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a b s t r a c t

We discuss a novel sequential test based on the quadratic variation of the observations
to decide which regime governs the dynamics of the non-observed process in a filtering
problem with small observation noise. The non-observed state process is a self-exciting
threshold autoregressive process of order one (SETAR(1)) with two regimes. The obser-
vation function is not one-to-one. The proposed procedure performs well and may be
competitive in some applications.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Problems of estimating a non-observed threshold autoregressive-type nonlinear process arise in practice in a diversity
f engineering and financial applications. Real-world examples can be found in volatility extraction from economic and
inancial time series (e.g. Tong and Yeung, 1991) such as exchange rates, indices, for instance GNP and stock prices, and
rediction. Common target tracking problems, for example, also fall in the category of problems under investigation here
Bar-Shalom and Li, 1996; Liu and Zhang, 2001). When the connection between the non-observed process and the noisy
bservations leans on an observation function that is one-to-one, the estimation problem (filtering) is not difficult to solve
e.g. Gelb, 1974). Additional difficulties come on the scene otherwise and accurate estimators (filters) cannot generally
e found. The problem in discrete time was first treated in Fleming and Zhang (1991) and Fleming et al. (1991) where
tatistical hypothesis tests were proposed, namely a quadratic variation test (QVT) and a likelihood ratio test (LRT), aiming
t taking a decision to choose among competing filters on successive time instants. For such tests to perform a detectability
ssumption must hold true. Later, Milheiro-Oliveira and Roubaud (1995) adapted the LRT test to the context of a particular
etectability assumption not covered by previous authors. See also Fleming and Zhang (1992) for an exploration of the
elated numerical results. The continuous-time analogues appeared earlier in Fleming et al. (1988a) and Roubaud (1993,
995) for the piecewise linear case, in Fleming and Pardoux (1989) for the nonlinear piecewise monotone case, and were
ater generalized in Zhang (1998) and Wang et al. (2006) to the case of a diffusion term depending on an unknown Markov
hain and to hybrid systems. The problem studied in Tong and Yeung (1991) is different: tests for nonlinearity in time
eries are adapted and extended to cope with partially observed series with unknown parameters. Another related but
ifferent problem is treated in Brouste et al. (2020), where a likelihood ratio test for a change in the mean-reverting
arameter of a first-order AR(1) with stationary Gaussian noise is proposed. Although the model investigated is more
eneral in that the noise may not be white and model parameters are also unknown, Brouste et al. (2020) do not consider
artially observed time series. Related work on partially observed discrete dynamical systems (PODDS) investigates state
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stimation in a class of piecewise models for which the state space is finite (see Imani and Ghoreishi, 2021 and references
herein) which is not the case in this paper. We should also refer recent research on data science that uses state space
escription of the dynamics and explicit state space estimation methods of the type presented here to establish self-
upervised learning algorithms. An example is the adoption of mass–spring systems representation for robot manipulation
f deformable linear objects (Yan et al., 2020).
To be more specific, let us consider the following discrete time piecewise linear model{

Xk+1 = Xk + ε b(Xk) +
√

ε σ (Xk) uk
Yk = h(Xk) +

√
ε vk ,

k = 0, 1, . . . , K (1)

with

(H1) b(x) = B−x1{x<0} + B+x1{x≥0} , σ (x) = σ−x1{x<0} + σ+x1{x≥0} , h(x) = H−x1{x<0} + H+x1{x≥0} , B−, B+, σ−, σ+,H− and
H+ being parameters of the model, assumed known;

(H2) {uk}k , {vk}k are standard Gaussian independent white noises;
(H3) X0 is a random variable with law N (µ0, σ

2
0 ) and is independent of the noises {uk}k and {vk}k;

(H4) ε > 0 is a small parameter,

ll processes taking values in R. The process {Xk}k is nonlinear and is called a Self-Exciting Threshold Autoregressive
rocess of order 1 (SETAR(1)).
Note that this model corresponds to an Euler discretization of a piecewise linear continuous-time model with time step

qual to ε. Constant terms are not included in the model since, by change of origin, one can always reduce any piecewise
inear model to the above case.

Assuming that the process {Xk}k is not observed but observations are available corresponding to realizations of the
rocess {Yk}k, our goal is to solve the problem of estimating Xk, for each time instant tk, based on the observations available
ntil tk, Y1, Y2, . . . , Yk. It is well known that the best estimate of Xk in the mean square sense is X̂k = E[Xk|Yk

0], where Yk
0

is the σ -algebra of the observations until time tk. If model (1) was linear it would be possible to obtain closed formulas
for X̂k and E[(Xk − X̂k)2 | Yk

0], thus completely characterizing the conditional distribution of Xk given Yk
0 , which would

be Gaussian (Kalman and Bucy, 1961). Since model (1) is nonlinear, the estimation requires studying the just mentioned
conditional distribution. Unfortunately, computation of the moments and their behavior along time is rather complex and
difficult to perform in real time. For this reason it is frequent in engineering and financial applications to approximate the
solution by using suboptimal estimators. The Extended Kalman Filter (EFK) is a rather popular estimator for this purpose
(we refer for instance to Gelb, 1974). If H+H− < 0, i.e. the function h is not one-to-one, although it is easy to estimate
h(Xk) the same is not true for Xk. The EKF does not necessarily converge to the optimal solution, the difficulty being the
identification of whether xk > 0 or xk < 0 (the sign of Xk). In this paper we are interested in this last case. In situations
where the conditional variance is small the problem can indeed be solved. That is the main reason to set a ’’detectability
assumption’’ which can be one of the following:

(HD) H2
−
σ 2

−
= H2

+
σ 2

+
and B+ ̸= B−;

(HD′) H2
−
σ 2

−
̸= H2

+
σ 2

+
.

The problem under assumption (HD′) is studied in Fleming et al. (1991). In the present paper, we study the problem under
assumption (HD). Without loss of generality we will assume that

(H5) H+ > 0,H− < 0.

We will also assume that

(H6) B+ < 0 , B− < 0 .

Assumption (H6) will be necessary in Section 3, when the existence of a stationary solution of system (1) is assumed.
Although assumption (H6) appears to be restrictive, this is in fact not the case. If e.g. B+ > 0 , B− < 0 the trajectories,
once they escape to the positive side of the plane, will explode if given enough time. In this region, system (1) behaves
almost like a linear system thus, again, an accurate solution to the problem is well known (Kalman and Bucy, 1961).
Assumption (H6) corresponds to the situation where the non-observed process is most likely to cross 0, thus creating
difficulties in the identification of its sign.

The paper is organized as follows: in Section 2 we explain the steps that should be followed in order to solve the
filtering problem; in Section 3 we propose and justify the use of a sequential test based on the quadratic variation of the
observation for decision on the sign of the non-observed process, which is our main contribution to the subject; finally,
in Section 4 we briefly present some simulation results.

The following definition will be used in the sequel:

Definition 1.1. Consider a stochastic process {ξk}k with values in R. We will write ξk = O(εp) , with p > 0, when, for
some q1, q2 ≥ 0, ∃ C1, C2, C3 > 0 : ∀k≥0 E[|ξk|] ≤

C1
εq1

e−C3k/εq2 + C2ε
p . In this situation the process {ξk}k is usually said to

onverge to zero with rate of order εp, when ε converges to zero.
2
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. Solving the filtering problem

The described filtering problem can be solved by performing the following steps on the observed time interval:

1. apply a test for detection of zero crossings;
2. for each time interval with no zero crossings detected apply a test to decide in which region the non-observed state

is evolving (i.e. X < 0 or X > 0);
3. for those detected time intervals use the Kalman–Bucy Filter (KF) associated with either the linear system

(+)
{

Xk+1 = (1 + B+ε)Xk +
√

εσ+uk
Yk = H+Xk +

√
εvk

or the linear system

(−)
{

Xk+1 = (1 + B−ε)Xk +
√

εσ−uk
Yk = H−Xk +

√
εvk

according to the region that was found in the previous step.

hen ε converges to zero, if the tests perform well, the estimation procedure as set out should converge to the optimal
estimator. Indeed, the two KFs have a ‘‘short memory’’ (old values of the observation are essentially not used), therefore
the effect of the initial condition vanishes. As a consequence, on the time intervals in which the state {Xk} remains away
from zero, if we know its sign, the corresponding KF, which is an exact finite dimensional filter in the linear case, provides
an accurate approximation of the optimal filter. After a certain time, the conditional law has only one significant peak
and is approximately Gaussian. The same argument is used in Roubaud (1995)[p. 165] for the continuous-time analog;
see also Pardoux and Roubaud (1989) [Theorem 5.1].

Regarding step 1, that is, the detection of zero crossings, two types of tests can be adopted: one test based on the
observations or one test based on the output of the KFs associated with both linear models (−) and (+). The test
ased on the observations is proposed in Fleming et al. (1991) under assumption (HD′) and one can conclude without
uch effort that it can still be used under assumption (HD). The test based on the output of the KFs is proposed

n Milheiro-Oliveira and Roubaud (1995). In this paper, a test of the first type, that is a zero crossings test based on
he observations, will be adopted and can be described as follows (see Fleming et al. (1991) for details). With c given by1

=
Φ−1(1−α)

√
ε

|H−−H+|
max

(√
H2

+H2
−σ 2

− + H2
− + H2

+ ,

√
H2

+H2
−σ 2

+ + H2
− + H2

+

)
, check if {|Yk| ≥ c , k = i0, i0 + 1, . . . , i0 + m}

occurs for some i0 and m. If true decide that no zero crossings exist on {i0, i0 + 1, . . . , i0 + m}. Thus we will assume that
xk may have changed sign only when the observations drop below level c, in absolute value.

Let us now focus on step 2. For the decision on the sign of Xk, likelihood ratio tests are proposed in the literature
(see Milheiro-Oliveira and Roubaud, 1995; see Fleming et al. (1988b) for the analogue under detectability assumption
(HD′)). Under detectability assumption (HD′) another type of test is proposed in Fleming et al. (1991), a test based on the
quadratic variation of the observations. The aim of the present paper is to adapt this type of test to assumption (HD),
the general idea of the test and the techniques involved being similar to those in Fleming et al. (1991). As usual, a test
statistic Sn is designed in such a way that the alternative represented by system (−) corresponds to an event ‘‘Sn ≤ −l1’’
and the alternative represented by system (+) corresponds to an event ‘‘Sn ≥ l2’’, for given constants l1 and l2. In order
to perform this kind of test, formulas for l1 and l2 are needed. The test is sequential in the sense that the test statistic Sn
evolves with time as observations are collected. In the next Section, approximated formulas are derived for l1 and l2 as
well as for the expected times to reach a decision.

3. A quadratic variation based test for decision on the sign of the non-observed process

As mentioned in the previous Section, it is our purpose to build a test based on the quadratic variation of the
observation process {Yk}k which enables us to decide on the sign of the non-observed process {Xk}k, as observations
are being provided. In the design of the sequential test, the alternatives to be tested are the occurrence of one of the
following events: A+ = {xk > 0 ; k = i0, i0 + 1, . . . , i0 + m} , A− = {xk < 0 ; k = i0, i0 + 1, . . . , i0 + m} , where
the interval [i0, i0 + m] is defined in the first step of the procedure presented in Section 2, that is, it is an interval
where one assumes that no zero crossings of the non-observed process {Xk}k occur. Therefore, for fixed i0 and m, we
consider the null hypothesis H0 : b(xk) = B+ , σ (xk) = σ+ , h(xk) = H+, for k = i0, . . . , i0 + m and the alternative
H1 : b(xk) = B− , σ (xk) = σ− , h(xk) = H−, for k = i0, . . . , i0 + m.

In order to define the test statistic, the following notation is introduced:

∆+

k
def
= Yk+1 − (1 + B+ε)Yk , ∆−

k
def
= Yk+1 − (1 + B−ε)Yk.

1 Φ denotes the standard normal distribution function.
3
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Notice that under H0 one can write that

∆+

k = H+σ+

√
ε uk +

√
ε vk+1 − (1 + B+ε)

√
ε vk , (2)

∆−

k = H+(B+ − B−)εXk + H+σ+

√
ε uk +

√
ε vk+1 − (1 + B−ε)

√
ε vk (3)

while, under H1, one writes

∆+

k = H−(B− − B+)εXk + H−σ−

√
ε uk +

√
ε vk+1 − (1 + B+ε)

√
ε vk ,

∆−

k = H−σ−

√
ε uk +

√
ε vk+1 − (1 + B−ε)

√
ε vk .

It is easy to conclude that, under hypothesis H0, one has ∆+

k ∼ N (0, Γ 2
+
ε) and, under hypothesis H1, one has ∆−

k ∼

(0, Γ 2
−
ε) with

Γ 2
+

def
= H2

+
σ 2

+
+ 1 + (1 + B+ε)2 , Γ 2

−

def
= H2

−
σ 2

−
+ 1 + (1 + B−ε)2 . (4)

otice that assumption (HD) implies Γ 2
+

− Γ 2
−

= O(ε). More precisely

Γ 2
+

− Γ 2
−

= ε(B+ − B−)(2 + (B+ + B−)ε) . (5)

Notice also that, from (2)–(4), under H0 we can easily write that 1
√

ε
∆−

k = Γ+w+

k + O(
√

ε) and 1
√

ε
∆+

k = Γ+w+

k , with
w+

k = [H+σ+uk + vk+1 − (1 + B+ε)vk] /Γ+ . The processes {w+

k : k odd} and {w+

k : k even} are both standard Gaussian
hite noises.
Let us now define the process Zk =

1
ε
ln Γ−

Γ+
+

1
2ε

(
∆

−

k
2

Γ 2
−

−
∆

+

k
2

Γ 2
+

)
and finally the test statistic

Sn =

i0+n∑
k=i0

Zk , for 0 ≤ n ≤ m . (6)

he decision rule of the test is as follows: accumulate Sn until either "SN∗ ≤ −l1" or "SN∗ ≥ l2" occurs or until
he end of the time interval [i0, i0 + m] previously defined is reached; if "SN∗ ≤ −l1" occurs then hypothesis H1
s kept; if "SN∗ ≥ l2" occurs then H0 is kept; otherwise no decision is taken. The variable N∗ is a stopping time:
∗

= inf ({n ∈ N : Sn ≤ −l1 or Sn ≥ l2} , m) . Having in mind that formulas for l1 and l2 must be provided let us first
ewrite the statistic Sn as

Sn =
n + 1

ε
ln

Γ−

Γ+

+
1

2ε2

i0+n∑
k=i0

(
∆−

k
2

Γ 2
−

−
∆+

k
2

Γ 2
+

)
. (7)

Let us consider the error probabilities

p+ = P(‘‘rejecting H0 ’’ |H0) , p− = P(‘‘rejecting H1 ’’ |H1) . (8)

Approximate formulas for these probabilities are proposed in Proposition 3.1. Approximate values for the two constants
1 e l2 will stem from solving (9) and (10) for fixed values of p+ and p−.

roposition 3.1. The probabilities p+ and p− defined in (8) are approximately given by

p+ =
1 − e−θ+ l2

eθ+ l1 − e−θ+ l2
(9)

nd

p− =
1 − eθ− l1

e−θ− l2 − eθ− l1
, (10)

ith

θ+ =

(
−4|B+| + H2

+
σ 2

+
(B+ − B−)

)
(H2

+
σ 2

+
+ 2)3

2|B+|(B+ − B−)
(
12 + 12H2

+σ 2
+ + 5H4

+σ 4
+ + H6

+σ 6
+

) , (11)

θ− =

(
−4|B−| − H2

−
σ 2

−
(B+ − B−)

)
(H2

−
σ 2

−
+ 2)3

2|B−|(B+ − B−)
(
12 + 12H2

−σ 2
− + 5H4

−σ 4
− + H6

−σ 6
−

) . (12)

The main arguments used to derive these approximate formulas are now presented. They rest on Lemmas 3.1 to 3.3
given below.

Lemma 3.1. Let us assume that H holds. Then one has X4
= O(1) .
0 k

4



P. Milheiro-Oliveira Statistics and Probability Letters 184 (2022) 109385

P
B

1
w

I
t
r
f

L

roof. Using (1) and some elementary properties of the Gaussian law it is immediate to conclude that E[X4
k ] = (1 +

+ε)4E[X4
k−1] + 6(1 + B+ε)2σ 2

+
εE[X2

k−1] + 3σ 4
+
ε2. Applying Holder’s inequality to the term on E[X2

k−1] the upper bound

E[X4
k ] ≤ [(1 + B+ε)4(1 + |B+|ε)]kE[X4

0 ] +

(
3

|B+|
+ ε

)
3σ4

+

2|B+|
is obtained since, as (H6) holds, for ε small enough one has

−(1+B+ε)4(1+|B+|ε) ≥ 2|B+| ε. The term on E[X4
0 ], representing the effect of the initial condition, vanishes exponentially

ith time given that (1 + B+ε)4(1 + |B+|ε) < 1 (see also Amendola et al., 2006). □

Let us define a new process {η+

k }k by

η+

k
def
=

1
ε2

(
∆−

k
2

Γ 2
−

−
∆+

k
2

Γ 2
+

)
−

H2
+
σ 2

+
(B+ − B−)2

2|B+|Γ 2
−

. (13)

n the sequel we will use the following notation for {ηk}k: the upper script ‘‘+ ’’ (respectively ‘‘-’’) in a variable means
hat the variable will be considered under hypothesis H0 (respectively H1). The test statistic Sn given in (7) can be easily
ewritten depending on {η+

k }k, under the hypothesis that H0 holds. On the other hand, one can derive a set of properties
or {η+

k }k that explain how this process behaves approximately. These are established in the next Lemma.

emma 3.2. The following properties hold for process {η+

k }k:

(i) η+

k −
H2

+
σ 2

+
(B+ − B−)2

4Γ 2
−

ε = O(ε2);

(ii) var (η+

k ) =
4(B+ − B−)2

Γ 4
+Γ 4

−

(
4 + 8H2

+
σ 2

+
+ 5H4

+
σ 4

+
+ H6

+
σ 6

+

)
+ O(

√
ε);

(iii) {η+

2k−1}k, {η
+

2k}k both are approximately non correlated sequences;

(iv) η+

2k−1η
+

2k −
8(B+ − B−)2

Γ 4
+Γ 2

−

= O(ε).

This means that the sequences {η+

2k−1}k, {η
+

2k}k behave approximately like mutually correlated noises with correlation
vanishing with time lag.

Proof.

i. Since, under hypothesis H0, ∆+

k has zero mean with variance Γ 2
+
ε then

E[η+

k ] =
E[∆−

k
2
] − Γ 2

−
ε

Γ 2
−

1
ε2 −

H2
+
σ 2

+
(B+ − B−)2

2Γ 2
−|B+|

(14)

where E[∆−

k
2
] − Γ 2

−
ε = H2

+
(B+ − B−)2ε2 E[X2

k ] as a consequence of (3) and (4). Using the fact that E[X2
k ] =

(1+ B+ε)2k E[X2
0 ] + σ 2

+

1−(1+B+ε)2k

|B+|(2+B+ε) and some trivial calculations that bring in assumptions (HD) and (H6), we obtain

E[η+

k ] =
H2

+
(B+−B−)2

Γ 2
−

[
(1 + B+ε)2k

(
E[X2

0 ] −
σ2
+

|B+|(2+B+ε)

)
+

σ2
+

2(2+B+ε) ε

]
. From this expression we derive the desired

result since (1 + B+ε)2k vanishes exponentially fast. □
ii. Using the definition (13) of η+

k and (14) we find that

var (η+

k ) =

⎧⎨⎩E

⎡⎣(∆−

k
2
− E[∆−

k
2
]

Γ 2
−

)2
⎤⎦+ E

⎡⎣(∆+

k
2
− Γ 2

+
ε

Γ 2
+

)2
⎤⎦

−2E

[
∆−

k
2
− E[∆−

k
2
]

Γ 2
−

∆+

k
2
− Γ 2

+
ε

Γ 2
+

]}
1
ε4 . (15)

From (3), since assumption (H2) holds and ∆+

k ∼ N (0, Γ 2
+
ε), we can write that

E
[(

∆−

k
2
− E[∆−

k
2
]

)2]
= 2

[
H4

+
σ 4

+
+ 1 + (1 + B−ε)4

]
ε2

+ 4
[
H2

+
σ 2

+
+ H2

+
σ 2

+
(1 + B−ε)2 + (1 + B−ε)2

]
ε2

+ O(ε3)

E
[(

∆+

k
2
− Γ 2

+
ε

)2]
= 2Γ 4

+
ε2

E
[(

∆−

k
2
− E[∆−

k
2
]

)(
∆+

k
2
− Γ 2

+
ε

)]
= 2

[
H4

+
σ 4

+
+ 1 + (1 + B−ε)2(1 + B+ε)2

]
ε2

+ 4
[
H2 σ 2

+ H2 σ 2 (1 + B ε)(1 + B ε) + (1 + B ε)(1 + B ε)] ε2
+ O(ε5/2) .
+ + + + − + − +

5
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The result comes out by replacing these expressions in (15) followed by a sequence of elementary calculations
which use the fact that (HD) holds. □

iii. Applying the same arguments used before in the proof of item ii., we can rewrite (13) as η+

k − E
[
η+

k

]
=

1
Γ 2

−
Γ 2

+

[(
Γ 2

+
− Γ 2

−

) (
H2

+
σ 2

+
(u2

k − 1) + (v2
k+1 − 1)

)
+
(
−Γ 2

+
(1 + B−ε)2 + Γ 2

−
(1 + B+ε)2

)
(v2

k − 1)
] 1

ε
+ τk + O(ε) , with

τk = τ (uk, vk, vk+1, Xk) being a random variable given by a sum of products all involving at least one odd power
of the noises in such a way that its expected value is zero and τk , τk+2 are almost uncorrelated. This expression
highlights the fact that the correlation between η+

k and η+

k+2 is of low order. □

iv. Applying the same arguments used before in the proof of item iii., we find that cov[η+

k , η+

k+1] =
1

Γ 4
−

Γ 4
+

(
Γ 2

+
− Γ 2

−

)[
−Γ 2

+
(1 + B−ε)2 + Γ 2

−
(1 + B+ε)2

]
E[(v2

k+1 − 1)2] 1
ε2

+O(ε) . Using (5) and, as a consequence, the fact that −Γ 2
+
(1+

B−ε)2 + Γ 2
−
(1 + B+ε)2 = 2Γ 2

−
(B+ − B−)ε + O(ε2) ends the proof. □

Resorting to Lemmas 3.1 and 3.2, an approximation of the process {εSn}n by a diffusion process can be established.
his is done in the following lemma:

emma 3.3. Let us assume that H0 holds, consider the statistic Sn given by (6) and take t = εn. Then εSn can be approximated
y ζt as n → +∞, with {ζt}t being the diffusion process solution of the stochastic differential equation

dζt = γ 2
+
θ+dt +

√
2ε γ+dW+

t , ζ0 = 0 (16)

where {W+

t }t is a standard Wiener process under H0, θ+ is given by (11) and

γ+ =

|B+ − B−|

√
12 + 12H2

+σ 2
+ + 5H4

+σ 4
+ + H6

+σ 6
+

√
2(H2

+σ 2
+ + 2)2

. (17)

Proof. Let us define processes W o
t (n) =

√
2ε

ση+

(
η+

1 + η+

3 + · · · + η+

2[n/2]−1

)
and W e

t (n) =

√
2ε

ση+

(
η+

2 + η+

4 + · · · + η+

2[n/2]

)
with

σ 2
η+ = var[η+

]. As n → +∞ the following weak convergence holds (Billingsley, 1999, Theor. 14.1): W o
t (n) −→ W o

t

and W e
t (n) −→ W e

t where {W o
t }t and {W e

t }t are Wiener processes. Then using Lemma 3.2 the process W+

t =

Wo
t +W e

t
C+

, with C2
+

= 2
(
1 +

16
σ2
η+

(B+−B−)2

Γ 4
+

Γ 2
−

)
, is a standard Wiener process. From (7) we obtain under H0: εSn = (n +

1)εγ 2
+
θ+ +

√
2ε γ+

Wo
t (n)+W e

t (n)
C+

, with γ+ =
1
4ση+C+ and θ+ given by (11). From here we derive the approximation (Fleming

nd Rishel, 2012, chap. V-Sec. 5). □

roof of Proposition 3.1. The proof closely follows (Fleming et al., 1991)[p. 1183]. Take p+(z) = Pζ0=z{ζT∗
+

= −εl1 |A+}

here T ∗
+

= inf{t : ζt ≤ −εl1 or ζt ≥ εl2} is a stopping time. Applying Dynkin’s formula (see details in Fleming and

ishel, 2012[chap.V-7.1]) the following ODE for p+(z) is obtained:
{

εp′′
+

+ θ+p′
+

= 0
p+(−εl1) = 1 , p+(εl2) = 0 . The error probability

hat we were looking for, defined in (8), is p+ = p+(0) =
1−e−θ+ l2

eθ+ l1−e−θ+ l2
. A similar reasoning under hypothesis H1 gives{

εp′′
−

+ θ−p′
−

= 0
p−(−εl1) = 0 , p−(εl2) = 1 and allows the computation of the error probability p− . □

Results by Fleming and Rishel (2012) enable also the computation of the expected times to reach a decision under
hypothesis H0 and H1, respectively:

E[T ∗

+
] = ε

(
l2

γ 2
+θ+

− p+

l1 + l2
γ 2

+θ+

)
, E[T ∗

−
] = ε

(
−

l1
γ 2

−θ−

− p−

l1 + l2
γ 2

−θ−

)
. (18)

Note that using the expressions of γ− and (12) gives γ 2
−
θ− =

−4|B−|(B+−B−)−H2
−

σ2
−
(B+−B−)2

4|B−|(H2
−

σ2
−

+2)
. The formula for the expected

time E[T ∗
+
] can be derived by solving the ODE

{
εγ 2

+
g ′′
+

+ γ 2
+
θ+g ′

+
+ 1 = 0

g+(−εl1) = g+(εl2) = 0 , and taking E[T ∗
+
] = g+(0). A similar

argument can be used to obtain the expression of E[T ∗
−
].

4. Simulation experiments

Monte Carlo simulations are done in order to observe the behavior of the proposed test when deciding on H0 against
H1. The simulations run for M = 200 Monte Carlo replications with the initial condition X0 ∼ N (−5; 0.12), and in the
time interval [0, 100]. Illustrative examples are presented in Table 1 as well as the results obtained by applying the tests
presented in the previous Sections with p+ = p− = 5%. We also registered the percentage of monotony intervals that
have been incorrectly detected in the simulations, denoted p∗.

Example 2 and 3 illustrate, respectively, the influence of the drift and of the signal to noise ratio (here represented by
|H | and |H |) on the test performance. We would intuitively expect a decrease in the waiting times when |B − B |, |B |
+ − + − +

6
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Table 1
Numerical results of the tests (p∗ = percentage of wrong decisions).

Parameters l1 , l2 p∗ E[T−], E[T+]

Example 1 B+ = −0.05, B− = −1,H+ = σ+ = σ− = 1,H− = −1 0.42, 1.10 4.8% 0.25, 0.17
Example 2 B+ = −0.25, B− = −5,H+ = σ+ = σ− = 1,H− = −1 2.14, 5.69 4.5% 1.27, 0.86
Example 3 B+ = −0.25, B− = −1,H+ = 4, σ+ = 0.05,H− = −2, σ− = 1 0.53, 0.60 5.1% 2.68, 2.16

and |B−| increase, an effect that we do not observe in the examples. The comparison of the results with those in Milheiro-
liveira and Roubaud (1995) highlights the fact that the decision test proposed in this paper may have some advantage
ver those existing in the literature in that it may be faster in reaching a decision, depending on the particular problem
hat one wants to solve.

We should stress that although the derivation of formulas (9)–(12) involves a considerable amount of computations,
mplementation of the proposed test itself presents no real challenge, as the complexity of the algorithm is similar to that
n Milheiro-Oliveira and Roubaud (1995) or in Fleming et al. (1991).
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