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ABSTRACT 

 
Lithium-Cesium-Tantalum (LCT) pegmatites are enriched in 
several raw materials. However, their small size and the 
limited penetration depth of the sensors, limits remote 
sensing approaches. This study evaluates the usefulness of 
hyperspectral data to identify geochemical halos related to 
LCT pegmatites by exploiting the information acquired in 
European projects. It was possible to identify key minerals 
and related mineralogical changes that can be due to 
hydrothermal alteration. Partial Least Squares Regression 
(PLSR) was used to model the abundance of Li, Rb and Cs. 
The most reliable results were obtained for Cs, with results 
being influenced by lithological and weathering factors. New 
outcomes are expected, namely mineral chemistry studies 
that will complement the hyperspectral results.  
 

Index Terms— Reflectance spectroscopy, mineral 
exploration, PLSR, chemometrics, pegmatite 
 

1. INTRODUCTION 
 
Pegmatite rocks, including LCT (lithium-cesium-tantalum) 
pegmatites, are enriched in several raw materials critical for 
the energy transition [1, 2]. Therefore, it is essential to 
develop and improve less-invasive exploration techniques to 
target LCT pegmatites, namely based on remote sensing 
approaches. Previous works have employed multispectral 
satellite images to identify lithium (Li)-bearing pegmatites [3, 
4]. However, the relatively small size of the pegmatite bodies 
and limited penetration depth of remote sensing are key 
constraints for their direct identification [5]. One possible 
strategy to increase the target size of pegmatites and detect 
buried bodies is detecting the associated geochemical halos 
in the host rocks instead.  

The LIGHTS project (http://lights.univ-lorraine.fr/), 
finished in December 2021, allowed identifying target areas 
for Li-exploration through the integration of remote sensing 
data acquired at different scales with auxiliary geological and 
geochemical data [4]. In the scope of this project, a first 
characterization of the geochemical halos was conducted [6]. 

However, the ongoing GREENPEG project 
(https://www.greenpeg.eu/) goes further by linking 
geochemistry and remote sensing, i.e. by aiming to detect the 
pegmatite alteration halos using satellite data. Both projects 
cover the study area of this work, the Fregeneda-Almendra 
pegmatite field, spreading from Spain to Portugal, where 
several LCT pegmatites outcrop. This study tries to assess the 
usefulness of hyperspectral data (reflectance spectroscopy) 
for pegmatite halo detection through: (i) mineral 
identification and compositional changes; and (ii) distinct 
multivariate approaches. One strategy is Partial Least Squares 
Regression (PLSR) modeling, often used to estimate Rare 
Earth Elements (REE) or modal mineral abundances from 
hyperspectral data [7, 8]. PLSR can be useful when the 
spectral regions correlated with the target features are not 
clearly identified in the spectra, as is the case of important 
targets for LCT pegmatites such as Li, rubidium (Rb) and 
cesium (Cs). 
 

2. DATA AND METHODS 
 

2.1. Sampling and geochemical assays 
 
A systematic sampling transverse to both mineralized and 
barren dykes was conducted in the Fregeneda-Almendra area 
(n = 106). Both surface and drill core samples of the 
pegmatite host rocks were collected. Moreover, samples were 
collected away from pegmatite influence to serve as a control 
group. The host rocks correspond to Neoproterozoic to lower 
Paleozoic alternating phyllites and metagreywackes [9]. All 
samples were analyzed at Activation Laboratories Ltd. 
(Actlabs), Ontario, Canada, through the 4LITHO(4B2), 8-
Lithium Ore, 4F-B(2ppm), 4F-F, and 8-Peroxide ICP 
analytical packages, resulting in 58 major and trace elements, 
including Li, Rb and Cs, to model pegmatite halos. 

 
2.2. Spectral measurements 
 
Complementary reflectance spectroscopy studies were 
conducted in all 106 samples. The measurements were 
performed using an ASD FieldSpec 4 standard resolution 
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spectrometer (3.0 nm @ 700 nm, 10.0 nm @ 1400 nm, and 
10.0 nm @ 2100 nm) with a Contact Probe with a halogen 
bulb. For calibration, a Spectralon (Labsphere) plate was 
measured every 30 to 45 minutes. Each final spectra 
represented an average of 5 measurements of 40 scans per 
point. For each sample, several spectra were acquired 
considering the different types of faces (naturally exposed, 
fractured, sawn, etc.). Each spectrum was individually 
inspected to select the most representative spectra in each 
sampling point, thus reducing the number of spectra for 
interpretation from 467 to 214. 
 
2.3. Mineral identification 
 
All 214 representative spectra were analyzed through 
AusSpec International Ltd.’s aiSIRIS software, a cloud-based 
artificial intelligence solution for spectral interpretation. The 
software provided complete mineralogy (up to eight 
minerals) identified in the Visible-Near Infrared (VNIR) to 
short-wavelength infrared (SWIR), as well as a quantitative 
measure of mineral spectral abundance and several spectral 
parameters automatically computed for alteration modeling. 
Moreover, the aiSIRIS software allowed performing a quality 
assessment of the spectra based on the reflectance, noise, and 
possible presence of water. 
 
2.4. Exploratory analysis 
 
Exploratory statistical techniques were employed to evaluate 
any possible correlation between: (i) the different spectra; (ii) 
the spectra and the Li, Rb and Cs contents; and (iii) the 
spectral parameters extracted for each spectrum and the 
respective metal contents. The statistical techniques included: 
(i) Pearson’s and Spearman’s correlation coefficient; (ii) 
cluster analysis through Ward hierarchical clustering 
(dendrograms) and K-means; and (iii) principal component 
analysis (PCA). 
 
2.5. Partial Least Squares Regression (PLSR) analysis 
 
The PLSR models were trained and evaluated in calibration 
(cal) and validation (val) datasets, respectively (75%-25%, 
obtained by random splitting). The VNIR-SWIR spectra 
served as independent variables (X) while the Li, Rb and Cs 
concentrations corresponded to the dependent variables (Y). 
The number of components was determined through leave-
one-out cross-validation to minimize both the Root Mean 
Square Error (RMSE) and the number of components to 
avoid overfitting [7, 8]. Before training, anomalous Y values 
were removed (outliers identified in the boxplots and 
histograms; n = 148). The trained models were used to predict 
the Li, Rb and Cs concentrations of the val dataset, and model 
performance was assessed through the computation of the 
RMSE and coefficient of determination (R2) on both cal and 
val datasets. The effect of different spectral pre-processing on 
model performance was also evaluated by training models on 
(i) raw data; (ii) continuum-removed (CR) spectra; (iii) first 

derivative (FD); and (iv) standard normal variate 
transformation (SNV). To improve model performance, 
additional data filtering was considered, namely: (i) remove 
spectra from weathered samples (Chemical Index of 
Alteration or CIA ≥ 70%; n = 80); and (ii) divide the original 
datasets considering SandClass classification [10] into Shale 
(n = 112) and Wacke (n =36). 
 

3. RESULTS AND DISCUSSION 
 
3.1. Mineral identification 
 
The identification of diagnostic spectral features allowed the 
discrimination of one to five distinct minerals in each 
spectrum, with at least three minerals recognized in most 
spectra (68%). White mica was the most common mineral, 
being present in more than half of the spectra, followed by 
chlorite. Regarding the spectral contribution of minerals in 
each spectrum, white mica features are dominant in more than 
half of the spectra (53.74%). The second dominant features 
are those of montmorillonite (11.68%) followed by chlorite 
(7.94%), tourmaline (6.54%) and biotite (5.14%). Changes in 
the wavelength position of diagnostic features were 
investigated to detect possible changes in the mineral 
chemistry of white mica and chlorite (Fig. 1).  

 

 
Fig. 1. Distribution of the wavelength (Wav) position of the 
FeOH absorption feature of chlorite (a) and the AlOH 
absorption feature of white mica (b), with respective inferred 
composition. Fe – iron, Mg – magnesium, chl – chlorite. 

Such changes have been employed as vectors towards 
metallic ore deposits [11, 12]. Muscovitic tending to 
phengitic compositions were observed in the contact samples 
of some mineralized pegmatite dykes. Similarly, in the same 
locations, magnesium-bearing chlorites were observed near 
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the contact with the mineralized dykes. Nonetheless, phengite 
has been reported to form as a consequence of either 
metamorphism or hydrothermal alteration processes [11]. 
These chemical changes and their potential use for pegmatite 
exploration need to be correlated and validated by ongoing 
detailed mineral chemistry studies. 
 
3.2. Correlation and cluster analysis  
 
No moderate or strong correlations were observed between 
the element concentrations and the automatically retrieved 
spectral parameters. Only weak correlations (0.3 < r <0.5) 
were observed for parameters such as the wavelength of the 
white mica AlOH absorption or of the MgOH absorption. 
Moreover, hierarchical clustering allowed grouping the 214 
spectra into three clusters based on their spectral similarities 
(Fig. 2). However, there is no relation between the clusters 
identified and the Li, Rb and Cs concentrations. Nonetheless, 
it could be valuable to evaluate in the future, which spectral 
properties contributed the most for clustering and if they can 
be used for mineral or lithological discrimination. 

 
Fig. 2. Hierarchical clustering of the representative spectra. 
 
3.3. PLSR modeling 
 
It was not possible to obtain reliable predictions using the 
datasets without outliers. When removing samples with high 
CIA values, predictions improved all-around for Rb, and for 
Cs when considering SNV. The best results were obtained 
with the Shale dataset for Li and Rb, and with the Wacke 
dataset for Cs (Fig. 3). High overfitting, i.e., high R2

cal but 
low R2 in the prediction (R2

pred), was observed for Li and Rb 
with the Wacke dataset, resulting in random predictions in 
some cases. This was also observed for Cs but in the Shale 
dataset instead. Since Li, Rb and Cs are expected to be 
incorporated in the same trap minerals (micas) of the host 
rocks, there is no current explanation for the distinct 
performances in the Wacke and Shale datasets. However, the 
results from the ongoing mineral chemistry studies should 
provide key insights on this matter. Regarding the type of 
spectral pre-processing (Fig. 3), the best results were obtained 
with the FD spectra considering the three Y variables (Fig. 
4), since FD allows enhancing important absorptions while 
removing background noise. Comparing the measured and 
predicted compositions (Fig. 4), the most reliable results were 
obtained for Cs, being Li the most difficult element to model 

and predict based on spectral features. Plotting the regression 
coefficients as a function of the wavelength (Fig. 5) allowed 
identifying the most influential spectral regions for the PLSR 
models. In the case of Cs, spectral regions around 2200 nm 
and 1840 nm are positively related to predictions while the 
region around 2270 nm is negatively related. Such regions 
should be further investigated to evaluate if there is any 
absorption directly related to the presence of Cs. This 
information could also be used to develop satellite- or 
airborne-based remote sensing approaches for the detection 
of pegmatite halos. Li and Rb predictions are expected to 
improve with new geochemical data coming from the 
GREENPEG project, especially due to new sampling 
procedures of the host rocks. 

 
Fig. 3. Comparison of R2

cal and R2
pred values for Li, Rb and 

Cs with different spectral pre-processing for both datasets. 
 

  
Fig. 5. PLSR coefficients of the Cs model (built on the Wacke 
dataset) as functions of wavelength. 
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Fig. 4. PLSR models constructed using the Shale dataset for Li and Rb, and the Wacke dataset for Cs, while excluding outliers. 

4. CONCLUSIONS 
 
This study evaluates for the first time the potential use of 
hyperspectral data for the detection of chemical halos related 
to LCT pegmatites by exploiting data acquired under recent 
European projects. VNIR-SWIR spectra of the host rocks 
allowed to identify key minerals and respective mineralogical 
changes that can be further exploited to model and map 
hydrothermal alteration related to pegmatite emplacement. 
The understanding of these chemical changes will be 
improved with future integration of mineral chemistry. 
Clustering of the spectra based on similar properties could be 
useful for lithological or mineralogical discrimination. 
Finally, a first chemometric approach was employed with the 
PLSR, showing that lithological and weathering factors 
influenced the results. The correct spectral pre-processing 
was also determinant in the prediction, with the most reliable 
results obtained for Cs. The results will be improved in the 
future through newly acquired geochemical data. The 
GREENPEG project will build on the obtained results by 
proposing improved algorithms for LCT pegmatite halo 
detection. The results indicate that similar approaches could 
be attempted using AUV/airborne or satellite borne 
hyperspectral sensors, such as Mjolnir or PRISMA. 
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