obtain closed form
analytical solutions, the slip parameter in the Gordon–Schowalter derivative is set to 𝜉 = 0.

The equations governing the flow of an isothermal incompressible fluid are the continuity,

∇ ·u = 0 (4.20)

and the momentum equation,
𝜌
𝐷u
𝐷𝑡

= −∇𝑝 +∇ · 𝝉 (4.21)

together with the constitutive equation,

Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
𝝉 +𝜆𝝉̊ = 2𝜂𝑝D, (4.22)

where 𝐷
𝐷𝑡

is the material derivative, 𝑝 is the pressure, 𝑡 is the time and 𝜌 is the fluid density.
We consider a Cartesian coordinate system with 𝑥, 𝑦, and 𝑧 being the streamwise, transverse

and spanwise directions, respectively. The flow is assumed to be fully-developed and therefore the
governing equations can be further simplified since

𝜕

𝜕𝑥
= 0(except for pressure),

𝜕𝑣

𝜕𝑦
= 0,

𝜕𝑝

𝜕𝑦
= 0. (4.23)
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(a) (b)

Figure 4.3: Geometry of: (a) the pure Couette flow; and (b) the Couette flow with an imposed
pressure gradient (Poiseuille–Couette flow).

Therefore, Eq. (4.21) can be integrated, leading to the following general equation for the
shear stress:

𝜏𝑥𝑦 = 𝑃𝑥𝑦 + 𝑐1, (4.24)

where 𝑃𝑥 is the pressure gradient in the 𝑥 direction, 𝜏𝑥𝑦 is the shear stress and 𝑐1 is a stress constant.
This equation is valid regardless of the rheological constitutive equation. The constitutive equations
for the generalised PTT model describing this flow can be further simplified leading to:

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑥 = (2− 𝜉) (𝜆 ¤𝛾)𝜏𝑥𝑦 , (4.25)

𝐾 (𝜏𝑘𝑘)𝜏𝑦𝑦 = −𝜉 (𝜆 ¤𝛾)𝜏𝑥𝑦 , (4.26)

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑦 = 𝜂𝑝 ¤𝛾 + (1− 𝜉
2
) (𝜆 ¤𝛾)𝜏𝑦𝑦 −

𝜉

2
(𝜆 ¤𝛾)𝜏𝑥𝑥 , (4.27)

where the shear rate ¤𝛾 is a function of 𝑦 ( ¤𝛾(𝑦) ≡ 𝑑𝑢
𝑑𝑦

) and 𝜏𝑘𝑘 = 𝜏𝑥𝑥 + 𝜏𝑦𝑦 is the trace of the
stress tensor. Assuming 𝜉 = 0, Eq. (4.26) implies that 𝜏𝑦𝑦 = 0, and the trace of the stress tensor
becomes 𝜏𝑘𝑘 = 𝜏𝑥𝑥 . Dividing Eq. (4.25) by Eq. (4.27), 𝐾 (𝜏𝑥𝑥) cancels out, and we get the explicit
relationship between the streamwise normal stress and the shear stress given by Eq. (4.9).

Now, combining Eqs. (4.9), (4.24) and (4.27), the following shear rate profile is obtained,

¤𝛾(𝑦) = Γ(𝛽)𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

(𝑃𝑥𝑦 + 𝑐1)2

)
(𝑃𝑥𝑦 + 𝑐1)

𝜂𝑝
. (4.28)

The velocity profile can be obtained integrating the shear rate subject to the Couette boundary
conditions (null velocity at the immobile wall),

𝑢 (0) = 0 (4.29)

and an imposed constant velocity, U, at the moving wall,

𝑢 (ℎ) = U. (4.30)
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This leads to the following velocity profile:

𝑢(𝑦) = U− Γ(𝛽)
𝜂𝑝𝑃𝑥

∞∑︁
𝑘=0

©­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
(𝑃𝑥ℎ+ 𝑐1)2𝑘+2 − (𝑃𝑥𝑦 + 𝑐1)2𝑘+2

Γ(𝛼𝑘 + 𝛽) (2𝑘 +2)
ª®¬ , (4.31)

where 𝑐1 can be obtained by solving numerically the following equation,

U =
Γ(𝛽)
𝜂𝑝𝑃𝑥

∞∑︁
𝑘=0

©­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
1

Γ(𝛼𝑘 + 𝛽)
(𝑃𝑥ℎ+ 𝑐1)2𝑘+2 − 𝑐1

2𝑘+2

2𝑘 +2
ª®¬ . (4.32)

Combining Eqs. (4.31) and (4.32) leads to the following dimensionless velocity profile:

𝑢̄( 𝑦̄) = Γ(𝛽)
𝑃𝑥

∞∑︁
𝑘=0

((
2𝜀𝑊𝑖2

) 𝑘 1
Γ(𝛼𝑘 + 𝛽)

(
𝑃𝑥 𝑦̄ + 𝑐1

)2𝑘+2 − 𝑐1
2𝑘+2

2𝑘 +2

)
(4.33)

with 𝑦̄ = 𝑦

ℎ
, 𝑢̄ (𝑦) = 𝑢( 𝑦̄)

U , 𝑐1 =
𝑐1ℎ
𝜂𝑝U , 𝑃𝑥 =

𝑃𝑥ℎ
2

𝜂𝑝U and𝑊𝑖 = 𝜆U
ℎ

the Weissenberg number.

Remark: Note that, if 𝑐1 = −𝑃𝑥
ℎ
2 , Eq. (4.31) becomes,

𝑢(𝑦) = U− Γ(𝛽)
𝜂𝑝𝑃𝑥

∞∑︁
𝑘=0

©­­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
1

Γ(𝛼𝑘 + 𝛽)

(
𝑃𝑥

ℎ
2

)2𝑘+2
−

(
𝑃𝑥

(
𝑦− ℎ

2

))2𝑘+2

2𝑘 +2
ª®®¬ , (4.34)

and Eq. (4.32) leads to 𝑢(ℎ) = 0, corresponding to Poiseuille flow with no slip boundary conditions.

The velocity profile can be written in dimensionless form as:

𝑢̄( 𝑦̄) = Γ(𝛽)
𝑃𝑥

∞∑︁
𝑘=0

©­­«
(
2𝜀𝑊𝑖2

) 𝑘 1
Γ(𝛼𝑘 + 𝛽)

(
𝑃𝑥

(
𝑦̄− 1

2

))2𝑘+2
−

(
𝑃𝑥

2

)2𝑘+2

2𝑘 +2
ª®®¬ . (4.35)

When we consider 𝛼 = 𝛽 = 1, this equation reduces to the one presented by Oliveira and Pinho
[103] for the planar channel flow of an exponential PTT fluid:

𝑢̄( 𝑦̄) = 1
4𝜀𝑊𝑖2𝑃𝑥

(
exp

(
2𝜀𝑊𝑖2𝑃𝑥

2
(
𝑦̄− 1

2

)2
)
− exp

(
2𝜀𝑊𝑖2𝑃𝑥

2

4

))
. (4.36)

Fig. 4.4 shows a comparison between the gPTT model and exponential PTT (Eqs. (4.35) and
(4.36)) for different values of 𝜀𝑊𝑖2. As expected, the results are identical, confirming the solution
limit for 𝛼 = 𝛽 = 1 on the Mittag–Leffler function.
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Figure 4.4: Comparison between the gPTT model and exponential PTT considering a Poiseuille
flow with different values of 𝜀𝑊𝑖2 and different values of imposed 𝑃𝑥 .

4.1.3 Analytical solution for the gPTT sodel in pure Couette flow.

For the pure Couette flow, 𝑃𝑥 = 0, therefore Eq. (4.24) becomes,

𝜏𝑥𝑦 = 𝑐1. (4.37)

The shear rate is then given by Eq. (4.38),

¤𝛾(𝑦) = Γ(𝛽)𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

𝑐1
2

)
𝑐1
𝜂𝑝
. (4.38)

Integrating Eq. (4.38) and taking into account Eq. (4.29), the velocity field for the pure Couette
flow is obtained,

𝑢(𝑦) = Γ(𝛽)
𝜂𝑝

∞∑︁
𝑘=0

©­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
𝑐2𝑘+1

1
Γ(𝛼𝑘 + 𝛽) 𝑦

ª®¬ . (4.39)

Making use of the boundary condition given in Eq. (4.30), we obtain the following nonlinear
equation on 𝑐1, which must be solved numerically,

U
ℎ
=
Γ(𝛽)
𝜂𝑝

∞∑︁
𝑘=0

©­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
𝑐2𝑘+1

1
Γ(𝛼𝑘 + 𝛽)

ª®¬ . (4.40)
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Eqs. (4.39) and (4.40) can be written in dimensionless form as:

𝑢̄( 𝑦̄) = Γ(𝛽)𝑐1 𝑦̄

∞∑︁
𝑘=0

((
2𝜀𝑊𝑖2𝑐1

2
) 𝑘 1

Γ(𝛼𝑘 + 𝛽)

)
(4.41)

and

1 = Γ(𝛽)𝑐1

∞∑︁
𝑘=0

((
2𝜀𝑊𝑖2𝑐1

2
) 𝑘 1

Γ(𝛼𝑘 + 𝛽)

)
, (4.42)

respectively.

4.1.4 Discussion of results

In the previous section, semi-analytical equations were derived for the gPTT model in Poiseuille–
Couette flow. In this section, we investigate the influence of the Mittag–Leffler function parameters
𝛼 and 𝛽 on the velocity profile of the Poiseuille–Couette flow. We consider different 𝜀𝑊𝑖2 values,
and also different values of 𝛼 and 𝛽, and we compare the results with the ones obtained for the
exponential PTT model. Fig. 4.5 shows the velocity profiles obtained for the Poiseuille–Couette
flow considering two different 𝜀𝑊𝑖2 values and different values of 𝛼 (𝛽 = 1).
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Figure 4.5: Velocity profiles obtained for the Poiseuille–Couette flow considering different values
of 𝜀𝑊𝑖2 and different values of 𝛼 (𝛽 = 1): (a) 𝑃𝑥 = −1; and (b) 𝑃𝑥 = −2.

Fig. 4.6 shows the velocity profiles obtained for the Poiseuille–Couette flow considering two
different 𝜀𝑊𝑖2 and different values of 𝛽 (𝛼 = 1).

We observe in Fig. 4.5 (a) that for 𝛼 > 1 the flow rate decreases while for 𝛼 < 1 it increases.
As expected, for a constant pressure drop, the flow rate increases with 𝜀𝑊𝑖2. In Fig. 4.5 (b), we
can observe that with the increase of the absolute value of the pressure drop, the velocity profile
becomes more sensitive to small changes in 𝛼.
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For the case of constant 𝛼 = 1 and varying 𝛽 (Fig. 4.6), the trends are similar to the ones
obtained in Fig. 4.5 (varying 𝛼), but now the velocity profile is less sensitive to large vales of 𝛽
(with 𝛽 > 1). In Fig. 4.6 (b), we observe that the combined effects of pressure drop and large
values of 𝜀𝑊𝑖2 lead to a substantial increase of the flow rate for 𝛽 < 1.
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Figure 4.6: Velocity profiles obtained for the Poiseuille–Couette flow considering different values
of 𝜀𝑊𝑖2 and different values of 𝛽 (𝛼 = 1): (a) 𝑃𝑥 = −1; and (b) 𝑃𝑥 = −2.

4.1.5 Conclusions

In this work, we develop new analytical solutions for the Poiseuille–Couette flow of a viscoelastic
fluid modelled by the generalised PTT model. We study the influence of the model’s new parameters
on the velocity profile and we discuss the role of the new function of the stress tensor on weak
flows. The new model allows a broader description of flow behavior, and therefore it should be
considered in the modelling of complex viscoelastic flows. The analytical solutions developed in
this work are helpful for validating CFD codes, and also allow a further understanding of the model
behavior in weak flows.
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4.2 Analytical and numerical studies for slip flows of a generalised
Phan-Thien–Tanner fluid2

Abstract: This work presents analytical and numerical studies for pure Couette and combined
Poiseuille-Couette flows under slip. The fluid behaviour is described by the recently proposed
viscoelastic model, known as the generalised simplified Phan-Thien-Tanner constitutive equation,
that considers the Mittag–Leffler function instead of the classical linear and exponential functions
of the trace of the stress tensor, and provides one or two new fitting constants in order to achieve
additional fitting flexibility. The solutions derived in this work allow a better understanding of the
model and its influence on the slippery behaviour of some complex fluids, contributing in this way
to improve the modeling of complex fluids.

Keywords: Couette flow, generalised simplified PTT, Mittag–Leffler, Poiseuille-Couette flow, PTT
model, wall slip

4.2.1 Introduction

Different mathematical models were proposed along the years to deal with complex viscoelastic
fluids [1](e.g. polymer solutions and melts). These models can be classified as: differential and
integral. The differential models make use of the local deformation field and in general allow a
faster numerical solution of the differential equations involved, and the integral models allow a
better modelling (at every instant they consider all past deformations), but they are computationally
expensive and may lead to error propagation [104]. It is important to improve the fitting capabilities
of differential models and reduce the computational effort needed to compute the integral models.
In a recent work, Ferrás et al. [3] proposed the generalised Phan-Thien-Tanner (gPTT), an improved
differential model based on the Nhan Phan-Thien and Roger Tanner constitutive equation (PTT
model [21]), derived from the Lodge-Yamamoto type of network theory for polymeric fluids. This
model considers the Mittag–Leffler function as a function of the trace of the stress tensor (instead of
the classical linear and exponential functions), and provide one or two new fitting constants in order
to obtain additional fitting flexibility. In this work, we propose new analytical and semi-analytical
solutions for the pure Couette and Poiseuille-Couette flows under slip for the gPTT constitutive
equation [3]. The analytical solutions derived in this work allow a better understanding of the
model and its influence on the slippery behaviour of some complex fluids, and also improve the
modelling capabilities of differential constitutive equations. Using this new model, Ribau et al.
[28] proposed semi-analytical solutions for pure Couette and combined Poiseuille-Couette flows.
Now, we extend the aplication of this model for pure Couette and combined Poiseuille-Couette
flows under slip.

2A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, and A.M. Afonso. Analytical and numerical studies for slip
flows of a generalised Phan-Thien–Tanner fluid. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift
für Angewandte Mathematik und Mechanik, 100(3), jan 2020.
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The original constitutive equation proposed by Nhan Phan-Thien and Roger Tanner [21, 22],
for the case of an isothermal flow, is given by:

𝑓 (𝜏𝑘𝑘) 𝝉 +𝜆𝝉̊ = 2𝜂𝑝D, (4.43)

with

𝑓 (𝜏𝑘𝑘) = 1+ 𝜀𝜆
𝜂𝑝
𝜏𝑘𝑘 , (4.44)

where D is the rate of deformation tensor, 𝝉 is the stress tensor, 𝜆 is a relaxation time, 𝜂𝑝 is the
polymeric viscosity, 𝜏𝑘𝑘 is the trace of the stress tensor, 𝜀 represents the extensibility parameter
and 𝝉̊ represents the Gordon-Schowalter derivative, defined as

𝝉̊ =
𝜕𝝉

𝜕𝑡
+u · ∇𝝉− (∇u)𝑇 · 𝝉−𝝉 · (∇u) + 𝜉 (𝝉 ·D+D · 𝝉) . (4.45)

In Eq. (4.45) u is the velocity vector, ∇u is the velocity gradient, 𝑡 the time and the
parameter 𝜉 accounts for the slip between the molecular network and the continuous medium.
Later, a new model was proposed, by Phan-Thien [22], based on an exponential function form.
This new function showed to be quite adequate to represent the rate of destruction of junctions, but
with the parameter 𝜀 of the ∼ O

(
10−2) . In this case, the function 𝑓 (𝜏𝑘𝑘) is given by:

𝑓 (𝜏𝑘𝑘) = exp
(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
. (4.46)

The new model considers a more general function for the rate of destruction of junctions, the
Mittag–Leffler function with one or two fitting constants,

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑘=0

𝑧𝑘

Γ (𝛼𝑘 + 𝛽) , (4.47)

with 𝛼, 𝛽 real and positive. When 𝛼 = 𝛽 = 1, the Mittag–Leffler function reduces to the exponential
function. And, when 𝛽 = 1 the original one-parameter Mittag–Leffler function, 𝐸𝛼 is obtained.
So, the new function that describes the network destruction of junctions is:

𝐾 (𝜏𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
, (4.48)

where Γ is the Gamma function and the normalization Γ (𝛽) is used to ensure that 𝐾 (0) = 1, for
all choices of 𝛽.

Fig. 4.7 shows the variation of Γ (𝛽) 𝐸𝛼,𝛽 (𝑧), for three situations: when we have the exponential
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Figure 4.7: Influence of 𝛼 and 𝛽 on the shape of Γ (𝛽) 𝐸𝛼,𝛽 (𝑧) with 𝑧 = 𝜀𝜆
𝜂𝑝
𝜏𝑘𝑘 .

function, where 𝛼 = 𝛽 = 1, when 𝛼 = 1/2, 𝛽 = 1 and when 𝛽 = 1/2, 𝛼 = 1. We observe different
rates of increase in the destruction of junctions, when we decrease values of 𝛼 and 𝛽 to 1/2, in
comparison to the exponential function. Note that, for 𝑧 values between 0 and 1, the behaviour of
the functions Γ (1) 𝐸1/2,1 (𝑧) and Γ (1/2) 𝐸1,1/2 (𝑧) are similar. But, when 𝑧 is bigger than 1 the
function Γ (1) 𝐸1/2,1 (𝑧) increases more quickly than the function Γ (1/2) 𝐸1,1/2 (𝑧).

The rate of destruction of junctions increases for strong flows (e.g extensional flows), but, here
we consider weak flows under slip, and study the capability of this new model to describe such
flows. For that, we are going to develope new analytical solutions and performe a parametric study
on the influence of the model parameters.

4.2.2 Analytical solution for the gPTT model in Couette flow under slip

In this section, the analytical solution for the fully developed flow of the gPTT model considering
both Couette and Poiseuille-Couette flows under slip will be derived (cf. Fig. 4.8). The slip pa-
rameter in the Gordon-Schowalter derivative is set to 𝜉 = 0 in order to obtain closed form analytical
solutions.

The equations governing the flow of an isothermal incompressible fluid are the continuity,

∇ ·u = 0, (4.49)

and the momentum equation,
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(a) (b)

Figure 4.8: Geometry of the Pure Couette flow (a). Geometry of the Couette flow with imposed
pressure gradient (b).

𝜌
𝐷u
𝐷𝑡

= −∇𝑝 +∇ · 𝝉, (4.50)

where 𝐷
𝐷𝑡

is the material derivative, 𝑝 is the pressure and 𝜌 the fluid density, together with the
constitutive equation,

Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
𝝉 +𝜆𝝉̊ = 2𝜂𝑝D. (4.51)

The slip boundary conditions investigated here are the linear and nonlinear Navier slip laws. The
nonlinear Navier slip law [26] states that the friction coefficient, 𝑘 , is a function of the shear stress
𝜏𝑥𝑦 , providing a non-linear power function given by:

𝑢𝑤 = 𝑘
(
∓𝜏𝑥𝑦,𝑤

)𝑚
, (4.52)

where 𝑚 > 0 (𝑚 ∈ R), the signs ∓ stand for the upper − and bottom + walls, assuming there is flow
between parallel plates, and the coordinate system is given as in Fig. 4.8. Note that, when 𝑚 = 1
we have the Navier linear slip law [27].

In the cartesian coordinate system 𝑥, 𝑦, 𝑧, are the streamwise, transverse and spanwise directions,
respectively. The flow is assumed to be fully-developed and therefore, the governing equations can
be further simplified since,

𝜕

𝜕𝑥
= 0(except for pressure),

𝜕𝑣

𝜕𝑦
= 0,

𝜕𝑝

𝜕𝑦
= 0. (4.53)

So, Eqs. (4.49) and (4.50) can be simplified and integrated, leading to the following general
equation for the shear stress:

𝜏𝑥𝑦 = 𝑃𝑥𝑦 + 𝑐1, (4.54)
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where 𝑃𝑥 ≡ −𝜕𝑝

𝜕𝑥
is the pressure gradient in the 𝑥 direction, 𝜏𝑥𝑦 is the shear stress and 𝑐1 is a shear

stress constant, to be determined using the boundary condition at the wall. This equation is valid
regardless of the rheological constitutive equation. The constitutive equations for the gPTT model
describing this flow, can be further simplified leading to:

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑥 = (2− 𝜉) (𝜆 ¤𝛾)𝜏𝑥𝑦 , (4.55)

𝐾 (𝜏𝑘𝑘)𝜏𝑦𝑦 = −𝜉 (𝜆 ¤𝛾)𝜏𝑥𝑦 , (4.56)

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑦 = 𝜂𝑝 ¤𝛾 + (1− 𝜉
2
) (𝜆 ¤𝛾)𝜏𝑦𝑦 −

𝜉

2
(𝜆 ¤𝛾)𝜏𝑥𝑥 , (4.57)

where the shear rate ¤𝛾 is a function of 𝑦 ( ¤𝛾(𝑦) = 𝑑𝑢
𝑑𝑦

) and 𝜏𝑘𝑘 = 𝜏𝑥𝑥 + 𝜏𝑦𝑦 is the trace of the stress
tensor. Since, 𝜉 = 0, Eq. (4.56) implies that 𝜏𝑦𝑦 = 0, and the trace of the stress tensor becomes
𝜏𝑘𝑘 = 𝜏𝑥𝑥 . Dividing Eq. (4.55) by Eq. (4.57), 𝐾 (𝜏𝑥𝑥) cancels out, and an explicit relationship
between the streamwise normal stress and the shear stress is found:

𝜏𝑥𝑥 = 2
𝜆

𝜂𝑝
𝜏2
𝑥𝑦 . (4.58)

Combining Eqs. (4.57), (4.58) and (4.54) the following shear rate is obtained,

¤𝛾(𝑦) = Γ(𝛽)𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

(𝑃𝑥𝑦 + 𝑐1)2

)
(𝑃𝑥𝑦 + 𝑐1)

𝜂𝑝
. (4.59)

The velocity profile can be obtained integrating the shear rate subject to the nonlinear Navier slip
law. Therefore, the boundary condition that we are going to consider at the immobile wall is

𝑢 (0) = 𝑘1(𝜏𝑥𝑦)𝑚1 , (4.60)

and at the moving wall,

𝑢 (ℎ) = 𝑘2(𝜏𝑥𝑦)𝑚2 . (4.61)

At the immobile wall, 𝑦 = 0, and the shear stress constant 𝑐1 is recovered, becoming:

𝑢 (0) = 𝑘1(𝑐1)𝑚1 . (4.62)

Also, at the moving wall, 𝑦 = ℎ, leading to:

𝑢 (ℎ) = 𝑘2(𝑃𝑥ℎ+ 𝑐1)𝑚2 . (4.63)
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This leads to the following velocity profile:

𝑢(𝑦) = 𝑘1(𝑐1)𝑚1 + Γ(𝛽)
𝜂𝑝𝑃𝑥

∞∑︁
𝑘=0

©­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
(𝑃𝑥𝑦 + 𝑐1)2𝑘+2 − 𝑐1

2𝑘+2

Γ(𝛼𝑘 + 𝛽) (2𝑘 +2)
ª®¬ . (4.64)

The shear stress constant, 𝑐1, can be obtained by solving numerically the following equation,

𝑘2(𝑃𝑥ℎ+ 𝑐1)𝑚2 − 𝑘1(𝑐1)𝑚1 =
Γ(𝛽)
𝜂𝑝𝑃𝑥

∞∑︁
𝑘=0

©­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
1

Γ(𝛼𝑘 + 𝛽)
(𝑃𝑥ℎ+ 𝑐1)2𝑘+2 − 𝑐1

2𝑘+2

2𝑘 +2
ª®¬ . (4.65)

Combining Eqs. (4.65) and (4.64) leads to the following velocity profile,

𝑢̄( 𝑦̄) = 𝑘2(𝑃𝑥 + 𝑐1)𝑚2 + Γ(𝛽)
𝑃𝑥

∞∑︁
𝑘=0

((
2𝜀𝑊𝑖2

) 𝑘 1
Γ(𝛼𝑘 + 𝛽)

(
𝑃𝑥 𝑦̄ + 𝑐1

)2𝑘+2 −
(
𝑃𝑥 + 𝑐1

)2𝑘+2

2𝑘 +2

)
, (4.66)

and the equation for the stress constant 𝑐1,

𝑘2(𝑃𝑥 + 𝑐1)𝑚2 − 𝑘1(𝑐1)𝑚1 =
Γ(𝛽)
𝑃𝑥

∞∑︁
𝑘=0

((
2𝜀𝑊𝑖2

) 𝑘 1
Γ(𝛼𝑘 + 𝛽)

(
𝑃𝑥 + 𝑐1

)2𝑘+2 − 𝑐1
2𝑘+2

2𝑘 +2

)
, (4.67)

that are written in dimensionless form, with 𝑦̄ = 𝑦

ℎ
, 𝑢̄ ( 𝑦̄) = 𝑢( 𝑦̄)

U (being U the imposed velocity
at the moving wall), 𝑐1 =

𝑐1ℎ
𝜂𝑝U , 𝑃𝑥 =

𝑃𝑥ℎ
2

𝜂𝑝U , 𝑘𝑖 = 𝑘𝑖U𝑚𝑖−1 ( 𝜂𝑝

ℎ

)𝑚𝑖 , for 𝑖 = {1,2} and 𝑊𝑖 = 𝜆U
ℎ

the
Weissenberg number.

Remark: Note that if 𝑘1 = 𝑘2 = 0 and 𝑚1 = 𝑚2 = 1, the velocity profile (Eq. (4.66)) becomes:

𝑢̄( 𝑦̄) = Γ(𝛽)
𝑃𝑥

∞∑︁
𝑘=0

((
2𝜀𝑊𝑖2

) 𝑘 1
Γ(𝛼𝑘 + 𝛽)

(
𝑃𝑥 𝑦̄ + 𝑐1

)2𝑘+2 −
(
𝑃𝑥 + 𝑐1

)2𝑘+2

2𝑘 +2

)
, (4.68)

and Eq. (4.67) is given by,

Γ(𝛽)
𝑃𝑥

∞∑︁
𝑘=0

((
2𝜀𝑊𝑖2

) 𝑘 1
Γ(𝛼𝑘 + 𝛽)

(
𝑃𝑥 + 𝑐1

)2𝑘+2 − 𝑐1
2𝑘+2

2𝑘 +2

)
= 0. (4.69)

If we consider 𝑐1 = − 𝑃𝑥

2 and 𝛼 = 𝛽 = 1, Eq. (4.68) reduces to the velocity profile obtained in [103]
for the exponential PTT model (Eq. (4.70)):

𝑢̄( 𝑦̄) = 1
4𝜀𝑊𝑖2𝑃𝑥

(
exp

(
2𝜀𝑊𝑖2𝑃𝑥

2
(
𝑦̄− 1

2

)2
)
− exp

(
2𝜀𝑊𝑖2𝑃𝑥

2

4

))
. (4.70)

4.2.3 Analytical solution for the gPTT model in pure Couette flow under slip

For the pure Couette flow, 𝑃𝑥 = 0, Eq. (4.54) reduces to:
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𝜏𝑥𝑦 = 𝑐1. (4.71)

The shear rate is then given in dimensionless form by Eq. (4.72), as follows:

¤𝛾(𝑦) = Γ(𝛽)𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

𝑐1
2

)
𝑐1
𝜂𝑝
. (4.72)

Integrating Eq. (4.72), the velocity field for the pure Couette flow is obtained,

𝑢(𝑦) = Γ(𝛽)
𝜂𝑝

©­«
∞∑︁
𝑘=0

©­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
𝑐2𝑘+1

1
Γ(𝛼𝑘 + 𝛽) 𝑦

ª®¬+ 𝑐2
ª®¬ , (4.73)

where 𝑐2 is an integration constant to be determined by the boundary conditions at the wall.
In order to find 𝑐2, boundary conditions (4.60) and (4.61) will be considered. Here, we have

two different boundary conditions, one at the immobile wall:

𝑢 (0) = 𝑘1(𝑐1)𝑚1 , (4.74)

and other at the moving wall,

𝑢 (ℎ) = 𝑘2(𝑐1)𝑚2 . (4.75)

We use boundary condition (4.74) to obtain:

𝑢(𝑦) = 𝑘1(𝑐1)𝑚1 + Γ(𝛽)
𝜂𝑝

∞∑︁
𝑘=0

©­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
𝑐2𝑘+1

1
Γ(𝛼𝑘 + 𝛽) 𝑦

ª®¬ . (4.76)

With the help of (4.75), an approximation for constant 𝑐1 can be obtained by solving numerically
the following nonlinear equation,

𝑘2(𝑐1)𝑚2 − 𝑘1(𝑐1)𝑚1

ℎ
=
Γ(𝛽)
𝜂𝑝

∞∑︁
𝑘=0

©­«
(

2𝜀𝜆2

𝜂2
𝑝

) 𝑘
𝑐2𝑘+1

1
Γ(𝛼𝑘 + 𝛽)

ª®¬ . (4.77)

Equations (4.76) and (4.77) can be written in dimensionless form as:

𝑢̄( 𝑦̄) = 𝑘1(𝑐1)𝑚1 +Γ(𝛽)𝑐1 𝑦̄

∞∑︁
𝑘=0

((
2𝜀𝑊𝑖2𝑐1

2
) 𝑘 1

Γ(𝛼𝑘 + 𝛽)

)
, (4.78)

and

𝑘2(𝑐1)𝑚2 − 𝑘1(𝑐1)𝑚1 = Γ(𝛽)𝑐1

∞∑︁
𝑘=0

((
2𝜀𝑊𝑖2𝑐1

2
) 𝑘 1

Γ(𝛼𝑘 + 𝛽)

)
, (4.79)

respectively.
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4.2.4 Discussion of results

4.2.4.1 Pure Couette flow

We will now investigate the influence of the Mittag–Leffler function on the velocity profile for pure
Couette slip flows.

Fig. 4.9 shows the influence of parameter 𝛼 on the velocity profile, considering slip velocity at
the immobile wall and no-slip at the moving wall.

As expected, when we consider full slip velocity at the moving wall, regardless of the boundary
condition at the immobile wall, the only possible solution is 𝑢̄( 𝑦̄) = 0.

Note that, we are only going to study the influence of parameter 𝛼, because of what we
concluded in Fig. 4.7, where the effect of 𝛼 = 1/2, 𝛽 = 1 is similar to the effect of 𝛼 = 1, 𝛽 = 1/2,
i.e., when the argument of Eq. (4.48) is between 0 and 1, both functions, Γ (1) 𝐸1/2,1 (𝑧) and
Γ (1/2) 𝐸1,1/2 (𝑧) have a similar behaviour.

(a) (b)

(c) (d)

Figure 4.9: Velocity profiles obtained for the pure Couette flow with slip at the immobile wall
and no-slip at the moving wall. (a) Variation of 𝛼 with 𝛽 = 1, (b) variation of parameter 𝑚1, (c)
variation of slip coefficient 𝑘1, (d) variation of 𝑐1 with 𝑘1.
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Fig. 4.9 (a) shows the velocity profiles obtained for the pure Couette flow, for 𝑘1 and 𝑚1 fixed
and different values for 𝜀𝑊𝑖2 and 𝛼 are considered, and the results obtained are compared with
the exponential PTT(𝛼 = 1 and 𝛽 = 1). We can observe that decreasing elasticity, 𝜀𝑊𝑖2, increases
the influence of the other parameters on the velocity profile. And this effect is more intense as 𝛼
increases.

Fig. 4.9 (b) shows the velocity profiles obtained for the pure Couette flow for different values
of 𝑚1. In this study, we consider three different values for 𝑚1, fixed 𝑘1 and 𝜀𝑊𝑖2, and study the
influence of the parameter 𝛼 in the velocity profile. We can observe that increasing𝑚1, the velocity
profile aproaches the velocity profile for pure Couette without slip, i.e. for smaller values of 𝑚1

at the immobile wall, we have higher values of velocity. And if we increase the parameter 𝛼 the
velocity increases.

Fig. 4.9 (c) shows the velocity profiles obtained for the pure Couette flow for different 𝑘1

values. In this case, we consider three different values for the 𝑘1, fixed 𝑚1 and 𝜀𝑊𝑖2, and study
the influence of the parameter 𝛼 in the velocity profile. We can see that when 𝑘1 = 5, the velocity
profiles for the exponential PTT and the gPTT are similar. But, for smaller values of 𝑘1, we observe
that, at the immobile wall, the velocity profiles increase, when 𝛼 increases.

Note that, in Fig. 4.9 (a), (b) and (c) when 𝑦̄ = 0, the velocity is different from zero, and this
happens because, we are considering the existance of slip at the immobile wall.

Fig. 4.9 (d) shows the variation of 𝑐1, obtained numerically from Eq. (4.79), with the slip
parameter 𝑘1, fixing 𝑚1 and considering different values of 𝛼 and 𝜀𝑊𝑖2. We can see that when
we increase the slip flow, the shear stress coefficient decreases, and for lower values of elasticity,
𝜀𝑊𝑖2, this effect is more enhanced.

It should be remarked that 𝛼 and 𝛽 parameters will influence the rate of destruction of junctions,
therefore, the fluidity of the viscoelastic material will suffer changes. This combined with the slip
velocity at the wall will promote a complex motion of molecules in the near wall region. This way,
the lower the value of 𝛼 or 𝛽, the higher is the rate of destruction of junctions, and therefore, the
fluid is more shear-thinning. Consequently, when we keep all parameters fixed and we decrease 𝛼
or 𝛽, will lead to reduced stresses at the immobile wall, and thus, a lower slip velocity.

4.2.4.2 Combined Poiseuille-Couette flow

We will now investigate the influence of the Mittag–Leffler function parameters on the velocity
profile for the combined Poiseuille-Couette flow. We want to know the influence of 𝛼 and 𝛽, on the
velocity profile of the Poiseuille-Couette flow with slip velocity at the immobile wall and no-slip
at the moving wall.

Fig. 4.10 shows the velocity profiles obtained for the combined Poiseuille-Couette flow, for
fixed 𝑘1, 𝑚1, 𝑃𝑥 and different values of 𝜀𝑊𝑖2, 𝛼 and 𝛽, and a comparison with the exponential
PTT.

In Fig. 4.10 (a) we consider different values for 𝛼 and in Fig. 4.10 (b) different values for 𝛽.
We can observe in Fig. 4.10 (a), that increasing elasticity, 𝜀𝑊𝑖2, increases the influence of the
other parameters on the velocity profile. This effect is enhanced as 𝛼 decreases. From Fig. 4.10
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(a) (b)

Figure 4.10: Velocity profiles obtained for the Poiseuille-Couette flow with slip at the immobile
wall and no-slip at the moving wall. (a) Variation of 𝛼 with 𝛽 = 1, (b) variation of 𝛽 with 𝛼 = 1.

(b), we can observe that when parameter 𝛼 is constant, the effect of decreasing 𝛽 is similar to the
one presented in Fig. 4.10 (a).

(a) (b)

Figure 4.11: Velocity profiles obtained for the Poiseuille-Couette flow with slip at the immobile
wall and no-slip at the moving wall for three different values of the slip coefficient 𝑘1. (a) Variation
of 𝛼 with 𝛽 = 1, (b) variation of 𝛽 with 𝛼 = 1.

Fig. 4.11 shows the velocity profiles obtained for the Poiseuille-Couette flow for three different
values of 𝑘1, and fixed 𝑃𝑥 , 𝑚1 and 𝜀𝑊𝑖2. Fig. 4.11 (a) and Fig. 4.11 (b), present velocity profiles
for fixed 𝛼 = 1 and 𝛽 = 1, respectively. When 𝛽 is fixed, the effect of the increase of slip coefficient
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is more pronounced for smaller values of 𝛼. As observed in Fig. 4.11 (a), when the parameter
𝛼 is fixed, a similar trend is observed, i.e., the effect on the velocity profile is more pronounced
for smaller values of 𝛽. This happens because for low values of 𝛼 (𝛽), the rate of destruction of
junctions increases and therefore the internal friction decreases, leading to a less restrictive flow,
increasing the flow rate.

Fig. 4.12 presents the variation of the 𝑐1 obtained numerically from Eq. (4.67), as a function
of 𝑘1, for fixed 𝑃𝑥 and 𝑚1. The increase of slip velocity implies the decrease of the shear stress
coefficient. This effect is more significant for lower values of 𝜀𝑊𝑖2, presenting (almost) linear
dependence for 𝜀𝑊𝑖2 = 1.

(a) (b)

Figure 4.12: Variation of 𝑐1 as a function of slip coefficient 𝑘1 for Poiseuille-Couette flow with slip
at the immobile wall and no-slip at the moving wall. (a) Variation of 𝛼 with 𝛽 = 1, (b) variation of
𝛽 with 𝛼 = 1.

Fig. 4.13 shows the variation of the shear stress, 𝜏𝑥𝑦 , and the corresponding normal stress, 𝜏𝑥𝑥 ,
for fixed 𝑃𝑥 , 𝑚1 and 𝜀𝑊𝑖2. We consider three different values of 𝑘1 and this analysis is presented
only for varying 𝛼, since for the parameter 𝛽 the results are qualitatively similar.

As explained before, the increase in the rate of destruction of junctions will lead to a decrease
of the shear stress, and corresponding viscosity. This leads to a less pronounced effect of slip
coefficient.

For the normal stress the conclusions are similar, but now have a nonlinearity, that will invert
the role of 𝛼, depending if the fluid is near the bottom or top wall.

4.2.5 Conclusions

In this work we developed analytical and semi-analytical solutions for the combined
Poiseuille-Couette flow and pure Couette flow of a viscoelastic fluid modelled by the gPTT model,
with the influence of slip at the walls. We study the influence of the model’s new parameters,
on the velocity profile and also discuss the role of the new function of the stress tensor on weak
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(a) (b)

Figure 4.13: Variation of 𝜏𝑥𝑦 and 𝜏𝑥𝑥 for Poiseuille-Couette flow with slip at the immobile wall
and no-slip at the moving wall with different values of 𝑘1.(Note that: 𝜏𝑥𝑦 =

𝜏𝑥𝑦ℎ

𝜂𝑝U and 𝜏𝑥𝑥 = 𝜏𝑥𝑥ℎ
𝜂𝑝U )

flows. The combined effects of slip, 𝛼 and 𝛽 reveal a new model with improved capability to mimic
complex phenomena even for weak flows.
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4.3 Analytical study of the annular flow of a generalised Phan-Thien–
Tanner fluid3

Abstract: The annular flow of complex viscoelastic fluids, described by the generalised Phan-
Thien-Tanner model, is studied. This model considers the Mittag–Leffler function instead of
the usual linear or exponential functions of the trace of the stress tensor, and includes two new
parameters that provide additional fitting flexibility. We derive a semi-analytical solution that
provides a better understanding of the behaviour of this type of fluid in annular flows and also helps
to improve the modelling of complex materials.

Keywords: PTT model, Mittag–Leffler, gPTT model, annular pressure driven flows, analytical
solutions

4.3.1 Introduction

Viscoelastic materials, such as polymer melts, polymer solutions, and biofluids (e.g. blood, saliva,
proteins) have complex behaviour. To better model and understand their rheological behaviour,
several constitutive equations have been proposed in the literature. In this study, we consider
the study of annular fluid flows that are commonly encountered in industrial processes such as
drilling, cable coating, and food processing. In these processes, the fluids are mixtures of various
substances, such as water, particles, oils, and other long-chain molecules, that impart the fluid with
various non-Newtonian properties.

The literature has many analytical and numerical solutions for annular flows using different
constitutive rheological models or different boundary conditions [19, 23, 30–38]. Among them,
all the different variants of the Phan-Thien–Tanner (PTT) model have already been studied (linear,
quadratic, exponential), except for the more recent PTT model, which uses the Mittag–Leffler
function and is called the generalized Phan-Thien–Tanner (gPTT) model [3]. The gPTT model
considers the Mittag–Leffler function instead of the classical linear and exponential functions of
the trace of the stress tensor (linear PTT and exponential PTT, respectively) to ensure a much
wider rheology coverage range and uses two new fitting constants to provide such additional fitting
flexibility to the description of the rheological properties of viscoelastic fluids.

Using this constitutive equation, in this work we propose a new approach by deriving a new
semi-analytical solution for the annular flow domain. Note that this model was previously studied
for Couette and pressure-driven flows, and also in combined electro-osmotic/pressure-driven flows
(see [28, 29, 56]). The obtained solutions allow the characterization of the velocity profile in annuli
and can be used to validate the numerical methods and results.

3A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, F.T. Pinho, and A.M. Afonso. Analytical study of the annular
flow of a generalised Phan-Thien–Tanner fluid. Acta Mechanica, 2023.
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The remainder of this paper is organized as follows: the next section presents the governing
equations, followed by the new analytical solution in section 4.3.3, the discussion of the results in
section 4.3.4 and the closure of the paper in section 4.3.5.

4.3.2 Formulation and governing equations

We consider the pressure-driven annular flow of a viscoelastic gPTT fluid, as shown in Fig. 4.14,
where 𝑅 is the radius of the outer cylinder and 𝑎𝑅 is the radius of the inner cylinder.

z

r
R

aR
q

𝛿

bR

Figure 4.14: Schematic of the flow in an annular region.

The equations governing the flow of an isothermal incompressible fluid are the continuity equation

∇ ·u = 0, (4.80)

and the linear momentum equation

𝜌
Du
D𝑡

= −∇𝑝 +∇ ·𝝈, (4.81)

where u is the velocity vector, D
D𝑡

is the material derivative, 𝑝 is the pressure, 𝑡 is the time, 𝜌 is the
fluid density and 𝝈 is the extra-stress tensor.

4.3.2.1 Constitutive equation

In order to achieve a closed system of equations, a constitutive equation for the extra-stress tensor,
𝝈, must be defined. Recently, Ferrás et al. [3] proposed a new differential rheological model
based on the Phan-Thien–Tanner constitutive equation (PTT model [21, 22]), derived from the
Lodge–Yamamoto type of network theory for polymeric fluids. This new model considers a more
general function for the rate of destruction of junctions, the Mittag–Leffler function, where two
fitting constants are included, in order to achieve additional fitting flexibility [3]. More details
about this model are discussed in [3].
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The Mittag–Leffler function is defined by

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑗=0

𝑧 𝑗

Γ (𝛼 𝑗 + 𝛽) , (4.82)

where 𝛼, 𝛽 are real and positive values and Γ is the Gamma function. When 𝛼 = 𝛽 = 1, the Mittag–
Leffler function reduces to the exponential function, and when 𝛽 = 1 the original one-parameter
Mittag–Leffler function, 𝐸𝛼, is obtained [4].

The constitutive equation of the gPTT model is given by

𝐾 (𝜎𝑘𝑘)𝝈 +𝜆 □𝝈 = 2𝜂𝑝D, (4.83)

where 𝜎𝑘𝑘 is the trace of the extra stress tensor, 𝜆 is the relaxation time and 𝜂𝑝 is the polymeric
viscosity coefficient. D is the rate of deformation tensor and function 𝐾 (𝜎𝑘𝑘) is given by

𝐾 (𝜎𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜎𝑘𝑘

)
(4.84)

where the normalization Γ (𝛽) is used to ensure that 𝐾 (0) = 1 for all choices of 𝛽, and 𝜀 represents
the extensibility parameter. □𝝈 represents the Gordon-Schowalter derivative, defined as

□
𝝈 =

𝜕𝝈

𝜕𝑡
+u · ∇𝝈− (∇u)𝑇 ·𝝈−𝝈 · (∇u) + 𝜉 (𝝈 ·D+D ·𝝈) , (4.85)

where ∇u is the velocity gradient and the constant parameter 𝜉 accounts for the slip between the
molecular network and the continuum.

4.3.3 Semi-analytical solution for the gPTT model in annuli

We derive the analytical solution for the gPTT model considering a steady fully-developed pressure-
driven annular flow (cf. Fig. 4.14). We consider a unidirectional flow in cylindrical coordinates,
where the outer radius is 𝑅 and the inner radius is 𝑎𝑅, with 0 < 𝑎 < 1. Therefore, the momentum
equation, Eq. (4.81), simplifies to

1
𝑟

d (𝑟𝜎𝑟 𝑧)
d𝑟

= 𝑃𝑧 , (4.86)

where 𝑃𝑧 ≡ d𝑝
d𝑧 is the constant streamwise pressure gradient and 𝜎𝑟 𝑧 is the shear stress.

In order to obtain closed form analytical solutions the slip parameter in the Gordon-Schowalter
derivative, Eq. (4.85) was set to 𝜉 = 0. So, the constitutive equation for the gPTT model in this
flow (section 4.3.2.1) can be further simplified, leading to:

𝐾 (𝜎𝑘𝑘)𝜎𝑧𝑧 = 2𝜆 ¤𝛾𝜎𝑟 𝑧 , (4.87)

𝐾 (𝜎𝑘𝑘)𝜎𝑟𝑟 = 0, (4.88)
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𝐾 (𝜎𝑘𝑘)𝜎𝑟 𝑧 = 𝜂𝑝 ¤𝛾, (4.89)

where the velocity gradient ¤𝛾 is a function of 𝑟 ( ¤𝛾(𝑟) ≡ d𝑢
d𝑟 ) and 𝜎𝑘𝑘 = 𝜎𝜃 𝜃 +𝜎𝑧𝑧 +𝜎𝑟𝑟 is the trace

of the extra stress tensor. Under fully-developed flow conditions, 𝜎𝜃 𝜃 = 0 and 𝜎𝑟𝑟 = 0, the trace of
the extra stress tensor becomes 𝜎𝑘𝑘 = 𝜎𝑧𝑧 .

Integration of the momentum equation results in

𝜎𝑟 𝑧 =
𝑃𝑧

2
𝑟 + 𝑐

𝑟
, (4.90)

where 𝑐 is a constant of integration. Assuming that 𝜎𝑟 𝑧 = 0 at 𝑟 = 𝑏𝑅 (the location of the maximum
velocity, see Fig. 4.14), with 𝑎 < 𝑏 < 1, we calculate the integration constant (𝑐 = −(𝑃𝑧/2)𝑏2𝑅2),
resulting in the following shear stress distribution,

𝜎𝑟 𝑧 =
−𝑃𝑧𝑏𝑅

2

(
𝑏𝑅

𝑟
− 𝑟

𝑏𝑅

)
. (4.91)

Dividing Eq. (4.87) by Eq. (4.89) results in the following relationship between normal and shear
stresses,

𝜎𝑧𝑧 =
2𝜆
𝜂𝑝
𝜎2
𝑟 𝑧 . (4.92)

Solving Eq. (4.87) for ¤𝛾, and using Eq. (4.91) and Eq. (4.92) results in the following velocity
gradient distribution:

d𝑢
d𝑟

= −Γ(𝛽)
𝜂𝑝

𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

(
𝑃𝑧𝑏𝑅

2

(
𝑏𝑅

𝑟
− 𝑟

𝑏𝑅

))2
)
𝑃𝑧𝑏𝑅

2

(
𝑏𝑅

𝑟
− 𝑟

𝑏𝑅

)
. (4.93)

The velocity gradient can be written in dimensionless form, using the Weissenberg number,
𝑊𝑖 = 𝜆𝑈𝑐/𝛿, where𝑈𝑐 = −𝑃𝑧𝛿

2/𝜂𝑝 is a characteristic velocity of the flow and 𝛿 is the gap between
the two cylinders in the annulus. We also define 𝑢 = 𝑢/𝑈𝑐 as the dimensionless velocity and 𝑟 = 𝑟/𝛿
as the normalized radius/distance between the inner and outer cylinders (𝑅 = 𝑅/𝛿). This gives the
following dimensionless velocity gradient:

d𝑢
d𝑟

=
Γ(𝛽)

2

(
𝑏2𝑅

2

𝑟
− 𝑟

)
𝐸𝛼,𝛽

©­«𝜀𝑊𝑖
2

2

(
𝑏2𝑅

2

𝑟
− 𝑟

)2ª®¬ . (4.94)

Now, we can obtain the velocity profile numerically by solving the following nonlinear problem:
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Problem 1
Given 𝜀𝑊𝑖2 and 𝑎, find the value of 𝑏 that satisfies,∫ 𝑅

𝑎𝑅

d𝑢
d𝑟

d𝑟 = 0. (4.95)

Using the value of 𝑏, compute the velocity profile:

𝑢(𝑟) =
∫ 𝑟

𝑎𝑅

Γ(𝛽)
2

(
𝑏2𝑅

2

𝑟
− 𝑟

)
𝐸𝛼,𝛽

©­«𝜀𝑊𝑖
2

2

(
𝑏2𝑅

2

𝑟
− 𝑟

)2ª®¬ d𝑟, (4.96)

where 0 < 𝑎 < 1 is defined by the user. Eq. (4.96) results from the no-slip boundary condition,
𝑢(𝑅) = 0. The velocity profile in Eq. (4.96) can be easily approximated numerically
by a simple quadrature rule. The solution of Eq. (4.95) can be obtained by defining
𝐹 (𝑏) =

∫ 𝑅

𝑎𝑅

d𝑢
d𝑟 𝑑𝑟 . So, there exists 0 < 𝑎 < 𝑏 < 1 such that 𝐹 (𝑏) = 0.

Eq. (4.94) can be further expanded using the definition of the Mittag–Leffler function, resulting in

d𝑢
d𝑟

=
Γ(𝛽)

2

(
𝑏2𝑅
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𝑟
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Γ (𝛼 𝑗 + 𝛽)
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𝑗

(4.97)

=
Γ(𝛽)
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∞∑︁
𝑗=0

1
Γ (𝛼 𝑗 + 𝛽)

(
𝜀𝑊𝑖2

2

) 𝑗
(
𝑏2𝑅
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𝑟
− 𝑟

)2 𝑗+1

(4.98)

and the velocity profile can be obtained from the integration of each term in this sum, leading to
the following expression:

𝑢(𝑟) = Γ(𝛽)
2

∞∑︁
𝑗=0

1
Γ (𝛼 𝑗 + 𝛽)
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(
𝑏2𝑅

2

𝑟
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)2 𝑗+1

d𝑟. (4.99)

The integral
∫ (

𝐴
𝑟
− 𝑟

)2 𝑗+1
d𝑟 , with 𝐴 = 𝑏2𝑅

2, can be easily computed, using the Newton’s
binomial. So, the velocity profile, is given by:
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that can be rewritten as:

𝑢(𝑟) = Γ(𝛽)
2

∞∑︁
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Γ (𝛼 𝑗 + 𝛽)
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𝑓𝑘 𝑗 (𝑎,𝑟)

]
(4.101)
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where:

𝑓𝑘 𝑗 (𝑎,𝑟) =


ln

(
𝑟

𝑎𝑅

)
, if 𝑘 = 𝑗 .

𝑟2(𝑘− 𝑗)−(𝑎𝑅)2(𝑘− 𝑗)

2(𝑘− 𝑗 ) , if 𝑘 ≠ 𝑗 .

(4.102)

Although Eq. (4.101) is an infinite series, we can obtain an approximated solution with a fair
number of correct decimal places by using only 𝑗 = 3 or 𝑗 = 4 (depending on the problem and the
parameters used). This will be explored in detail in the next section.

The second relevant problem from a practical point of view is the corresponding inverse
problem of determining the pressure gradient for a given flow rate. In this second case, the
following equation must be solved,

𝑈 =
1

𝜋𝑅2(1− 𝑎2)

∫ 𝑅

𝑎𝑅

𝑢(𝑟)2𝜋𝑟 d𝑟 (4.103)

where 𝜋𝑅2(1− 𝑎2) is the cross section area of the annular region and 𝑈 is the average velocity in
the annular region. Eq. (4.103) in dimensionless form becomes:

2

𝑅
2(1− 𝑎2)

∫ 𝑅

𝑎𝑅

𝑢(𝑟)𝑟 d𝑟 − 𝑈

𝑈𝑐

= 0 (4.104)

In this scenario, we can formulate the next problem:

Problem 2
Given 𝜀𝑊𝑖2

𝑈
(𝑊𝑖𝑈 = 𝜆𝑈/𝛿) and 𝑎, find 𝑏 and 𝜀𝑊𝑖2 such that,

𝑢(𝑅) = 0 ∧ 2

𝑅
2(1− 𝑎2)

∫ 𝑅

𝑎𝑅

𝑢(𝑟)𝑟 d𝑟 − 𝑈

𝑈𝑐

= 0. (4.105)

Then use the values of 𝑏 and 𝜀𝑊𝑖2 to compute the velocity profile given by Eq. (4.101). Note
that𝑈/𝑈𝑐 =𝑊𝑖𝑈/𝑊𝑖.

4.3.4 Results and discussion

4.3.4.1 Assessment of the series solution

In this subsection, we compare the numerical solution of the velocity profile given by Eq. (4.96),
with the analytical solution of Eq. (4.101). These results were obtained using the Mathematica
software and we first consider a high-precision numerical solution, where we obtain the value of
𝑏 using the secant method and then we numerically integrate Eq. (4.94). This highly accurate
numerical solution of the velocity profile was then used as a reference to perform an investigation
of the influence of the number of terms in the series on the error of the solution. The new truncated
solution is obtained from Eq. (4.101), truncating the sum with 𝑗 + 1 terms. We considered 200



110 More on theoretical studies

equidistant mesh points along the cylinder gap and measured the maximum relative error obtained
at these points (boundaries excluded).

The error is calculated by |𝑢(𝑟 )𝑛𝑢𝑚−𝑢(𝑟 )𝑡 |
𝑢(𝑟 )𝑛𝑢𝑚 , where 𝑢(𝑟)𝑛𝑢𝑚 is the approximate value of the

velocity and 𝑢(𝑟)𝑡 is the velocity value from the truncated series. Three different values of 𝜀𝑊𝑖2

were considered: 0.05, 3.2 and 5. We set 𝛽 = 1 and tested two different values of 𝛼, 0.5 and 1.5.
We only changed the values of 𝛼, because this parameter induces more changes in the series. The
value of 𝑎 used was 0.5 in all cases.

In Table 4.1, we show the maximum relative errors, in percentage. For 𝜀𝑊𝑖2 = 0.05, the error
was low, even when considering a single term in the series (Eq. (4.101)). For 𝛼 = 1.5 we see that
the error is much smaller, with the decrease in error becoming less pronounced as the number of
terms in the series increases. This is due to the number of significant digits considered.

Table 4.1: Maximum relative errors (in percentage) for 𝜀𝑊𝑖2 = 0.05.

𝑗 𝛼 = 0.5 𝛼 = 1.5
1 5.669×10−1 9.405×10−2

2 1.342×10−2 4.757×10−4

4 4.550×10−4 4.432×10−4

Tables 4.2 and 4.3 show the maximum relative errors in percentage for 𝜀𝑊𝑖2 = 3.2 and 5, respec-
tively. As we increase 𝜀𝑊𝑖2, the series solution shows convergence problems, and as we increase 𝛼
(see Table 4.3), the error decreases faster as the number of terms in the series increases (note also
that in this case we even consider a higher 𝜀𝑊𝑖2 value). The corresponding velocity profiles are
shown in Fig. 4.15, where 𝑢/𝑈𝑐 is the velocity profile normalised by the characteristic velocity,
using the highly accurate numerical solution. These particular results indicate that the velocity
profile converges to the correct profile as the number of terms in the series increases, and that this
convergence is slower for low values of 𝛼.

Table 4.2: Maximum relative errors (in percentage) for 𝜀𝑊𝑖2 = 3.2.

𝑗 𝛼 = 0.5
2 1.782×102

4 1.580×102

8 5.874×101

16 8.681×10−1

Based on these observations, we will consider 𝑗 = 15 for the results presented next.

4.3.4.2 Problem 1:

Fig. 4.16 shows the velocity profiles for 𝛽 = 1, 𝛼 = 0.5, 1, 3 at three different values of the 𝜀𝑊𝑖2

of 0.05, 1 and 3.2.
For 𝜀𝑊𝑖2 = 0.05 (Fig. 4.16 (a)) the velocity profiles for different values of 𝛼 almost overlap.

However, when we increase 𝜀𝑊𝑖2 to 1, that no longer happens, in fact we obtain the highest velocity
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Table 4.3: Maximum relative errors (in percentage) for 𝜀𝑊𝑖2 = 5.

𝑗 𝛼 = 1.5
1 1.414×102

2 4.773×101

4 1.409×100

8 4.275×10−4
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Figure 4.15: Velocity profiles for 𝛽 = 1, 𝛼 = 0.5, 1.5 and two different values of 𝜀𝑊𝑖2, 3.2 and 5.
(a) 𝛼 = 0.5; (b) 𝛼 = 1.5.

and flow rate for 𝛼 = 0.5, the case in which we have the highest rate of destruction of junctions.
This behaviour is more pronounced when we increase elasticity (see Fig. 4.16 (b)). For 𝜀𝑊𝑖2 = 3.2,
the differences in the flow rates are obvious, except for 𝛼 = 3, where the velocity profile almost
overlaps with the case 𝜀𝑊𝑖2 = 1. It is interesting to see that for 𝛼 = 𝛽 = 1 we still have a parabolic
velocity profile typical of Newtonian fluids, while decreasing 𝛼 we observe a very pronounced
plug-like profile, which is more typical of shear-thinning fluids.

Figure 4.16: Velocity profiles for 𝛽 = 1, 𝛼 = 0.5, 1, 3. (a) 𝜀𝑊𝑖2 = 0.05 and 1; (b) 𝜀𝑊𝑖2 = 1 and
3.2.
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Figure 4.17: Normalized shear rate profiles for 𝜀𝑊𝑖2 = 3.2 and 𝛼 = 0.5, 1 and 3.

To understand the slope variation of the velocity profile across the cylinder gap (for different 𝛼
values), we also plotted the corresponding normalized shear rate, in Fig. 4.17. This way we have
an idea of how much higher shear rates near the wall are for low values of 𝛼.

Figs. 4.18 (a) and (b) show the normalized shear and normal stress profiles, for 𝛽 = 1, 𝛼 = 0.5, 1
and 3 for 𝜀𝑊𝑖2 = 3.2. For the three cases, the dimensionless normal stress is always positive and
the dimensionless shear stress shows a quasi-linear profile, being positive near the inner cylinder
and negative in the vicinity of the outer cylinder. The shear stress is smaller for low values of 𝛼
since the values of 𝑏 decrease with decreasing 𝛼 (see also Eq. (4.94)).

Figure 4.18: Normalized shear and normal stress profiles, for 𝛽 = 1, 𝛼 = 0.5, 1 and 3 and 𝜀𝑊𝑖2 = 3.2.
(a) Normalized shear stress; (b) Normalized normal stress.

Figs. 4.19 (a), (b) and (c) show the influence of 𝛽 on the velocity profile. The results are similar
to those for the variation of 𝛼. For a small value of 𝜀𝑊𝑖2 (Fig. 4.19 (a)), the velocity profiles
almost overlap for all values of 𝛽, but as 𝜀𝑊𝑖2 is increased (Fig. 4.19 (b) and (c)), the velocity and
the flow rate increase as we decrease 𝛽. That effect is more pronounced for small values of 𝛽.
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Figure 4.19: Velocity profiles for 𝛼 = 1, 𝛽 = 0.5, 1 and 3; (a) 𝜀𝑊𝑖2 = 0.05 and 1 ;(b) 𝜀𝑊𝑖2 = 1 and
3.2;(c) 𝜀𝑊𝑖2 = 3.2 and 5.

The role of 𝛽 is more complex than that of 𝛼. 𝛽 is used as an argument of the Mittag–Leffler
function and to normalize 𝐾 (𝜎𝑧𝑧). This mixed effect of 𝛽 on the rate of destruction of junctions
results in smoother variations of velocity due to the variation of 𝛽.

We also study the variations of 𝑏 with 𝜀𝑊𝑖2 (see Fig. 4.20). We considered three different
values of 𝛼, of 0.5, 1 and 3 and calculated 𝑏 for different 𝜀𝑊𝑖2. We see that the value of 𝑏 decreases
with the increase of 𝜀𝑊𝑖2, and that for 𝛼 = 3, the variation is almost linear. Notice that, when
𝛼 = 0.5, the reduction is more pronounced. Fig. 4.20 shows that 𝑏 decreases with the increase of
the fluid elasticity, a trend also observed on the velocities profiles of Figs. 4.19, since 𝑏 represents
the radial position of the maximum value for the velocity profile. Therefore, the point of maximum
velocity approaches the inner cylinder wall as the elasticity of the fluid increases, because of the
direct relationship between elasticity and shear-thinning of the shear viscosity.

Figure 4.20: Variation of 𝑏 with the variation 𝜀𝑊𝑖2, for 𝛼 = 0.5, 1 and 3. The closed circle
corresponds to value of 𝑏 obtained for a Newtonian fluid [30, 39].
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4.3.4.3 Problem 2:

This problem is harder to solve because for a given value of the flow rate,𝑈, we have to find 𝑏 and
𝜀𝑊𝑖2 (𝜀𝑊𝑖2 = 𝜀 (𝜆𝑈𝑐/𝛿)2 = 𝜀

(
−𝜆𝛿𝑃𝑧/𝜂𝑝

)2) from a system of two strongly nonlinear equations.
The first equation come from the outer wall boundary condition,
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1
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(
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[2 𝑗+1∑︁
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(
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2)2 𝑗+1−𝑘 [
𝑓𝑘 𝑗 (𝑎, 𝑅)

] ]
= 0; (4.106)

and the second from the imposed non-dimensionless flow rate
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ℎ𝑘 𝑗 (𝑎, 𝑅)

] ]
−𝑊𝑖𝑈
𝑊𝑖

= 0

(4.107)
where ℎ𝑘 𝑗 (𝑎, 𝑅) = 𝑅 − 𝑎𝑅 if 𝑘 = 𝑗 and ℎ𝑘 𝑗 (𝑎, 𝑅) =

𝑅
2(𝑘− 𝑗)+1−(𝑎𝑅)2(𝑘− 𝑗)+1

2(𝑘− 𝑗 )+1 if 𝑘 ≠ 𝑗 .
Note that𝑈/𝑈𝑐 =𝑊𝑖𝑈/𝑊𝑖, as in Eq. (4.105).

Since one of the goals of this work is to provide a tool for validating future numerical imple-
mentations of this constitutive model in general numerical codes, the Mathematica codes used to
obtain the solution are provided as supplementary material.

Figure 4.21: Normalized velocity profiles for 𝛽 = 1 and 𝛼 = 0.75, 1 and 1.25. (a) 𝜀𝑊𝑖2
𝑈
= 0.05;

(b) 𝜀𝑊𝑖2
𝑈
= 0.2 and 0.25.

Fig. 4.21 shows the normalized velocity profiles for 𝛽 = 1, 𝛼 = 0.75, 1 and 1.25, 𝑎 = 0.5, and,
for three different values of 𝜀𝑊𝑖2

𝑈
: 0.05, 0.2 and 0.25.

For the lowest 𝜀𝑊𝑖2
𝑈

(Fig. 4.21 (a)), the velocity profiles are similar, with higher velocities for
lower values of 𝛼, and, the plug-like profile typical of non-Newtonian fluids is less pronounced due
to the low elasticity. Again, this confirms the idea that the lower values of 𝛼 lead to more plug-like
profiles due to the intense shear-thinning.

This effect is more pronounced in Fig. 4.21 (b), where we compare the results for two
moderate values of elasticity. The combination of a higher 𝜀𝑊𝑖2

𝑈
and a lower value of 𝛼 leads to a

less parabolic velocity profile.
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The combined effect of elasticity and parameters 𝛼 and 𝛽 leads to a complex relationship.
Physically, we have that a higher rate of destruction of junctions in the network (lower 𝛼) allows
for a faster creation of a new network. For Problem 1, this resulted in a higher flow rate, giving
the idea that, this high destruction rate results in less resistance of the flow. When the flow rate is
imposed, we observe that the information from the boundary conditions travels at a slower velocity,
allowing for a more plug-like profile to be possible.

4.3.5 Conclusions

We derived an analytical solution for the velocity profile in series form for the annular flow of a
gPTT fluid. A semi-analytic solution is derived for the case where the flow rate is imposed.

We show the influence of the model parameters on the velocity and stress profiles. As expected,
the flow velocity increases with the decrease of 𝛼 and 𝛽 for the same 𝜀𝑊𝑖2, resulting in a more
pronounced plug-like profile. The influence of 𝛽 is less pronounced due to its double influence on
the proposed rate of destruction of junctions (it is a parameter of the Mittag–Leffler function and
is also used as a normalization factor).

The analytical and semi-analytical solutions presented in this work are useful for the validation
of CFD codes and also provide a better understanding of the model behaviour in simple shear
flows.
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4.4 A study on mixed electro-osmotic/pressure-driven microchannel
flows of a generalised Phan-Thien–Tanner fluid4

Abstract: This work presents new semi-analytical solutions for the combined fully-developed
electro-osmotic pressure-driven flow in microchannels of viscoelastic fluids, described by the
generalised Phan-Thien–Tanner model (gPTT) recently proposed by Ferrás et al. (Journal of
Non-Newtonian Fluid Mechanics, 269: 88-99, 2019). This generalised version of the PTT model
presents a new function for the trace of the stress tensor - the Mittag–Leffler function - where
one or two new fitting constants are considered in order to obtain additional fitting flexibility.
The semi-analytical solution is obtained under sufficiently weak electric potentials that allows
the Debye–Hückel approximation for the electrokinetic fields and for thin electric double layers.
Based on the solution, the effects of the various relevant dimensionless numbers are assessed and
discussed, such as the influence of 𝜀𝑊𝑖2, of the parameters 𝛼 and 𝛽 of the gPTT model, and also
of 𝜅, the dimensionless Debye–Hückel parameter. We conclude that the new model characteristics
enhance the effects of both 𝜀𝑊𝑖2 and 𝜅 on the velocity distribution across the microchannels. The
effects of a high zeta potential and of the finite size of ions are also studied numerically.

Keywords: electro-osmotic flow/pressure driven flows, generalised simplified PTT, high zeta
potential, Mittag–Leffler, steric effect

4.4.1 Introduction

Electro-osmosis (EO) is a flow forcing method suitable for flows through micro- and nano-
devices that are particularly useful for applications in medicine, biochemistry and miniaturised
industrial processes. EO relies on a basic electrokinetic phenomenon, where the flow of an
electrolyte is driven by an external potential difference between the inlet and outlet of the channel,
acting on ions that are imbalanced in the near-wall region of the fluid due to the interaction between
the dielectric channel walls and the fluid. Specifically, these are layers of higher concentration of
counter-ions within the fluid, that move under the action of the applied electric field, which then
drags by viscous forces the neutral core as a solid body [41]. There is a vast literature dealing
with this topic for Newtonian fluids [42–49]. As reviewed by Zhao and Yang [50], there is also
a fair amount of literature dealing with electro-osmotic flows of non-Newtonian fluids (see also
[51–54]).

In this work, we are interested in viscoelastic materials described by differential constitutive
equations [1], which can describe accurately the real behaviour of polymer solutions. In order to
reduce the computational effort needed to compute integral models, new differential model were
proposed in the literature, such as the generalised Phan-Thien–Tanner (gPTT) [3] model that uses

4A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, M.A. Alves, F.T. Pinho, and A.M. Afonso. A study on mixed
electro-osmotic/pressure-driven microchannel flows of a generalised Phan-Thien–Tanner fluid. Journal of Engineering
Mathematics, 127(1), mar 2021.
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the Mittag–Leffler function of the trace of the stress tensor (instead of the classical linear and
exponential functions [21, 22]), together with one or two new fitting parameters in order to obtain
additional fitting flexibility.

This model was previously studied for Couette and pressure driven flows, in the absence EO
[28, 29], therefore this work aims to assess the influence of the new model parameters for combined
electro-osmotic/pressure driven flows.

The remainder of this paper is organised as follows: the next section presents the governing
equations, followed by the new analytical solution in section 4.4.3, the discussion of the results in
section 4.4.4 and the conclusions of the paper in section 4.4.5.

4.4.2 Formulation and governing equations

We consider a combined electro-osmotic/pressure-driven channel flow of a viscoelastic gPTT fluid
in a microchannel, as shown in Fig. 4.22. Here 𝑥, 𝑦 and 𝑧, represent the streamwise, transverse and
spanwise directions, respectively, and the channel width is 2𝐻. We consider that the channel size
in the spanwise direction is much larger than 𝐻: thus, the flow can be assumed two-dimensional.

•

0

Figure 4.22: Schematic of the flow in a planar microchannel.

As schematically shown in Fig. 4.22, the ion separation arises due to the interaction between
the walls and the fluid. Here, the illustrated negatively charged walls of the microchannel attract
counter-ions forming layers of positively charged fluid near the walls and with the co-ions predom-
inantly staying at the core. At such dilute concentrations, the fluid core remains essentially neutral.
Very thin layers of immobile counter-ions remain at the walls, known as the Stern layers, followed
by thicker more diffuse layers of mobile counter-ions; the two layers near the wall form what is
called the Electrical Double Layer (EDL).

A DC potential difference between the two electrodes at the inlet and outlet generates an ex-
ternal electric field that exerts a body force on the counter-ions of the EDL, which flow along the
channel dragging the neutral liquid core. The pressure difference that can also be applied between
the inlet and outlet can act in the same direction of the electric field or in the opposite direction.
At the wall, the no-slip condition applies, whereas at the centreplane, the symmetry boundary
condition is used. Since the flow is fully-developed, the velocity and stress fields only depend on
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the transverse coordinate 𝑦 [51, 52].

The equations governing the flow of an isothermal incompressible fluid are the continuity
equation

∇ ·u = 0, (4.108)

and the Cauchy equation

𝜌
Du
D𝑡

= −∇𝑝 +∇ · 𝝉 + 𝜌𝑒E, (4.109)

where u is the velocity vector, D
D𝑡

is the material derivative, 𝑝 is the pressure, 𝑡 is the time, 𝜌 is the
fluid density, 𝝉 is the extra-stress tensor, E is the electric field and 𝜌𝑒 is the electric charge density
in the fluid.

4.4.2.1 Constitutive equation

In order to achieve a closed system of equations, a constitutive equation for the extra-stress tensor,
𝝉, is required. Recently, Ferrás et al. [3] proposed a new differential model based on the Phan-
Thien–Tanner constitutive equation [21, 22]. This new model considers a more general function for
the rate of destruction of junctions, the Mittag–Leffler function, where one or two fitting parameters
are included, in order to achieve additional fitting flexibility [3].

The Mittag–Leffler function is defined as,

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑗=0

𝑧 𝑗

Γ (𝛼 𝑗 + 𝛽) , (4.110)

with 𝛼, 𝛽 being real and positive and Γ is the Gamma function. When 𝛼 = 𝛽 = 1, the Mittag–
Leffler function reduces to the exponential function, and when 𝛽 = 1 the original one-parameter
Mittag–Leffler function, 𝐸𝛼 is obtained.

The constitutive equation is given by:

𝐾 (𝜏𝑘𝑘) 𝝉 +𝜆
□
𝝉 = 2𝜂𝑝D, (4.111)

where 𝜏𝑘𝑘 is the trace of the stress tensor, 𝜆 is the a relaxation time, 𝜂𝑝 is the polymeric viscosity
coefficient, D is the rate of deformation tensor and □𝝉 represents the Gordon-Schowalter derivative
defined as

□
𝝉 =

𝜕𝝉

𝜕𝑡
+u · ∇𝝉− (∇u)𝑇 · 𝝉−𝝉 · (∇u) + 𝜉 (𝝉 ·D+D · 𝝉) . (4.112)
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Here ∇u is the velocity gradient and the parameter 𝜉 accounts for the slip between the molecular
network and the continuous medium. The stress function, 𝐾 (𝜏𝑘𝑘), is given by a new formulation
that imparts more flexibility and accuracy to the model predictions, as discussed in [3]. Specifically,
it is given by

𝐾 (𝜏𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
, (4.113)

where 𝜀 represents the extensibility parameter and the normalization parameter Γ (𝛽) is used to
ensure that 𝐾 (0) = 1, for all choices of 𝛽.

4.4.2.2 Electric potential

We can relate the electrostatic field, E, with the electric potential, Φ, through

E = −∇Φ, (4.114)

where Φ is governed by

∇2Φ = − 𝜌𝑒
𝜖

(4.115)

with 𝜖 representing the dielectric constant of the solution. The electric potential includes two
different contributions, Φ = 𝜙+𝜓, where 𝜙 is generated by the electrodes, placed at the inlet and
outlet of the flow geometry, and 𝜓 is associated with the charge distribution near the walls. In this
way, the imposed potential is described by a Laplace equation, ∇2𝜙 = 0, and the induced potential
is described by a Poisson equation:

∇2𝜓 = − 𝜌𝑒
𝜖
. (4.116)

In some situations, such as when the flow and the ion distributions are fully-developed, the EDLs
are thin and do not overlap at the centre of the channel. Significant variations of 𝜓 only occur in
the transverse direction, and a stable Boltzmann distribution of ions occurs in the EDL. Therefore,
the net electric charge density, 𝜌𝑒, for an electrolyte in equilibrium near a charged surface is given
by [41]:

𝜌𝑒 = −2𝑛0𝑒𝑧 sinh
(
𝑒𝑧

𝑘𝐵𝑇
𝜓

)
, (4.117)

where 𝑛0 is the ion density, 𝑒 the elementary charge, 𝑧 the valence of the ions, 𝑇 the absolute
temperature and 𝑘𝐵 the Boltzmann constant.
Combining Eq. (4.116) for the induced potential equation, that for fully-developed steady flow
becomes

d2𝜓

d𝑦2 = − 𝜌𝑒
𝜖
, (4.118)
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with Eq. (4.117), leads to the Poisson-Boltzmann equation:

d2𝜓

d𝑦2 =
2𝑛0𝑒𝑧

𝜖
sinh

(
𝑒𝑧

𝑘𝐵𝑇
𝜓

)
. (4.119)

Assuming the Debye-Hückel linearisation principle, a valid approximation provided for small
values of 𝜓 [51, 52, 65], the Poisson-Boltzmann equation (Eq. (4.119)) for the 2D channel flow
becomes

d2𝜓

d𝑦2 = 𝜅2𝜓, (4.120)

where 𝜅2 =
(
2𝑛0𝑒

2𝑧2) /(𝜖 𝑘𝐵𝑇) is the Debye-Hückel parameter, which is related to the thickness of
the Debye layer, 𝜆𝐷 = 1/𝜅, also called the EDL thickness.

The boundary conditions for the Poisson-Boltzmann equation are the following: at the sym-
metry plane, d𝜓/d𝑦 |𝑦=0 = 0; the zeta potential at the wall is 𝜓𝑤𝑎𝑙𝑙 = 𝜓0. Integrating Eq. (4.120)
and applying these boundary conditions, leads to the following induced electric field, 𝜓:

𝜓 (𝑦) = 𝜓0
cosh (𝜅𝑦)
cosh (𝜅𝐻) (4.121)

for |𝑦 | ≤ 𝐻. The electric charge density, 𝜌𝑒 is given by

𝜌𝑒 = −𝜖𝜓0𝜅
2 cosh (𝜅𝑦)

cosh (𝜅𝐻) . (4.122)

It should be remarked that the non-dimensionalization of the Nernst-Planck equation which
governs the transport of ionic species shows that the relative contribution of the advective strength
of the ionic species compared to diffusive strength results in the ionic Peclet number, which can be
expressed as (𝑢ref𝐻) /𝐷, where 𝑢ref is a reference velocity, 𝐻 is a reference length scale (the half
width of the channel) and 𝐷 is the ionic diffusivity. For electro-osmotic flows, a typical velocity
scale is 𝑢ref ∼ (𝜖𝜓0𝐸𝑥) /𝜂𝑝. Taking a viscoelastic fluid as a medium with 𝜖 ∼ 10−9 C/V.m and
𝜂𝑝 ∼ 10−2 Pa.s, for an electric field of 𝐸𝑥 ∼ 104 V/m and for 𝜓0 ∼ 20 mV, we obtain 𝑢ref ∼ 2×10−5

m/s. Now, with a channel height of 2𝐻 ∼ 10 𝜇m and 𝐷 ∼ 10−8 m2/s, the ionic Peclet number is of
order 𝑃𝑒 ∼ 0.01, i.e. the contribution of advection on the space distribution of ionic charges can
be neglected in the present analysis, when considering the Debye–Hückel approximation.

More details regarding the derivation of these equations can be seen in Afonso et al. [51],
Mondal et al. [105] and Mukherjee et al. [106].

4.4.3 Analytical solution for the gPTT model

In this section, we derive the analytical solution for the gPTT model considering fully-developed
electro-osmotic/pressure-driven flow (cf. Fig. 4.22).

The momentum equation, Eq. (4.109), becomes

d𝜏𝑥𝑦
d𝑦

= 𝑃𝑥 − 𝜌𝑒𝐸𝑥 , (4.123)
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where 𝑃𝑥 ≡ d𝑝/d𝑥 is the constant streamwise pressure gradient, 𝜏𝑥𝑦 the shear stress and 𝐸𝑥 ≡ d𝜙/d𝑥
is the imposed constant streamwise gradient of electric potential. This equation is valid regardless
of the rheological constitutive equation.

Now, using Eq. (4.122) and considering that the shear stress at the centreline is zero, Eq.
(4.123) can be integrated leading to the following shear stress distribution:

𝜏𝑥𝑦 = 𝜖𝜓0𝐸𝑥𝜅
sinh (𝜅𝑦)
cosh (𝜅𝐻) +𝑃𝑥𝑦. (4.124)

The constitutive equation for the gPTT model for this flow (section 4.4.2.1) can be further
simplified, leading to

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑥 = (2− 𝜉) (𝜆 ¤𝛾)𝜏𝑥𝑦 , (4.125)

𝐾 (𝜏𝑘𝑘)𝜏𝑦𝑦 = −𝜉 (𝜆 ¤𝛾)𝜏𝑥𝑦 , (4.126)

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑦 = 𝜂𝑝 ¤𝛾 + (1− 𝜉
2
) (𝜆 ¤𝛾)𝜏𝑦𝑦 −

𝜉

2
(𝜆 ¤𝛾)𝜏𝑥𝑥 , (4.127)

where the velocity gradient ¤𝛾 is a function of 𝑦 ( ¤𝛾(𝑦) ≡ d𝑢/d𝑦) and 𝜏𝑘𝑘 = 𝜏𝑥𝑥 +𝜏𝑦𝑦 +𝜏𝑧𝑧 is the trace
of the stress tensor. Under fully developed flow conditions, 𝜏𝑧𝑧 = 0.

4.4.3.1 Electro-osmotic flow with 𝜉 = 0

In order to obtain closed form analytical solutions, the slip parameter in the Gordon-Schowalter
derivative is set to 𝜉 = 0. For 𝜉 = 0, Eq. (4.126) implies that 𝜏𝑦𝑦 = 0, and the trace of the stress
tensor becomes 𝜏𝑘𝑘 = 𝜏𝑥𝑥 . Dividing Eq. (4.125) by Eq. (4.127), 𝐾 (𝜏𝑥𝑥) cancels out, and an
explicit relationship between the streamwise normal stress and the shear stress is found:

𝜏𝑥𝑥 = 2
𝜆

𝜂𝑝
𝜏2
𝑥𝑦 . (4.128)

Now combining Eqs. (4.127), (4.128), (4.124) and (4.113), the following velocity gradient profile
is obtained:

¤𝛾(𝑦) = Γ(𝛽)
𝜂𝑝

𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

(
𝜖𝜓0𝐸𝑥𝜅

sinh (𝜅𝑦)
cosh (𝜅𝐻) +𝑃𝑥𝑦

)2
) (
𝜖𝜓0𝐸𝑥𝜅

sinh (𝜅𝑦)
cosh (𝜅𝐻) +𝑃𝑥𝑦

)
. (4.129)

The dimensionless velocity gradient becomes:

d𝑢̄
d𝑦̄

= Γ(𝛽)𝐸𝛼,𝛽

(
2𝜀𝑊𝑖2

𝜅2

(
Υ𝑦̄− 𝜅 sinh (𝜅𝑦̄)

cosh (𝜅)

)2
) (

Υ𝑦̄− 𝜅 sinh (𝜅𝑦̄)
cosh (𝜅)

)
, (4.130)
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where 𝑊𝑖 = 𝜆𝜅𝑢𝑠ℎ is the Weissenberg number and 𝑢sh is the Helmholtz-Smoluchowski electro-
osmotic velocity, defined as 𝑢sh = − 𝜖 𝜓0𝐸𝑥

𝜂𝑝
, 𝑢̄ = 𝑢

𝑢sh
, 𝑦̄ = 𝑦

𝐻
and 𝜅 = 𝜅𝐻. The non-dimensional

parameter

Υ = − 𝐻
2

𝜖𝜓0

(
𝑃𝑥

𝐸𝑥

)
,

represents the ratio of pressure to electro-osmotic driving forces. Eq. (4.130) has an analytical
solution only for pure electro-osmotic (EO) flow and provided further assumptions are made,
whereas for the combined situation with a pressure gradient (EO+PD), the solution is obtained
numerically. Next, we obtain the analytical solution for pure EO and discuss its validity in section
4.4.4, where the combined solution (EO+PD) is also discussed.

For pure EO flow, Υ = 0, the velocity profile can be obtained integrating the velocity gradient
profile, subjected to the no-slip boundary condition at the top (+) or bottom (-) walls, 𝑢̄ ( 𝑦̄ = ±1) = 0.
Simplifying Eq. (4.130), the equation to be integrated is:

𝑢̄ ( 𝑦̄) =
∫ 1

𝑦̄

©­«Γ(𝛽)𝜅
∞∑︁
𝑗=0

(
2𝜀𝑊𝑖2

) 𝑗 ( sinh (𝜅𝑧)
cosh (𝜅)

)2 𝑗+1 1
Γ (𝛼 𝑗 + 𝛽)

ª®¬d𝑧. (4.131)

In order to compute the integral in (4.131), we consider sinh (𝜅𝑦̄) ≈ 1
2 exp (𝜅𝑦̄) which is usually

accurate because in most micro-devices, the thickness of the EDL is very small, about 1 to 3 orders
of magnitude smaller than the width of the micro channel, so 𝜅 is a large value. However, close
to the centreline, the approximation (𝑦̄ ∼ 0) becomes less adequate (in this case, we can use a
numerical method to obtain the approximate solution of the differential equation).

Assuming sinh(𝜅𝑧) ≈ 1
2 exp(𝜅𝑧), the integration (Eq. (4.131)) gives the following velocity

profile (𝑦̄ > 0):

𝑢̄ ( 𝑦̄) ≈ Γ (𝛽)
2cosh (𝜅)

∞∑︁
𝑗=0

(
𝜀𝑊𝑖2

2cosh2 (𝜅)

) 𝑗

(
(exp (𝜅𝑦̄))2 𝑗+1 − (exp (𝜅))2 𝑗+1

)
2 𝑗 +1

1
Γ (𝛼 𝑗 + 𝛽) . (4.132)

When we consider 𝛼 = 𝛽 = 1, Eq. (4.132) reduces to the one presented in Ferrás et al. [52] for
pure EO flow of an exponential PTT fluid:

𝑢̄( 𝑦̄) ≈

√︁
𝜋
2

(
erfi

[
𝐵
√
𝐴exp(𝜅 )√

2

]
− erfi

[
𝐵
√
𝐴exp(𝜅 | 𝑦̄ | )√

2

] )
2𝜅

√
𝐴

, (4.133)

where erfi (𝑧) =−𝑖erf (𝑖𝑧) with erf (.) denoting the error function, 𝐴 =
(
𝜀𝑊𝑖2

)
/𝜅2 and 𝐵 = 𝜅/cosh (𝜅).

4.4.3.2 Electro-osmotic flow with 𝜉 ≠ 0

For purely EO flow (𝑃𝑥 = 0), and considering parameter 𝜉 ≠ 0 in the Gordon–Schowalter derivative,
the behaviour of the solution is different and the EO flow may become unstable above a critical
shear rate as previously shown by Dhinakaran et al. [65]. The system of differential equations is
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non-linear and the velocity profile must be obtained numerically. Following the steps of Dhinakaran
et al. [65] (their equations (12)-(22)), one can obtain the velocity gradient:

d𝑢
d𝑦

=

−𝛤 (𝛽)𝐸𝛼,𝛽

[
1
𝜒

(
1−

√︂
1−

(
𝑎𝜆𝜅𝑢sh

sinh(𝜅𝑦)
cosh(𝜅𝐻 )

)2
)]
𝜅𝑢sh

sinh(𝜅𝑦)
cosh(𝜅𝐻 )

1− 1
2

(
1−

√︂
1−

(
𝑎𝜆𝜅𝑢sh

sinh(𝜅𝑦)
cosh(𝜅𝐻 )

)2
) , (4.134)

where
𝜒 =

𝜉 (2−𝜉 )
𝜀 (1−𝜉 ) and 𝑎 = 2

√︁
𝜉 (2− 𝜉). The velocity gradient can be written in dimensionaless form as

d𝑢̄
d𝑦̄

=

−𝛤 (𝛽)𝐸𝛼,𝛽

[
1
𝜒

(
1−

√︂
1−

(
𝑎𝑊𝑖

sinh(𝜅 𝑦̄)
cosh(𝜅 )

)2
)]
𝜅

sinh(𝜅 𝑦̄)
cosh(𝜅 )

1− 1
2

(
1−

√︂
1−

(
𝑎𝑊𝑖

sinh(𝜅 𝑦̄)
cosh(𝜅 )

)2
) (4.135)

and then the velocity profile, 𝑢̄( 𝑦̄), can be obtained integrating numerically Eq. (4.135) using, for
example, Simpson’s rule.

The steric effects are presented in Appendix A.

4.4.4 Discussion of results

4.4.4.1 Pure electro-osmotic flow

Before performing a study on the influence of the different parameters on the fluid flow, we briefly
discuss the validity of the approximate analytical solution given by Eq. (4.132). We compare in
Fig. 4.23 the results obtained with this equation and the results obtained numerically by integrating
Eq. (4.131) with the Simpson’s quadrature rule. For the approximation of the infinite series, we
performed numerical tests and observed that the use of 20-40 terms would allow us to obtain an
accurate sum up to the sixth decimal place.

As expected, it can be seen that only for low values of 𝜅, (𝜅 ≤ 5), the thin layer approximation
of the analytical solution fails to predict the correct velocity profile. Therefore, the values of 𝜅 used
along this work will typically be greater or equal than 10 (except for the cases where the solution
is numerical or when this effect is considered).

We will now investigate the influence of the Mittag–Leffler function parameters 𝛼 and 𝛽, on the
velocity profile distribution across the channel for different values of 𝜀𝑊𝑖2 and 𝜅, and we compare
the results with those for the exponential PTT model.

Fig. 4.24 compares the velocity profiles obtained for EO flow considering two different 𝜀𝑊𝑖2

values and different values of 𝛼 (Fig. 4.24 (a)) and 𝛽 (Fig. 4.24 (b)) at 𝜅 = 10. In Fig. 4.24 (a),
𝛽 = 1 and we observe that for increasing 𝜀𝑊𝑖2 and decreasing 𝛼, the flow rate increases, which is
due to enhanced shear-thinning at the shear rates prevailing within the EDL. In Fig. 4.24 (b) 𝛼 = 1
and a similar qualitative behaviour is obtained, i.e., on increasing 𝜀𝑊𝑖2 and decreasing 𝛽, the flow
rate increases. However, there are quantitative differences with the effect of 𝛽 being stronger than
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(a) (b)

Figure 4.23: Velocity profiles calculated using Eqs. (4.132) (lines) and (4.131) (symbols) for the
pure EO flow considering 𝜀𝑊𝑖2 = 0.5 and different values of 𝜅 for 𝛼 = 1/4 and 𝛽 = 1: (a) 𝜅 = 10
and 𝜅 = 30; (b) 𝜅 = 2.5 and 𝜅 = 5.

(a) (b)

Figure 4.24: Velocity profiles calculated using Eq. (4.132) for the pure EO flow considering
different values of 𝜀𝑊𝑖2 and different values of 𝛼 and 𝛽 for 𝜅 = 10: (a) 𝛽 = 1; (b) 𝛼 = 1. The
velocity profiles were obtained from Eq. (4.132) and the cases for expPTT correspond to 𝛼 = 𝛽 = 1.

the effect of 𝛼. Note that both 𝛼 and 𝛽 play a role contrary to 𝜀 in the classical PTT model, that is,
decreasing 𝛼 and 𝛽, which leads to an increase of the net rate of destruction of network junctions in
the physical model of the polymer, the fluid becomes more thinning, reducing the friction between
junctions [3]. The fact that 𝛽 plays a stronger role on the thinning effect comes from the fact that
the new function of the trace of the stress tensor presents higher numerical values for 𝛽≪ 1 when
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the argument is smaller than ≈ 1 (the case of the EO flow presented here).

(a) (b)

Figure 4.25: The effect of 𝜅 on transverse velocity profiles for EO at 𝜀𝑊𝑖2 = 0.5: (a) 𝛽 = 1; (b)
𝛼 = 1. The velocity profiles were obtained from Eq. (4.132) and the cases with expPTT correspond
to 𝛼 = 𝛽 = 1.

Fig. 4.25 compares transverse velocity profiles for the EO flow considering three different
values of 𝜅, at fixed 𝜀𝑊𝑖2 = 0.5: Fig. 4.25 (a) refers to fixed 𝛽 = 1, and we observe the expected
thinning of the EDL with increasing 𝜅. Similar trends are observed in Fig. 4.25 (b). The highest
shear rates occur near the walls and in this region, the effects of 𝛼 and 𝛽 will be felt more strongly,
as discussed in [3]. Smaller values of these parameters mean that the rate of destruction of
junctions increases, that is, the friction between the molecules of the polymer solution decreases,
leading to a less resistive flow (stronger shear-thinning). These effects are qualitatively similar
to those observed with other shear-thinning fluids, even if quantitatively different. For a constant
viscosity fluid, the ratio between the maximum velocity (taking place on the centre plane) and the
Helmholtz-Smoluchowski velocity is 1, for high 𝜅, but on increasing shear-thinning effects, this
ratio increases, as shown in Fig. 4.26 (a), (b) and Fig. 4.27.

4.4.4.2 Electro-osmotic–pressure driven flow

In the case of mixed EO/PD flows (Υ≠ 0), Eq. (4.130) was integrated numerically using Simpson’s
Rule in MATLAB software (version R2018a). The influence of the new model on the velocity
profile was assessed considering Υ = −1 and Υ = 1.

Fig. 4.28 shows velocity profiles obtained numerically for the EO+PD flow with Υ = −1
and Υ = 1, using the gPTT constitutive model. When 𝛼 = 1 and 𝛽 = 1, the results match those
presented in [52] for the exponential PTT model. Note that negative values of Υ correspond to
a favourable pressure gradient, whereas Υ > 0 corresponds to adverse pressure forcing. We can
also see the effect of other independent dimensionless numbers on the transverse profile and the
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(a) (b)

Figure 4.26: Ratio between maximum velocity and 𝑢sh as a function of the relevant dimensionless
numbers: (a) 𝜅 = 10; (b) 𝜀𝑊𝑖2 = 0.5. The velocities were obtained from Eq. (4.132) and the cases
with expPTT correspond to 𝛼 = 𝛽 = 1.

Figure 4.27: Ratio between maximum velocity and 𝑢sh as a function of 𝜀𝑊𝑖2 for different values of
𝜅, 𝛼 and 𝛽. The velocities were obtained from Eq. (4.132) and the cases with expPTT correspond
to 𝛼 = 𝛽 = 1.

effect of parameters 𝛼 and 𝛽 in the velocity profiles. The quantities that previously increased the
dimensionless flow rate in pure EO are also seen to increase the flow rate for EO+PD through
enhanced shear-thinning effects, and in earlier works, much has been reported and discussed about
other shear-thinning viscoelastic models (e.g., refer to [51] for the sPTT model, and to [65] for the
PTT model).
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Figure 4.28: Velocity profiles obtained numerically for mixed EO/PD flow with Υ = −1, Υ = 1,
𝜅 = 100 and 𝜀𝑊𝑖2 = 0.5. The velocity profiles were obtained numerically using Eq. (4.130) and
the cases expPTT correspond to 𝛼 = 𝛽 = 1.

4.4.4.3 The influence of 𝜉 on the flow stability and flow characteristics

For 𝜉 ≠ 0 a non-monotonic behaviour of the shear stress curve is obtained beyond a critical shear
rate. By following the steps presented in [3, 65], one obtains the following formula for the critical
shear rate (at the wall), | ¤𝛾𝑐 |:

𝜆 | ¤𝛾𝑐 | =
Γ(𝛽)√︁
𝜉 (2− 𝜉)

𝐸𝛼,𝛽

(
𝜀(1− 𝜉)
𝜉 (2− 𝜉)

)
, (4.136)

which corresponds to a critical value of𝑊𝑖 given by

|𝑊𝑖𝑐 | =
coth (𝜅)

2
√︁
𝜉 (2− 𝜉)

. (4.137)

Above this limit, no physically admissible solution of Eq. (4.134) is obtained.
A comparison between the different stability formulae, obtained for the different functions of

the trace of the stress tensor, is shown in [3].
To assess the influence of the coefficient 𝜉 on the fluid flow, we will now compare the results

obtained with the analytical solution for pure EO flow with the results obtained from the numerical
integration of Eq. (4.135). The numerical results were obtained using Simpson’s quadrature rule
to approximate the integral. We will consider different values of 𝑊𝑖 and 𝜉 ranging from 0.001 to
0.1.

Fig. 4.29 shows the maximum velocity at the centre of channel as a function of the 𝜉, for pure
EO flow with 𝛽 = 1, 𝛼 = 1/4, 𝜅 = 10 and 𝜀 = 0.5 and 𝑊𝑖 = 1 and 0.5. The full line represents the
solution obtained for 𝜉 = 0 and the dashed line is a guide to the eye for the numerical solution. The
inset shows the results obtained for𝑊𝑖 = 0.5.
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Figure 4.29: Maximum velocity at the channel centreplane as a function of the 𝜉 parameter. Pure
EO flow with 𝛽 = 1, 𝛼 = 1/4, 𝜅 = 10 and 𝜀 = 0.5 and 𝑊𝑖 = 1 and 0.5. The full line represents the
asymptotic solution obtained for 𝜉 = 0 (a constant value) and the dashed line is a guide to the eye
for the numerical solution (represented by the symbols). The inset shows the results obtained for
𝑊𝑖 = 0.5.

The influence of 𝜉 on the maximum velocity increases𝑊𝑖, non-linearly. Indeed, for𝑊𝑖 = 1, we
obtain increases in the maximum velocity up to 65% when 𝜉 increases from 10−3 to 10−1, whereas
for𝑊𝑖 = 0.5, the maximum velocity is only 1% higher. This difference is expected since𝑊𝑖 has a
strong influence on the flow rate.

4.4.4.4 The Debye–Hückel approximation

In section 4.4.2, the Poisson–Boltzmann equation (4.119) was simplified assuming the Debye–
Hückel approximation. Here, we consider a more general case, and write Eq. (4.119) in non-
dimensional form as [107, 108]:

d2𝜓̄

d𝑦̄2 = 𝜅2 sinh(𝜓̄), (4.138)

where 𝜓̄ = [(𝑒𝑧) /(𝑘𝐵𝑇)]𝜓. Eq. (4.138) can be integrated assuming non-overlapping Debye layers
valid for large 𝜅, and 𝜓̄ = 𝜓̄0 at 𝑦̄ = 1, leading to [107]:

𝜓̄ = 4arctanh
(
tanh(𝜓̄0/4)𝑒𝜅 ( 𝑦̄−1)

)
. (4.139)

The corresponding velocity profile for 𝜉 = 0 and pure EO flow can then be obtained by numerical
integration using, for example, Simpson’s rule. The velocity profile for 𝑦̄ ∈ [0,1] is given by
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𝑢̄( 𝑦̄) =
∫ 1

𝑦̄

©­­«
𝛤 (𝛽)
𝜓̄0

4𝜅 tanh
(
𝜓̄0
4

)
𝑒𝜅 (𝑧−1)

1− tanh2
(
𝜓̄0
4

)
𝑒2𝜅 (𝑧−1)

𝐸𝛼,𝛽


32𝜀𝑊𝑖2

𝜓̄2
0

©­­«
tanh

(
𝜓̄0
4

)
𝑒𝜅 (𝑧−1)

1− tanh2
(
𝜓̄0
4

)
𝑒2𝜅 (𝑧−1)

ª®®¬
2

ª®®¬d𝑧 (4.140)

We now compare in Fig. 4.30 the velocity profiles for a pure EO flow considering the
Debye–Hückel approximation and the full solution obtained by Eq. (4.140), using Simpson’s
Rule.
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Figure 4.30: Comparison between velocity profiles for the exponential PTT model with 𝜅 = 10
and 𝜀𝑊𝑖2 = 0.02 for 𝜓̄0 = 0.99 and 4. Dashed line: solution obtained with the Debye–Hückel
approximation; dots: solution obtained without the Debye–Hückel approximation (numerically
solving Eq. (4.140)).

Fig. 4.30 shows the velocity profiles obtained for the exponential PTT model for 𝜓̄0 = 0.99
and 4. We consider the numerical solutions of Eq. (4.140) obtained with and without the Debye–
Hückel approximation. It can be seen that for 𝜓̄0 = 0.99, the Debye–Hückel approximation is
valid, while for 𝜓̄0 = 4, the two solutions become different, especially near the wall. Fig. 4.31
compares the velocity profiles obtained with both the exponential (𝛼 = 1, 𝛽 = 1) and gPTT models
without invoking the Debye–Hückel approximation. The solutions were obtained by numerically
integrating Eq. (4.140) with 𝛽 = 1, 𝛼 = {1, 0.8, 0.5}, 𝜅 = 5 and 𝜀𝑊𝑖2 = 0.2. It is interesting to
note that at low 𝜓̄0 the maximum velocity increases only 4% with the reduction of 𝛼 whereas for
higher 𝜓̄0, there is a 32% increase in the maximum velocity (in comparison with the exponential
PTT model for 𝛼 = 𝛽 = 1).

4.4.5 Conclusions

This work presented new analytical and semi-analytical solutions for electro-osmotic and mixed
electro-osmotic/pressure-driven flows of a viscoelastic fluid modelled by the gPTT model, respec-
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Figure 4.31: Velocity profiles obtained for both the exponential and gPTT models considering
𝜓̄0 = 0.99 and 4. Solutions obtained by numerically solving Eq. (4.140) with 𝛽 = 1, 𝛼 = 1, 0.8, 0.5,
𝜅 = 5 and 𝜀𝑊𝑖2 = 0.2.

tively. From these solutions, the influence of the model parameters on the velocity profile was
assessed. The new model allows a broader description of flow behaviour than the more classical
descriptions, and therefore, it can be considered in modelling complex viscoelastic flows. Numer-
ical solutions were also presented for high zeta potential. The analytical and numerical solutions
presented in this work are helpful for validating CFD codes and also allow a better understanding
of the model behaviour in simple shear flows.

Appendix A: Finite sized ionic species

The Boltzmann distribution breaks down when taking into account finite-sized ionic species.
Therefore, a modified Poisson–Boltzmann equation for the ionic distribution that takes these
effects into account leads to [107, 109, 110]:

d2𝜓

d𝑦2 =
2𝑛0𝑒𝑧

𝜖

sinh
(

𝑒𝑧
𝑘𝐵𝑇

𝜓

)
1−Θ+Θcosh

(
𝑒𝑧
𝑘𝐵𝑇

𝜓

) , (4.141)

where Θ is the steric factor, representing the excluded volume effects owing to the finite size of the
ionic species. This is a nonlinear differential equation, and in order to obtain the induced potential
distribution, the procedure used in [107] was followed.

The shear rate can be obtained as a function of the zeta potential, recalling that 𝜏𝑥𝑦 = 𝜖𝐸𝑥
d𝜓
d𝑦

[107]. Considering Eq. (4.127) for 𝜉 = 0, it leads to

d𝑢̄
d𝑦̄

=
−𝛤 (𝛽)
𝜓̄0

d𝜓̄
d𝑦̄
𝐸𝛼,𝛽

[
2𝜀𝑊𝑖2

𝜅2𝜓̄2
0

(
d𝜓̄
d𝑦̄

)2
]
. (4.142)
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For a low zeta potential, the size of the ionic species is negligible, the Debye–Hückel approxi-
mation applies and we obtain the solutions derived previously. For a high zeta potential [107, 108],
Eq. (4.141) in non-dimensional form simplifies to

d2𝜓̄

d𝑦̄2 =
𝜅2 sinh(𝜓̄)

1−Θ+Θcosh(𝜓̄)
≈ 𝜅2

Θ
(4.143)

which together with the boundary conditions
(
d𝜓̄/d𝑦̄

)
| 𝑦̄=0 = 0 and 𝜓̄(1) = 𝜓̄0, lead to

𝜓̄ = 𝜓̄0 +
𝜅2( 𝑦̄2 −1)

2Θ
. (4.144)

The corresponding velocity profile can be obtained numerically, for example, using Simpson’s
Rule for 𝑦̄ ∈ [0,1]:

𝑢̄( 𝑦̄) =
∫ 1

𝑦̄

𝛤 (𝛽)
𝜓̄0

𝜅2𝑧

Θ
𝐸𝛼,𝛽

[
2𝜀𝑊𝑖2

𝜓̄2
0

(
𝜅𝑧

Θ

)2
]

d𝑧 (4.145)

The higher the steric factor, the lower the induced transverse EDL field will be, and a lower
volumetric flow rate will be obtained. This effect is shown in Fig. 4.32, where the velocity profiles
for both the exponential and gPTT models are plotted (considering Θ = 0.2 and 0.25 and a high
zeta potential 𝜓̄0 = 4).
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Figure 4.32: Velocity profiles for both the exponential and gPTT models considering Θ = 0.2 and
0.25 and a high zeta potential (𝜓̄0 = 4). Dashed line: pure EO flow with 𝛽 = 1, 𝛼 = 0.8; full line:
pure EO flow with 𝛽 = 1, 𝛼 = 0.8. 𝜅 = 1 and 𝜀𝑊𝑖2 = 0.5.

As expected, the gPTT model allows one to obtain a higher flow rate due to the higher rate of
destruction of junctions in the polymer entanglements when 𝛼 decreases. Note also the non-linear
increase of the flow rate with decreasing 𝛼 at constant Θ, showing the complex interaction between
the rate of destruction of junctions and the steric effect.



132 More on theoretical studies

4.5 The effect of asymmetric zeta potentials on the electro-osmotic
flow of complex fluids5

Abstract: Electrokinetic flows driven by electro-osmotic forces are especially relevant in micro
and nano-devices, presenting specific applications in medicine, biochemistry, and miniaturized
industrial processes. In this work, we integrate analytical solutions with numerical methodologies
to explore the fluid dynamics of viscoelastic electro-osmotic/pressure driven fluid flows (described
by the generalised Phan-Thien-Tanner constitutive equation) in a micro-channel under asymmetric
zeta potential conditions. The constitutive equation incorporates the Mittag-Leffler function with
two parameters (𝛼 and 𝛽), which regulate the rate of destruction of junctions in a network model.
We analyze the impact of the various model parameters on the velocity profile and observe that
our newly proposed model provides a more comprehensive depiction of flow behavior compared
to traditional models, rendering it suitable for modeling complex viscoelastic flows.

Keywords: gPTT model, Mittag-Leffler function, eletro-osmotic flow under asymmetric zeta
potential, analytical solutions

4.5.1 Introduction

Electro-osmosis is a flow-forcing method with particular applicability in medicine, biochemistry
and miniaturised industrial processes, being suitable for flows in micro and nano-devices. In this
type of flow, an external potential difference between the inlet and outlet of the channel induces the
flow of an electrolyte. This potential difference acts on the ions that are not balanced near the wall
region, because of the interaction between the dielectric channel walls and the fluid. Since these
fluid layers have a higher concentration of counter-ions (ions with the opposite charge of the wall)
this fluid will move by the action of the applied electric field, which then drags by viscous forces,
the neutral core as a solid body [41]. This subject has undergone thorough examination in the past,
firts regarding Newtonian fluids [42–49] and more recently non-Newtonian fluids [50–57, 65, 111].

This study focuses on investigating the electro-osmotic (EO) flow of viscoelastic fluids within
microchannels, particularly under the influence of asymmetric zeta potentials at the channel walls.
Asymmetric zeta potentials may arise in various manufacturing techniques due to the use of
different materials at distinct walls [58], such as materials with differing dielectric properties.
For instance, in soft lithography, microchannels are often made of polydimethylsiloxane (PDMS),
while the top wall is typically constructed from glass for optical access or another material for a
different purpose [58].

5A.M. Ribau, L.L. Ferrás, M.L. Morgado, M. Rebelo, F.T. Pinho, and A.M. Afonso. The effect of asymmetric zeta
potentials on the electro-osmotic flow of complex fluids. Submitted to Journal of Engineering Mathematics.
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Given the significance of this topic, it is crucial to reference relevant literature where the
influence of asymmetric zeta potentials has already been explored.

For instance, Afonso et al. (2011) [58] provided insightful analytical solutions for combined
EO and pressure-driven flows of viscoelastic fluids under asymmetric zeta potentials at the channel
walls. The viscoelastic fluids analyzed were described by the linear Phan-Thien–Tanner (PTT)
model and the finite extensible nonlinear elastic model with Peterlin’s (FENE-P) approximation.
Escandón et al. (2015) [59] presented both analytical and numerical solutions for transient EO flows
in microchannels. Their study encompassed symmetric and asymmetric uniform zeta potentials
and concerned with Maxwell fluids which are devoid of a variable viscosity that may be important
for high rates of shear.

Sadek and Pinho (2019) [60] contributed with analytical solutions for the oscillatory shear
flow of viscoelastic fluids induced by EO forcing. They specifically explored the case of a straight
microchannel with asymmetric wall zeta potentials for the purpose of measuring linear viscoelastic
fluid properties, hence their rheological model was the multi-mode upper-convected Maxwell
model. Their analysis investigated the impact of relevant dimensionless parameters on normalized
velocity profiles when an external potential field was applied.

Sanchez et al. (2023) [61] obtained analytical solutions for an electrokinetic battery
comprising parallel plates, driven by osmotic flow. Their work involved the use of the De-
bye–Hückel approximation to calculate the electric double layer (EDL) potential coupled with
asymmetric hydrodynamic slip. The authors explicitly addressed asymmetries both in the Navier
slip lengths and zeta potentials, providing insights into the interplay of these boundary conditions.

In our current investigation, the focus is on the application of the gPTT model, incorporating
the Mittag-Leffler function as a function of the trace of the stress tensor. This model introduces two
fitting constants, enhancing its capability to describe the rheological properties of viscoelastic fluids
[3]. Initially explored in Couette and pressure-driven flows, as well as combined EO/pressure-
driven and annular flows (refer to [28, 29, 40, 56]), the gPTT model has been recently scrutinized
in studies addressing EO flow.

Teodoro et al. [62] derived an approximate and a numerical solution for laminar viscoelastic
fluid flow through a parallel flat plate microchannel driven by EO and external pressure forces.
Their approach incorporates a nonlinear Navier slip law at the wall, depicting a power-law behavior
on shear stress. The Debye–Hückel approximation for the electric potential in the EDL is applied,
assuming symmetric zeta potentials at the wall. Additionally, Hernandez et al. [63] investigated
numerically the EO flow in a microchannel with a viscoelastic fluid, using the gPTT model as a
constitutive equation to explore the thermodiffusion effect, comparing results with those obtained
through the linear PTT model [64].

In this study, we develop a new semi-analytical solution for the EO flow of viscoelastic fluids
(described by gPTT constitutive equation) in microchannels, under asymmetric wall zeta potentials.
Our investigation explores the influence of both pure EO and the combined effects of forces (EO and
pressure gradient) in the fluid flow, taking into account the fluid rheology, the EDL thickness, and
the ratio of wall zeta potentials. These findings, together with the developed analytical solutions,
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provide valuable insights for industries involved in this field. Furthermore, the obtained results can
be used as effective tools for validating Computational Fluid Dynamics (CFD) codes.

The remainder of this paper is organized as follows: the next section presents the governing
equations, followed by the new semi-analytical solution in section 4.5.3, the discussion of the
results in section 4.5.4 and the closure of the paper in section 4.5.5.

4.5.2 Governing equations

The equations governing the flow of an isothermal incompressible fluid are the continuity equation

∇ ·u = 0, (4.146)

and the linear momentum equation

𝜌
Du
D𝑡

= −∇𝑝 +∇ · 𝝉 + 𝜌𝑒E (4.147)

where u is the velocity vector, D
D𝑡

is the material derivative, 𝑝 is the pressure, 𝑡 is the time, 𝜌 is the
fluid density, 𝝉 is the extra-stress tensor, E is the electric field and 𝜌𝑒 is the electric charge density
in the fluid.

The EO flow in a microchannel under asymmetric zeta potentials of a viscoelastic gPTT fluid is
shown in Fig. 4.33, where 𝑥, 𝑦 and 𝑧, represent the streamwise, transverse and spanwise directions,
respectively, and the channel width is 2𝐻. We assume the flow within the channel to be fully-
developed, 𝐸𝑥 is the applied external electric field in the streamwise direction and 𝜌𝑒 is associated
with the spontaneously formed electric double layers, that in here are assumed not to be affected
by the imposed electric field.

y

x 2H
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Wall 2

Wall 1 (reference)

Figure 4.33: Schematic of the flow in a parallel plate microchannel.

The electric field is related to a potential, Φ, by E = −∇Φ, where Φ = 𝜓 + 𝜙, where 𝜙 is the
applied streamwise potential and 𝜓 is the equilibrium induced potential at the channel walls, that
is associated with the interaction between the ions of the fluid and the dielectric properties of the
wall. The induced potential 𝜓 can be assumed independent of the applied potential 𝜙 provided
the latter is not too strong [65]. At the walls, the no-slip condition is applied and also asymmetric
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zeta potentials are considered. Since the flow is fully-developed, the velocity and stress fields only
depend on the transverse coordinate 𝑦 [58].

4.5.2.1 Constitutive equation

To obtain a closed system of equations, a constitutive equation for the extra-stress tensor, 𝝉, must
be defined. In 2019 Ferrás et al. [3] proposed a new differential rheological model based on the
Phan-Thien–Tanner constitutive equation (PTT model [21, 22]), derived from the Lodge–Yamamoto
type of network theory for polymeric fluids. The new model considers a more general function for
the rate of destruction of junctions, the Mittag-Leffler function, where two fitting coefficients are
included, in order to achieve additional fitting flexibility [3].

The Mittag–Leffler function is given by,

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑗=0

𝑧 𝑗

Γ (𝛼 𝑗 + 𝛽) , (4.148)

with the Gamma function (Γ ( )) defined by Γ (𝑡) =
∫ ∞

0 𝑥𝑡−1𝑒−𝑥𝑑𝑥, where 𝛼, 𝛽 are real and positive
values. When 𝛼 = 𝛽 = 1, the Mittag-Leffler function reduces to the exponential function, and when
𝛽 = 1 the original one-parameter Mittag-Leffler function, 𝐸𝛼 is obtained [4].

The gPTT constitutive equation is given by:

𝐾 (𝜏𝑘𝑘)𝝉 +𝜆
▽
𝝉 = 2𝜂𝑝D, (4.149)

where 𝜏𝑘𝑘 is the trace of the extra stress tensor, 𝜆 is the relaxation time, 𝜂𝑝 is the polymeric
viscosity coefficient, D is the rate of deformation tensor and the function 𝐾 (𝜏𝑘𝑘) is given by:

𝐾 (𝜏𝑘𝑘) = Γ (𝛽) 𝐸𝛼,𝛽

(
𝜀𝜆

𝜂𝑝
𝜏𝑘𝑘

)
. (4.150)

The normalization Γ (𝛽) is used to ensure that 𝐾 (0) = 1 (for all choices of 𝛽) and 𝜀 represents the
extensibility parameter. ▽𝝉 represents the upper-convected derivative, defined as

▽
𝝉 =

𝜕𝝉

𝜕𝑡
+u · ∇𝝉− (∇u)𝑇 · 𝝉−𝝉 · (∇u) , (4.151)

where ∇u is the velocity gradient.

4.5.2.2 Electric potential

When a liquid comes into contact with a dielectric surface, the interactions between the ions and
the wall lead to a spontaneous charge distribution within both the fluid and the wall. The wall
becomes charged, attracting counter-ions from the fluid while repelling co-ions. Consequently, an
electrically charged layer forms in the fluid in close proximity to the wall, known as the electric
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double layer (EDL). For more details see [41]. The induced potential field within the EDL, can be
given by a Poisson equation:

∇2𝜓 = − 𝜌𝑒
𝜖
, (4.152)

where 𝜓 denotes the EDL potential and 𝜖 is the dielectric constant of the solution. For fully-
developed steady flow, this simplifies to:

d2𝜓

d𝑦2 = − 𝜌𝑒
𝜖
. (4.153)

The net electric-charge density in the fluid, 𝜌𝑒, can be given by the Boltzmann distribution:

𝜌𝑒 = −2𝑛0𝑒𝑧 sinh
(
𝑒𝑧

𝑘𝐵𝑇
𝜓

)
, (4.154)

where 𝑛0 is the ion density, 𝑒 the elementary charge, 𝑧 the valence of the ions, 𝑇 the absolute
temperature and 𝑘𝐵 the Boltzmann constant. Combining this with Eq. (4.153) for the induced
potential equation leads to the Poisson-Boltzmann equation:

d2𝜓

d𝑦2 =
2𝑛0𝑒𝑧

𝜖
sinh

(
𝑒𝑧

𝑘𝐵𝑇
𝜓

)
. (4.155)

Assuming the Debye-Hückel linearization principle, a valid approximation for small values of 𝜓
[51, 52, 56, 58], the Poisson-Boltzmann equation (Eq. (4.155)) for the, 2D channel flow simplifies
to

d2𝜓

d𝑦2 = 𝜅2𝜓, (4.156)

where 𝜅2 = 2𝑛0𝑒
2𝑧2/𝜖 𝑘𝐵𝑇 is the Debye-Hückel parameter, which is related to the thickness of the

Debye layer, 𝜆𝐷 = 1/𝜅, also called the EDL thickness.
Integrating Eq. (4.156) together with the boundary conditions for different zeta potential at the

walls, specifically 𝜓(−𝐻) = 𝜉1 and 𝜓(𝐻) = 𝜉2, leads to the following induced electric field, 𝜓:

𝜓 (𝑦) = 𝜉1 (Ψ1e𝜅𝑦 −Ψ2e−𝜅𝑦) (4.157)

with Ψ1 =
𝑅𝜉 e𝜅𝐻−e−𝜅𝐻
2sinh(2𝜅𝐻 ) and Ψ2 =

𝑅𝜉 e−𝜅𝐻−e𝜅𝐻
2sinh(2𝜅𝐻 ) , where 𝑅𝜉 =

𝜉2
𝜉1

denotes the ratio of zeta potentials of
the two walls. This equation is valid for −𝐻 ≤ 𝑦 ≤ 𝐻, and when 𝑅𝜉 = 1, the symmetric potential
profile is recovered [51, 56].

With the induced potential, the electric charge density, 𝜌𝑒 (Eq. (4.154) with the Debye-Hückel
linearization principle) becomes

𝜌𝑒 = −𝜖𝜅2𝜉1 (Ψ1e𝜅𝑦 −Ψ2e−𝜅𝑦) = −𝜖𝜅2𝜉1Ω
− (𝑦) . (4.158)

where the operator Ω± (𝑦) = Ψ1e𝜅𝑦 ±Ψ2e−𝜅𝑦 is a hyperbolic function of the transverse variable 𝑦
which depends on the ratio of zeta potentials and the thickness of the Debye layer.
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4.5.3 Semi-analytical solution for the EO flow of a gPTT fluid under asymmetric
zeta potentials

We derive the analytical solution considering a fully-developed flow for EO of a gPTT fluid under
asymmetric zeta potentials (cf. Fig. 4.33). The momentum equation, Eq. (4.147), simplifies to

d𝜏𝑥𝑦
d𝑦

= 𝑃𝑥 − 𝜌𝑒𝐸𝑥 , (4.159)

where 𝑃𝑥 ≡ d𝑝
d𝑥 is a constant streamwise pressure gradient, 𝜏𝑥𝑦 the shear stress and 𝐸𝑥 ≡ −d𝜙

d𝑥 is
the imposed constant streamwise gradient of electric potential. This equation is valid regardless of
the rheological constitutive equation considered.

In spite of this simplification, the rheological model is capable to fit well the shear-thinning
viscosity as well as normal stress. The model parameters can control the thinning rate and the
onset of the thinning behavior and also improve the fitting for shear (weak) flows, when considering
polymer solutions.

So, the constitutive equation for the gPTT model for this flow (section 4.5.2.1) can be further
simplified, leading to:

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑥 = 2𝜆 ¤𝛾𝜏𝑥𝑦 , (4.160)

𝐾 (𝜏𝑘𝑘)𝜏𝑦𝑦 = 0, (4.161)

𝐾 (𝜏𝑘𝑘)𝜏𝑥𝑦 = 𝜂𝑝 ¤𝛾, (4.162)

where the velocity gradient ¤𝛾 is a function of 𝑦 ( ¤𝛾(𝑦) ≡ d𝑢
d𝑦 ) and 𝜏𝑘𝑘 = 𝜏𝑥𝑥 +𝜏𝑦𝑦 +𝜏𝑧𝑧 is the trace of

the extra stress tensor. Under fully-developed flow conditions, 𝜏𝑧𝑧 = 0, thus the trace of the extra
stress tensor becomes 𝜏𝑘𝑘 = 𝜏𝑥𝑥 .

Using Eq. (4.158), we can now integrate Eq. (4.159) resulting in the following shear stress
distribution:

𝜏𝑥𝑦 = 𝜖𝜅𝜉1𝐸𝑥Ω
+ (𝑦) +𝑃𝑥𝑦 + 𝑐1, (4.163)

where 𝑐1 is a shear-stress integration constant, obtained later from the boundary conditions.
Dividing Eq. (4.160) by Eq. (4.162), 𝐾 (𝜏𝑥𝑥) cancels out, and an explicit relationship between

the streamwise normal stress and the shear stress is found:

𝜏𝑥𝑥 = 2
𝜆

𝜂𝑝
𝜏2
𝑥𝑦 . (4.164)

Now combining Eqs. (4.162), (4.164), (4.163) and (4.150) the following velocity gradient profile
is obtained,
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¤𝛾(𝑦) = Γ(𝛽)
𝜂𝑝

𝐸𝛼,𝛽

(
2𝜀𝜆2

𝜂2
𝑝

(
𝜖𝜅𝜉1𝐸𝑥Ω

+ (𝑦) +𝑃𝑥𝑦 + 𝑐1
)2

) (
𝜖𝜅𝜉1𝐸𝑥Ω

+ (𝑦) +𝑃𝑥𝑦 + 𝑐1
)
, (4.165)

which can be rewritten in dimensionless form as

d𝑢
d𝑦̄

= Γ(𝛽)𝐸𝛼,𝛽

(
2𝜀𝑊𝑖2

𝜅2

(
Υ𝑦̄− 𝜅Ω+ ( 𝑦̄) + 𝜏1

)2
) (

Υ𝑦̄− 𝜅Ω+ ( 𝑦̄) + 𝜏1

)
, (4.166)

where 𝑊𝑖 = 𝜆𝜅𝑢𝑠ℎ is the Weissenberg number and 𝑢𝑠ℎ is the Helmholtz-Smoluchowski EO ve-
locity, defined as 𝑢𝑠ℎ = − 𝜖 𝜉1𝐸𝑥

𝜂𝑝
, 𝑢 = 𝑢

𝑢𝑠ℎ
, 𝑦̄ = 𝑦

𝐻
, 𝜅 = 𝜅𝐻 and 𝜏1 =

𝜏1𝐻
𝑢𝑠ℎ

(𝜏1 = 𝑐1/𝜂𝑝). The non-

dimensional parameter Υ = − 𝐻2𝑃𝑥

𝜖 𝜉1𝐸𝑥
represents the ratio of pressure to EO driving forces and

Ω
+ ( 𝑦̄) = Ψ1e𝜅 𝑦̄ +Ψ2e−𝜅 𝑦̄ , with Ψ1 =

𝑅𝜉 e𝜅̄−e− 𝜅̄
2sinh(2𝜅 ) and Ψ2 =

𝑅𝜉 e− 𝜅̄−e𝜅̄
2sinh(2𝜅 ) .

For pure EO flow, Υ= 0, the velocity profile can be obtained by integrating the velocity gradient
profile (Eq. (4.166)), subjected to the no-slip boundary condition at the top (+) or bottom (-) walls,
𝑢 (𝑦 = ±1) = 0. Simplifying Eq. (4.166) we obtain,

𝑢 (𝑦) = Γ(𝛽)
∞∑︁
𝑗=0

(
2𝜀𝑊𝑖2

𝜅2

) 𝑗 1
Γ (𝛼 𝑗 + 𝛽)

(∫ 𝑦

−1

(
−𝜅Ω+ (𝑧) + 𝜏1

)2 𝑗+1
d𝑧

)
, (4.167)

with 𝑧 a dummy variable.

Following some algebraic manipulations, Eq. (4.167) can be further simplified, resulting in
the subsequent nested sum expression for the velocity profile,

𝑢 ( 𝑦̄) = Γ(𝛽)
( ∞∑︁
𝑗=0

2𝜀𝑊𝑖2

𝜅2 (Γ(𝛼 𝑗 + 𝛽))
2 𝑗+1∑︁
𝑚=0

(
2 𝑗 +1
𝑚

)
(𝜏1

𝑚)
{2 𝑗+1−𝑣∑︁

𝑖=0

(
2 𝑗 +1−𝑚

𝑖

) (
−𝜅Ψ1

)2 𝑗−𝑚−𝑖+1 (
−𝜅Ψ2

) 𝑖
𝜅 (2 𝑗 −2𝑖−𝑚 +1) e(2 𝑗−2𝑖−𝑚+1)𝜅 𝑦̄

}
)
+𝑐2,

(4.168)

with 𝑐2 obtained using 𝑢 (1) = 0, and being given by,

𝑐2 = −Γ(𝛽)
( ∞∑︁
𝑗=0

2𝜀𝑊𝑖2

𝜅2 (Γ(𝛼 𝑗 + 𝛽))
2 𝑗+1∑︁
𝑚=0

(
2 𝑗 +1
𝑚

)
(𝜏1

𝑚)
{2 𝑗+1−𝑣∑︁

𝑖=0

(
2 𝑗 +1−𝑚

𝑖

) (
−𝜅Ψ1

)2 𝑗−𝑚−𝑖+1 (
−𝜅Ψ2

) 𝑖
𝜅 (2 𝑗 −2𝑖−𝑚 +1) e(2 𝑗−2𝑖−𝑚+1)𝜅

}
)
. (4.169)

𝜏1 is obtained by solving numerically 𝑢 (−1) = 0.
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4.5.4 Results and discussion

4.5.4.1 Assessment of the series solution

In this section, we compare the numerical solution of the velocity profile given by of Eq. (4.167)
(obtained by a numerical quadrature rule, and referred to as numerical solution), with the analytical
solution obtained by Eq. (4.168). The numerical results were obtained using the Mathematica
software.

For the numerical solution, we first obtain 𝜏1 using the secant method to find the root of,

Γ(𝛽)
∞∑︁
𝑗=0

(
2𝜀𝑊𝑖2

𝜅2

) 𝑗 1
Γ (𝛼 𝑗 + 𝛽)

(∫ 1

−1

(
−𝜅Ω+ (𝑧) + 𝜏1

)2 𝑗+1
d𝑧

)
= 0. (4.170)

The 𝜏1 value obtained is then substituted in Eq. (4.167), and the numerical velocity profile is
finally obtained.

The analytical solution given by Eq. (4.168) is composed by an infinite series. Therefore, we
need to access the number of terms required in the series to achieve a precise and accurate solution.
To do this, we used as a reference the numerical solution.

The new truncated solution is obtained from Eq. (4.168), truncating the sum with 𝑗 +1 terms.
To validate the solution it was considered 201 equidistant mesh points along the channel height
(2𝐻) and measured the root mean squared error (RMSE) obtained at these points. The error is
calculated by,

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑢(𝑦)𝑛𝑢𝑚−𝑢(𝑦)𝑡 )2,

where 𝑢(𝑦)𝑛𝑢𝑚 is the numerical value of the velocity and 𝑢(𝑦)𝑡 is the velocity value for the truncated
series. Three different values of 𝜀𝑊𝑖2 were considered: 0.5, 1 and 2 and two different values for
𝑅𝜉 : −1 and 0.5. We set 𝛽 = 1 and tested two different values of 𝛼, 0.5 and 1.5. We only change
the values of 𝛼, because this parameter is the most sensitive to changes in the series.

Table 4.4: RMSE (in percentage) for 𝜀𝑊𝑖2 = 0.5 and 𝛼 = 0.5.

𝑗 𝑅𝜉 = 0.5 𝑅𝜉 = −1
2 8.834×100 5.197×100

4 1.819×100 8.889×10−1

8 4.78×10−2 1.597×10−2

16 2.207×10−4 1.472×10−4

Tables 4.4, 4.5, 4.6 show the RMSE, in percentage, for 𝜀𝑊𝑖2 = 0.5, 1 and 2 respectively, and
considering 𝛼 = 0.5, 𝑅𝜉 = 0.5 and −1. As the number of terms in the series (Eq. (4.168)) increase,
the error decreases. This parametric study provides insights into the behavior of the truncated
solution. For instance, as 𝜀𝑊𝑖2 increases (refer to Table 4.5 and 4.6), and with 𝑅𝜉 = 0.5, the series
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Table 4.5: RMSE (in percentage) for 𝜀𝑊𝑖2 = 1 and 𝛼 = 0.5.

𝑗 𝑅𝜉 = 0.5 𝑅𝜉 = −1
2 1.038×102 4.550×101

4 5.23×101 1.889×101

8 9.679×100 2.433×100

16 1.092×10−1 1.198×10−2

20 6.757×10−3 5.342×10−4

Table 4.6: RMSE (in percentage) for 𝜀𝑊𝑖2 = 2 and 𝛼 = 0.5.

𝑗 𝑅𝜉 = 0.5 𝑅𝜉 = −1
2 1.503×103 2.660×102

4 1.226×103 1.585×102

8 6.571×102 4.63×101

16 7.132×101 2.118×100

20 1.546×101 3.042×10−1

solution exhibits slower convergence. On the other hand, for lower 𝜀𝑊𝑖2 values, the series solution
converges much more rapidly.

Table 4.7 show the RMSE in percentage, for 𝜀𝑊𝑖2 = 2, 𝛼 = 1.5 and considering 𝑅𝜉 = 0.5 and
−1. Notably, as 𝛼 increases, the error decreases more rapidly with an increase in the number of
terms in the series (even for high values of 𝜀𝑊𝑖2). We experimented with a higher number of
terms in the series for cases with high 𝜀𝑊𝑖2 and low 𝛼, and found that a favorable balance between
computation time, simplicity, and solution accuracy could be achieved for 𝑗 = 20.

Table 4.7: RMSE (in percentage) for 𝜀𝑊𝑖2 = 2 and 𝛼 = 1.5.

𝑗 𝑅𝜉 = 0.5 𝑅𝜉 = −1
2 7.898×100 4.268×100

4 2.231×10−1 9.7×10−2

8 2.635×10−4 1.927×10−4

The velocity profiles obtained by the numerical solution of Eq. (4.167) and the analytical
solution obtained by Eq. (4.168) for different 𝑗 are shown in Figures 4.34 and 4.35, where 𝑢/𝑢𝑠ℎ is
the normalised velocity profile. These particular results indicate that the velocity profile converges
to the correct profile as the number of terms in the series increases, and that this convergence is
slower for lower values of 𝛼.
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Figure 4.34: Velocity profiles for 𝛽 = 1, 𝑅𝜉 = 0.5 and 𝜅 = 20. (a) 𝛼 = 0.5, 𝜀𝑊𝑖2 = 1; (b) 𝛼 = 1.5,
𝜀𝑊𝑖2 = 2.
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Figure 4.35: Velocity profiles for 𝛽 = 1, 𝑅𝜉 = −1 and 𝜅 = 20. (a) 𝛼 = 0.5, 𝜀𝑊𝑖2 = 1; (b) 𝛼 = 1.5,
𝜀𝑊𝑖2 = 2.

4.5.4.2 Discussion

4.5.4.2.1 Pure EO and asymmetric zeta potentials

In this section, we explore the impact of the Mittag-Leffler function parameters, 𝛼 and 𝛽, on the
distribution of the velocity profile under pure EO driving forces (across the channel). We consider
different values of 𝜀𝑊𝑖2 and 𝑅𝜉 , allowing for a comparison of results with those obtained for the
exponential PTT model.

Fig. 4.36 compares the velocity profiles obtained for EO flow under asymmetric zeta potentials
considering two different 𝜀𝑊𝑖2 values and different values of 𝛼 (Fig. 4.36 (a)) and 𝛽 (Fig. 4.36
(b)) for 𝜅 = 20 and 𝑅𝜉 = 0.5.

In Fig. 4.36 (a) (𝛽 = 1), we observe that for increasing 𝜀𝑊𝑖2 and decreasing 𝛼 the flow rate
increases, leading to an increase of the skewed pluglike profile. In Fig. 4.36 (b) (𝛼 = 1), a similar
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qualitative behaviour is obtained, i.e., increasing 𝜀𝑊𝑖2 and decreasing 𝛽, the flow rate increases.
However, there are quantitative differences with the effect of 𝛼 being stronger than the effect of 𝛽.
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Figure 4.36: Velocity profiles for 𝑅𝜉 = 0.5, 𝜅 = 20 and 𝜀𝑊𝑖2 = 0.5, 1 (a) 𝛽 = 1, 𝛼 = 0.5, 1, 1.5;
(b) 𝛼 = 1, 𝛽 = 0.5, 1, 1.5.

Fig. 4.37 compares the velocity profiles obtained for EO flow under asymmetric zeta potentials
considering two different 𝜀𝑊𝑖2 values and different values of 𝛼 (Fig. 4.37 (a)) and 𝛽 (Fig. 4.37
(b)) at 𝜅 = 20 and 𝑅𝜉 = −1.
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Figure 4.37: Velocity profiles for 𝑅𝜉 = −1, 𝜅 = 20 and 𝜀𝑊𝑖2 = 0.5, 1 (a) 𝛽 = 1, 𝛼 = 0.5, 1, 1.5; (b)
𝛼 = 1, 𝛽 = 0.5, 1, 1.5.

In Fig. 4.37 (a) (𝛽 = 1), we observe that for increasing 𝜀𝑊𝑖2 and decreasing 𝛼 the flow rate
increases, leading to an increase of an anti-symmetric pluglike profile. In Fig. 4.37 (b) (𝛼 = 1) a
similar qualitative behaviour is obtained, i.e., on increasing 𝜀𝑊𝑖2 and decreasing 𝛽, the flow rate
increases. However, there are quantitative differences with the effect of 𝛼 being stronger than the
effect of 𝛽. The pronounced flow with the increasing of 𝜀𝑊𝑖2 is associated with the shear-thinning
behaviour of the fluid.
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Figure 4.38: Variation of 𝜏1, for purely EO viscoelastic flow, as a function of the ratio of zeta
potentials, 𝑅𝜉 considering 𝜅 = 20, 𝛽 = 1 and 𝛼 = 1,1.5.

Fig. 4.38 shows the variation of coefficient 𝜏1, for a purely EO viscoelastic flow, as a function
of the ratio of zeta potentials, 𝑅𝜉 . We consider 𝛼 = 𝛽 = 1 (which corresponds to the exponential
PTT model) and 𝛼 = 1.5 and 𝛽 = 1. By looking at the results, we see that for 𝑅𝜉 = 1 we have that
𝜏1 = 0, being in accordance with the results obtained for the symmetric case studied by Afonso et
al. [51, 58]. For 𝑅𝜉 < 1, 𝜏1 is always negative, decreasing with the increase of 𝜀𝑊𝑖2, indicating
that the shear stress is also decreasing as 𝜀𝑊𝑖2 increases. For 𝑅𝜉 > 1, 𝜏1 is always positive and
increases with 𝜀𝑊𝑖2, which indicates that the shear stress is higher as we increase the shear-thinning
behaviour of the fluid. It was not considered the case 𝛼 < 1, due to convergence problems when
using high values of 𝜀𝑊𝑖2.

Since one of the goals of this work is to provide a tool for validating future numerical imple-
mentations of this model in general numerical codes, the Mathematica numerical codes used to
obtain the solution are provided as supplementary material.

4.5.4.2.2 Mixed driving forces and asymmetric zeta potentials

For combined EO and pressure-driven flows Eq. (4.166) has to be integrated numerically if Υ ≠ 0.
The influence of the new model on the velocity profile was assessed considering Υ = 2.5 and
𝑅𝜉 = 0.5 and Υ = −2 and 𝑅𝜉 = −1. We also considered different values for 𝛼 and 𝛽.

Fig. 4.39 presents the velocity profiles obtained for a combined EO/pressure gradient forcing
under asymmetric zeta potentials. We consider two different 𝜀𝑊𝑖2 values and different values of 𝛼
(Fig. 4.39 (a)) and 𝛽 (Fig. 4.39 (b)) for 𝜅 = 20, 𝑅𝜉 = 0.5 and Υ = 2.5 (adverse pressure gradient).

In Fig. 4.39 (a) (𝛽 = 1) and (b) (𝛼 = 1), the velocity profiles show a double peak due to the
retarding action of the pressure gradient. We observe a consistent pattern, related to what was
found in Fig. 4.36, where an increase in 𝜀𝑊𝑖2 and a decrease in 𝛼 correspond to an increase in the
flow rate. Notably, the impact of 𝛼 on the flow rate is more pronounced compared to the effect of
𝛽.
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Figure 4.39: Velocity profiles for 𝑅𝜉 = 0.5, Υ = 2.5 𝜅 = 20 and 𝜀𝑊𝑖2 = 0.5, 1 (a) 𝛽 = 1,
𝛼 = 0.5, 1, 1.5; (b) 𝛼 = 1, 𝛽 = 0.5, 1, 1.5.

In Fig. 4.40, we keep the parameters consistent with those in Fig. 4.39, except for the updated
values of 𝑅𝜉 = −1 and Υ = −2 (indicating a favorable pressure gradient).
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Figure 4.40: Velocity profiles for 𝑅𝜉 = −1, Υ = −2, 𝜅 = 20 and 𝜀𝑊𝑖2 = 0.5, 1 (a) 𝛽 = 1, 𝛼 =

0.5, 1, 1.5; (b) 𝛼 = 1, 𝛽 = 0.5, 1, 1.5.

In Fig. 4.40, (a) with varying 𝛼 and setting 𝛽 = 1, and (b) with varying 𝛽 and setting 𝛼 = 1,
the velocity profiles exhibit an increase with the increase of 𝜀𝑊𝑖2 and a decrease in 𝛼. This
phenomenon is attributed to shear-thinning effects, resulting in higher shear rates near the walls.

Remark: The diverse array of flow behaviors observed, stemming from the variation in
different model parameters and flow conditions, offers valuable insights for understanding and
predicting the flow patterns of rheologically characterized viscoelastic fluids. While the analysis
presented here provides insights into such behavior, it does not comprehensively cover all possible
flows of interest, given the limited number of parameter values considered. To facilitate more
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targeted studies, we share the codes used in this research, enabling the industrial sector and
academia to replicate and further develop these results.

4.5.5 Conclusions

We have developed an analytical solution expressing the velocity profile in a series form for the
EO flow of a gPTT fluid. This solution was used to illustrates how various model parameters
impact the velocity profiles. As anticipated, a decrease in 𝛼 and 𝛽 for the same 𝜀𝑊𝑖2 leads to an
increase in flow velocity. Consequently, when 𝑅𝜉 > 0, a more pronounced skewed pluglike profile
is observed, whereas 𝑅𝜉 < 0 results in a more pronounced anti-symmetric pluglike profile.

The influence of 𝛽 is less evident due to its dual role in affecting the rate of destruction
of junctions. It serves as a parameter in the Mittag-Leffler function and also functions as a
normalization factor. This dual impact contributes to the subtlety of its influence. Our newly
proposed model offers a broader description of flow behavior compared to traditional models,
making it applicable in the modeling of complex viscoelastic flows.

These analytical and semi-analytical solutions not only serve as valuable tools for validating
CFD codes but also enhance our comprehension of the model’s behavior in simple shear flows.
This expanded understanding facilitates more accurate modeling of complex viscoelastic flows.
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Chapter 5

More in numerical studies

5.1 Flow structures identification through proper orthogonal decom-
position: the flow around two distinct cylinders6

Abstract: Numerical simulations of fluid flows can produce a huge amount of data and inadvertently
important flow structures can be ignored, if a thorough analysis is not performed. The identification
of these flow structures, mainly in transient situations, is a complex task, since such structures
change in time and can move along the domain. With the decomposition of the entire data set into
smaller sets, important structures present in the main flow and structures with periodic behaviour,
like vortices, can be identified. Therefore, through the analysis of the frequency of each of these
components and using a smaller number of components, we show that the Proper Orthogonal
Decomposition can be used not only to reduce the amount of significant data, but also to obtain
a better and global understanding of the flow (through the analysis of specific modes). In this
work, the von Kármán vortex street is decomposed into a generator base and analysed through the
Proper Orthogonal Decomposition for the 2D flow around a cylinder and the 2D flow around two
cylinders with different radii. We consider a Newtonian fluid and two non-Newtonian power-law
fluids, with 𝑛 = 0.7 and 𝑛 = 1.3. Grouping specific modes, a reconstruction is made, allowing the
identification of complex structures that otherwise would be impossible to identify using simple
post-processing of the fluid flow.

Keywords: proper orthogonal decomposition (POD); Navier–Stokes equations; computational fluid
dynamics (CFD); von Kármán vortex street

6A.M. Ribau, N.D. Gonçalves, L.L. Ferrás, and A.M. Afonso. Flow structures identification through proper
orthogonal decomposition: The flow around two distinct cylinders. Fluids, 6(11):384, 2021.
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5.1.1 Introduction

The Proper Orthogonal Decomposition (POD) method was first introduced by Lumley in 1967 [9],
and it allows for decomposing almost any flow into an infinite set of eigenfunctions or modes. The
objective of the POD method is to reduce the model in a way that it can capture the most important
and reliable information with much less data and effort. This method is famous in Computational
Fluid Dynamics (CFD) because it reduces the simulation time and allows for predicting the fluid
flow based only on the most important modes.

Since 1967, several versions of the POD method (and even new methods) were proposed in the
literature, being adapted to specific cases and branches of engineering (it should be remarked that,
in the first fifteen years, the only works on this topic are from Lumley itself, some co-workers, and
Ph.D. students [69]).

The method has become very popular and has been applied to a wide variety of engineering
problems going from fluid mechanics to bio-engineering, having different names for the same
procedure: Karhunen–Loève Decomposition, Principal Components Analysis (PCA), Singular
Systems Analysis, and Singular Value Decomposition (SVD) (please see the review papers [67, 68]).
To name all the works on the POD method [112] would be a tedious task that is out of the scope
of this work, although some of these works are worth mentioning.

Regarding POD, Selin Aradag et al. [70] developed a couple of methods (the Hybrid Fil-
tered POD (HFPOD) approach (see also [71]) and the Fast Fourier Transform (FFT)-based 3D
Filtered POD (FFTPOD)) to deal with the difficulty encountered when using simple POD for
three-dimensional (3D) structures. Using the HFPOD method, large-scale structures associated
with von Kármán’s vortex street, as well as their phase and amplitude variations, can be identified
quantitatively. FFTPOD enables modeling 3D flows without being contaminated by small-scale
turbulent structures while capturing the large-scale features of the flow, like von Kármán’s vor-
tex street. The filtering steps (in the HFPOD method) must be repeated until most small-scale
structures are qualitatively eliminated. A spanning phase is provided by the HFPOD, but the
FFTPOD is able to deal with 3D geometry, making it a promising alternative to the Hybrid POD
for 3D flows.

For a space-time POD problem, for statistically stationary flows, Aaron et al. [72] investigated
the Spectral Proper Orthogonal Decomposition (SPOD). This model produces modes that oscillate
at a single frequency. In their study, the authors demonstrated how SPOD modes articulate
coherently with development in space and time, in contrast to general POD space-modes. Moreover,
SPOD modes were found to be optimally averaged Dynamic Mode Decompositions (DMD),
resulting from an ensemble model DMD problem for stationary flows. In this sense, SPOD
modes represent dynamic structures in the same sense as DMD modes while also incorporating
the statistical variability of turbulent flows.

It should be mentioned that the POD method is not the only technique used in the literature
to predict complex fluid flows with less effort. We have, for example, Machine Learning (ML)
that is now a hot topic on this subject. In fact, the POD method is a feature selection method
used in Data Mining processes, to reduce the dimension of the process [76] (in this area, the POD
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method goes by the name of PCA). Thus, combining the CFD simulations and ML algorithms
to simultaneously reduce computational cost and time, retain physical insight by focusing on the
prediction of flow-fields, and keep the ability to access information or to make adjustments is
already a reality [77].

The flow around one cylinder is well understood and documented in the literature. See, for
example, [81]. Regarding more recent literature on the use of POD to study the flow around
bluff bodies, we have the works by Bergmann et al. [82] where they studied the optimal rotary
control of the cylinder wake using POD. Huan Ping et al. [83] also studied the wake dynamics
behind a rotary oscillating cylinder. They used POD to extract the energetic modes that govern the
dynamics of the flow, and also to characterize the spatially evolving nature of the forced wake as it
undergoes a transition from the near-wake two-layer shedding pattern to the far-wake Kármán-like
shedding pattern. The authors concluded that only a few modes allowed for reconstructing the
near-wake accurately, while more modes must be retained to ensure an accurate approximation
of the far-wake. Riches et al. [84] used POD to analyze the wake-dynamics of a low-mass ratio
circular cylinder undergoing vortex-induced vibrations. Most of the more recent works are now
flow around cylinders with different surface texture/geometry.

For the flow around two cylinders, we have works on flows around side-by-side circular cylinders
with the same dimensions [85–87], and a study with two cylinders in a staggered configuration
where the data processed by the POD method were obtained from experimental measurements of
flow fields using the Particle Image Velocimetry (PIV) method [88]. Works on the flow around
side-by-side circular cylinders of different radii seems to be nonexistent.

In this work, a simple POD method is used to compute the 2D flow around a single cylinder,
and, around two cylinders of different radii. The novelty of this work is:

• the use of POD not to reduce (and compile) the amount of information on the flow (has
happens in most studies), but to rather show that the POD can be used to capture flow
structures and flow physics that would be impossible to observe without a mode analysis.
Highlighting, in this way, this ability of the POD method;

• to further understand the flow around two cylinders of different radii, through the use of POD
and classical CFD. By decomposing this complex 2D flow, we have a better comprehension
of the impact that a certain obstacle has in areas of interest.

We present a detailed study on complex 2D flows, and it is shown that the energy drop-off for
higher order modes is much less steep when the complexity of the 2D flow increases.

It should be mentioned that we do not consider turbulent flows. The idea is to fully understand
the mode decomposition in an oscillatory flow around two parallel cylinders of different dimensions.

This work is organized as follows: first, we present the basics of POD. Then, numerical
simulations for the 2D flow past a cylinder are performed, considering a Newtonian fluid and two
non-Newtonian power-law fluids with 𝑛 = 0.7 and 𝑛 = 1.3. The most important modes are identified
for this well known case. Then, we perform a numerical study on the 2D flow past two cylinders of
different radii (for both Newtonian and power-law fluids). This specific flow destroys the possibility
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of forming a symmetric pattern over time and increases the difficulty in grouping different modes.
We discuss in detail the dynamics of the fluid flow and the reconstruction procedure. The document
ends with the conclusions.

5.1.2 Equations and numerical method

The equations governing the flow of an isothermal incompressible fluid are the continuity:

∇ ·u = 0, (5.1)

and the momentum equations,

𝜌
Du
D𝑡

= −∇𝑝 +∇ · 𝝉, (5.2)

where D
D𝑡

is the material derivative, 𝑝 is the pressure and 𝜌 the fluid density, together with the
constitutive equation 𝝉 = 2𝜇D, where D is the rate of deformation tensor and 𝜇 is the viscosity.
For a Newtonian fluid, 𝜇 is constant.

5.1.2.1 Non-Newtonian power-Law fluid

For a non-Newtonian power-law fluid, the constitutive equation for 𝝉 is now given by:

𝝉 = 𝜂 ( ¤𝛾)D (5.3)

where 𝜂 ( ¤𝛾) is the viscosity function, given by:

𝜂 ( ¤𝛾) = 𝐾 ¤𝛾𝑛−1 (5.4)

with 𝐾 being the consistency index, 𝑛 the power-law index, and ¤𝛾 the second invariant of the rate
of deformation tensor (for simple shear flows, ¤𝛾 is just the shear rate).

For the study with the power-law fluid, the generalized Reynolds number is given by [89, 90],

𝑅𝑒𝑔𝑒𝑛 =
6𝜌𝑈 (2−𝑛)𝐷𝑛

𝐾 [(4𝑛+2) /𝑛]𝑛 , (5.5)

where𝑈 is the imposed mean velocity at the inlet. When 𝑛 = 1, the model reduces to the classical
Reynolds number 𝑅𝑒,

𝑅𝑒 =
𝜌𝑈𝐷

𝜇
, (5.6)

with 𝜂( ¤𝛾) = 𝐾 = 𝜇 a constant viscosity.

5.1.2.2 Von Kármán vortex street

A von Kármán Vortex street is a repeating pattern of swirling vortices. This happens due to vortex
shedding, which is responsible for the unsteady separation of flow of a fluid around a blunt body.
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When studying this phenomenon, an important dimensionless number is the Strouhal number
(named after the Czech physicist, Vincenc Strouhal (1850–1922)). This dimensionless number is
a key parameter for oscillating flows because it describes the relation between the length-scale of
the blunt body, the vortex shedding frequency and the flow velocity [77]. The Strouhal number is
defined by

𝑆𝑡 =
𝑓 𝐷

𝑈
, (5.7)

where 𝑓 is the vortex shedding frequency and 𝐷 is the diameter of the blunt body. This dimension-
less number can be related to 𝑅𝑒. According to Roshko [91], for approximately 50 < 𝑅𝑒 < 150,
the relationship between 𝑆𝑡 and 𝑅𝑒 is given by

𝑆𝑡 = 0.212
(
1− 21.2

𝑅𝑒

)
. (5.8)

5.1.2.3 Proper orthogonal decomposition

To implement the POD method, we assumed that all data are saved in a matrix with a
(
𝜙1, 𝜙2, ..., 𝜙𝑁𝑒

)𝑇
shape, saving one time step in each column. Thus, we obtained a matrix𝚽with 𝑁𝑒 by 𝑁𝑡 elements:

𝚽 =


𝜙1,1 𝜙1,2 · · · 𝜙1,𝑁𝑡

𝜙2,1 𝜙2,2 · · · 𝜙2,𝑁𝑡

...
...

. . .
...

𝜙𝑁𝑒 ,1 𝜙𝑁𝑒 ,2 · · · 𝜙𝑁𝑒 ,𝑁𝑡


(5.9)

where 𝑁𝑒 is the number of elements to study and 𝑁𝑡 are the time steps.
For the study proposed in this work, the data saved in matrix 𝚽 corresponds to the velocity

components, 𝑢 and 𝑣, and the pressure, 𝑝, obtained after performing a CFD simulation. Thus, in
each column of matrix 𝚽,

(
𝑢1, 𝑢2, ..., 𝑢𝑁𝐸

, 𝑣1, 𝑣2, ..., 𝑣𝑁𝐸
, 𝑝1, 𝑝2, ..., 𝑝𝑁𝐸

)𝑇 are saved, where 𝑁𝐸 is
the number of elements of the mesh. We can also consider other properties, such as temperature
or viscosity.

Each column of 𝚽 can be written as a linear combination of orthonormal vectors or modes, u.
These modes are unitary and orthogonal. Therefore, the matrix of the modes, U, is given by

U =


𝑢1,1 𝑢1,2 · · · 𝑢1,𝑁𝑚

𝑢2,1 𝑢2,2 · · · 𝑢2,𝑁𝑚

...
...

. . .
...

𝑢𝑁𝑒 ,1 𝑢𝑁𝑒 ,2 · · · 𝑢𝑁𝑒 ,𝑁𝑚


(5.10)

where 𝑁𝑚 is the number of modes. This way, each element of matrix 𝚽 can be written as:

𝜙𝑖,𝑡 =

𝑁𝑚∑︁
𝑚=1

𝑢𝑖,𝑚𝑎𝑚,𝑡 (5.11)

where 𝑖 ∈ {1,2, . . . , 𝑁𝑒}, 𝑡 ∈ {1,2, . . . , 𝑁𝑡 } and 𝑎𝑚,𝑡 are the temporal coefficients.
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Eq. (5.11) in the matrix form becomes:

𝚽 = U ·A. (5.12)

where A is the matrix of the temporal coefficients and is equal to

A =


𝑎1,1 𝑎1,2 · · · 𝑎1,𝑁𝑡

...
...

. . .
...

𝑎𝑁𝑚,1 𝑎𝑁𝑚,2 · · · 𝑎𝑁𝑚,𝑁𝑡

 (5.13)

Matrices U and A are obtained by the autocovariance matrix R that is given by

R =
1
𝑁𝑒

𝚽 ·𝚽𝑇 (5.14)

whose eigenvectors are the columns of matrix U. Matrix A is obtained by:

A = U𝑇 ·𝚽. (5.15)

The distribution of the matrix U columns is directly related to the corresponding eigenvalues.
This way, the first columns of U are the ones showing a higher variation of the temporal coefficients,
and therefore the ones that gather more relevant information. Thus, we reconstruct matrix𝚽, where
only the modes that are more relevant are considered. Since 𝑁𝑚 < 𝑁𝑒, it brings:

𝚽 ≈ Ũ · Ã = 𝚽̃ (5.16)

where Ũ is the matrix with the first more relevant modes and Ã is the matrix with the temporal
coefficients that correspond to the first more relevant modes, and 𝚽̃ is the spatial reconstruction
of the properties in study. For more information on this subject, please consult [113–115] for a
detailed explanation on the POD method implemented in this work.

5.1.2.4 Numerical method

The system of equations (Eqs. (5.1) and (5.2)) were solved numerically using the software ANSYS
Fluent version 2020 R2.

To perform the simulations, the velocity and pressure fields at 𝑡 = 0 were obtained in the
following manner:

• First, a steady-state solution was calculated for 𝑅𝑒 = 100;

• Second, the previous solution was used as an initial guess (𝑡 = 0) for the velocity and
pressure fields, in the steady-state turbulent numerical simulation considering 𝑅𝑒 = 500.
This simulation allowed the development of the characteristic von Kármán vortex street.

• Third, the steady-state solution obtained for 𝑅𝑒 = 500 was used as the initial guess for our
transient simulations with 𝑅𝑒 = 100.
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The pressure–velocity coupling was done using the SIMPLE method. To discretize the pressure
gradient, the Least Squares Cell Based scheme was used, and, for the discretization of the advective
terms, the Second-Order Upwind scheme was considered. The transient term was approximated
by a first order implicit scheme. The POD analysis was performed with MATLAB R2018a.

In the next section, more details are presented regarding the geometry and meshes used along
the work.

5.1.3 Case study: flow around a single cylinder

In this section, we present some results on the flow around a single cylinder that will be used fully
in the analysis of the flow around two cylinders (for comparison).

5.1.3.1 Geometry, boundary conditions and mesh

Fig. 5.1 (a) shows the geometry of the flow around a cylinder. The left bold-dashed line represents
the inlet and the right dashed one the outlet. The cylinder has a diameter 𝐷 = 0.1 m and is placed
5𝐷 away from the inlet and 15𝐷 from the outlet. The inlet has a height 10𝐷. Regarding boundary
conditions, we have imposed pressure at the outlet, and imposed at the inlet a uniform velocity
profile that is constant in time. At the top and bottom walls of the channel, we consider full slip,
and at the wall of the cylinder the usual empirical no-slip boundary condition was assumed.

(a) (b) (c)

Figure 5.1: (a) Geometry of the flow around one cylinder. The left dashed line represents the inlet
and the right dashed one the outlet. Mesh of the flow around one cylinder with 23,789 elements:
(b) global view with black lines with 10 mm elements; (c) close view around the cylinder.

To study the flow around one cylinder, we first perform a mesh study. We consider three
meshes: one with 12,976 elements, one with 23,789 elements, and a more refined one with
48,570 elements. For each mesh, a simulation with 1000 time-steps was performed, and the drag
coefficient on the cylinder wall was calculated. Then, we determined the average drag coefficient,
𝑐𝑑 , for each mesh. The results are presented in Table 5.1.

We calculated an extrapolated value for 𝑐𝑑 using the Richardson extrapolation technique,

𝑐𝑑𝑒 ≈ 𝑐𝑑𝑀1
+
𝑐𝑑𝑀1

− 𝑐𝑑𝑀2

𝑟 𝑙 −1
, (5.17)
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Table 5.1: Average drag coefficient values for the three meshes.

Mesh Number of elements 𝑐𝑑

𝑀1 48570 1.463
𝑀2 23789 1.470
𝑀3 12976 1.475

where 𝑐𝑑𝑒 is the extrapolated value, 𝑐𝑑𝑀1
is 𝑐𝑑 for mesh 𝑀1, 𝑐𝑑𝑀2

is the 𝑐𝑑 for mesh 𝑀2 and 𝑐𝑑𝑀3

is the 𝑐𝑑 for mesh 𝑀3. 𝑟 is the grid refinement ratio and 𝑙 is the order of the method. We see that
𝑟 ≈ 2, and, in this work, we assumed that 𝑙 = 2. Using Eq. (5.17), we obtained 𝑐𝑑𝑒 ≈ 1.477.

We measured the relative error (Eq. (5.18)) for each mesh and obtained a good trade-off
between accuracy and computational cost for mesh 𝑀2. The error 𝐸 was small (about 0.42%):

𝐸 =
|𝑐𝑑𝑒 − 𝑐𝑑𝑀2

|
|𝑐𝑑𝑒 |

= 0.42%. (5.18)

Based on these results, the subsequent numerical simulations will be performed on mesh 𝑀2.
Fig. 5.1 (b) shows a global view of the chosen mesh 𝑀2 and Fig. 5.1 (c) shows a zoomed

view of the mesh around the cylinder. The cell size was set to 0.0025 m along the cylinder surface
region, 0.01 m along bold lines of Fig. 5.1 (b) and 0.02 m on the rest of the domain. The cell size
growth rate was 1.2, and, along the edges in bold (Fig. 5.1 (c)), a bias type procedure was used
with a bias factor of 10.

5.1.3.2 Rheological properties

To perform the numerical simulations, we first considered a Newtonian fluid with the rheologi-
cal properties of water at a temperature of 20 ◦C, that is, density 𝜌 = 103 kg.m−3, and viscosity
𝜇 = 10−3 Pa.s. We considered a Reynolds number of 100, which for a cylinder with diameter
𝐷 = 0.1 m, leads to an imposed inlet velocity 𝑈 of 10−3 m.s−1. Then, we performed the nu-
merical simulations with a non-Newtonian power-law fluid, where 𝑅𝑒𝑔𝑒𝑛 = 100, 𝜌 = 103 kg.m−3,
𝐷 = 0.1 m and𝑈 = 10−3 m.s−1 is the imposed inlet velocity. We will consider two fixed values for
the power-law index 𝑛: 0.7 and 1.3. Thus, from Eq. (5.5), we conclude that 𝐾 = 0.00039 Pa.s0.7

and 0.0026 Pa.s1.3, respectively.

5.1.3.3 Results and discussion

The transient simulation with 𝑅𝑒 = 100 was performed and the first 10𝜆 seconds
(
𝜆 = 20𝐷×10𝐷

10𝐷×𝑢 s
)

were ignored to avoid the strong influence of the initial conditions. Note that 𝜆 is an approximate
measure of the residence time, that is, the time a particle takes to go from the inlet to the outlet.
The study and analysis was focused on the subsequent 10𝜆 seconds of data.

To set the maximum time step of the numerical simulation, a maximum Courant number (𝐶)
of 1 was considered. A 𝐶 ≤ 1 leads to 𝛿𝑡𝐶𝐹𝐷 ≤ 𝛿𝑥

𝑢𝑚𝑎𝑥
= 0.0025

0.001 = 2.5 s. To use the POD method, we
considered the data of every 20 time-steps, i.e., 𝛿𝑡𝑃𝑂𝐷 = 50 s, resulting into 400 time-steps to be
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analyzed.

Fig. 5.2 (a)–(c) show the streamlines and the vorticity sign map at 𝑡 = 20𝜆, for a Newtonian
fluid, and non-Newtonian power-law fluids with 𝑛 = 0.7 and 𝑛 = 1.3, respectively.

(a) (b) (c)

Figure 5.2: Flow around a single cylinder. Streamlines and vorticity sign (blue represents positive
values and grey negative values) at 𝑡 = 20𝜆 seconds for: (a) Newtonian fluid; (b) non-Newtonian
power-law fluid with 𝑛 = 0.7; (c) non-Newtonian power-law fluid with 𝑛 = 1.3.

In Fig. 5.2 (a), we see that vortices detach from the cylinder rear with diameter of about 5𝐷,
and, from Eq. (5.8), for 𝑅𝑒 = 100, we have 𝑆𝑡 ≈ 0.17 ≈ 1/5.88. Therefore, the structures behind
the cylinder are about six times bigger than the cylinder, or three times bigger with an alternating
sign of rotation. The oscillatory behaviour downstream from the cylinder is perceptible, and the
vortices on Fig. 5.2 (c) have a similar behaviour to the ones presented in Fig. 5.2 (a) for the
Newtonian fluid.

In this work, due to the high computational effort and the existence of low information on the
neglected modes, only the first 20 eigenvalues and modes were calculated.

Fig. 5.3 (a)–(c) show the relative weight of the eigenvalues associated with each modes, for
the three fluids described before. For all cases, we see a fast decrease of the relative weight of the
eigenvalues associated with each mode. In Fig. 5.3 (a), the weights attributed to the first, second,
and third eigenvalues are 98%, 0.98%, and 0.95%, respectively. In Fig. 5.3 (b), the weights are
99%, 0.5%, and 0.47%, respectively. Finally, in Fig. 5.3 (c), the weights are 97.2%, 1.3%,
and 1.3%. All figures show residual weights attributed to the remaining modes, leading to the
conclusion that only three modes allow the reconstruction of the flow.

(a) (b) (c)

Figure 5.3: Flow around a single cylinder. Relative weight of the eigenvalues associated with each
mode: (a) Newtonian fluid; (b) power-law fluid with 𝑛 = 0.7; (c) power-law fluid with 𝑛 = 1.3.
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Table 5.2 presents the most important modes of 𝑢, 𝑣, and 𝑝 (for each component 𝑢, 𝑣 and 𝑝, we
have from left to right: a Newtonian fluid, a power-law fluid with 𝑛 = 0.7, and a power-law fluid
with 𝑛 = 1.3.).

Table 5.2: Most important modes (1 to 7) of 𝑢, 𝑣 and 𝑝 for the flow around a single cylinder. For
each component 𝑢, 𝑣 and 𝑝, we have from left to right: a Newtonian fluid, a power-law fluid with
𝑛 = 0.7 and a power-law fluid with 𝑛 = 1.3.

u v p
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6
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Analysing the modes in Table 5.2, we see that the first mode is symmetric and has the main
features of the flow without the oscillating components. For the Newtonian fluid and the power-law
fluid with 𝑛 = 1.3, the modes after mode 1 are similar by pairs, with some delay between them.
We also see that modes 2 and 3 are coherent with vortices. These vortices are about six times
larger than the cylinder, as shown in Fig. 5.2. For the power-law fluid with 𝑛 = 0.7, the modes
after mode 1 are similar by pairs to modes 2 and 3 and modes 4 and 5, also with some delay
between them, but mode 6 for 𝑢 and 𝑝 seems to be symmetrical again. Note that, from Fig. 5.3
(b), after mode 5, the modes do not pair, having residual contributions. Therefore, it will be more
difficult to analyse their contribution. We would probably need more simulation time or a smaller
time-step to make a better analysis. We can see that, for the power-law fluid with 𝑛 = 1.3, the results
are similar to the Newtonian case, and this may be explained by the dilatant, or shear-thickening
behaviour (increase in apparent viscosity at higher shear rates). The flow is more sensible to the
shear-thinning obtained for 𝑛 = 0.7, and therefore we have differences and similarities with the
Newtonian results for 𝑛 = 0.7 and 𝑛 = 1.3, respectively.

Table 5.3 shows a comparison between the original data obtained from the simulation and the
partial reconstruction at 𝑡 = 20𝜆 (for each component 𝑢, 𝑣 and 𝑝, we have from left to right: a
Newtonian fluid, a power-law fluid with 𝑛 = 0.7, and a power-law fluid with 𝑛 = 1.3).
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Table 5.3: Comparison between the original (first row of images) data versus the partial recon-
struction at 𝑡 = 20𝜆 seconds (the modes used in the reconstruction are shown in the first column).
For each component 𝑢, 𝑣 and 𝑝, we have from left to right: a Newtonian fluid, a power-law fluid
with 𝑛 = 0.7 and a power-law fluid with 𝑛 = 1.3.

u v p

2,3

4,5

1-3

1-5

The reconstruction is made with modes 2 and 3, modes 4 and 5, modes 1 to 3 and modes 1 to
5. We see that the reconstruction with modes 2 and 3 allows us to recover the vortices traveling
along the domain. With the reconstruction of the first three modes, almost all the structures are
perceptible, although slight corrections to their shapes are needed. Comparing the reconstruction
with modes 2 and 3, with the reconstruction with modes 4 and 5, we see that they are similar, but
with smaller structures on the case of modes 4 and 5. These modes are a first correction to the
above referred vortices. When we perform the reconstruction with the first five modes, the velocity
and pressure maps become very similar to the original data.

Fig. 5.4 shows an analysis of frequencies of the modes time coefficients for the three fluids. The
Strouhal numbers (Eq. (5.7)) presented in Fig. 5.4 are calculated considering the frequency with
higher energy, 𝐷 as defined in section 5.1.3.1 and 𝑈 as defined in section 5.1.3.2. By Eq. (5.8),
the Strouhal number with 𝑅𝑒 = 100 is about 0.17.

Analysing the Strouhal numbers in Fig. 5.4 for the Newtonian fluid (top), we obtain 𝑆𝑡 = 0.175
that is similar to the one obtained from Eq. (5.8). We can also see that the pair of modes 2 and 3,
4 and 5, 6 and 7, 8 and 9, 10 and 11, have common Strouhal number. This characteristic reveals
that each pair is associated with the same flow structure. Furthermore, we notice that higher
values of the Strouhal number are multiples of the Strouhal number of modes 2 and 3, so they can
be considered as harmonic frequencies, as for example in the square wave function case. These
harmonic frequencies result from the non-perfectly round shape of the vortices that travel along
the domain.

When we analyse Fig. 5.4 for the power-law fluid where 𝑛 = 0.7, we see that the pairs of modes
that now have common Strouhal number are modes 2 and 3, modes 4 and 5, modes 7 and 8, modes
9 and 10 and, finally, modes 6 and 11. Now, modes 7 and 8 have a Strouhal number similar to
Strouhal number of modes 2 and 3, the Strouhal number of modes 4 and 5 is about twice the
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≈ 2𝑆𝑡 ≈ 3𝑆𝑡

≈ 4𝑆𝑡 ≈ 5𝑆𝑡

≈ 2𝑆𝑡 ≈ 3𝑆𝑡

≈ 4𝑆𝑡 ≈ 5𝑆𝑡

Newtonian

Power-Law (n=0.7)

Power-Law (n=1.3)

Figure 5.4: Analysis of frequencies of the modes time coefficients for a Newtonian fluid (top),
a non-Newtonian power-law fluid where 𝑛 = 0.7 (middle) and a non-Newtonian power-law fluid
where 𝑛 = 1.3 (bottom).

Strouhal number of modes 2 and 3 and the Strouhal number of modes 9 and 10 is about three times
Strouhal number of modes 2 and 3. These mixed results come from the use of another constitutive
model for viscosity. The results for a power-law fluid with 𝑛 = 1.3 are similar to the Newtonian
ones, with only small differences.

The modes are unitary vectors whose weighted average (the linear combination) forms the
original data set. Those weights are the time components and can be used to represent the
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importance of each mode. According to Fig. 5.4, we can group the modes by consecutive pairs
because of the similar Strouhal number. Therefore, in Fig. 5.5, are represented the pairs of time
coefficients for consecutive modes, for the three fluids. We can see that, from the contribution of
modes 2 and 3, and 4 and 5, the oscillatory and alternating behaviour is perceived.

(a) (b) (c)

Figure 5.5: Flow around a single cylinder. Pairs of time coefficients of consecutive modes: (a)
Newtonian fluid; (b) power-law fluid with 𝑛 = 0.7; (c) power-law fluid with 𝑛 = 1.3.

5.1.4 Case study: flow around two distinct cylinders

We now consider two distinct cylinders that will cause the loss of symmetry and allow us to present
the main contribution of this work. We perform a detailed analysis of this flow dynamics, and show
that even in these complex cases we can perform a reconstruction of the flow using the basics of
the POD method, and therefore obtain a reduction in data analysis and observe hidden structures
in the flow.

5.1.4.1 Geometry, boundary conditions and mesh

The boundary conditions are the same used for the case of one-cylinder and the geometry is
represented in Fig. 5.6 (a). We now have two cylinders: one with radius 𝐷 (bottom) and the other
with radius 1.5𝐷 (top). The mesh convergence study was similar to the one presented for the flow
around a cylinder, being the estimated relative error of the same order. The chosen mesh now has
23944 elements.

Fig. 5.6 (b) presents a global view of the chosen mesh and Fig. 5.6 (c) shows a zoomed view of
the mesh around the two cylinders. The cell size was set to 0.0025 m along the cylinders’ surface
region, 0.01 m along bold lines of Fig. 5.6 (b) and 0.02 m on the rest of the domain. The cell size
growth rate is 1.2. Along the bold edges (Fig. 5.6 (c)), a bias type procedure was used with a bias
factor of 10. We obtained a mesh with 23944 elements.

5.1.4.2 Rheological properties

For the Newtonian fluid, we have 𝑅𝑒 = 100 near to the smaller cylinder with diameter 𝐷 = 0.1 m
and 𝑅𝑒 = 150 near the larger cylinder with diameter 1.5𝐷 = 0.15 m. This way, we kept the imposed
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(a) (b) (c)

Figure 5.6: (a) Geometry of the flow around two cylinders. The left dashed line represents the inlet
and the right dashed one the outlet. Mesh of the flow around two cylinders with 23944 elements;
(b) global view with black lines with 10 mm elements; (c) close view around and between the
cylinders.

inlet velocity as𝑈 = 10−3 m.s−1. For the non-Newtonian power-law, the rheological properties are
the same presented in section 5.1.3.2.

5.1.4.3 Results and discussion

The transient simulation was performed, and the first 10𝜆 seconds were again neglected to avoid the
strong influence of the initial conditions. The subsequent 10𝜆 seconds of data were then analysed.
We considered the same 𝛿𝑡𝐶𝐹𝐷 and 𝛿𝑡𝑃𝑂𝐷 of the flow around one cylinder.

Fig. 5.7 (a)–(c) present the streamlines and the vorticity sign map for the flow around two
cylinders, for the Newtonian fluid, and, the power-law fluids with 𝑛 = 0.7 and 𝑛 = 1.3, respectively.
We can see that the oscillatory behaviour downstream the cylinders is perceptible and the vortices
detach from each cylinder rear, with different sizes. Later in time, the vortices that arise from both
cylinders interact and new structures are formed, where the individual influence of each cylinder
is no more clear, when compared to the one-cylinder case. From Eq. (5.8) for 𝑅𝑒 = 100 (smaller
cylinder), we have 𝑆𝑡 ≈ 0.17 and consequently the structures behind the cylinder are about six
times bigger than the cylinder itself. Near the bigger cylinder, with diameter 1.5𝐷, a 𝑅𝑒 = 150
corresponds to 𝑆𝑡 ≈ 0.18 and vortices are slightly bigger.

(a) (b) (c)

Figure 5.7: Streamlines and vorticity sign (blue represents positive values and grey negative values)
at 𝑡 = 20𝜆 for: (a) Newtonian fluid; (b) power-law fluid with 𝑛 = 0.7; (c) power-law fluid with
𝑛 = 1.3.

In order to better understand the dynamics of this flow, we provide simulation videos with the
flow fields 𝑢, 𝑣 and 𝑝 (please see the Supplementary Material). Some snapshots/instants of the



5.1 Flow structures identification through proper orthogonal decomposition: the flow around two
distinct cylinders 161

evolution in time of the velocity component 𝑢 are shown in Fig. 5.8. The figures are numbered
from 1 to 15, with 1 representing 𝑡 ≈ 0 s and 15 representing 𝑡 ≈ 2.3 s of simulation. From instants 1
to 5, the flow in the wake of the cylinders is similar, although the different scales generate different
structures that lead to the asynchronous flow verified in instant 6. These asynchronous flow results
in the formation of higher velocity structures that detach from the main flow in the wake of the
cylinder. This analysis alone is still insufficient to fully understand the influence of the one cylinder
over the other. Therefore, we will now present a detailed analysis based on POD, and show that
these methods allow one to unveil the origin and evolution of the different structures.

1                                                    2                                                     3                 4

5                                                    6                                                     7                 8

10                                                  11                                                  12                   13

14                                                  15

Figure 5.8: Evolution, in time, of the first component, 𝑢, of the velocity profile. The numbers 1
to 15 establish the order of occurrence, with 1 representing 𝑡 ≈ 0 s and 15 representing 𝑡 ≈ 2.33 s.
These instants were extracted from the Supplementary Material provided together with this work.

As for the case of one cylinder, we only considered the first 20 eigenvalues and modes. Fig.
5.9 (a)–(c) show the relative weight of the eigenvalues associated with each mode, for a Newtonian
fluid, a power-law fluid with 𝑛 = 0.7 and a power-law fluid with 𝑛 = 1.3, respectively.

(a) (b) (c)

Figure 5.9: Relative weight of the eigenvalues associated with each mode, for: (a) Newtonian
fluid; (b) power-law fluid with 𝑛 = 0.7; (c) power-law fluid with 𝑛 = 1.3.
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In all figures, we see a fast decrease of the relative weight of the eigenvalues associated with
each mode. In Fig. 5.9 (a), the weight attributed to the first, second and third eigenvalues is 95.7%,
1.21% and 0.98%, respectively. In Fig. 5.9 (b), the weights are 97.5%, 0.79% and 0.67%. In
Fig. 5.9 (c), the weights are 94.5%, 1.5% and 1.2%.

This leads to the conclusion that with two cylinders, the importance of the first modes is not
so clear as in the one-cylinder case. The existence of a second cylinder with different frequencies
associated and the interaction of the structures that emerge from the distinct cylinders lead to the
use of a higher number of frequencies and modes, to correctly predict/reconstruct the flow.

Table 5.4 shows the most important modes of 𝑢, 𝑣 and 𝑝, for the flow around two cylinders (for
each component 𝑢, 𝑣 and 𝑝, we have from left to right: a Newtonian fluid, a power–law fluid with
𝑛 = 0.7 and a power–law fluid with 𝑛 = 1.3).

Table 5.4: Most important modes (1 to 7) of 𝑢, 𝑣 and 𝑝 for the flow around two cylinders. For
each component 𝑢, 𝑣 and 𝑝, we have from left to right: a Newtonian fluid, a power-law fluid with
𝑛 = 0.7 and a power-law fluid with 𝑛 = 1.3.
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We see that the first mode has the main features of the flow, but without the oscillating
components. Mode 1 is in close agreement with the ensemble average (as expected). Notice that
the values of 𝑢, 𝑣 and 𝑝 for mode 1 are symmetrical of what was supposed to happen. This happens
because this mode is multiplied by the temporal coefficients that, in this case, are negative. Modes
2 and 3 are related to vortices that detach from the top cylinder, whereas modes 4 and 5 can be
associated with the bottom cylinder. In modes 2 and 3, we can see flow structures of the top cylinder
in front of the bottom cylinder, and that type of influence is hard to see without a decomposition
by modes like we perform in here. Unlike the flow around one cylinder, the modes after mode 5
are not similar by pairs neither easily associated with some meaningful flow structure.

In order to better understand this phenomena, Table 5.5 shows a comparison between the
original data and the partial reconstruction at 𝑡 = 20𝜆, for the three fluids (for each component
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𝑢, 𝑣 and 𝑝, we have from left to right: a Newtonian fluid, a power-law fluid with 𝑛 = 0.7 and a
power-law fluid with 𝑛 = 1.3). From these results, we conclude that the partial reconstruction with
just modes 2 and 3 recovers the bigger vortices traveling along the domain associated with the top
cylinder. When modes 4 and 5 are considered, we capture the smaller vortices downstream the
bottom cylinder (in a short distance from the cylinder). In the reconstruction with the first five
modes almost all the structures are perceptible, although slight corrections are missing.

Table 5.5: Comparison between the original (first row of images) data versus the partial recon-
struction at 𝑡 = 20𝜆 (the modes used in the reconstruction are shown in the first column). For each
component 𝑢, 𝑣 and 𝑝, we have from left to right: a Newtonian fluid, a power-law fluid with 𝑛 = 0.7
and a power-law fluid with 𝑛 = 1.3.
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Due to the different vortices that are formed along time and space, the task of finding a direct
relationship between the modes and the exact structures is really hard to perform. Although we
have plotted the velocity fields obtained for the Newtonian fluid at 𝑡 = 10𝜆, 𝑡 = 15𝜆 and 𝑡 = 20𝜆
seconds (together with the velocity fields obtained for the modes 2 and 3, and, modes 4 and 5).
These results are shown in Fig. 5.10.

From Fig. 5.10, it is clear that the relationship between modes 2,3 and modes 4,5 and the top and
bottom cylinders prevails along time. In addition, we may conclude that the both reconstructions
still have information on both cylinders. The isolated vortices are not completely retrieved, but
the association is clear. It is also noticeable that, if the spatial characteristics are preserved, the
temporal ones are merged. The intensity of each vortex pattern (represented by the vector lengths)
is proportional to the vortices at this position in the decomposed dataset. When the velocity
components are decomposed, the intensity of the vectors (vector length) coincides with the local
averaged kinetic energy.

Notice that the original data for variables 𝑢, 𝑣 and 𝑝, with 23,944 elements along 400 time
steps are saved into a matrix with (3×23,944×400) about 28.7 million values that needs to be
stored. Due to computational limitations of the MATLAB software in the calculations of the
elements applying the POD method (the same happened for the flow around one cylinder), we
only considered one fifth of the elements. The data were saved into a matrix of (3×4789×400)
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Figure 5.10: Velocity fields obtained for the Newtonian fluid at 𝑡 = 10𝜆, 𝑡 = 15𝜆 and 𝑡 = 20𝜆 seconds
(together with the velocity fields obtained for the modes 2 and 3, and, modes 4 and 5).

about 5.7 million entries. The reconstruction made with just five modes only needs (3×4789×5)
storage that is 71,835 values. This is a reduction of 98.75% with no significant loss of information,
resulting in significant savings.

In Fig. 5.11, an analysis of the frequencies of the modes time coefficients is performed. The
Strouhal numbers presented in the figure are calculated considering the frequency with higher
energy, the diameter of the bottom cylinder, 𝐷, and the mean velocity𝑈.

By Eq. (5.8), the Strouhal number for 𝑅𝑒 = 100 is about 0.17 and for 𝑅𝑒 = 150 the Strouhal
number is 0.18. We can relate these predicted Strouhal numbers to the ones presented in Fig. 5.11
for the Newtonian fluid. Therefore, analysing the frequencies of modes 2 and 3, we see that
𝑆𝑡 = 0.155 and the difference to the predicted Strouhal for the top cylinder (considering the the
diameter 1.5𝐷) is about 30%. For modes 4 and 5, we have 𝑆𝑡 = 0.22 that, when compared with the
value predicted by Eq. (5.8) for the bottom cylinder, shows a deviation of about 30%.

As in the flow around one cylinder, Fig. 5.11 shows that modes greater than one seam to be
organized in pairs, revealing the need for the combination of two structures to correctly model the
evolution of the flow structures along the domain.

In Fig. 5.11 we also see that for the three fluids the Strouhal numbers are very similar, meaning
that the flow characteristics induced by the two cylinders are more important than the rheology of
the fluids.

In Tables 5.4 and 5.5 we saw that modes 2 and 3 were associated with the top cylinder. Thus,
taking that into account, we can derive some conclusions related to the Strouhal numbers and how
do they relate with the other modes represented in Fig. 5.11. Therefore, we see that modes 6 and
7 have a Strouhal number approximately half the Strouhal number of modes 2 and 3, whereas the
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Newtonian

Power-Law (n=0.7)

Power-Law (n=1.3)

Figure 5.11: Analysis of frequencies of the modes time coefficients for a Newtonian fluid (top),
a non-Newtonian power-law fluid where 𝑛 = 0.7 (middle) and a non-Newtonian power-law fluid
where 𝑛 = 1.3 (bottom).

Strouhal number of modes 10 and 11 is twice the value obtained for modes 2 and 3. Thus, we
conclude that modes 6 and 7 and modes 10 and 11 are related to the same flow structures of modes
2 and 3.

In Fig. 5.11, for the case of a Newtonian fluid, we also notice that the Strouhal number
calculated for the second most important frequency of modes 2 and 3 is the Strouhal number
associated with modes 4 and 5, and vice versa. This means that the flow structure associated with
modes 4 and 5 interferes with the flow structures associated with modes 2 and 3, and vice versa.
The same happens to modes 6 and 7 and modes 8 and 9. This means that the flow structures
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associated with modes 8 and 9 interfere with the flow structure associated with modes 6 and 7, and
vice versa.

In Fig. 5.11, for the case of a power-law fluid with 𝑛 = 0.7, we also notice that the Strouhal
number calculated for the second most important frequency of modes 2 and 3 is the Strouhal
number associated with modes 4 and 5 (the flow structure associated with modes 4 and 5 interferes
with the flow structure associated with modes 2 and 3, and vice versa), but this relationship is
not observed for the other modes. This is due to the use of a different constitutive model for the
viscosity.

Finally, in Fig. 5.11, for the power-law fluid with 𝑛 = 1.3, we see that the Strouhal number
calculated for the second most important frequency of modes 2 and 3 is the Strouhal number
associated with modes 4 and 5, but not the other way around. However, for modes 6 and 7, the
Strouhal number calculated for the second most important frequency is associated with modes 8
and 9, and vice versa. This means that the flow structure associated with modes 8 and 9 interferes
with the flow structures associated with modes 6 and 7, and vice versa. This is again due to the use
of a different constitutive model for the viscosity.

In this case we cannot establish a relationship between the Strouhal numbers in the same way
as in the flow around one cylinder. Although, visually we know that the different modes are related
to the upper or lower cylinder, thus allowing us to use POD to detect and predict flow feature with
much less information.

Fig. 5.12 (a)–(c) show the pairs of time coefficients of consecutive modes, according to
frequencies represented in Fig. 5.11 for the Newtonian fluid, the power-law fluid with 𝑛 = 0.7 and
the power-law fluid with 𝑛 = 1.3, respectively.

(a) (b) (c)

Figure 5.12: Pairs of time coefficients of consecutive modes: (a) Newtonian fluid; (b) power-law
fluid with 𝑛 = 0.7; (c) power-law fluid with 𝑛 = 1.3.

The oscillatory and alternating behaviour is observed for modes 2 and 3, modes 4 and 5, and
modes 6 and 7.

To compare the weights of the modes taking into account the oscillating behaviour, we consid-
ered the reference value (5.19):√︁

𝑎12 +
√︁
𝑎22 + 𝑎32 +

√︁
𝑎42 + 𝑎52 +

√︁
𝑎62 + 𝑎72. (5.19)
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The modes higher than 7 were not considered due to their small contributions.

For the Newtonian fluid, we see that mode 1, without the oscillatory information, has about 75%
of the information in (5.19), whereas modes 2 and 3 have approximately 11.2% of the information
in (5.19) (referring to

√︁
𝑎22 + 𝑎32), modes 4 and 5 have approximately 8% of the information in

(5.19) (referring to
√︁
𝑎42 + 𝑎52) and modes 6 and 7 have approximately 6% of the information in

(5.19) (referring to
√︁
𝑎62 + 𝑎72).

For the non-Newtonian power-law fluid where 𝑛 = 0.7, mode 1, without the oscillatory infor-
mation, has about 79.5% of the information in (5.19), whereas modes 2 and 3 have approximately
9.7% of the information in (5.19) (referring to

√︁
𝑎22 + 𝑎32), modes 4 and 5 have approximately

6.5% of the information in (5.19) (referring to
√︁
𝑎42 + 𝑎52) and modes 6 and 7 have approximately

4.3% of the information in (5.19) (referring to
√︁
𝑎62 + 𝑎72). When comparing with the Newtonian

fluid, we see that the time weights show a smaller decrease, for pairs of modes after mode 1, but an
increase for mode 1. Finally, the non-Newtonian power-law fluid where 𝑛 = 1.3, mode 1, without
the oscillatory information, has about 72.7% of the information in (5.19), whereas modes 2 and 3
have approximately 12.1% of the information in (5.19) (referring to

√︁
𝑎22 + 𝑎32), modes 4 and 5

have approximately 8.8% of the information in (5.19) (referring to
√︁
𝑎42 + 𝑎52) and modes 6 and 7

have approximately 6.3% of the information in (5.19) (referring to
√︁
𝑎62 + 𝑎72). When comparing

with the Newtonian fluid and with the non-Newtonian power-law where 𝑛 = 0.7, we see that the
time weights show a smaller decrease on mode 1, but an increase on the pairs of modes after mode
1.

Looking at the results obtained for the Newtonian fluid, the non-Newtonian power-law fluid
where 𝑛 = 0.7, and with the non-Newtonian power-law fluid where 𝑛 = 1.3, we conclude that the
first modes are the ones that carry most of the information and with only a few modes we also can
reconstruct the simulation.

By using two cylinders with different radii, we get different hidden structures in the flow, and
using the modes and the frequencies of the modes time coefficients, some structures can be related
to the influence of one cylinder over the other. This gives us a better understanding of the flow.

For ease of understanding of the results presented above, the interested reader can find Sup-
plementary Material, including the videos obtained for the flow around two cylinders (for both the
velocity and pressure variables).

5.1.5 Conclusions

We performed a detailed study on the flow around a single and two distinct cylinders, by decom-
posing the von Kármán vortex street data into a generator base that was analysed through the
Proper Orthogonal Decomposition. We considered a Newtonian fluid, and two power-law fluids
with 𝑛 = 0.7 and 𝑛 = 1.3. The behaviour obtained for the Newtonian fluid and the power-law fluid
with 𝑛 = 1.3 (case of one cylinder) is similar, for the range shear rates considered. The power-law
fluid with 𝑛 = 0.7 shows a more erratic behaviour that could still be captured by the POD method.
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We showed that the original POD method can be used to detect and predict flow feature with
much less information. A visualization of the influence of each mode on the fluid flow allowed us
to infer on the possible reconstruction of the flow features. We also showed the possibility of using
the analysis of the frequencies of the temporal coefficients to group modes automatically, or by
grouping using visual analysis. By adding an extra cylinder (with a different radius), we obtained
different hidden structures in the flow and some of these structures were related to the top cylinder
or others related to the bottom cylinder. A detailed analysis of the flow dynamics revealed the
complexity of such flow.

This work aims to inspire other researchers to use the original POD method for decomposing
complex flows and better identify meaningful flow structures.

Supplementary Materials: For ease of understanding of the results presented above, the interested
reader can find as supplementary material, the videos obtained for the flow around two cylinders (for
both the velocity and pressure variables). We present the reconstruction of the flow by considering
different modes and enhance the visualization of different flow structures. The following are
available online at https://drive.google.com/file/d/1RbQ0mNtr-wKY-rAAg0k-vWKHj
7AWB1sc/view?usp=sharing.

https://drive.google.com/file/d/1RbQ0mNtr-wKY-rAAg0k-vWKHj7AWB1sc/view?usp=sharing
https://drive.google.com/file/d/1RbQ0mNtr-wKY-rAAg0k-vWKHj7AWB1sc/view?usp=sharing
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Chapter 6

Conclusions

This work presents new semi-analytical and numerical solutions in canonical flows, considering
viscoelastic fluids modelled by the gPTT model. The gPTT viscoelastic model considers the
Mittag–Leffler function instead of the classical linear and exponential functions of the trace of
the extra-stress tensor and uses two new fitting parameters. With the obtained solutions, the
influence of the model parameters on the velocity profile were studied. This new model allows a
wider description of the flow behaviour, when compared to more classical descriptions, thus it can
be considered in modelling complex viscoelastic flows. The analytical and numerical solutions
presented in this work are helpful for validating CFD codes, and also allow a better understanding
of the model behaviour in simple shear flows.

In this work, a detailed study was also performed on the flow around two parallel side-by-side
cylinders with different radii, by decomposing the von Kármán vortex street data into a generator
base that was analysed through the POD method. For that purpose, a Newtonian fluid, and two
power-law fluids with 𝑛 = 0.7 and 1.3 were considered. This study showed that the original
POD method can be used to detect and predict flow features with much less information. The
visualization of the influence of each mode on the fluid flow allowed to infer on the possible
reconstruction of the flow and also allowed to use the analysis of the frequencies of the modes’ time
coefficients to group modes using visual analysis. By adding an extra cylinder with different radii,
different complex structures in the flow were obtained and some of these structures were related to
the top cylinder while others were related to the bottom cylinder. A detailed analysis of the flow
dynamics revealed the complexity of such flow.

The POD method was also applied in a planar flow past a cylinder, but now considering a gPTT
fluid under creeping flow conditions, 𝑅𝑒 = 0.01, and two Weissenberg numbers,𝑊𝑖 = 1.2 and 1.25.
A flow phenomena similar to a von Kármán vortex street downstream of the cylinder was observed
and the POD method was applied to decompose the flow into a generator base. Again, with the
POD method, flow features were detected and predicted with much less information and from the
visualization of the influence of each mode on the fluid flow, a reconstruction of the flow was
performed. With the analysis of the frequencies of the time coefficients, it was again possible to
group modes using visual analysis and also by calculating the RMSE between the original dataset
and the reconstruction obtained.
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Finally, for the flow past a cylinder using the POD analysis made for the flow with 𝑊𝑖 = 1.2,
a prediction of the reconstruction of the flow at 𝑊𝑖 = 1.25 was obtained and compared with the
original simulation at 𝑊𝑖 = 1.25. The RMSE between the original and the reconstructed normal
stresses fields was obtained, and it was below 1, being higher when stresses are at their maximum,
as expected. Therefore, the prevision is worst when the fields are close to the maximum value of
the oscillations. The performed analysis can be used to better identify meaningful flow structures
and also to obtain new data at different conditions with significantly lower cost.



Chapter 7

Outlook

In this work new analytical and semi-analytical solutions for canonical flows modelled by the gPTT
viscoelastic model were obtained and the influence of the model parameters on the velocity profile
were studied. For strong flows (e.g., extensional flows) a lack of solutions still exists where this
model could be applied and its parameters could be studied, a subject that can be explored in the
future.

The huge amount of data obtained when performing a numerical simulation is a problem
when CFD investigations are carried on. In this thesis the simple POD method was applied to
help overcome this problem, by decomposing the flow into a generator base, and use it to detect
and predict flow features with much less information. Being the POD method a feature selection
method use in machine learning processes, and since in this work it was used to reconstruct the
flow with much less information, one thing that can be done in the future is to apply the POD
method to several numerical simulations and then use a neural network model for modelling the
POD time coefficients and, this way, obtain numerical approaches for multiple flow conditions.

The numerical simulations carried out in this work were on the flow around two parallel side-
by-side cylinders with different radii and also on the planar flow past a single cylinder. In the last
case, the viscoelastic model used was the gPTT and, for the conditions applied, the presence of
vortex shedding, bearing similarities with the von Kármán vortex street downstream of a cylinder
for Newtonian fluids at higher Reynolds numbers were found. A deeper analysis of the flow, based
on more numerical simulation results, can be done in the future, allowing to better understand the
observed phenomena.
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