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out in collaboration with other authors, but the candidate clarifies that she played a main 

role in conceiving, obtaining, analyzing, and discussing the results, as well as in 

preparing the final published version of each one of them. 
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“The mind adapts and converts to its own purposes the obstacle to our acting. The 

impediment to action advances action. What stands in the way becomes the way.” 

― Marcus Aurelius, Meditations
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Resumo 

 As doenças bacterianas nas plantas têm um impacto agronómico, ambiental, 

económico e humanitário significativo, o que justifica a procura e desenvolvimento de 

ferramentas para diagnósticos rigorosos e precoces (ou seja, antes do aparecimento de 

sintomas visuais ou aquando dos primeiros sinais de infeção). As doenças da pinta e 

mancha bacteriana do tomateiro (causadas, respetivamente, pela bactéria gram-

negativa Pseudomonas syringae pv. tomato, Pst, e Xanthomonas euvesicatoria, Xeu), 

assim como o cancro bacteriano do kiwi (desencadeado por Pseudomonas syringae pv. 

actinidiae, Psa) são exemplos de distúrbios biológicos cuja gestão sustentável e 

proactiva é atualmente desafiadora. Estes agentes patogénicos são responsáveis por 

causar modificações nas características biofísicas, moleculares e estruturais das 

plantas hospedeiras, levando a alterações no seu comportamento espectral. 

 O presente trabalho tem como objetivo explorar a possibilidade de aplicar 

sensores de deteção foliar proximal, in vivo, para uma avaliação rápida e não destrutiva 

das características espectrais das plantas. Para além disso, também é investigada a 

possibilidade de detetar perfis espectrais não conformes, derivados de uma infeção 

bacteriana, que permitam estabelecer um diagnóstico indireto da doença. A 

possibilidade de discriminação do agente etiológico é também estudada. 

 Foram testados diferentes sensores hiperespectrais proximais, no âmbito deste 

trabalho, para providenciar um diagnóstico rápido, precoce e em tempo real de doenças 

nas culturas do tomate (herbáceas) e kiwi (lenhosas). Os ensaios de caso foram 

realizados em condições controladas (Porto, Portugal) e de campo (Guimarães, 

Portugal). 

 No Capítulo I, é apresentado o principal tópico desta tese, juntamente com a 

estrutura da mesma. O Capítulo II fornece o enquadramento do trabalho, abordando os 

principais conceitos, contexto e pertinência do tema. O Caso de Estudo 1 é introduzido 

neste capítulo, tratando-se de uma revisão crítica que apresenta o estado da arte 

relacionado às técnicas atuais e inovadoras de deteção proximal realizadas para 

diagnosticar doenças nas plantas. Os resultados da pesquisa identificaram as principais 

metodologias atualmente utilizadas globalmente, bem como suas vantagens e principais 

limitações. Destaca-se a necessidade de métodos diagnósticos complementares. As 

abordagens de deteção proximal emergiram dos resultados como ferramentas 

adequadas para preencher esta lacuna de investigação. A sua descrição é feita, 

juntamente com a explicação da sua aplicação no diagnóstico de doenças nas plantas. 
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Adicionalmente, é fornecida uma breve contextualização da análise de dados para 

extração de informação, identificando diferentes soluções de Machine Learning (ML) e 

Quimiometria aplicadas na modelação de dados. São ainda identificadas métricas para 

avaliação e comparação dos diferentes modelos. 

 No Capítulo III, são apresentados os casos de estudo realizados no âmbito 

deste trabalho. O Caso de Estudo 2 investigou a combinação de espectroscopia 

hiperespectral (de transmitância e de reflectância) com duas abordagens de modelação 

preditiva para a discriminação de doenças bacterianas em folhas de tomateiro e kiwi, 

adquiridas, respetivamente, em condições controladas e de campo. A primeira 

abordagem explorou a combinação de Índices de Vegetação (IVs), uma abordagem 

paramétrica amplamente utilizada para reduzir a dimensionalidade dos dados 

espectrais, com a Flexible Discriminant Analysis (FDA), um algoritmo de ML com um 

método de seleção de variáveis integrado. A segunda abordagem, por sua vez, 

investigou a ferramenta Gaussian Process Classification Band Analysis Tool (GPC-

BAT), um algoritmo de ML supervisionado integrado no software ARTMO. Ambas as 

abordagens permitiram a identificação das diferentes classes em estudo (envolvendo 

classificação binária e multi-classe), utilizando os dois conjuntos de dados, no entanto, 

a ferramenta GPC-BAT apresentou melhores resultados. Para além disso, os 

comprimentos de onda nas regiões do azul (450 nm), verde (550 nm), red-edge (680 a 

754 nm) e infravermelho próximo (NIR, 795 a 1000 nm) foram identificados como 

relevantes em ambos os casos de estudo deste artigo. Eles apresentam um significado 

biológico interessante, uma vez que coincidem com as regiões de absorção espectral 

de vários pigmentos fotossintéticos, da água e componentes estruturais das folhas. 

Todos esses compostos são afetados pela ação das bactérias Psa, Pst e Xeu em folhas 

de kiwi e tomateiro, respetivamente. 

 O Caso de Estudo 3 investiga uma técnica in situ e não destrutiva para a 

discriminação do cancro bacteriano em folhas de kiwi usando reflectância hiperspectral 

e abordagens preditivas aplicadas. Diversas metodologias de Seleção de Variáveis (SV) 

e abordagens supervisionadas de ML foram avaliadas. Os resultados mostraram que as 

folhas não sintomáticas apresentaram o comportamento espectral característico da 

vegetação verde e fotossinteticamente ativa, enquanto as amostras sintomáticas 

revelaram desvios nas suas assinaturas espectrais nas regiões visíveis (VIS) e NIR. 

Diversas características espectrais localizadas nas regiões do azul (350-500 nm), verde 

(500-600 nm), vermelho (600-750 nm) e NIR (superior a 750 nm) foram destacadas 

pelas diferentes técnicas de SV. Todas as abordagens de classificação desenvolvidas 

puderam discriminar amostras não sintomáticas e sintomáticas, apoiando a 
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implementação de medições espectrais pontuais para a discriminação de doenças em 

culturas de campo. 

 O Caso de Estudo 4 propõe uma metodologia para investigar o potencial de 

modelos preditivos baseados em pontos de medição hiperspectral (POM, transmitância) 

e ML para diagnóstico in situ e discriminação precoces da pinta e da mancha bacteriana 

do tomateiro. Um modelo de classificação multi-temporal (18 dias) foi desenvolvido, 

consistindo numa estratégia de pré-processamento de normalização vinculada a uma 

Linear Discriminant Analysis (LDA) visando a redução da dimensionalidade dos dados, 

e um algoritmo de ML supervisionado, Support Vector Machines (SVM) para modelação 

preditiva. Os resultados revelaram a aptidão do modelo para classificar corretamente 

tecidos saudáveis e doentes (inoculados com Pseudomonas spp. ou Xanthomonas 

spp.), mesmo em estados não sintomáticos (ou seja, quando apenas amostras sem 

sintomas visíveis foram consideradas). O modelo demonstrou, além disso, a capacidade 

de discriminar folíolos afetados por diferentes agentes patogénicos, tanto em estados 

não sintomáticos como em estados sintomáticos. Quarenta e quatro comprimentos de 

onda foram, para além disso, identificados como os mais relevantes, localizados 

principalmente nas regiões do azul-verde e vermelha do espectro eletromagnético 

(coincidentes com bandas de absorção de clorofila, carotenoides, compostos fenólicos 

e feofitinas). 

 Por fim, o Caso de Estudo 5 explorou o uso de dados hiperespectrais de 

transmissão POM em combinação com o algoritmo Data Driven Soft Independent 

Modeling of Class Analogy (DD-SIMCA) para a avaliação precoce da pinta e mancha 

bacterianas do tomateiro em condições controladas, utilizando amostras saudáveis 

como classe alvo, e a Multivariate Curve Resolution – Alternating Least Squares (MCR-

ALS) como meio para recuperar os perfis espectrais puros de tecidos saudáveis e de 

tecidos doentes. Os resultados da pesquisa demonstraram que o DD-SIMCA pode 

classificar amostras espectrais medidas em tecidos de folhas saudáveis (alvo) como 

amostras regulares. Além disso, esta abordagem de classificação baseada numa classe 

consegue classificar amostras espectrais medidas em folhas inoculadas com Pst e Xeu 

como não regulares, mesmo antes dos sintomas macroscópicos característicos destas 

doenças se tornem visíveis a olho nu. Os perfis espectrais das folhas saudáveis, 

inoculadas com Pst e inoculadas com Xeu também foram estimados e validados por 

meio do cálculo do MCR-ALS. 

 Os cinco casos de estudo apoiam uma abordagem integrada para a avaliação 

espectroscópica proximal in situ, não destrutiva, de doenças bacterianas em culturas 
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herbáceas e lenhosas, tanto em condições controladas quanto de campo. Os resultados 

do presente trabalho demonstram que os modelos baseados em dados de reflectância 

e transmitância hiperespectrais podem ser usados para distinguir tecidos saudáveis de 

tecidos doentes (mesmo em estados de infeção não sintomáticos) e para avaliar as 

variações fisiológicas que permitem a discriminação de diferentes agentes patogénicos. 

 Apesar destes resultados encorajadores, o presente trabalho reconhece que o 

Technology Readiness Level (TRL) destas abordagens ainda é baixo e deve ser 

melhorado. Da mesma forma, a falta de protocolos padronizados para a aquisição e 

modelação de dados hiperespectrais é abordada para uniformizar os processos de 

diagnóstico e reduzir o ruído e interferências espectrais indesejadas. São ainda 

recomendados mais estudos focados em diferentes interações hospedeiro-patógeno. 

Palavras-chave: Deteção Proximal, Doença das Plantas, Modelação Classificativa, 

Cancro Bacteriano do Kiwi, Mancha Bacteriana do Tomateiro, Pinta Bacteriana do 

Tomateiro 
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Abstract 

 Bacterial plant diseases have an important agronomic, environmental, economic, 

and humanitarian impact that justifies researching tools for rigorous and early diagnosis 

(i.e., prior to the appearance of visual symptoms or at the first signs of infection). Bacterial 

tomato speck and spot (caused, respectively, by the gram-negative bacteria 

Pseudomonas syringae pv. tomato, Pst, and Xanthomonas euvesicatoria, Xeu) and kiwi 

bacterial canker (triggered by Pseudomonas syringae pv. actinidiae, Psa) are examples 

of biological disorders whose sustainable and proactive management is currently 

challenging. These pathogens are responsible for causing modifications in hosts’ 

biophysical, molecular, and structural characteristics, leading to modifications in plants’ 

spectral behavior. 

 The present work aims to explore the suitability of in-vivo foliar proximal sensing 

for a quick and non-destructive assessment of plants’ spectral traits, along with the 

identification of non-conform spectral profiles derived from bacterial infection, leading to 

an indirect disease diagnosis. Furthermore, the possibility of pathogen discrimination 

was also explored.   

 The research project tested different non-contact hyperspectral proximal sensors 

for a rapid, early, real-time disease diagnosis in tomato (herbaceous) and kiwi (woody) 

crops. The case studies were developed in controlled (Porto, Portugal), and field 

(Guimarães, Portugal) conditions. 

 In Chapter I the main topic of this thesis is introduced along with its outline, 

Chapter II provides the conceptual background of the research by addressing the main 

concepts, context, and pertinence of the theme, and introduces Case Study 1, a critical 

review presenting the state of the art related to current and innovative proximal sensing 

techniques performed to diagnose plant diseases. The research outcomes identified the 

main methodologies globally currently used, as well as their advantages and principal 

constraints. The necessity of complementary diagnostic methods is highlighted. Proximal 

sensing approaches emerged from the results as suitable tools for filling this gap. Their 

description is made, along with their application in plant disease diagnosis. In addition, 

a brief contextualization of data analysis for information extraction is provided, identifying 

different Machine Learning (ML) and Chemometric solutions applied in data modeling. 

Furthermore, metrics for model evaluation and comparison are identified. 

In Chapter III, were introduced the case studies performed in the aim of this work. 

Case Study 2 studied the combination of hyperspectral spectroscopy (transmittance and 
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reflectance) with two predictive modeling approaches for bacterial disease discrimination 

in tomato and kiwi leaves, acquired respectively in controlled and field conditions. The 

first approach explored the combination of Vegetation Indices (VIs), a widely used 

standard parametric approach suitable for reducing spectral data dimensionality, with a 

Flexible Discriminant Analysis (FDA), an ML algorithm with a built-in feature selection 

method. The second one, in turn, investigated the suitability of the Gaussian Process 

Classification with a Band Analysis Tool (GPC-BAT), an ARTMO software-supervised 

ML algorithm. Both approaches allowed the identification of the different classes in the 

study (the binary and multi-class), using the two datasets, but GPC-BAT showed better 

results. Furthermore, wavelengths in the blue (450 nm), green (550 nm), red-edge (680 

to 754 nm), and near-infrared (NIR, 795 to 1000 nm) were identified as relevant in both 

case studies. They present an interesting biological significance since they coincide with 

the spectral absorption regions of several photosynthetic pigments, water content, and 

structural components of leaves. All these compounds are affected by the action of Psa, 

Pst, and Xeu bacteria in kiwi and tomato leaves, respectively. 

Case Study 3 investigates an in-situ, non-destructive technique for discrimination 

of bacterial canker on kiwi leaves using hyperspectral reflectance and applied predictive 

modeling approaches. Several Feature Selection (FS) methodologies and supervised 

ML approaches were evaluated. Outcomes showed that non-symptomatic leaves 

presented the characteristic spectral behavior of green and photosynthetically active 

vegetation, while symptomatic samples revealed deviations in their spectral signatures 

in the visible (VIS) and NIR regions.  Several spectral features located in the blue (350–

500 nm), green (500–600 nm), red (600–750 nm), and NIR (higher than 750 nm) regions 

were highlighted by the different FS techniques. All the developed classification 

approaches could discriminate non-symptomatic and symptomatic samples, supporting 

the implementation of spectral point measurements for in-field crop disease 

discrimination. 

Case Study 4 a methodology is proposed to investigate the potential of 

hyperspectral point-of-measurement (POM, transmittance) and ML-based predictive 

models for early in-situ diagnosis and discrimination of bacterial speck and spot of 

tomato. A multi-temporal (18 days) classification model was developed, consisting of a 

normalizing pre-processing strategy linked with a Linear Discriminant Analysis (LDA) 

aiming for data dimensionality reduction, and a supervised ML algorithm Support Vector 

Machines (SVM) for prediction. The outcomes revealed the model's fitness for correctly 

classifying healthy and diseased tissues (inoculated with Pseudomonas spp. and 

Xanthomonas spp.), even at non-symptomatic stages (i.e., when only samples without 
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visual symptoms were considered). The model showed, furthermore, the capacity of 

discriminating leaflets affected by different pathogens in both non-symptomatic and 

symptomatic stages. Forty-four spectral features were, moreover, identified as the most 

relevant being mainly located in the blue-green and red regions of the electromagnetic 

spectrum (coinciding with chlorophyll, carotenoids, phenolic compounds, and 

pheophytins absorption bands).  

Lastly, Case Study 5 explores the suitability of hyperspectral POM transmittance 

in combination with Data-Driven Soft Independent Modeling of Class Analogy (DD-

SIMCA) for the early assessment of tomato bacterial speck and spot in controlled 

conditions, using healthy samples as a target class, and Multivariate Curve Resolution - 

Alternating Least Squares (MCR-ALS) as a means to retrieve pure profiles of healthy 

and diseased tissues. The research outcomes demonstrated that DD-SIMCA can 

classify spectral samples collected in healthy leaflets’ tissues (target) as regular samples. 

Furthermore, this one-class-classifier approach can categorize spectral assessments 

collected in diseased leaflets inoculated with both Pst and Xeu as non-regular, even 

before macroscopic symptoms and characteristics of these diseases become visible to 

the human eye. The spectral profiles of healthy, Pst and Xeu-diseased leaflets were also 

retrieved and validated through the computation of MCR-ALS. 

The five articles support an integrated approach for the in-situ, non-destructive, 

proximal spectroscopy assessment of bacterial diseases in herbaceous and woody 

crops, both in controlled and field conditions. Our results demonstrate that both 

reflectance and transmittance hyperspectral-based models can be used for 

distinguishing healthy from diseased tissues (even at non-symptomatic stages) and for 

assessing physiological variations that allow pathogen discrimination. Despite these 

encouraging results, the present work recognizes that the Technology Readiness Level 

(TRL) of these approaches is still low and must be improved. Likewise, the lack of 

standardized protocols for hyperspectral data acquisition and modeling is addressed to 

uniformize the diagnosis processes and reduce noise and undesired spectral 

interferences. More research focused on different host-pathogen interactions is also 

suggested. 

Keywords: Proximal Sensing, Plant Disease Diagnosis, Predictive Modelling, Kiwi 

Bacterial Canker, Tomato Bacterial Spot, Tomato Bacterial Speck 
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performing data acquisition and visual phenotyping in two bacterial inoculation assays, 

using two distinct groups of tomato plants, and initiated with one week difference (first 

assay represented in blue, and second assay in red, DAI corresponds to the designation 

‘Days after inoculation’) (C). The host-pathogen interactions analyzed involved the usage 

of Pseudomonas syringae pv. tomato (Pst) and Xanthomonas euvesicatoria (Xeu) 

belong to two different species and genera but are responsible for causing similar 

symptoms in tomato-diseased tissues. The hyperspectral data collected was pre-

processed using an algorithm based on Savitzky-Golay filter for spectral smoothing and 

a Standard Normal Variate (SNV) to minimize dispersive effects (D). This procedure was 
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Introduction 

 On a global scale, pests and diseases contribute to yield losses in different crops 

that range from 20% to 40%, causing important economic impacts affecting diverse 

countries, and regions (Oerke, Dehne et al. 2012). Moreover, these biotic agents led to 

reduced income for producers, and restricted product availability, along with higher 

prices for consumers (Savary, Ficke et al. 2012, Savary, Bregaglio et al. 2017, Nelson 

2020). The abundance and quality of fruits and vegetables, important sources of 

nutrients, are also affected because they are particularly vulnerable to diseases (due to 

current global breeding and agronomic practices) (Chakraborty and Newton 2011, 

Savary, Bregaglio et al. 2017).  

For these reasons, plant pests and pathogens can affect a country’s ability to 

import or export crops and their derived products around the world or even to move them 

within its borders. In fact, these transactions may provide pathways for the entry and 

spread of pathogenic microorganisms, also providing ideal conditions for pathogen 

adaptation and change (Macleod, Pautasso et al. 2010, Savary, Bregaglio et al. 2017). 

 Therefore, many agronomic, environmental, economic, and humanitarian 

reasons justify the non-destructive, early diagnosis of plant diseases, i.e. performed 

before or at the appearance of the first macroscopic characteristic lesions (symptoms) 

(Mahlein, Oerke et al. 2012, Martinelli, Scalenghe et al. 2014, Mahlein 2015). This 

proactive approach provides an opportunity for timely intervention, enabling effective 

control measures, and preventing infection’s spread. Moreover, it allows for adjustments 

in crop management practices before the entire production site succumbs to an infection 

or incurs damage.  

 The non-destructive nature of the diagnosis process, furthermore, allows the 

identification of production areas affected by diseases, making possible the target 

application of phytosanitary products or other plant protective methods. This results in a 

more precise and efficient management approach and leads to the reduction of 

phytosanitary product usage, with a beneficial impact on the environment, ecosystem 

services, producer's income, and agricultural product quality (Lowe, Harrison et al. 

2017). Hence, a Precision Agriculture perspective may be followed, i.e., a cropping 

strategy that gathers, processes, and analyzes temporal, individual, and spatial data to 

support management decisions according to estimated variability. Its main goal lies in 

improving resource use efficiency, productivity, quality, profitability, and sustainability of 

agricultural production (ISPA 2024). 
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 Addressing the future challenges in Precision Agriculture involves overcoming 

key hurdles such as i) developing targeted and precise practices based on plant 

physiology, and ii) integrating them seamlessly with cutting-edge high-throughput (HTP) 

technologies based on the assessment of biophysical indicators of plant diseases, 

enabling early diagnosis. This integration contributes to the real-time application of 

laboratory information, enabling a spatio-temporal-functional approach to enhance 

Precision Agriculture practices. While this biophysical-integrative methodology is readily 

applicable in controlled laboratory environments, its translation to in-field agricultural 

applications remains a challenge. Globally, there is a growing application of HTP 

solutions in Precision Agriculture, with the establishment of sophisticated and costly HTP 

plant screening platforms that enable non-invasive measurements. New efforts are 

currently in progress to narrow the gap between laboratory feasibility and on-field 

implementation, aiming to fully unleash the potential of Precision Agriculture (Cunha, 

Martins et al. 2022). 

 The detection and identification (i.e., diagnosis) of plant pests and diseases 

constitutes, currently, a global key challenge in agriculture. The standard existing 

methods often are focused on direct crop scouting, aiming at the assessment of 

etiological agent’s indicator signs, that are visible to the human eye. Despite its inherent 

importance, this technique may be time-consuming and demanding, depending on the 

crop type and production area size (which, in many commercial sites, is very large). 

Moreover, to be performed this approach mainly relies on the presence of visible 

symptoms caused by the pathogen in the host plant, which usually only occur in the 

middle to late stages of the infection process, when damages in the plants are mostly 

irreversible (Lowe, Harrison et al. 2017). Also, it is important to be aware that different 

pathogens can cause identical visual symptoms, as well as other abiotic stress (e.g., 

nutritional deficiencies, water deficit, among others), thus symptoms alone may not be 

enough for an accurate diagnosis, or for determining the disease-causing agents (Agrios 

2012, Mora-Romero, Félix-Gastélum et al. 2022). 

 Other common direct diagnostic techniques may surpass this drawback, such as 

molecular and serological laboratory methods, which have revolutionized the detection 

of plant diseases since they allow large sample processing and rigorous pathogen 

identification. However, these biotechnologies may not be effective in early diagnosis 

tasks when the sample analyzed does not show any lesion characteristic of the disease, 

i.e., when the sample is non-symptomatic (also known as asymptomatic, 

presymptomatic, or symptomless). In fact, since pathogens often do not spread uniformly 

inside plants, destructive molecular methods can be non-diagnostic at this early stage 
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(Bock, Poole et al. 2010, Veys, Chatziavgerinos et al. 2019). Furthermore, these 

methods have other limitations, as the sample preparation is destructive (not allowing 

disease field mapping), the intensive labor needed, and producing specific antibodies 

can be inefficient with the presence of inhibitors reducing the sensitivity of nucleic acid-

based methods (Martinelli, Scalenghe et al. 2014, Veys, Chatziavgerinos et al. 2019). 

Thus, they do not provide immediate results, requiring usually at least two days to be 

completed (Martinelli, Scalenghe et al. 2014, Moghadam, Ward et al. 2017). 

 Therefore, providing alternatives for visual-based and biotechnological methods 

(wet labs) processes of crop disease diagnosis, mainly used in the agriculture and 

horticulture sectors, with more automated, objective, and sensitive approaches, is crucial 

in sustainable crop production. 

 In this regard, indirect diagnostic methods (proxy) have been under development 

in recent years. They are based on the evidence that when plant-pathogen interactions 

occur, specific compounds are produced by both the host and pathogen, resulting in 

changes in plants’ biophysical and structural composition, even before visual symptom 

development. Given that these biophysical modifications affect the optical properties of 

the plant’s tissues (e.g., reflectance, transmittance, and emittance) it opens up prospects 

for the use of optical-photonic techniques to detect these changes in early disease 

stages and indirectly provides indicators of the plant's health status condition (Mahlein 

2015, Moghadam, Ward et al. 2017). 

Several researchers applied optical spectral sensors for disease diagnosis on 

laboratory (Barthel, Dordevic et al. 2021), greenhouse (Cen, Huang et al. 2022), and 

field (Nguyen, Sagan et al. 2021) scales. Nonetheless, there is not always a clear 

definition between the disease/infection and the classification of the causal agent, which 

limits the interpretation of results. Additionally, several studies are performed at the onset 

of visual symptom development, not being suitable for early diagnosis. Other constraints 

identified are related to i) the pathogen being analyzed, since usually Fungi are used in 

plant disease studies, ii) in contrast with Bacteria, which are still scarcely studied; iii) and, 

the conditions for data acquisition, as different sensors are not standardized, and 

spectral data processing techniques have not yet been sufficiently explored (e.g. 

Machine Learning, ML, and Chemometrics). These insufficiencies may lead to limited 

portability of sensor-based techniques for field conditions. 

 Thus, although it is considered that there is knowledge regarding the early 

diagnosis of diseases through the usage of these optical sensors, many of the explored 

protocols and techniques are yet at very initial stages, and the spectral devices usually 
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present low ‘Technology readiness levels' (TRL) (Mankins 1995). Therefore, the 

transference of this knowledge to agricultural producers has not yet occurred. Integrating 

this expertise is not yet trivial and requires research in line with the objectives of the 

present thesis. 

This thesis's primary objective is to explore, test, and validate the application of 

proximal optical sensed data for the early assessment and diagnosis of bacterial plant 

diseases. In this regard, the study i) investigates the suitability of different measuring 

systems, namely Hyperspectral Spectroscopy sensors (measuring reflectance and 

transmittance data), RGB cameras, and Thermography for early diagnostic tasks; ii) tests 

different data handling (e.g., feature selection and dimensionality reduction), and 

modeling (predictive classification using Machine Learning or Chemometrics algorithms); 

and iii) explores the approaches portability between crops (i.e, tomato – herbaceous, 

annual plant - and kiwi – woody, perineal crop), experimental environmental conditions 

(laboratory and field), and bacterial species (belonging to the genus Pseudomonas spp. 

and Xanthomonas spp). 

The pathosystems (i.e., host-pathogen ecosystems) analyzed in this work, 

namely i) Pseudomonas syringae pv. tomato in tomato, ii) Xanthomonas euvesicatoria 

in tomato, and iii) Pseudomonas syringae pv. actinidiae in kiwi were chosen due to their 

agronomic and economic relevance, mostly related to aesthetic and yield losses 

(intimately linked to important monetary losses) they cause in several plants with 

agronomic interest (such as tomato, pepper, tomato, eggplant, kiwi, fruit trees – pear, 

cherry, peach, citrus, walnut, among others). 

This thesis aims to respond to a specific group of research questions: 

1. On spectral signatures measured in healthy and diseased crop samples 

(pathosystems). 

1.1. Do healthy and bacterial-diseased biological samples exhibit distinct spectral 

signatures? If yes, i) what specific spectral characteristics differentiate them? ii) 

In which spectral regions they are located? iii) Can these differences be detected 

before the development of visual symptoms? 

1.2. Do diseased biological samples affected by different pathogens differ in spectral 

signatures? If yes, i) what are the specific spectral characteristics distinguishing 

different pathogens? ii) In which spectral regions are these pathogen-specific 

differences located? iii) Is it possible to detect them before visual symptom 

development? 
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2. On diagnostic sensing approaches for early bacterial diseases in plants (sensing 

technologies).   

2.1. Which strategies were tested for early bacterial diagnosis in plants? i) How does 

each diagnostic approach perform regarding sensitivity and specificity? ii) What 

is the biological/agronomic significance of the information provided by each 

sensing approach? iii) Are there specific advantages or limitations associated 

with each tested approach? 

3. On predictive modeling strategies (agronomic application).  

3.1. Which predictive classification modeling strategies were developed for bacterial 

diagnosis? i) How does each modeling strategy perform regarding accuracy and 

reliability? ii) What is the biophysical meaning associated with the predictions 

made by each model? Iii) Is the performance consistent across different stages 

of disease development? 

The responses to these questions provide supporting evidence for using proximal 

optical sensors for early bacterial disease approach in both laboratory and field 

conditions. Furthermore, it’s plausible that the protocols and results obtained here will 

also serve as ‘concept proof’ for other diseases with great agro-economic impact. 

 The objectives and research questions of this thesis support more efficient and 

sustainable agronomic practices in terms of protection measures, so it is considered that 

they are aligned with the European Green Deal, and its Farm to Fork strategy, fostering 

innovation targeting a healthy and environmentally friendly food system (Fetting 2020). 

Moreover, they also are in line with the United Nations Sustainable Development Goals 

(SDGs) (Bernstein 2017, Carlsen and Bruggemann 2022), namely: SDG2 - End hunger, 

achieve food security and improved nutrition and promote sustainable agriculture;  

SDG12 - Ensure sustainable consumption and production patterns; SDG13 - Take 

urgent action to combat climate change and its impacts; SDG15 - Protect, restore and 

promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat 

desertification, and halt and reverse land degradation and halt biodiversity loss. 

The present thesis is organized into five Chapters, including five scientific articles 

(Papers) (Case Studies, Figure 1). In brief, after this introduction, Chapter II arranges 

the conceptual foundation, where key concepts are explored, and the theme relevance 

is contextualized (Figure 1). This Chapter includes a critical review (Case Study 1) 

concerning the state of the art related to current and innovative Proximal Sensing (PS) 

technologies used to diagnose diseases in crops (Figure 1).  
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Chapter III describes different case studies, four of which consist of peer-

reviewed articles and two are preliminary assays. All these case studies explore distinct 

aspects of bacterial disease assessment and diagnosis through the application of 

proximal optical sensors (Figure 1). Case Study 2 evaluates the application of 

hyperspectral spectroscopy (both transmittance and reflectance data) combined with two 

predictive classification approaches for bacterial disease discrimination in tomato 

(herbaceous crop) and kiwi (woody crop) leaves in-situ laboratory, and field conditions 

(Figure 1). Case Study 3 investigated in-situ, non-destructive discrimination of bacterial 

canker on kiwi leaves using hyperspectral reflectance and applied predictive modeling 

approaches. Several Feature Selection (FS) methodologies and supervised machine 

learning approaches were evaluated (Figure 1). Case Study 4 investigates the potential 

of hyperspectral point measurement (transmittance) and machine-learning-based 

predictive models for early in-situ diagnosis and discrimination of bacterial speck and 

spot of tomato plants (Figure 1). Case Study 5 explores the suitability of hyperspectral 

point of measurement (POM) transmittance in combination with Data-Driven Soft 

Independent Modeling of Class Analogy (DD-SIMCA) for the early assessment of tomato 

bacterial speck and spot in controlled conditions, using healthy samples as a target class, 

and Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) as a mean to 

retrieve pure profiles of healthy and diseased tissues (Figure 1). Motivated by the 

findings, Case Study 6 explores the fusion of hyperspectral data and microscopy 

imaging in a preliminary assay. The first outcomes of this work resulted in the proof-of-

concept for direct research applications (Figure 1). Likewise, Case Study 7 introduces 

the first assays performed using Thermal and RGB (Red, Blue, and Green bands) 

imaging for bacterial disease assessment (Figure 1).  

The four datasets used in the previous scientific articles and case studies were, 

furthermore, published at Zenodo (Research and OpenAIRE 2013), an open repository 

developed under the European OpenAIRE program and operated by the European 

Organization for Nuclear Research CERN. They serve as three direct data contributions 

to future plant research. 

Chapter III contains a general discussion of this work, summarizing the main 

contributions of this thesis (Figure 1). In Chapter IV, the final remarques and 

perspectives are made (Figure 1). 
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Figure 1 Structure of the thesis. Chapters I and II provide the general introduction and 

the theoretical background of the work, introducing a critical review of the theme of using 

proximal sensors for performing the early diagnosis of plant diseases. Chapter III 

introduces the different case studies analyzed, Chapter IV discusses the main findings 

made in each one of the studied subjects, and Chapter V indicates the conclusions and 

perspectives of this thesis. 

The Appendix Chapter presents several scientific outputs that complement the 

research performed in previous Chapters (Figure 1). Appendix A | Paper I introduced 

the performance of an in-vivo, in-situ diagnosis of bacterial canker in kiwi leaves in field 

conditions, using hyperspectral reflectance data and Vegetation Indexes (VIs), for 15 

weeks. The findings led to the development of Case Study 3 located in Chapter III. In 

turn, Appendix B | Paper II proposes the computation of a Principal Component 

Analysis (PCA) as a dimensionality reduction approach for discriminating transmittance 

hyperspectral signatures collected in healthy and diseased tomato leaflets. The 

outcomes led to the development of Case Study 4 located in Chapter II. Oral (Appendix 

D, E) and poster communications (Appendix F, G), along with the best e-poster award 

won at the II Plant Pests and Diseases Forum, are also mentioned in the Appendix. 
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Furthermore, a technical article published in a Portuguese agriculture specialty 

magazine is provided (Appendix H). 
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1. Dimensions of plant disease sensing 

 The Food and Agriculture Organization (FAO) statistics estimate an increase in 

the world population level in the next 40 years when approximately 9.1 billion people will 

be reached by 2050. Consequently, there is expected growth in the demand for food, 

and a need for a steady increase of 70% in agricultural production (Godfray, Beddington 

et al. 2010, FAO 2018, Nations 2019). Ninety percent of this growth in crop production 

would be achieved by higher yields and increased cropping intensity, with the remainder 

resulting from land expansion (Bruinsma 2009, Kopittke, Menzies et al. 2019). Thus, 

improving the security and nutrition of worldwide crops has been considered an important 

goal for sustainable development by the United Nations (UN) (Nations 2021).  Also, the 

UN General Assembly proclaimed 2020 as the ‘International Year of Plant Health’ (IYPH) 

to raise awareness on how protecting crop health can help end hunger, reduce poverty, 

protect the environment, and boost economic development (FAO 2020). UN elected 

2021 as the ‘International Year of Fruits and Vegetables’ (IYFV) to raise awareness of 

the important role of fruits and vegetables in human nutrition, food security, and health, 

as well as, in achieving UN Sustainable Development Goals (Nations 2020, FAO 2021). 

 During the cultivation process, crops can be affected by different kinds of biotic 

(Figure 3) and abiotic stresses, affecting their productivity. Therefore, reductions in yields 

occur, resulting in reduced income for producers, restricted availability, and higher prices 

for consumers (Savary, Ficke et al. 2012, Savary, Bregaglio et al. 2017, Nelson 2020). 

The quality of fruits and vegetables, essential for providing important nutrients for 

humans, can also be affected (Strange and Scott 2005, Chakraborty and Newton 2011, 

Shahid, Zaidi et al. 2017).   

 Other problematics derived from the damages caused by these agents include 

significant aesthetic losses in agricultural products, which are not generally quantified in 

monetary terms but reduce some of the pleasure consumers derive from their 

consumption, influencing their behavior (Oerke 2006, Finlayson 2018); loss of plants that 

have positive effects on human wellbeing and health, contributing to a loss in comfort 

and beauty (Maller, Townsend et al. 2006, Hall and Knuth 2019, Elsadek and Liu 2021); 

and, limitations in the ability of a country to import or export crops and plants around the 

world or even to move them within its borders, due to the possibility of creating pathways 

for the entry of new organisms and the creation of the ideal conditions for pathogen 

change (Macleod, Pautasso et al. 2010, Savary, Bregaglio et al. 2017). 
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 Globally, it is estimated that losses in crop yield caused by pathogenic organisms 

can range between 20% and 40% (Savary, Ficke et al. 2012, Fried, Chauvel et al. 2017). 

Current agricultural practices promote the spread of plant disease epidemics and rapid 

pathogen evolution since they favor intensified monoculture in large areas, genetically 

uniform plant varieties, and the development of global supply chains and logistic activities 

(Zhan, Thrall et al. 2015). 

 Phytosanitary product application, through spraying, is currently the most 

promoted approach for preventing and treating diseases. Therefore, when a plant 

disease suddenly appears and spreads on a large scale, its treatment can lead to 

considerable damage to the environment (Zhang, Yang et al. 2020). Phytosanitary 

products can be a source of air, soil, and water pollution. After their application, they may 

volatilize into the air, run off or leach into surface water and groundwater, be taken up by 

plants or soil organisms that are not the target, or stay in the soil, among other problems 

(van der Werf 1996). Also, food security can be affected by the intensive usage of these 

phytosanitary substances (Bonner and Alavanja 2017). Despite this evidence, FAO 

statistics reported that the worldwide consumption of phytosanitary products tended to 

increase, and the value rose from approximately 3.09 million tons in 2000 to 4.12 million 

tons in 2018 (FAO 2020).  

 Diagnosis plays a pivotal role in the plant disease-management process, 

encompassing the discernment of both the nature and root cause of a particular disorder. 

An early, operational, and accurate diagnosis is, thus, fundamental for effective 

protection measurements. This critical step supports informed decisions, such as 

whether to pursue treatment or not, and facilitates the selection of the most fitting 

phytosanitary interventions, including the choice of the most appropriate active 

substances.  

 In general, plant disease diagnosis is made through the direct detection of 

symptoms (e.g. characteristic indicator signs of a disease), encompassing visual 

(scouting) and laboratory-based techniques. Recently, early diagnostic approaches 

based on indirect disease diagnosis, through the assessment of specific changes in the 

optical, biophysical, and molecular plant’s properties are being explored. These methods 

allow a disease diagnosis even before the appearance and development of macroscopic 

symptoms. Moreover, they allow a more preventive and targeted intervention, playing a 

crucial sustainable role in the mitigation of crop losses, and promoting plant health in 

agricultural environments. 
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 Therefore, many agronomic, environmental, economic, and humanitarian 

reasons justify the development of new early diagnostic methods for plant diseases and 

their field mapping in line with precision agriculture (Mahlein, Oerke et al. 2012, Martinelli, 

Scalenghe et al. 2015, Mahlein 2016). Innovative technologies like the global positioning 

system (GPS) and variable rate spray systems contributed to precision disease 

management development. This approach allows the application of chemical agricultural 

products in the right location, at the right moment, and right dose, being in line with the 

Precision Agriculture 3 R’s concept (Cunha and Braga 2022). Precise disease 

management allows a reduction in phytosanitary product usage, resulting in fewer 

expenses for the producer, fewer residues in crop production, and environmental 

contamination (Zhang, Yang et al. 2020). 

2. Principles of infectious bacterial plant 

diseases 

 Different organisms can cause diseases in plants, i.e. cause harmful deviations 

in the normal physiological functioning of plants, affecting their structure, growth, 

functions, or other parameters (Surico 2013, Nazarov, Baleev et al. 2020). 

Phytopathogens differ from each other concerning the set of plant species they affect 

(host range), the location of the infection they cause, and the age of the organ or tissue 

they affect (Schumann and D'Arcy 2006, Abdulkhair and Alghuthaymi 2016).  

 For a disease to occur in any plant system, three components are needed, which 

must be present at the same time: they represent the disease triangle (consisting of the 

pathosystem) and include a susceptible plant, a pathogen capable of causing disease, 

and a favorable environment. If any of these three elements are missing, no disease 

occurs (Figure 1) (Schumann and D'Arcy 2006, Abdulkhair and Alghuthaymi 2016). 

 Some characteristics of the host and pathogen highly influence disease 

development and resistance and include the plant family, age, growth stage, and genetic 

type, along with pathogen virulence race, inoculum size, and dormant state (Schumann 

and D'Arcy 2006, Abdulkhair and Alghuthaymi 2016). In turn, the environment in which 

plant disease occurs also highly influences its appearance and development in all stages 

of the disease cycle. It influences the development of the plant and its ability to mount 

defenses against invasion, pathogen dispersion, its capacity to penetrate the plant, and, 

its subsistence in the absence of the host plant (Schumann and D'Arcy 2006, Sharma 

2006). It encompasses a wide range of factors, including meteorological phenomena 
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such as recent temperatures (such as extreme highs and lows), rainfall or irrigation 

(amounts, timing, sources), and light intensity or shade. Characteristics of the soil, such 

as drainage, soil type, and pH, are also important (Schumann and D'Arcy 2006). 

 

 

Figure 1 Illustration of the disease triangle showing the interaction between the 

susceptible host, pathogen, and surrounding environment as a prerequisite for disease 

to occur. The triangle may be used as a conceptual model describing the factors that 

impact the development of an epidemic. Some examples of factors related to the host, 

pathogen, and environment that may influence disease progression are also provided. 

 Plant disease development involves a chain of events in a specific order, 

designated as the disease cycle. It includes the stages of a pathogen’s development and 

the disease’s effects on the host plants. These events include inoculation, 

prepenetration, penetration, infection, colonization (invasion), and growth and 

reproduction of the pathogen (Figure 2) (Surico 2013, Abdulkhair and Alghuthaymi 

2016). 

 Briefly, the disease on the host plants begins with the arrival and successful 

penetration by the pathogen. With the development of the invasion and infection process, 

molecular, physiological, and structural changes start to occur. Ultimately, they result in 

the appearance of macroscopic signs of infection, i.e., symptoms (Schumann and D'Arcy 

2006), which may be localized or systemic (Schumann and D'Arcy 2006). Is important to 

be aware that different pathogens can cause identical visual symptoms, so these alone 

are usually not enough for an accurate diagnosis or determining the disease-causing 
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agents (Schumann and D'Arcy 2006, Agrios 2012). Some examples of the most common 

visible symptoms regarding bacterial infections may include the appearance of 

senescent/necrotic lesions, vascular wilt, soft rot, and tumors (Zhang, Yang et al. 2020). 

An early intervention, preferably before the pathogen infection manifestation and 

colonization (Figure 3), is of utmost importance to minimize the damage. This can be 

accomplished through a streamlined, efficient diagnostic process characterized by its 

early, precise, and operational nature—a paradigm that is yet to be fully developed. 

 

Figure 2 A generalized diagram displaying infection and disease cycle caused by 

bacteria. 

3. Plant-pathogen interactions allow an early 

disease diagnosis through proximal sensors 

 Changes in the host plant’s physiological, biochemical, and metabolic properties 

caused by pathogens result in altered optical and metabolic features. Proximal optical 

sensors can detect these changes, along with the monitorization of the spatiotemporal 

pattern of disease development (Mahlein, Oerke et al. 2012), which allows the 

development of several methods of diagnosis. These sensors can eventually be mounted 

on different platforms (e.g. robots, tractors) to map information about the disease in a 

precision agriculture approach (Mishra, Polder et al. 2020), as will be discussed in the 

next subsection. 

 Plant pigments are one of the first host compounds to be affected and degraded 

by pathogens, resulting in changes in plant’s optical behavior. Chlorophylls (Chl) a and 

b are the major pigments of plants (accounting for almost 65% of the total pigment 

content), and their spectral absorption range is mostly concentred in the 410-430 and 
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(Chl a), 450-470 nm (Chl b), and 600-690 nm (Chl a) bands, located in the blue and red 

dions, respectively. Green radiation, on the other hand, is less strongly absorbed. In 

healthy plants, chlorophyll concentration is approximately ten times higher than that of 

other pigments (e.g. carotenoids, flavonoids, among others), thus masking out the 

specific absorption features of these compounds (Jacquemoud and Baret 1990). 

Therefore, plants preferentially absorb red and blue wavelengths, and the green part of 

the incident light is less absorbed and is consequently mostly reflected, leading to the 

green appearance of vegetation (Jensen 2009, Jones and Vaughan 2010, Sahoo, Ray 

et al. 2015, Deshmukh, Janse et al. 2018). 

 With the disease development and onset, other photosynthetic pigment levels are 

increasingly more affected, namely carotenoids and polyphenols. The first type of 

pigment absorbs most effectively between 440 and 480 nm and extends its absorption 

action into the blue-green region. They include compounds such as yellow lutein 

pigments, β-carotenes, and xanthophylls (e.g., violaxanthin and zeaxanthin). In turn, 

polyphenols (e.g. brown pigments) start to appear only when the plant tissues begin to 

necrose (Jensen 2009, Jones and Vaughan 2010, Sahoo, Ray et al. 2015, Deshmukh, 

Janse et al. 2018). They include compounds like flavonoids and anthocyanins, which 

absorb radiation from blue to red spectral ranges with higher intensity in the shorter 

wavelengths (Jensen 2009, Jones and Vaughan 2010, Sahoo, Ray et al. 2015, 

Deshmukh, Janse et al. 2018).  

 Moreover, the optical spectral properties of host plants are also affected in the 

Near-Infrared (NIR) region (700–1300 nm) and short-wave infrared (SWIR, 1000–2500 

nm) when plant leaves structure (e.g., cell layers, cell size, structural components – 

lignin’s, proteins, among others), air spaces, and water content is affected (Jones and 

Vaughan 2010, Haq and Ijaz 2020). In detail, the major water absorption bands are well 

documented at 1450, 1940, and 2700 nm, and secondary features at 960, 1120, 1540 

1670, and 2200 nm (Ustin, Zomer et al. 1999).  

 In this regard, is possible to see those changes in plant leaves’ biochemistry and 

cellular composition result in changes in plant’s spectral characteristics. Nevertheless, it 

is important to mention that a leaf’s spectral properties are not a static phenomenon over 

time. Indeed, they continuously change during growth, maturity, senescence, decay, or 

stress (e.g. plant disease development).  

 These spectral changes even occur before macroscopic lesions (i.e., symptoms) 

appear. Therefore, new sensor-based methods considering this evidence can be used 

to indirectly diagnose different plant pathogen agents (Mahlein, Kuska et al. 2017, 
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Zhang, Yang et al. 2020, Cheshkova 2022). The measurement of optical plant properties 

can also be used to assess the spatial-temporal dynamics of the interactions between 

plants and pathogens. Research using spectral signatures derived from hyperspectral 

sensors has already been used to study (concept-proof) foliar diseases at the canopy 

and leaf scales (Mahlein 2011), and this will be discussed in the next subsection. 

 Considering the previous information, a new interpretation of the disease triangle 

(Figure 3) can be proposed. Beyond the three existing dimensions, a fourth one related 

to current and innovative ‘Protection measures’ should be taken into account, as 

proposed in Figure 3. This new dimension recognizes that host-pathogen interactions 

occur in agricultural environments where farmers and producers perform management 

strategies and may interfere with them. In fact, diverse strategies to mostly prevent, but 

also treat and irradicate the pathogen action may be performed (e.g., phytosanitary 

actions), preferably with maximum efficiency, using the most appropriate compounds, 

doses, and targets (localized application). To achieve this goal, early diagnosis is crucial, 

and indirect proximal sensors may be an interesting tool (Figure 3). 

 

Figure 3 Proposal of a new interpretation of the standard plant disease triangle, 

incorporating a new fourth dimension related to ‘Protection measures’. Plant disease 

diagnosis involves a series of complex events, including the interactions between the 

plant host, the pathogen that affects it, the environment surrounding them, and the plant 

protection measures applied to mitigate the negative impacts of this interaction.  
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Highlights 

• Hyperspectral spectroscopy was the most applied technology for early plant 

disease diagnosis. 

• Fungi were the most analyzed group of pathogens found in the literature. 

• Experimental assays were mainly conducted in laboratory (controlled) 

conditions. 

• Vegetation Indices and Principal Component Analysis were the most used 

approaches in data processing. 

• Classification was the main type of predictive modelling used in the screened 

scientific articles. 

Abstract 

 The present critical literature review describes the state-of-the-art innovative 

proximal (ground-based) solutions for plant disease diagnosis, suitable for promoting 

more precise and efficient phytosanitary measures. Research and development of new 

sensors for this purpose are currently a challenge. Present procedures and techniques 

of diagnosis are dependent on visual characteristics and symptoms to be initiated and 
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applied, compromising an early intervention. Also, these methods were designed to 

confirm the presence of pathogens, not having the necessary high throughput and speed 

required for supporting real-time agronomic decisions in field extensions. Proximal 

sensor-based systems are a reasonable tool for an efficient and economic disease 

assessment. This work focused on identifying the application of optical and 

spectroscopic sensors as a tool for disease diagnosis. Biophoton Emission, 

Fluorescence Spectroscopy, Laser-Induced Breakdown Spectroscopy, Multi- and 

Hyperspectral Spectroscopy (HS), Nuclear Magnetic Resonance Spectroscopy, Raman 

Spectroscopy, RGB Imaging, Thermography, Volatile Organic Compounds assessment, 

and X-ray Fluorescence were described due to their relevant potential. Nevertheless, 

some of these techniques revealed a low Technology Readiness Level (TRL). The main 

conclusions identify HS, single and multi-spatial point observation, as the most applied 

methods for early plant disease diagnosis studies (82%), combined with distinct feature 

selection (FeS), dimensionality reduction (DR), and modeling techniques. Vegetation 

Indices (29%) and Principal Component Analysis (20%) were the most popular FeS and 

DR approaches used to highlight the most relevant wavelengths contributing to disease 

diagnosis. In the modeling process, classification was the most applied technique (80%), 

used mainly for binary and multi-class health status identification. Regression was used 

in the remaining (20%) scientific works screened. The data was mainly collected in 

laboratory conditions (69%), and only a smaller number of works were performed in field 

conditions (20%). Regarding the etiological agent responsible for causing the disease in 

the study, fungi (53%), and virus (24%) were the most analyzed group of pathogens 

found in the literature. Overall, proximal sensors are suitable for early plant disease 

diagnosis both prior to and after symptom appearance, presenting classification 

accuracies mostly superior to 71% and coefficients of regression superior to 61%. 

Nevertheless, additional research regarding the study of specific host-pathogen 

interactions is necessary. 
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Graphical abstract 

 

Keywords 

Proximal sensing, Plant disease diagnosis, Predictive Modeling 

1. Introduction 

 Food security, intimately linked to crop health, has been a foremost global 

concern throughout the years. Current threats, such as climate change, the growth of 

the world population, and the disappearance of several varieties of agricultural plant 

species, among others, have drawn attention to this problem (Karthikeyan, Chawla et al. 

2020). Likewise, biotic stresses (i.e., fungi, bacteria, viruses, and pests) have also 

become a challenging hurdle to envisage nowadays, since they are responsible for 

causing crop yield reductions (ranging from 20 to 40%), lower quantity and quality of 

agricultural products, and lower producers’ income and higher product prices, affecting 

especially the final consumer (Savary, Ficke et al. 2012). They are extremely hard to 

prevent and treat, and the current phytosanitary solutions available for fighting them are 

responsible for causing considerable damage to agricultural fields (Savary, Ficke et al. 

2012). In this regard, the European Commission announced, in May 2020, two pesticide 

reduction targets as part of the Farm to Fork Strategy (Commission 2020), aiming for a 

50% reduction in the use and risk of chemical pesticides, along with a 50% reduction in 

the usage of more hazardous pesticides until 2030. Hence, improving precise diagnosis, 

monitoring, and protection measures is of paramount importance. 

 Biotic stress diagnosis (i.e., identification of the disease’s nature) is typically 

performed by a variety of direct methods, i.e., approaches that require the observation 

of characteristic symptoms caused by the pathogen on the host tissues. These usually 
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occur in the middle to late stages of the infection process, compromising the 

effectiveness of protection and treatment measures (Lowe, Harrison et al. 2017). Some 

instances include visual scouting practices, which involve a careful, detailed inspection 

of crop fields by specialized trained observers, who must be able to detect and identify 

(diagnose) diseased plants based on the existence of characteristic disease symptoms 

(Parker, Shaw et al. 1995). This visual recognition of plant stress has been extensively 

applied in the last decades due to its easy application and usefulness. Nevertheless, it 

is subjective, error-prone (as symptoms alone are not entirely disease-specific), labor-

intensive, time-consuming, and expensive (Khaled, Abd Aziz et al. 2018, Ali, Bachik et 

al. 2019).  

 Advancements in biotechnologies have led to the creation and implementation of 

various serological and molecular laboratory tests renowned for their high objectivity, 

marked by reliability, precision, and accuracy. These tests have significantly enhanced 

disease diagnosis capabilities.  The most performed are the enzyme-linked 

immunosorbent assay (ELISA), and the polymerase chain reaction (PCR). Their 

development has revolutionized plant disease diagnosis due to their capability to process 

simultaneously a large number of samples and perform precise pathogen identification 

(Venbrux, Crauwels et al. 2023). These biotech-based methods provide complementary 

information and are usually used in conjunction. In fact, the European and Mediterranean 

Plant Protection Organization (EPPO) detailed protocols for plant pathogen diagnosis 

which integrate these phenotypic, serological, and molecular techniques (Martinelli, 

Scalenghe et al. 2015). However, these laboratory-based approaches experience 

limitations in the early phases of the infection process. Pathogens often do not spread 

uniformly inside plants, leading to inefficacies in these methods when analyzing a 

diseased sample that exhibits no macroscopic characteristic lesions (symptom) 

(Martinelli, Scalenghe et al. 2015), occurring notably during non-symptomatic stages. 

Furthermore, these techniques require detailed sampling procedures, usually involving 

a destructive sample preparation (i.e., not allowing a follow-up of the disease 

development) and taking several hours to be concluded (Fang and Ramasamy 2015, 

Martinelli, Scalenghe et al. 2015). For these reasons, they may not align with the 

precision agriculture concept, not allowing the full monitoring and optimization of 

phytosanitary measures in the entire production site. Therefore, the development of new 

plant disease diagnosis methods should focus on fast, accurate, and selective 

techniques capable of providing effective and complementary information about the 

plant’s health status, preferably in vivo and in field conditions.  



FCUP 
Early diagnosis of bacterial plant diseases based on proximal sensing from a precision agriculture perspective 

24 

 

 

 Implementing these new approaches should ensure early intervention in plant 

diseases, ideally before the onset of symptoms or at their initial appearance. This 

proactive measure is crucial in preventing and effectively controlling plant disease 

progression and spread.   Ultimately, it will contribute to adopting more localized and 

targeted plant protection strategies, including precision applications of phytosanitary 

products, accurately determining their location, quantity, and specific substances used. 

This putative shift towards preventive measures over curative ones aligns with a 

perspective rooted in precision agriculture. As a result, it is anticipated to yield several 

advantages across agronomic, economic, environmental, and quality aspects. 

 In the last decades, several approaches have been explored for this early plant 

disease diagnosis. Among these methods, Proximal sensing (PS), also called Proximal 

Remote Sensing, Close-Range Remote Sensing, or Ground-level Remote Sensing, 

stands out, providing the foundation for indirect plant disease diagnosis. These sensors 

operate from relatively short distances, typically ranging from a few centimeters to a few 

meters (Martinelli, Scalenghe et al. 2015, Zhang, Yang et al. 2020), to assess molecular, 

biophysical, and structural modifications promoted by host-pathogen interactions in 

plants’ tissues. Its advantages include offering the benefits of providing a rigorous, 

sensitive, consistent, standard, high throughput, rapid, and cost-effective diagnostic 

(Martinelli, Scalenghe et al. 2015, Zhang, Yang et al. 2020). These sensors can be 

handheld or mounted on terrestrial vehicles (e.g. robots, tractors) or aerial platforms (e.g. 

drones) to assess and field map plant health (Oerke, Mahlein et al. 2014). 

 Nevertheless, it is important to address that plants’ physiological and 

phenotypical characteristics are unstable over time, making the disease diagnostic 

process even more challenging. Similarly, to this dynamic evolution, differences in plant 

traits may occur within individuals of the same and/or different cultivars and species, 

demonstrating that plant disease diagnosis can be highly demanding. These difficulties 

seemed to be surpassed through the application of PS-based solutions.  

 Despite the multidimensional importance of early plant disease diagnosis and the 

potential of proximal sensing, its practical implementation remains challenging (Figure 

1). 

 The main objective of the present work is to assemble the information made 

available in recent years about the different PS techniques showing potential for 

performing early diagnosis of plant diseases. Although a few literature reviews exist on 

this research topic, the articles found often lack integration of crucial information 

concerning the robustness of samples used in each assay, the tested experimental 
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conditions (e.g., laboratory, greenhouse, field), and/or the model evaluation metrics used 

(or not used at all) to access the potential of the applied sensing technique for disease 

prediction. Furthermore, modeling strategies (e.g., data organization, preparation, and 

modeling) are inconsistently applied across different research articles, leading to 

ambiguity regarding the relevance of the obtained results. Therefore, this study attempts 

to provide insights into these topics by evaluating the collected published articles within 

the context of a functional PS approach for early diagnosing plant diseases. Additionally, 

it examines the prevailing trends in the literature concerning the most used PS and 

diagnosis strategies. 

 

Figure 1 Analysis of the complexity (x-axis) and importance (y-axis) of the estimation of 

some relevant agronomic traits by proximal sensing technologies. It is possible to 

observe that early pathogen infection diagnosis is in the right upper quadrant (in red), 

revealing the higher relevance and challenge of performing this task.  In contrast, disease 

diagnosis when characteristic symptoms of the disease are visible is less challenging 

(located in the lower left quadrant, represented in green) but also less important because 

these lesions only appear in the middle to late stages of the disease infection process, 

compromising the effectiveness of plant protection measures. 

 This study, through the analysis of previously published scientific articles, aims 

to unravel specifically: i) What are the main PS techniques applied to diagnose plant 

diseases in indoor, greenhouse (or glasshouse), and infield assays?  ii) What is the 

potential capability of these plant sensing devices for early disease diagnosis (prior to 
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the appearance of the first visual characteristic symptoms), both in terms of capabilities 

and model metric results? iii) How are computed the processing and modeling strategies 

most applied in data analysis? Nevertheless, the present review only focuses on 

research related to ground-level sensors (e.g., handheld, terrestrial platforms, benchtop, 

microscopes). This article is structured into different sections summarized in Figure 2, 

which includes (1), after this introduction; (2) the research methods, which briefly 

describes the applied research strategy; (3) the plant disease diagnosis section, where 

the main concepts and types of experimental conditions are described; (4) Sensing 

technologies, where a contextualization of the most applied sensing techniques used in 

plant disease diagnosis is made, along with the selection of relevant articles aiming an 

early diagnosis of crop diseases; (5) Methodologies for disease diagnosis, where data 

handling and modeling approaches found in the screened scientific articles are 

characterized; (6) Conclusion, which summarizes the main findings. 

 

Figure 2 Diagram showing the review structure, mentioning the main strategies 

employed for proximal (ground truth) plant disease diagnosis using sensing technologies 

combined with different predictive modeling approaches. The ‘Plant measurements’ 

section describes the main factors considered in a plant disease biological assay related 
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to the plant-pathogen interactions (disease dynamic), the environmental conditions, and 

the types of diagnosing techniques available. The ‘Data analysis’ section briefly 

introduces the main data preparation steps and modeling approaches available.  

2. Research methods of literature review 

 This research followed a systematic approach, widely acknowledged for its 

comprehensive and organized analysis of all articles available on indexed platforms, 

ensuring their quality (Magalhães, Moreira et al. 2022). Systematic literature reviews 

frequently apply the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines (Page, Moher et al. 2021). The online tool Parsifal 

(Freitas and Segatto 2021) was used to hold the ongoing review procedure, allowing an 

arrangement of the entire research process: procedure design, screening and removal 

of duplicated articles, quality evaluation, and data extraction (Supplementary Materials 

I). The present work appraised the primary indexed articles related to the use of optical 

and spectroscopic sensors in early plant disease diagnosis between 1971 and August of 

2023 (Supplementary Materials I). The duplicated articles were removed, and the 

remaining were evaluated and selected. The chosen studies were fully read and 

analyzed. Each was assessed according to its quality to confirm if the work fulfills the 

aims of the current review (Supplementary Materials I). The extraction procedure 

retrieved information related to the: i) crop(s) studied in the assay; ii) pest(s) or disease(s) 

in analysis, iii) sensor/technology used, iv) type of sensor (single vs. multi-spatial point 

observation), v) light source system configuration, vi) sensor parameters (wavelengths 

studied), vii) environmental conditions (indoor, greenhouse, or infield), viii) modeling 

approach applied, x) model metric results, and ix) possibility of the current application 

(evaluated through the Technology Readiness Level – TRL – which is a type of 

measurement system used to assess the maturity level of a particular technology 

(Mankins 1995)). 

 From the total of articles screened (322), 46 research articles were retrieved and 

considered in the present review. A more detailed section about this subject can be found 

in Supplementary Materials I.  

 In the next Chapters, the main findings of this work related to plant disease 

diagnosis concepts, experimental conditions, plant-light interactions, innovative and 

emerging sensing technologies, and metrics of applied predictive modeling approaches 

will be summarized. 
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3. Ground truth plant disease diagnosis – Concepts, pathosystems, and 

experimental conditions 

 Different organisms can cause diseases in plants, i.e., promote harmful 

deviations from the normal physiological functioning of plants, affecting their structure, 

growth, functions, or other parameters (Surico 2013, Nazarov, Baleev et al. 2020). They 

can be fungi, bacteria, viruses, protozoa, and insects.  Phytopathogens differ concerning 

the set of plant species they affect (host range), the location of the infection they cause, 

and the age of the organ or tissue they affect (Schumann and D'Arcy 2006, Abdulkhair 

and Alghuthaymi 2016). 

 Plant disease development involves a chain of events occurring in a specific 

order, called the disease cycle and includes the stages of development of a pathogen 

and the effects of the disease on the host plants (Nelson 1994). These events include 

inoculation, prepenetration, penetration, infection, colonization (invasion), and pathogen 

growth and reproduction (Surico 2013, Abdulkhair and Alghuthaymi 2016). During the 

first stages of the cycle, the diseased tissues may remain phenotypically similar to 

healthy ones and are designated as non-symptomatic (also called asymptomatic, pre-

symptomatic, and symptomless, among others). In the middle to late stages of the cycle, 

when diseased tissues start to develop macroscopic lesions characteristics of the 

infection and consequently become phenotypically distinct from healthy tissues, they are 

called symptomatic.  

 Digital sensing techniques have been developed for plant disease diagnosis, in 

both the early and late stages of the disease cycle. Experimental assays can be 

performed in three main types of environmental conditions: i) laboratory, ii) greenhouse 

(glasshouse), and iii) field tests. The firsts are conducted under controlled conditions, 

where the environmental settings are usually stable (e.g., temperature, light, humidity), 

and the only variable of interest changing is the etiological agent responsible for causing 

the disease. It allows the monitoring of infection conditions (severity, authenticity, among 

others), e.g., (Reis Pereira, Santos et al. 2023), and the controlling of light conditions to 

better understand the sensor’s performance. Thus, this approach provides relevant 

insights about the interaction between the sensor and the object of interest. The data 

can be collected on different plant organs, such as leaves, stems, or fruits, to gain 

insights into disease symptoms and effects on plant physiology. Field tests, in turn, are 

more challenging to standardize due to uncontrolled environmental conditions and biotic 

pathogens (e.g., risks of uncontrolled propagation), requiring sensors with higher TRL. 

Field work, generally preceded by laboratory tests, allows for large-scale tests and 
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effective operability of digital sensing systems, increasing their TRL. Real-time 

monitoring is also possible, which is crucial for providing insightful information for 

supporting immediate decisions about disease management strategies (e.g., early 

identification of disease outbreaks, and phytosanitary product applications, among 

others). Greenhouse / Glasshouse experiments constitute an intermediate case between 

the laboratory (controlled conditions) and field assays since they allow the elaboration of 

plant pathology studies in larger areas with semi-controlled environmental conditions. 

4. Sensing technologies for disease diagnosis 

4.1. Types of plant-light interaction 

 In recent decades, several sensor-based techniques have been explored for 

diagnosing plant diseases based on the interaction of biological tissues with radiation as 

represented in Figure 3. Sensing systems usually measure  'reflectance’, when they 

assess the quantity of light that is reflected from a surface; 'transmittance' when they 

measure the ratio of light that falls on a sample and passes through it; and ‘emission’, 

when the system captures the light emitted by a sample due to electrons making a 

transition from a high energy state to a lower energy state (Figure 3). Briefly, sensors 

that capture reflectance have detector gears that assess an illuminated part of the 

sample and measure both the specular (wavelengths reflected in a well-defined angle 

and direction) and diffuse (radiation scattered in many directions). Specular reflection 

does not convey any information about the internal traits of the sample. Hence, this mode 

is recommended to assess surface or near-surface modifications of sample traits (Walsh, 

Blasco et al. 2020).  

 In turn, some devices assess the samples’ emission (i.e., light radiated), resulting 

from previous light absorption and conversion in distinct wavelengths (Figure 3). They 

are particularly useful for studying its inherent properties, such as temperature, 

composition, physiological state, and internal structure.  Emission measurements are, 

therefore, primarily advised for capturing information related to the material’s surface and 

mid-range internal properties (Walsh, Blasco et al. 2020). A particular case of emission 

is fluorescence, a phenomenon where the biological tissues are excited by absorbing 

radiation (e.g. ultraviolet – UV –, short-wavelength visible light) emitting longer-

wavelength radiation, which is captured by the detector gear (Cerovic, Samson et al. 

1999, Belasque, Gasparoto et al. 2008).  

 In transmittance systems, light directly passes through the sample without any 

direct light flow from the source to the detector, making this an interesting approach for 

assessing the internal quality traits of samples (Figure 3). For this reason, it’s important 
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to note that the dimension and shape of the object in the study may influence the 

measurements since they impact the path traveled by light when crossing the sample 

(Walsh, Blasco et al. 2020). 

 Different combinations between the different geometries (e.g., reflectance and 

transmittance) can thus be beneficial to plant disease studies since they allow the 

simultaneous retrieval of external (e.g., color, size, and surface appearance) and internal 

quality characteristics. 

 

Figure 3 Diagram showing the possible interactions between the electromagnetic 

radiation and schematic leaf surface (A). The cross-section illustrates the moment when 

stimulating light (parting from the sun or other light source) reaches the lesioned area of 

the tissue and a fraction of it may be promptly reflected and the remaining absorbed. 

From this, a part can be emitted in longer wavelengths (lower energy) as fluorescence 

or/and heat or transmitted (B). Different sensing technologies can then be used to 

measure this radiation, such as Thermography, UV-VIS-NIR Spectroscopy, Raman 

Spectroscopy, X-Ray Fluorescence, and NMR spectroscopy, among others. 

 Sensors can also be classified according to the type of light used in the 

measurement moment. They are designated as passive when no external light source is 

employed, and assessments are made using the sunlight. In contrast, the sensors are 

called active when a specific light source is applied in the process. Regarding the type 

of data measured, sensors used in plant disease studies can be single or multi-spatial 

point observation devices, SSPO, and MSPO, respectively. The SSPOP typically 

generates point data (1st order data), which does not provide spatially continuous 

information about how the data sensed varies within the sensors’ field of view. Thus, they 

gather information from just one specific spot on a plant at a time (e.g., measuring from 

one spot on a leaf or a stem). In turn, MSPO sensors provide continuous spatial 

information within the sensor’s field of view, sometimes in the form of a digital image, 
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also including information about the intensity of a given target signal (Manolakis, 

Lockwood et al. 2016). They collect data from multiple areas of a plant simultaneously 

or from several plants at once, providing information from different parts of the plant or 

multiple plants simultaneously. SSP  sensors allow the analysis of biological tissue’s 

chemical composition, molecular structure, and other properties without spatial and color 

information (Tosin, Monteiro-Silva et al. 2023). In contrast, MSPO sensors usually have 

this additional information with a certain spatial resolution, allowing an analysis of a plant 

organ (such as leaf, stem, and root) (Manolakis, Lockwood et al. 2016). 

4.2. Electromagnetic spectrum and plant physiology 

 During the past few decades, PS crop studies have predominantly focused on 

employing reflectance/transmittance techniques (Figure 3) operating within the visible 

(VIS, 400-700 nm), near-infrared (NIR, 700-1300 nm), short-wave infrared (SWIR, 1300-

2500 nm) electromagnetic regions. Also, PS based on emission techniques operates on 

the thermal infrared range (TIR, 7000-20000 nm) and fluorescence (at 680-740 nm) 

spectroscopic sensors were used in crop studies (Galieni, D'Ascenzo et al. 2021) (Table 

1). This emphasis is related to plant-pathogen interactions, particularly their impact on 

tissues’ spectral behavior within the VIS and red-edge regions (RE, 670-760 nm), due to 

changes in photosynthetic pigment levels (primarily concerning chlorophyll degradations 

whose wavelength absorption ranges from 430 to 480 nm, and 640 to 700 nm). Such 

interactions lead to alterations in photosynthetic pigment levels, notably chlorophyll 

degradation, which manifests through changes in absorption wavelengths ranging from 

430 to 480 nm and 640 to 700 nm (Bhandari, Wang et al. 2015, Buja, Sabella et al. 

2021). Furthermore, photosynthesis disturbance can also be observed through the 

plant’s fluorescence emission (450-550 nm, 690-720 nm). As the disease progresses 

and tissue senescence sets in, the emergence of brown pigments and structural 

alterations become apparent, leading to discernable spectral variations in the VIS and 

NIR regions, typically spanning from 680-800 nm (Buja, Sabella et al. 2021). Changes in 

carotenoid levels are mainly related to β-carotenes, whose primary and secondary 

absorption peaks are located at 450-480 nm and 600-650 nm, respectively, and to 

xanthophylls at 520 to 580 nm (Buja, Sabella et al. 2021). In turn, the chlorophyll 

breakdown can lead to the subsequent formation of pheophytins (brown pigments) 

characterized by a primary absorption peak at 660-670 nm and a secondary peak around 

430-450 nm (Buja, Sabella et al. 2021). 

 Vibrational spectroscopy (Figure 3) was also used in plant studies, aiming to 

identify the chemical composition and molecular structure of biological tissues through 
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the analysis of light scattered from a sample. These approaches do not capture data 

across specific predefined spectral bands (like multispectral sensors) or numerous 

contiguous narrow bands (like hyperspectral devices) across the electromagnetic 

spectrum. An example is NIR spectroscopy which showed the capability of measuring 

compounds containing the groups -OH, -NH, and -CH (Cozzolino 2014, Türker-Kaya and 

Huck 2017), which are found in primary and secondary metabolites, important 

components of plants and plant defenses against pathogens (Conrad, Li et al. 2020). 

Also, variations in the water content of samples, characteristic of pathogen infection 

(through the occurrence of desiccation – wilting – and water-soaking lesions), are 

reflected in NIR spectra (Wang, Zhang et al. 2017, Conrad, Li et al. 2020).  In turn, 

Raman spectroscopy was applied to sense the inelastic scattering of photons by 

molecular vibrational modes, which carry information about the chemical composition in 

the focal volume (Payne and Kurouski 2020).  

 It is important to address that some of these spectral modifications are specific to 

certain host-pathogen interactions, and their monitoring may lead to the disease 

diagnosis.  

4.3.       ’                         b      

 Table 1 outlines the primary characteristics of the key sensors employed in 

diagnosing plant diseases, along with their TRL and usage frequency based on the 

conducted literature review. The main sensing technologies identified during the 

screening process were Biophoton Emission, Fluorescence Spectroscopy (SSPO and 

MSPO), Laser-Induced Breakdown Spectroscopy (LIBS), Multi- and Hyperspectral 

Spectroscopy (including SSPO and MSPO), Nuclear Magnetic Resonance (NMR) 

Spectroscopy, Raman Spectroscopy, RGB Imaging, Thermography, Volatile Organic 

Compounds (VOCs) assessment, and X-ray Fluorescence (XRF) MSPO (Table 1). A 

more detailed description of these techniques can be found in Supplementary Materials 

II. These sensors may differ from each other in the number of bands they can access 

(Table 1). As examples, panchromatic sensors capture information across a broad 

spectrum in a single band; RGB sensors work with red, green, and blue bands; 

multispectral sensors with broadband, multiple discrete bands across the 

electromagnetic spectrum; and hyperspectral sensors measure narrow contiguous 

features (<10 nm) (Liu, Bruning et al. 2020, Galieni, D'Ascenzo et al. 2021). The devices 

measuring fewer wavelengths are primarily used for qualitative analysis and show limited 

capability to provide quantitative data. In contrast, higher-precision sensors greatly 
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improved the ability to study specific atomic or molecular transitions, permitting more 

precise measurements (Galieni, D'Ascenzo et al. 2021).  

 The RGB imaging technique was found to have a higher TRL and is frequently 

used in plant disease studies. However, it is important to note that this technique only 

allows the diagnosis of plant diseases in symptomatic stages. Consequently, it was not 

included in the output tables of this study, as elaborated in the subsequent sections. 

Hyperspectral spectroscopy (including SSPO and MSPO techniques) was the 

subsequent approach reaching a higher TRL, likely motivated by its frequent application 

and study in plant disease diagnosis. Notably, it was found to be applied in at least 41 of 

the screened studies. In contrast, Biophoton emission and VOC assessment have a low 

TRL and were considered emerging techniques (Table 1). 

Table 1 Main characteristics and Technology Readiness Levels (TRL) of proximal 

sensors for early plant disease diagnosis.  

Spectral 

techniques 

Energy / 

Light source 
Spectral region Information 

Trait 

sensed 
TRL 

Nº 

Ref. 

Biophoton 

Emission 

Passive VIS-NIR 

Photomultiplier 

Emission spectra Metabolites 3 4 

Fluorescence 

Spectroscopy 

Active (Blue/ 

Red/ UV LED) 

Blue/Red/UV Emission spectra 

Image 

Metabolites 

Plant organ* 

4 3 

LIBS Active (Laser) UV-VIS-NIR Atomic emission Elemental 

composition 

4 2 

Multi- and 

Hyperspectral 

Spectroscopy 

Passive; 

Active 

UV-VIS-NIR Reflectance/ 

Transmittance 

spectra 

Hyperspectral data 

cube (Image) 

Metabolites 

Plant organ* 

5 41 

NMR Active 

 

Radiofrequency 

pulse 

NRM spectra Metabolites 4 5 

Raman vibration 

Spectroscopy 

Active (Laser) IR Raman spectra Metabolites 4 5 

RGB Passive Red, Blue, 

Green 

RGB Image Plant organ 

Plant 

Canopy 

8/9 8 

Thermography Passive NIR, SWIR, MIR Thermal image Plant organ* 4 4 

VOCs Electrical 

power 

UV-VIS-NIR Chromatogram, 

Mass spectrum, 

Pattern 

Recognition 

Molecular 

composition 

Metabolites 

3 4 

XRF Active (X-ray 

beam) 

X-ray XRF spectra 

XRF image 

Elemental 

composition 

Plant organ* 

4 4 

* Organ – Leaf, stem, root, among others; LED – Light-Emitting Diode; Nº Ref. – Number of references (articles); 

The TRL (Technology Readiness Level) assigned refers not to the technology but to the applications developed 

for early disease diagnosis. NIR – Near Infrared (700-1300 nm); TIR – Thermal infrared (7000-20000 nm); UV – 

Ultraviolet (200-400 nm); VIS – Visible (400-700 nm); NMR – Nuclear Magnetic Resonance; VOCs – Volatile 

Organic Compounds sensing; XRF – X-Ray fluorescence; LIBS – Laser Induced Breakdown Spectroscopy  

5. Main findings of sensing technologies for plant early disease diagnostic 

 Literature review focused on the following criteria: (as depicted in the 

Supplementary Materials Figure S1):  i) crop and pathogen studied, ii) the spectral 
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sensing technique used, iii) its spectral range, iv) the number of samples assessed, v) 

the methods used to analyze (model) data, vi) and the main statistics used to evaluate 

the models. 

 The selected articles were grouped in three tables according to the assay’s 

conditions, namely, laboratory (controlled environment) depicted in Table 2, 

greenhouse/glasshouse in Table 3, and field in Table 4. Moreover, sensing technology 

performances were detailed in the next section. 

5.1. Experimental conditions for sensor application in crop and pathogen setting 

 In terms of crops analyzed, research mostly referred to the assessment of tomato 

(16% of the articles) and wheat (13%), followed by sugar beet and soybean (used both 

in 9%) (Table 2, 3, 4). All these crops are highly economically important due to their 

widespread cultivation and consumption worldwide, especially wheat, which is 

considered a staple food source. Additionally, the crops studied were likely chosen for 

their simplicity in terms of cultivation and maintenance. Some of them (e.g., tomato, 

sugar beet, soybean, cucumber, pepper, among others) also present short life cycles, 

which make them suitable for multiple studies in a relatively short period.  It was possible 

to acknowledge that several crops (e.g., avocado, cassava, cotton, among others) were 

mentioned in a single article. 

 Concerning the etiological agents studied, it was also possible to observe that 

Fungi were the more extensively screened pathogen, referred to in 53% of the articles 

assessed, followed by viruses (24%), bacteria (approximately 18%), and pests (around 

9%) (Table 2, 3, 4). Several reasons may be related to these findings, such as economic 

importance of the impact of the disease/pest, global distribution, visibility and 

symptomatology, historical emphasis, availability of resources (e.g., pathogen 

collections), pathogen complexity, ecological significance, and resistance to 

phytosanitary products. Fungal diseases usually manifest more conspicuously in plants 

than viral, bacterial, or pest-related diseases (even before symptom appearance). Thus, 

this may enable the caption and understanding of more changes promoted by plant-

pathogen interactions, motivating more research using these organisms.  

 The experimental conditions observed in the search results showed that most of 

the screened articles (69%) detailed experiments conducted in laboratory settings. 

Following this, greenhouse experiments were mentioned in 22% of the articles, while 

field experiments were documented in 20%, as illustrated in Tables 2, 3, and 4. 
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5.2. Sensing technologies applications 

5.2.1. Post-symptom plant disease diagnosis 

 RGB imaging (Supplementary Materials II) was previously identified as suitable 

for post-symptomatic plant disease studies (involving diagnostic, quantification, and 

severity studies) (Steddom, McMullen et al. 2004, Turner, Martin et al. 2004). RGB was 

the most extensively explored, being evaluated in disease diagnosis studies in laboratory 

(Ferentinos 2018), greenhouse (Mellit, Benghanem et al. 2021), and field conditions 

(Zhou, Kaneko et al. 2014, Fan, Luo et al. 2022). It was also found that this technique is 

suitable for disease severity determination (Kang, Huang et al. 2022), pest quantification 

(Xia, Chon et al. 2015), and recognition/identification of diseases (Fan, Luo et al. 2022). 

The major drawback of this technique is it requires an extensive sensing area to generate 

an image, only allowing disease diagnosis after macroscopic visual symptom 

manifestation, not being suitable for an early diagnosis.  For this reason, this technology 

was not further considered for metric evaluation. 

5.2.2. Early disease diagnosis (before or at the development of the first symptoms) 

 Thermography (Supplementary Materials II) was one of the techniques identified 

as suitable for early diagnosis. It was successfully used to visualize the spatial 

colonization of apple tissues affected by the scab disease (Venturia inaequalis) over and 

beyond visible symptoms, where hyphae and conidia were only microscopically 

detectable (Oerke, Fröhling et al. 2011). In this study, leaves inoculated with conidia of 

V. inaequalis show concentric spots of non-standard low leaf temperature even before 

the appearance of visible scab symptoms (at 8 days after inoculation). The relationship 

between disease severity and maximum temperature difference, estimated through a 

regression analysis, achieved a square Pearson’s coefficient of determination (r²square) 

of 0.731 at 9 days after inoculation (after visible symptom appearance). Similarly,  

Chaerle et al. (1999) studied tobacco plants infected with tobacco mosaic virus (TMV) 

and found that sites of infection were 0.3–0.4°C warmer than the surrounding tissue 

approximately 8 hours before the initial appearance of the necrotic lesions (suggesting 

a presymptomatic diagnosis) (no metrics reported) (Chaerle, Van Caeneghem et al. 

1999). Oerke et al. (2006) also analyze cucumber leaves infected by 

Pseudoperonospora cubensis (downy mildew) and the impact of this infection on 

metabolic processes and transpiration rate (Oerke, Steiner et al. 2006). They concluded 

that healthy and infected leaves can be discriminated against even before symptoms 

appear (no metrics shown). Since these two scientific did not present the requested 

model metrics to integrate this work, they were not further explored in Tables 2, 3, and 4 
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results. Nevertheless, the authors consider their mention important due to their relevant 

findings. It is important to address that when Thermography sensors are used, smaller 

disease lesions might not be distinguishable due to the equipment resolution. Moreover, 

these minor lesions might not emit enough energy to be detected by sensors with lower 

resolution. 

 Hence, 46 (58%) articles were selected to integrate the results in Tables 2, 3, and 

4. According to their analysis, our research indicates that hyperspectral spectroscopy 

was the most used technique, followed by hyperspectral imaging (MSPO, 24%), and 

Raman spectroscopy (7%). Fluorescence spectroscopy, LIBS (4% of the articles), and 

XRF (1 article) were also mentioned (Tables 2, 3, 4).  

 Hyperspectral devices (Supplementary Materials II), both spectroscopy (SSPO) 

and imaging-based (MSPO), were reported in laboratory (Shuaibu, Lee et al. 2018, Gold, 

Townsend et al. 2020), greenhouse (Rangarajan, Whetton et al. 2022, Griffel, Delparte 

et al. 2023), and field (Almoujahed, Rangarajan et al. 2022, Zhang, Jing et al. 2023) 

disease diagnosis studies (Table 2, 3, and 4, respectively). These sensors have been 

increasingly used in early disease diagnosis, before symptom appearance, allowing the 

distinction between healthy, non-symptomatic, and symptomatic tissues (Table 2, 4) 

(Gold, Townsend et al. 2020, Nguyen, Sagan et al. 2021, Reis Pereira, Santos et al. 

2023, Zhu, Su et al. 2023). For example, Rumpf et al. (2010) used hyperspectral 

spectroscopy to detect and distinguish different pathogens responsible for causing leaf 

diseases in sugar beet plants, namely Cercospora beticola, Uromyces betae or Erysiphe 

betae causing Cercospora leaf spot, sugar beet rust, and powdery mildew, respectively 

(Rumpf, Mahlein et al. 2010). Overall, they could discriminate between healthy and 

diseased leaves with up to 97% classification accuracy (Rumpf, Mahlein et al. 2010) 

(Table 2). Multiclass classification between healthy and symptomatic samples of the 

three diseases achieved an accuracy higher than 86%. The potential for presymptomatic 

diagnosis demonstrated that, depending on the type and stage of disease infection, the 

classification accuracy varied from 65 to 90% (Table 2). Likewise, Herrmann et al. (2018) 

studied the suitability of HS for early predicting Sudden Death Syndrome, caused by 

Fusarium virguliforme, in soybean plants in field conditions (Herrmann, Vosberg et al. 

2018). The presymptomatic diagnosis was possible using canopy and leaf spectral data, 

with a classification accuracy of 82% and 92%, respectively, for validation (Herrmann, 

Vosberg et al. 2018) (Table 4). More important research on this topic is referred to in 

Tables 2, 3, and 4. 
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 Fluorescence Spectroscopy (FS, Supplementary Materials II) has also been 

applied in the assessment of physiological states and stress levels of plants, including 

disease studies, even in field conditions (Römer, Bürling et al. 2011, Bürling, Hunsche 

et al. 2012). Römer et al. (2011) applied FS in the study of presymptomatic diagnosis of 

leaf rust in wheat plants (Römer, Bürling et al. 2011). Only two days after infection, the 

developed model could diagnose this pathogen with a classification accuracy reaching 

93% (Table 2) (Römer, Bürling et al. 2011). Atta et al. (2023) similarly studied the early 

diagnosis of stripe rust in wheat through the application of light-induced fluorescence 

spectroscopy (Atta, Saleem et al. 2023). Lower chlorophyll bands were noticeable at 685 

and 735 nm in both the non-symptomatic and symptomatic leaf samples (Atta, Saleem 

et al. 2023). A Partial Least Square Regression (PLSR) model was computed, resulting 

in a standard error of calibration (SEC) of 0.200, a standard error of prediction (SEP) of 

0.140, and a coefficient of determination (R2) of 0.77 (Table 2) (Atta, Saleem et al. 2023).  

 A commercial fluorescence sensor known in the literature for being suitable for 

early plant disease diagnosis is Multiplex® (FORCE-A, Orsay, France). It is a hand-held, 

multi-parametric fluorescence sensor based on light-emitting-diode (LED) excitation and 

filtered-photodiode detection designed to work in the field under daylight on several 

crops. Its excitation light sources are mainly located in the UV (365 nm or 340 nm), blue 

(465 nm), green (520 nm), and red (630 nm), and can measure simultaneously various 

compounds (e.g. anthocyanins, flavonoids, chlorophyll) (GmbH 2014, ForceA 2019). 

Bellow et al. (2012) applied the Multiplex diagnosing downy mildew in grapevine leaves 

(Bellow, Latouche et al. 2012). The authors demonstrated that the stilbene-dependent 

violet–blue autofluorescence (VBF), an organic compound, had a transitory behavior, 

increasing to a maximum 6 days post-inoculation (DPI) and then decreasing to a 

constant lower level when compared to healthy leaves (Bellow, Latouche et al. 2012). 

On the abaxial side, VBF could discriminate the presence of infection from 1 DPI, and 

on the adaxial side from 3 DPI (Bellow, Latouche et al. 2012). Yu et al. (2013) also 

studied Florescence, along with Hyperspectral data to investigate leaf diseases in 

different barley varieties and estimate leaf chlorophyll concentration (LCC) (Yu, Leufen 

et al. 2014). The plants of the plot without fungicide treatment showed mild infections 

with a few punctiform visible symptoms (Yu, Leufen et al. 2014). Detached leaves, 

allowed in laboratory estimation of LCC with a coefficient of determination (R2) of 0.72 

and Root-mean-square error (RMSE) of 1376.3 µg/g, when the validation set was used, 

and when the blue to far-red fluorescence ratio was used (Yu, Leufen et al. 2014). 

Support Vector Regression (SVM) was further computed to improve the accuracy in 
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estimating LCC using fluorescence signals, yielding an R2 of 0.84 and an RMSE of 

1021.91 µg/g when the validation set was used (Yu, Leufen et al. 2014). 

 In plant studies, Raman Spectroscopy (RaS, Supplementary Materials II) 

methodology has proved to be effective in the detection of the most generally 

encountered types of phytopathogens, such as fungi (through the impact of mycotoxins), 

bacteria, viruses, or nematodes (Sylvain and Cecile 2018, Payne and Kurouski 2020). 

Early assessment success was achieved by Madrile, et al. (2019) in the discrimination 

of the infection of tomato samples by Tomato yellow leaf curl Sardinia virus (TYLCSV) 

and Tomato spotted wilt virus (TSWV) (Mandrile, Rotunno et al. 2019). A chemometrics 

analysis was performed including the computation of a Principal Component Analysis 

(PCA), and a Partial least squares discriminant analysis (PLS-DA) (Mandrile, Rotunno 

et al. 2019). Early diagnosis was associated with an accuracy higher than 70% for 

TYLCSV and 85% for TSWV (Table 2) (Mandrile, Rotunno et al. 2019). Sanchez et al. 

(2020) employed a hand-held RaS device for the non-invasive and early (non-

symptomatic) detection of two haplotypes of Liberibacter disease on tomatoes (Sanchez, 

Ermolenkov et al. 2020). They detected structural changes in carotenoids, xylan, 

cellulose, and pectin that were later related to bacterial disease (Sanchez, Ermolenkov 

et al. 2020). A Partial least squares discriminant analysis (PLS-DA) was performed, 

allowing 80% accurate diagnostics of Liberibacter disease caused by each of the two 

different haplotypes (Table 2) (Sanchez, Ermolenkov et al. 2020). Furthermore, Vallejo-

Pérez et al. (2021) applied RaS and machine learning to diagnose the bacterial canker 

in asymptomatic tomato samples (Vallejo-Pérez, Sosa-Herrera et al. 2021). They 

computed a Principal Component Analysis (PCA) in combination with a multilayer 

perceptron (PCA+MLP) and, in a different approach, with a linear discriminant analysis 

(PCA+LDA) (Vallejo-Pérez, Sosa-Herrera et al. 2021). The spectra obtained from 

diseased leaves showed peaks related to cellular components, and the most outstanding 

vibrational bands were associated with carbohydrates, carotenoids, chlorophyll, and 

phenolic compounds (Vallejo-Pérez, Sosa-Herrera et al. 2021). Bands linked with 

triterpenoids and flavonoid compounds were, furthermore, identified as indicators of the 

pathogen infection (Vallejo-Pérez, Sosa-Herrera et al. 2021). Classification performance 

demonstrated an accuracy of 0.99, f1-score of 0.99, sensitivity of 1.0, and specificity of 

0.95 were achieved when PCA and MLP were combined (Table 2) (Vallejo-Pérez, Sosa-

Herrera et al. 2021). 

 The other vibrational spectroscopy technique identified, Nuclear Magnetic 

Resonance (NMR) spectroscopy (Supplementary Materials II), was used in the 

identification of several metabolites (biomarkers) indicators of several infections (Choi, 
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Tapias et al. 2004, Ali, Maltese et al. 2012, Freitas, Carlos et al. 2015, Pontes, Ohashi 

et al. 2016). Pontes et al. (Pontes, Ohashi et al. 2016) studied combining this 

methodology with chemometrics for diagnosing the citrus greening disease (caused by 

Candidatus Liberibacter spp.) in leaves. They discovered that class discrimination was 

achievable by the computation of a Principal Component Analysis (PCA), separating 

healthy from diseased samples (PC1-PC2 score of 76.4%), healthy leaves from the ones 

infected with insects (PC1-PC2 78.1%), and all the classes from each other (PC1-PC2 

81.7%). Studies using NMR similar to XRF, are still insufficient, and further research is 

advised. Despite these interesting findings, this work was not included in the final result 

tables since it was performed after insect/symptom visualization. 

 Laser-Induced Breakdown Spectroscopy (LIBS, Supplementary Materials II) 

demonstrated its suitability for plant disease studies by enabling the differentiation 

between healthy and disease plants through the monitoring of changes in their macro 

and micronutrient composition, even during non-symptomatic stages. In fact, Pereira et 

al. (2010) proposed a method for the classification of citrus leaves infected by greening 

disease (caused by the bacteria Candidatus Liberibacter asiaticus) through the analysis 

of LIBS spectra (Pereira, Milori et al. 2010). The authors could develop predictive models 

for assessing healthy and infected plants, based on relevant differentiations in major, 

macro-, and microconstituents of samples (both organic and inorganic) of these two 

health statuses (Pereira, Milori et al. 2010). Classification efficacy of diseased samples 

ranged from 82 to 97% (Table 3) (Pereira, Milori et al. 2010). Similarly, Ranulfi et al. 

(2018) studied the green stem and foliar retention (GSFR), caused by the pest 

Phelenchoides besseyi, on soybean plants (Ranulfi, Senesi et al. 2018). The authors 

concluded that healthy plants had higher concentrations of calcium and magnesium, 

whereas sick plants had higher concentrations of potassium (Ranulfi, Senesi et al. 2018). 

Partial Least Square Regression (PLSR) allowed class differentiation with rates higher 

than 80% (Table 2) (Ranulfi, Senesi et al. 2018). 

 X-Ray Fluorescence (XRF, Supplementary Materials II) is another technique that 

was also applied in plant disease investigation (Sharma, Khajuria et al. 2018, Sharma, 

Khajuria et al. 2020) and diagnosis (Pereira and Milori 2010). Pereira and Milori in 2009 

related the usage of X-ray fluorescence and chemometric tools for studying the citrus 

greening disease (Candidatus Liberibacter asiaticus) (Pereira and Milori 2010). They 

identified the signals for potassium, calcium, iron, copper, and zinc and the region of 

coherent and incoherent scatterings as significant for distinguishing healthy samples 

from diseased ones (Table 2) (Pereira and Milori 2010). Rodrigues et al. (2018) 

employed XRF to acquire chemical images of soybean leaves infected by anthracnose 
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(Colletotrichum truncatum), demonstrating that phosphorus, sulfur, and calcium were 

concentrated in the diseased regions (Rodrigues, Gomes et al. 2018). Despite these 

important findings, research is still scarce (Table 2) (Rodrigues, Gomes et al. 2018). 

5.2.3. Emerging techniques with diagnostic suitability 

 Biophoton Emission and Volatile Organic Compounds (VOCs) analysis 

(Supplementary Materials II) were two sensing techniques identified during the screening 

process and classified as emerging due to their low TRL (3) (Table 1). This indicates that 

these techniques are mostly in a stage of experimental proof of concept development, 

and only addressed by a limited number of scientific works.  

 In terms of emerging techniques for plant disease diagnosis, the detection and 

quantification of biophotons (Biophoton spectroscopy, Supplementary Materials II) were 

found to be promising since the emission of these particles increases significantly when 

plants are infected by pathogens (Kawabata, Miike et al. 2005, Kobayashi, Sasaki et al. 

2007). Two types of biophoton emission can be identified according to disease-

resistance reactions: relatively weak emissions observed during the early stages of the 

resistance reaction (Iyozumi, Kato et al. 2005), and strong emissions from cells exhibiting 

programmed cell death (PCD) during the middle stages of the resistance reaction 

(Bennett, Mehta et al. 2005). Iyozumi et al. (2002) using sweet potatoes inoculated with 

Fusarium oxysporum showed that photon emissions have their wavelength composition 

shifted toward a shorter wavelength as compared with that of untreated samples, 

indicating that this was a luminous phenomenon quantitatively different from the one 

observed under normal conditions (Iyozumi, Kato et al. 2002). Kawabata et al. (2004) 

analyzed the impact of spider mites (Tetranychus kanzawai Kishida) on kidney bean 

leaves, demonstrating higher biophoton emission from leaf veins where the pests were 

crowding (Kawabata, Uefune et al. 2004). Along with this, photon emission intensity 

augmented with the decrease in chlorophyll content and photosynthesis yield 

(Kawabata, Uefune et al. 2004).  

 Moreover, the analysis of Volatile Organic Compounds (VOCs, Supplementary 

Materials II) emitted by disease plants in contrast with the profile emitted by healthy 

plants also seems a promising tool for providing non-invasive monitoring of a plant’s 

physiological health status (Table 1) (Cellini, Biondi et al. 2016). Cardoza et al. (2003) 

performed VOC profiling for discriminating healthy peanut (Arachis hypogaea) plants 

from individuals infected with white mold (fungi, Sclerotium rolfsii) (Cardoza, Teal et al. 

2003). They detected considerable differences in methyl salicylate (phenolic compound) 

and 3-octanone, two secondary metabolites (Cardoza, Teal et al. 2003). Likewise, Mauck 
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et al. (2010) assessed the VOC profile of squash (Cucurbita pepo cv. Dixie) to study the 

Cucumber mosaic virus disease in greenhouse and field conditions (Mauck, De Moraes 

et al. 2010). The authors showed that diseased individuals presented higher VOC levels 

when compared to healthy plants, but these compounds were overall qualitatively similar 

(Mauck, De Moraes et al. 2010). López-Gresav et al. (2010) monitored tomato plants 

infected with two types of pathogens, namely bacteria Pseudomonas syringae pv. 

tomato, and citrus exocortis viroid (CEVd), to accompany the VOC profiling evolution 

(López-Gresa, Maltese et al. 2010). Plants infected with bacteria pathogens presented 

increased levels of amino acids, rutin, and phenylpropanoids (López-Gresa, Maltese et 

al. 2010). In turn, individuals affected by plants revealed differences in glucose and malic 

acid production (López-Gresa, Maltese et al. 2010). 

 Similarly to what happened in the thermography technique, the scientific articles 

mentioned in this subsection were not considered in Tables 2, 3, and 4 due to lacking 

criteria such as model performance analysis and metrics. 
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Table 2 Selected findings of the bibliography review of the early diagnosis of several plant pathogens assessment in indoor (controlled) conditions. 

Culture & 
Pathogen 

Spectral sensor Modelling Ref. 

Technique Range Samples Method Statistics  

Citrus, Virus X-ray fluorescence Max. 12 keV 162 samples SIMCA, KNN, PLS-DA, PCA Correct classified: 90% (validation) (Pereira and Milori 2010) 
Sugar beet, Fungi Hyperspectral spectroscopy 450-1050 nm 15 plants; 630 spectra SVM Low severity (<=5%): Acc. 84.3%, Rec. 78.32% (Rumpf, Römer et al. 

2010) 
Sugar beet, Fungi Hyperspectral spectroscopy 350-1100 nm 15 plants; 630 spectra Regression r: 0.85 VIS, ARI 0.54-0.77. REP 0.58-0.75 (Mahlein, Steiner et al. 

2010) 
Sugarcane, Virus Hyperspectral spectroscopy 350-800 nm 40 leaves DA Resubstitution (all dates) 73% (Grisham, Johnson et al. 

2010) 
Sugar beet, Fungi Hyperspectral spectroscopy 400-1050 nm 30 plants DT, ANN, SVM Acc.: 97%, Multi classes: Acc. 86%, Rec. 84-92%. 

Presymptomatic: 65-90% 
(Rumpf, Mahlein et al. 

2010) 

Soybean, Virus Hyperspectral spectroscopy 730-1025 nm 20 plants; 2400 spectra SIMCA Sen.: 91.6%, Spe.: 95.8% (Jinendra, Tamaki et al. 
2010) 

Wheat, Fungi Fluorescence spectroscopy 370-800 nm 72 leaves; 215 spectra SVM, DT, ANN Classification: 73.6% 2 DAI, 79.2% 3 DAI, 80.7% 4 DAI (Römer, Bürling et al. 
2011) 

Oilseed rape, 
Pest 

Hyperspectral imaging 380-1030 nm 510 images G-WNNRA, WNN, GNN, BPNN G-WNNRA: Calibration R 0.998, R2 0.996; Validation R 
0.953, R2 0.908 

(Zhao, He et al. 2012) 

Strawberry, Fungi  Hyperspectral imaging 400-1000 nm 5 inoculated, 1 healthy SAM, SDA, SSM Acc.: SAM 82.0%, SDA 80.7%, SSM 72.7% (Yeh, Chung et al. 2013) 
Eggplant, 
Bacteria 

Hyperspectral spectroscopy 350-2500 nm 12 plants Mean Percent Difference MDP: 19.51% pre-symptom Day 4, 60.53 maximum Day 8 (Chew, Hashim et al. 
2014) 

Avocado, Fungi Hyperspectral spectroscopy 350-2500 nm 80 leaves; 800 spectra SDA, NN - MLP, RBF Correct classification: MLP 96-99%, RBF 65% (Abdulridha, Ehsani et al. 
2016) 

Citrus, Virus Hyperspectral spectroscopy 400-1100 nm 150 samples PCA, N PCA, KNN Classification: 60-90%. Overall 92% (Afonso, Guerra et al. 
2017) 

Soybean, Pest LIBS 189-966 nm 70 plants PCA, CVR+PLSR Success rate: > 80% (Ranulfi, Senesi et al. 
2018) 

Apple, Fungi Hyperspectral imaging 356-1000 nm 260 trees, >1000 
leaves; 
2000 pixels 

OSP, DT, EB, Weighted KNN  EB: Acc. 84.3% Overall, 83.2% Healthy, 67.6% 
Asymptomatic, 89.4-97.3% 

(Shuaibu, Lee et al. 
2018) 

Tomato, Pest Hyperspectral imaging 400-2500 nm 42 plants PLS-SVM Acc.: 90-100%  (Susič, Žibrat et al. 2018) 

Wheat, Fungi Hyperspectral imaging 375-1017 nm 184 samples BPNN PCA BPNN: R2 0.92, RMSEP 1.07, RPD 3.36. SPA BPNN: 
R2 0.92, RMSEP 1.10, RPD 3.26 

(Yao, Lei et al. 2019) 

Cucumber, Fungi Hyperspectral spectroscopy 450-1100 nm 152 plants SIMCA Acc.: SIMCA > 78% (Atanassova, Nikolov et 
al. 2019) 

Tomato, Virus Raman spectroscopy 400-3100 cm-1 3 plants PLS-DA Yellow leaf curl, 14 DAI: Acc. 71%, Sen. 0.80, Spe. 0.67. 
Spotted wilt, 8 DAI: Acc. 89%, Sen. 0.80, Spe. 1.00 

(Mandrile, Rotunno et al. 
2019) 

Pepper, Virus Hyperspectral imaging 400-1000 nm 20 plants OR-AC-GAN, MLP Acc. before symptom: 96.25%, Pixel prediction false 
positive rate 1.57% 

(Wang, Vinson et al. 
2019) 

Potato, Fungi Hyperspectral spectroscopy 350-2500 nm 2039 spectra PCoA, PLS-DA Pre-symptomatic: Kap. 0.87 LB, 0.94 EBl. LB vs. EBl: Kap. 
0.78, Acc. 91.3% 

(Gold, Townsend et al. 
2020) 

Potato, Fungi Hyperspectral spectroscopy 350-2500 nm 1330 spectra NDSIs, PERMANOVA, PCoA, 
PLS-DA, RF, PLSR 

Acc. 71%, Kap. 0.35; Control vs Pre-symptom Acc. 83%, 
Kap. 0.37; Pre vs Post-symptom Acc. 71%, Kap. 0.41 

(Gold, Townsend et al. 
2020) 



FCUP 
Early diagnosis of bacterial plant diseases based on proximal sensing from a precision agriculture perspective 

43 

 

 

Tomato, Bacteria Raman spectroscopy 350–2000 cm-1 36 plants PLS-DA Correct classifications: 80% (Sanchez, Ermolenkov et 
al. 2020) 

Grapevine, Fungi  Hyperspectral imaging 397-1003 nm 35 plants LDA, QDA, RDA, SkNN, NB, 
RPART 

NB: Healthy vs. asymptomatic Acc. 76%, Kap. 0.31, EO 
0%, EC 75% 

(Calamita, Imran et al. 
2021) 

Apple, Bacteria Hyperspectral spectroscopy 1100-2498 nm 862 samples PLS-DA Non- vs. symptomatic Acc.: 71%, Sen. 70%, Spe.: 72% (Barthel, Dordevic et al. 
2021) 

Wheat, Fungi Hyperspectral imaging 400-1000 nm  24 pots PLS-LDA, PLSR PLS-LDA: Acc. 85% (3-6 DAI, DS 1-6%); PLSR: R2 0.818 (Khan, Liu et al. 2021) 

Tomato, Bacteria Raman spectroscopy 800–1800 cm−1 297 spectra PCA+MLP, PCA+LDA PCA+MLP: Acc. 0.99, Sen. 1.0, Spe. 0.95, PPV 0.98, NPV 
1.0, F1 0.99 

(Vallejo-Pérez, Sosa-
Herrera et al. 2021) 

Wheat, Fungi Fluorescence spectroscopy 400-900 nm 66 spectra  PLSR SEP 0.14, SEC 0.20, R2 0.77, RMSEP (test) 0.08 (Atta, Saleem et al. 
2023) 

Tomato, Bacteria Hyperspectral spectroscopy 400-800 3478 spectra, 9 plants LDA, SVM Non-symptomatic (Test set): Pst Acc. 100%, Pre. 0.94, 
Rec. 1.00, F1 0.97; Xeu Acc. 74%, Pre. 0.77, Rec. 0.74, 
F1 0.75 

(Reis Pereira, Santos et 
al. 2023) 

Barley, Eggplant, 
Cucumber, Fungi, 
Bacteria 

Hyperspectral imaging 380-1030 nm 250 samples; 138 
images 

PLSR, MLR R2: Chl-a 0.88, Chl-b 0.88, Car 0.87. RMSE: Chl-a 0.08, 
Chl-b 0.02, Car 0.01. RPD: Chl-a 2.97, Chl-b 3.17, Car 
2.90 

(Zhu, Su et al. 2023) 

Acc. – Accuracy, ANN –  Artificial Neural Network, ARI –  Anthocyanin Reflectance Index, BPNN –  Back Propagation Neural Network, Car – Carotenoids, Chl – Chlorophyll, CR–  Cubist Regression, CVR –  
Classification Via Regression, DA –  Discriminant Analysis, DAI –  Days After Infection, DGND –  Dual– Green Normalized Difference, DGSR –  Dual– Green Simple Ratio, DS–  Disease Severity, DT –  Decision 
Trees, EB –  Ensemble Bagged, EBl –  Early Blight, EC –  Error of Commission, EO –  Error of Omission, ET –  Extra Trees, F1 –  F1 Score, FDA –  Flexible Discriminant Analysis, FiDA –  Fisher Discriminant 
Analysis, GA –  Genetic Algorithm, GLM –  Generalized Linear Model, GLMVQ –  Generalized Matrix Relevance Learning Vector Quantization, GNN –  Genetic Neural Network, G– WNNRA –  Genetic– Wavelet 
Neural Network Reconstruction Algorithm, KNN –   k– Nearest Neighbor, LB –  Late Blight, LDA –  Linear Discriminant Analysis, MDP –  Mean Percent Difference, MLP –  Multilayer Perceptron, MLR –  Multiple 
Linear Regression, NB –  Naïve Bayes, NDSI –  Normalized Difference Spectral Index, NN –  MLP –  Neural Networks Multilayer Perceptron, N PCA –  N– Way Principal Component Analysis, NPV –  Negative 
Prediction Values, OR– AC– GAN –  Outlier Removal Auxiliary Classifier Generative Adversarial Nets, OSP –  Unsupervised Feature Selection using Orthogonal Subspace Projection, Kap. – Kappa, PCA – 
Principal Component Analysis, PCoA – Principal Coordinate Analysis, PERMANOVA – Permutational Multivariate Analysis of Variance, PLS – Partial Least Squares, PLS– DA – Partial Least Squares Discriminant 
Analysis, PLSR – Partial Least Squares Regression, PPV – Positive Prediction Values, Pre. – Precision, QDA –  Quadratic Discriminant Analysis, r / R –  Correlation Coefficient, R2–  Coefficient of Determination, 
RBF –  Radial Basis Function, RDA –  Regularized Discriminant Analysis, Rec. – Recall, REG – Regression, REP –  Red Edge Position, RF –  Random Forest, RFCNN –  Random Forest Convolutional Neural 
Network, RMSE –  Root– Mean– Square Error, RMSEP– Root– Mean– Square Error Prediction, RPART –  Recursive Partitioning Regression Tree, RPD –  Residual Predictive Deviation, RR –  Ridge Regression, 
SAM –  Spectral Angle Mapper, SDA –  Stepwise Discriminant Analysis, SEC –  Standard Error of Calibration, Sen.–  Sensitivity, SEP –  Standard Error of Prediction , SIMCA –  Soft Independent Modelling of 
Class Analogies, SkNN –  Simple k– Nearest Neighbor, Spe. – Specificity, SSM – Simple Slope Measure, SVM – Support Vector Machine, VQ – Vector Quantification, WNN – Wavelet Neural Network  
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Table 3 Selected findings of bibliography review of the early diagnosis of distinct crop diseases in greenhouse/glasshouse conditions. Legend in 

Table 2 footnote. 

Culture & 
Pathogen 

Spectral sensor Modelling Ref. 

Technique Range (nm) Samples Method Statistics  

Citrus, Virus LIBS 189-966 2560 leaves SIMCA Correct predictions: 82–97% (Pereira, Milori et al. 
2010) 

Apple, Fungi Thermography 8000-12000 > 260 samples GLM, REG 9 days: r2 square (standard deviation) 0.731 (Oerke, Fröhling et al. 
2011) 

Tomato, Fungi Hyperspectral spectroscopy 380-1000 90 plants; 1350 spectra LDA Class. %: 100 (before symptom) (Marín-Ortiz, Gutierrez-
Toro et al. 2020) 

Cassava, Virus Hyperspectral spectroscopy 360-1100 27 plants; 450 healthy, 
765 disease spectra 

KNN, ET, SVM, GMLVQ Acc.: KNN 0.695-0.735, ET 0.708-0.766, SVM 0.641-
0.812, GMLVQ 0.831-0.995  

(Owomugisha, 
Nuwamanya et al. 

2020) 
Rice, Fungi Hyperspectral spectroscopy 350-2500 36 pots SVM, KNN, LDA Acc.: 65% asymptomatic, 80% early stage, 95% mild stage (Tian, Xue et al. 2021) 
Soybean, Fungi Hyperspectral spectroscopy 350-2500 90 samples LDA Acc.: 100% Calibration, 82.51% Validation (Furlanetto, Nanni et al. 

2021) 
Tomato, Bacteria Hyperspectral spectroscopy 400-1000 Samples: 354 leaves, 

179 stem 
SVM Acc.: GA-SVM 90.7% leaves, 92.6% stems. 

Reliability (2022): Acc. 88.6, F1 0.80 
(Cen, Huang et al. 

2022) 
Cotton, Pest Hyperspectral spectroscopy 350-2500 - Maximum likelihood (ML) Acc. > 98% (Ramamoorthy, 

Samiappan et al. 2022) 
Soybean, 
Bacteria 

Hyperspectral imaging 400-1000 106 images ANOVA Acc. 57.41 to 62.26% (Lay, Lee et al. 2023) 
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Table 4 Selected findings of bibliography review of the early diagnosis of different plant diseases including field conditions. Legend in Table 2 

footnote. 

Culture & 
Pathogen 

Sensor Modelling Ref. 

Technique Range (nm) Samples Method Statistics  

Sugar beet, 
Fungi, 
Greenhouse, 
Field 

Hyperspectral spectroscopy 
Hyperspectral Imaging 

400-1050 1504 samples (630 
Indoor, 311 Field) 

- Acc./ Pre.: 89% Healthy, 85-92% Disease. Rec.: 94% 
Healthy, 74-89% Disease 

(Mahlein, Rumpf et al. 
2013) 

Wheat, Fungi, 
Greenhouse, 
Field 

Hyperspectral spectroscopy 325-1075 Spectra: 96 Pot, 51 
Field 

Regression R2: 0.845 DGSR (584, 550), 0.845 DGND (584, 550) (Feng, Shen et al. 
2016) 

Strawberry, 
Fungi, 
Indoor, Field 

Hyperspectral spectroscopy  350-2500 Indoor: 159 spectra. 
Field: 200 plants, 474 
spectra 

FiDA, SDA, KNN Field Acc.: 74%. SDA 71.3%, FDA 70.5%, KNN 73.6% (Lu, Ehsani et al. 2017) 

Soybean, Fungi Hyperspectral spectroscopy 340-2500 500 plants 
(4844 spectra) 

PLSR, PLS-DA (Validation) Acc.: 82% canopy, 92% leaf. R2: 0.62, RMSE 
0.31 

(Herrmann, Vosberg et 
al. 2018) 

Grapevine, Virus Hyperspectral spectroscopy 350-2500 10 plants (120 leaves); 
1080 spectra  

QDA, NB Overall Acc. 75-99% QDA. 66-90% NB (Sinha, Khot et al. 
2019) 

Wheat, Fungi Hyperspectral spectroscopy 350-2500 432 plots PLS, RR, RF, CR, PLS-DA, PLS PLS, RR: R2 0.64, RMSE 0.063. CR: R2 0.67, RMSE 0.061. 
PLSDA: Acc. 0.86 (validation). PLS: R2 0.71, RMSE 0.068 

(Anderegg, Hund et al. 
2019) 

Grapevine, Virus Hyperspectral imaging 400-1000 40 images  SVM, RFCNN Test: VIs SVM Acc. August 7th 67.81%, All 65.70%. PCA + 
K-PCA Acc. August 7th 77.75%, All 73.62% 

(Nguyen, Sagan et al. 
2021) 

Kiwi, Bacteria Hyperspectral spectroscopy 400-1010 504 spectra, 20 plants FDA, GLM, PLS, SVM Acc. 85%, Kap. 0.70, F1 0.84 (Reis-Pereira, Tosin et 
al. 2022) 
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6. Data handling and modeling approaches 

6.1. Preprocessing approaches 

 This section introduces the main approaches applied to extract useful information 

from data collected by PS aimed at an early plant disease diagnosis found in the scientific 

articles mentioned in Tables 2, 3, and 4. Usually, the first step after data assessment 

involves a preprocessing approach aiming to identify and handle missing values and 

outliers (Jinendra, Tamaki et al. 2010, Lu, Ehsani et al. 2017) (Table 2, 4), along with 

denoising and smoothing methods (Table 2, 4). In this regard, strategies like 

normalization (used in 7% of the articles), Standard Normal Variate (SNV) (4%), 

Multiplicative Scatter Correction (MSC) (4%), and Savit ky−Golay filter (22%) are the 

ones found to be more applied in the articles assessed (Table 2, 3, 4). 

 In some situations, the data collected may present high dimensionality (e.g., 

Hyperspectral SSOP and MSPO sensors), resulting from similar or even overlapping 

spectral information presented in contiguous zones of the spectrum. This redundancy 

increases the complexity of data analysis and increases the risk of overfitting occurrence 

when modeling strategies are later computed. Furthermore, biological data can present 

super-imposed information in the measured spectra at different interference levels 

(Tosin, Martins et al. 2022). Thus, several Feature Engineering (FE, spectral unmixing) 

strategies were developed to mitigate the effects of high dimensionality and collinearity, 

mostly based on identifying and extracting the most relevant and distinctive spectral 

features (without losing relevant information).  

 Two main types of FE techniques were identified from the scientific articles 

studied: Feature Selection (FeS) and Dimensionality Reduction (DR) (Figure 4). FeS 

involves the identification of a subset of the original spectral features (variables) from the 

dataset, aiming to retain the most informative and relevant features for the target feature, 

while not considering redundant or irrelevant ones. As a classic practice, the computation 

of Vegetation Spectral Indices (VIs) was identified as one of the most used FeS 

techniques (Figure 4). They consist of the mathematical combination of two or more 

wavelengths, developed with a biophysical significance, and used to retrieve information 

related to plants’ traits contained in proximal collected data. The VIs most mentioned in 

the scientific articles screened (Tables 2, 3, and 4) were the Anthocyanin Reflectance 

Index (ARI) (mentioned in 13% of the articles) (Mahlein, Steiner et al. 2010, Rumpf, 

Mahlein et al. 2010, Mahlein, Rumpf et al. 2013, Feng, Shen et al. 2016, Calamita, Imran 

et al. 2021, Khan, Liu et al. 2021), Ashburn Vegetation Index (AVI) (2%) (Calamita, Imran 

et al. 2021), Cellulose Absorption Index (CAI) (2%) (Chew, Hashim et al. 2014), 

Chlorophyll Green (Chl) (2%) (Calamita, Imran et al. 2021), Modified Cellulose 
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Absorption Index (mCAI) (9%) (Mahlein, Steiner et al. 2010, Rumpf, Mahlein et al. 2010, 

Mahlein, Rumpf et al. 2013, Lu, Ehsani et al. 2017), Modified Chlorophyll Absorption in 

Reflectance Index (mCARI) (13%) (Chew, Hashim et al. 2014, Feng, Shen et al. 2016, 

Lu, Ehsani et al. 2017, Khan, Liu et al. 2021, Nguyen, Sagan et al. 2021, Cen, Huang et 

al. 2022), Modified Simple Ratio (mSR) (7%) (Feng, Shen et al. 2016, Lu, Ehsani et al. 

2017, Khan, Liu et al. 2021), Normalized Difference Vegetation Index (NDVI) (20%) 

(Mahlein, Steiner et al. 2010, Rumpf, Mahlein et al. 2010, Mahlein, Rumpf et al. 2013, 

Chew, Hashim et al. 2014, Lu, Ehsani et al. 2017, Atanassova, Nikolov et al. 2019, 

Calamita, Imran et al. 2021, Nguyen, Sagan et al. 2021, Cen, Huang et al. 2022), 

Optimized Soil Adjusted Vegetation Index (OSAVI) (7%) (Calamita, Imran et al. 2021, 

Nguyen, Sagan et al. 2021, Cen, Huang et al. 2022), Photochemical Reflectance Index 

(PRI) (22%) (Mahlein, Rumpf et al. 2013, Chew, Hashim et al. 2014, Feng, Shen et al. 

2016, Lu, Ehsani et al. 2017, Anderegg, Hund et al. 2019, Atanassova, Nikolov et al. 

2019, Khan, Liu et al. 2021, Nguyen, Sagan et al. 2021, Tian, Xue et al. 2021, Cen, 

Huang et al. 2022), Simple Ratio 800/680 Pigment Specific Simple Ratio (Cholophyll a) 

(PSSRa) (7%) (Rumpf, Mahlein et al. 2010, Mahlein, Rumpf et al. 2013, Tian, Xue et al. 

2021), Simple Ratio 800/635 Pigment Specific Simple Ratio (Cholophyll b) (PSSRb) (4%) 

(Mahlein, Rumpf et al. 2013, Lu, Ehsani et al. 2017), Red-Edge Position Linear 

Interpolation (REP) (4%) (Mahlein, Steiner et al. 2010, Rumpf, Mahlein et al. 2010), 

Simple Ratio 800/670 Ratio Vegetation Index (RVI) (2%) (Feng, Shen et al. 2016), 

Structure Intensive Pigment Index (SIPI) (20%) (Mahlein, Steiner et al. 2010, Rumpf, 

Mahlein et al. 2010, Chew, Hashim et al. 2014, Feng, Shen et al. 2016, Lu, Ehsani et al. 

2017, Anderegg, Hund et al. 2019, Khan, Liu et al. 2021, Nguyen, Sagan et al. 2021, 

Cen, Huang et al. 2022), Simple Ratio (SR) (11%) (Rumpf, Mahlein et al. 2010, Lu, 

Ehsani et al. 2017, Anderegg, Hund et al. 2019, Calamita, Imran et al. 2021, Nguyen, 

Sagan et al. 2021), Transformed Chlorophyll Absorption in Reflectance Index (TCARI) 

(9%) (Lu, Ehsani et al. 2017, Khan, Liu et al. 2021, Nguyen, Sagan et al. 2021, Cen, 

Huang et al. 2022), Transformed Vegetation Index (TVI) (13%) (Chew, Hashim et al. 

2014, Lu, Ehsani et al. 2017, Atanassova, Nikolov et al. 2019, Khan, Liu et al. 2021, 

Nguyen, Sagan et al. 2021, Cen, Huang et al. 2022), Water Index (WI) (11%) (Feng, 

Shen et al. 2016, Lu, Ehsani et al. 2017, Nguyen, Sagan et al. 2021, Tian, Xue et al. 

2021, Cen, Huang et al. 2022), Simple Ratio 750/710 Zarco-Tejada & Miller (ZM) (4%) 

(Mahlein, Rumpf et al. 2013, Cen, Huang et al. 2022).  

 These VIs were specifically relevant when the first broad-band sensors were 

developed and remain important today. Nonetheless, their application has been 

decreasing due to the appearance of more narrow-band sensors, capable of collecting 

high dimensional data (i.e., a high number of spectral features). Since VIs only consider 
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a limited number of wavelengths, they can lead to information losses when these last 

types of sensors are used. Moreover, since these VIs are developed for unveiling 

biophysical information in site-specific conditions, they may present limited transferability 

between locations. 

 To surpass these difficulties, and with the increased usage of high dimensional 

sensors (and fewer applications of broad-band devices), several FeS and DR based on 

non-parametric ML algorithms were developed, and their computation increased to the 

detriment of the VIs (Figure 4). 

 Other identified approaches in Tables 2, 3, and 4 involved: spectral data 

condensation into 10 nm bands (Grisham, Johnson et al. 2010), statistical variance 

analysis of the wavelengths (Mandrile, Rotunno et al. 2019), Stepwise Discriminant 

Analysis (SDA) (Abdulridha, Ehsani et al. 2016), Orthogonal Subspace Projection (OSP) 

(Shuaibu, Lee et al. 2018), Outlier Removal Auxiliary Classifier Generative Adversarial 

Nets (OR-AC-GAN) (Wang, Vinson et al. 2019), Iterative Random Frog (IRF) (Zhu, Su 

et al. 2023), Competitive Adaptive Reweighted Sampling (CARS) (Zhu, Su et al. 2023), 

Successive Projections Algorithm (SPA) (Zhu, Su et al. 2023), and Stepwise Regression 

(Zhu, Su et al. 2023), wavelength coefficients (Tian, Xue et al. 2021), Sequential Forward 

Selection (SFS) (Cen, Huang et al. 2022), Simulated Annealing (SA) (Cen, Huang et al. 

2022), Genetic Algorithms (GA) (Cen, Huang et al. 2022), RELIEF-F (Mahlein, Rumpf et 

al. 2013), Variable Importance (Anderegg, Hund et al. 2019), Sequential Forward 

Floating Selection Search Strategy and the Jeffries–Matusita (SFFS + JM) Distance 

(Reis-Pereira, Tosin et al. 2022), Stepwise Forward Variable Selection Method using 

Wilk’s Lambda Criterion (SFVS) (Reis-Pereira, Tosin et al. 2022), and a Lasso 

Regularized Generalized Linear Model (LASSO) (Reis-Pereira, Tosin et al. 2022). 

 In turn, DR are methods used for transforming the original feature data space into 

a lower-dimensional representation. Some examples mentioned in the articles screened 

are included in Tables 2, 3, and 4 such as, the Principal Component Analysis (PCA) 

(Jinendra, Tamaki et al. 2010, Pereira, Milori et al. 2010, Ranulfi, Senesi et al. 2018, Yao, 

Lei et al. 2019, Marín-Ortiz, Gutierrez-Toro et al. 2020, Owomugisha, Nuwamanya et al. 

2020, Barthel, Dordevic et al. 2021, Nguyen, Sagan et al. 2021, Cen, Huang et al. 2022) 

(the most applied approach), Partial Least Squares (PLS) (Susič, Žibrat et al. 2018, 

Sinha, Khot et al. 2019, Gold, Townsend et al. 2020, Ramamoorthy, Samiappan et al. 

2022), PLS-Discriminant Analysis (PLS-DA) (Gold, Townsend et al. 2020, Gold, 

Townsend et al. 2020, Barthel, Dordevic et al. 2021), Principal Coordinate Analysis 

(PCoA) (Gold, Townsend et al. 2020, Gold, Townsend et al. 2020), Linear Discriminant 

Analysis (LDA) (Marín-Ortiz, Gutierrez-Toro et al. 2020, Reis Pereira, Santos et al. 

2023), Maximum Likelihood (ML) (Ramamoorthy, Samiappan et al. 2022), Successive 
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Projections Algorithm (SPA) (Yao, Lei et al. 2019), Stepwise Multilinear Regression 

(SMLR) (Sinha, Khot et al. 2019), Stepwise Wavelengths Selection (STEPWISE) 

(Furlanetto, Nanni et al. 2021), Vertex Component Analysis (VCA) (Marín-Ortiz, 

Gutierrez-Toro et al. 2020). 

 All these FeS and DR approaches simplify the relationships between the spectra 

and the quality traits of interest and can thus improve data interpretability. Furthermore, 

they simplify data visualization, decrease the computational cost, help identify or improve 

useful spectral features, and enhance model performance. 

 

Figure 4 Relationship between plant disease diagnosis analysis (orange), the modeling 

strategy followed (blue), and the evaluation approach computed for model performance 

assessing (green). Several Machine Learning (ML) strategies were identified in 

screening of scientific articles for feature selection and data dimensionality reduction. 

Furthermore, different chemometric and ML algorithms were also found in the screening 

process for both classification (qualitative) and regression (quantitative) analysis. 

6.2. Applied predictive modeling: regression, classification, and authentication 

6.2.1. Regression and classification approaches 

 After the preprocessing tasks, the spectral data is used for applied predictive 

modeling aiming mostly at disease diagnosis (qualification or quantification), being the 

most common approaches are regression, classification (Figure 4), and authentication.  

 The regression techniques (quantitative analysis) are used when the variable in 

analysis (i.e., target variable) is continuous and represented mainly through numeric 

values, a regression technique is used (quantitative analysis) (Tables 2, 3, 4). These are 

usually associated with quantification and disease severity studies (Mahlein, Steiner et 

al. 2010, Oerke, Fröhling et al. 2011, Zhao, He et al. 2012, Feng, Shen et al. 2016, 
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Anderegg, Hund et al. 2019, Yao, Lei et al. 2019, Khan, Liu et al. 2021, Atta, Saleem et 

al. 2023, Zhu, Su et al. 2023). On the contrary, when the target variable is based on 

categorical values (e.g., classes or categories), classification models are computed 

(qualitative approach) (Table 2, 3, 4). In our research, classification was the most applied 

strategy, found to be used in 80% of the articles, and regression was used in only 20% 

(Table 2, 3, 4). 

 Classification methodologies encompass various approaches, including single-

class classification, binary classification (utilized in approximately 38% of the referenced 

articles), and multi-class classification (observed in around 42% of the studies). These 

classification methods are often employed through one-against-one or one-against-all 

analyses, as detailed in Tables 2, 3, and 4. 

 Multi-class models commonly involve categorizing spectral samples into distinct 

categories such as 'healthy,' 'asymptomatic' (or variations like 'non-symptomatic' or 

'symptomless'), and 'symptomatic.' Additionally, these models may classify samples 

based on specific diseases, typically encompassing three to four diseases (Rumpf, 

Mahlein et al. 2010, Mahlein, Rumpf et al. 2013, Abdulridha, Ehsani et al. 2016, Susič, 

Žibrat et al. 2018, Reis Pereira, Santos et al. 2023), different cultivars (Grisham, Johnson 

et al. 2010, Afonso, Guerra et al. 2017, Ramamoorthy, Samiappan et al. 2022), or 

various stages of disease infection (Gold, Townsend et al. 2020, Gold, Townsend et al. 

2020). The classification process can be further delineated into hard or soft categories. 

When each observation is assigned to a singular, discrete class, it is referred to as a 

‘hard’ classification. Conversely, ‘soft’ classification also termed probabilistic or fuzzy 

classification, involves attributing each observation to one or more categories while 

accompanied by associated probabilities or confidence scores (Kuhn and Johnson 2013, 

Rashidi, Tran et al. 2019, Grandini, Bagli et al. 2020).  

 Authentication analysis can be performed when only the class of interest is known 

(e.g., healthy tissue profile)  (Pereira, Milori et al. 2010, Atanassova, Nikolov et al. 2019). 

This classification approach verifies the legitimacy of a sample centered on its chemical 

and phenotypical characteristics, usually applying different chemometric models (based 

on multivariate data analysis). Authentication enables us to ascertain whether a sample 

is genuine or corresponds to a known reference, using solely the target category in the 

training stage (not needing the model’s training in non-conform samples), constituting a 

second-order advantage (Rodionova, Titova et al. 2016). The establishment of different 

categories in classification models can be a challenging task. Furthermore, producers 

may only need to confirm if a crop has a biotic disorder or not to support their decision-

making, authentication may be an interesting, and simplified approach.  
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6.2.2. Predictive model techniques and algorithms 

 Predictive models, both classification and regression approaches, can be divided 

into parametric and non-parametric techniques. The first type captures spectral 

relationships based on a mathematical formula with a fixed set of parameters, which are 

usually sensitive to specific biophysical variables (circa 71% of the articles analyzed). In 

contrast, the second type does not rely on predefined parameters or assumptions about 

the underlying data. It generally comprises advanced techniques that search for patterns 

(relationships) directly on spectral data without assuming a specific functional form (e.g., 

the majority of ML techniques, mentioned in 51% of the articles) (Verrelst, Rivera et al. 

2016).  

 Another type of categorization that can be applied to predictive models is the 

division between linear and non-linear approaches. The first type involves a statistical 

technique used to describe the linear relationship between a dependent variable and one 

or more independent variables (mentioned in 54% of the articles). A non-linear approach, 

in turn, does not assume a linear relationship between the dependent and independent 

variables and can capture complex connections and learn intricate patterns in data 

(Ouyang, Guo et al. 2019). It was found to be used in at least 63% of the scientific articles 

analyzed. 

 According to our research, several machine- and deep-learning models have 

been computed for assessing pests and diseases on several plants. Our results 

demonstrate that the most applied techniques were machine learning based, namely 

Support Vector Machines (SVMs) (used in 20% of the scientific articles, mostly in a non-

linear and non-parametric form), Discriminant Analysis (several forms, including Linear, 

Stepwise, Quadratic, Flexible, and Fisher) (22%, the majority of them are in a linear, 

parametric form), k-Nearest Neighbor (KNN) (and variations) (16%, non-linear and non-

parametric), Partial Least Squares (13%, linear and non-parametric), and the PLS-

Discriminant Analysis (PLS-DA) version (16%, linear and parametric) (Table 2, 3, 4). 

Neural Networks (11%, non-linear and parametric), Soft independent modeling by class 

analogy (SIMCA, linear and parametric) (9%), Decision Trees (DT) (7%, non-linear and 

non-parametric), and Principal Component analysis (PCA) (7%, linear, non-parametric) 

were also found to be used (Table 2, 3). The details of these methods and the guidelines 

to efficiently use these for predicting data capture from optical and spectral sensors are 

beyond the scope of this article (further information can be found in different literature, 

such as (Liakos, Busato et al. 2018)). 
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6.2.3. Model development and evaluation 

 To perform applied predictive modeling, data is usually split into training, 

validation, and test sets. Modeling approaches are typically developed using a training 

dataset and evaluated through validation and testing on separate sets. This procedure 

prevents overfitting, which occurs when a model becomes excessively attuned to the 

intricacies of the training data. Overfitting can lead the model to incorporate not only the 

underlying structured patterns within the data but also the inherent noise and random 

fluctuations. Consequently, an overfitted model might struggle to generalize effectively 

to new, independent observations, diminishing its ability to offer consistent and reliable 

predictions (Kuhn and Johnson 2013). Furthermore, validation sets can be useful for 

promoting the model’s tuning hyperparametri ation, leading to more efficient solutions 

(Kuhn and Johnson 2013). 

 Cross-validation (CV) approaches were also performed to provide a reliable 

estimate of a model’s generali ation performance (Grisham, Johnson et al. 2010, 

Mahlein, Rumpf et al. 2013, Yeh, Chung et al. 2013, Abdulridha, Ehsani et al. 2016, 

Herrmann, Vosberg et al. 2018, Ranulfi, Senesi et al. 2018, Susič, Žibrat et al. 2018, 

Anderegg, Hund et al. 2019, Mandrile, Rotunno et al. 2019, Sinha, Khot et al. 2019, Gold, 

Townsend et al. 2020, Owomugisha, Nuwamanya et al. 2020, Furlanetto, Nanni et al. 

2021, Khan, Liu et al. 2021, Cen, Huang et al. 2022, Reis-Pereira, Tosin et al. 2022) 

(Table 2, 3, 4). They can be in the form of k-fold CV, repeated k-fold CV (e.g., (Reis-

Pereira, Tosin et al. 2022)), and leave one out (e.g., (Yeh, Chung et al. 2013, Khan, Liu 

et al. 2021)).  

 After the model development, its performance for plant disease diagnosis can be 

evaluated using distinct metrics. In our analysis, regression algorithms were mainly 

appraised according to their coefficient of regression (R2), and root mean square error 

(RMSE) (Mahlein, Steiner et al. 2010, Oerke, Fröhling et al. 2011, Zhao, He et al. 2012, 

Feng, Shen et al. 2016, Anderegg, Hund et al. 2019, Yao, Lei et al. 2019, Khan, Liu et 

al. 2021, Atta, Saleem et al. 2023, Zhu, Su et al. 2023) (Table 2, 3). Other metrics like 

Residual Predictive Deviation (RPD) (Yao, Lei et al. 2019) Standard Error of Calibration 

(SEC) (Atta, Saleem et al. 2023), and Standard Error of Prediction (SEP) (Mahlein, 

Steiner et al. 2010, Atta, Saleem et al. 2023) were also used. In turn, classification 

approaches usually are ranked through the determination of their confusion matrix (CM), 

accuracy, precision, recall, sensitivity, specificity, kappa, f1-measure, and Receiver 

Operating Characteristic (ROC) curve (Rumpf, Mahlein et al. 2010, Lu, Ehsani et al. 

2017, Ranulfi, Senesi et al. 2018, Mandrile, Rotunno et al. 2019, Wang, Vinson et al. 

2019, Gold, Townsend et al. 2020, Barthel, Dordevic et al. 2021, Cen, Huang et al. 2022, 

Reis-Pereira, Tosin et al. 2022). Error of Classification (EC) and Error of Omission (EO) 
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(Calamita, Imran et al. 2021). Overall Accuracy was the most applied classification 

evaluation metric, and its values ranged from 71% to 99.5% (Table 2, 3, 4). The Kappa 

coefficient has been frequently utilized (% of the classification models) to indicate 

models’ overall accuracy, but profound criticisms exist regarding its appropriateness as 

a model performance metric (Foody 2020). 

 Spectral Mapping was also a strategy identified to be applied in evaluating the 

individual wavelength contribution and/ or in defining the spectral regions relevant to the 

prediction process (i.e., for the plant disease diagnosis). Ultimately, this process allows 

the evaluation of the biological significance of the selected spectral features. Several 

approaches can be used with this aim, namely several FeS and DR algorithms such as 

PCA (where is made the analysis of the principal components loadings) (Yao, Lei et al. 

2019), PLS (latent vectors/variables) (Gold, Townsend et al. 2020), LDA (Linear 

Discriminants) (Reis Pereira, Santos et al. 2023), among others. Nevertheless, several 

articles did not present this biological analysis, being mainly data-driven approaches. 

7. Main conclusions and perspectives 

 This review highlights the potential of several innovative proximal sensing 

techniques to diagnose different plant diseases early (prior to symptom appearance) in 

laboratory, greenhouse, and in-field experiments. It showed that most of the literature on 

the topic reports the first sensing experiments and modeling approaches in the theme. 

Therefore, most techniques present a relatively low technology readiness level (TRL) 

and are only specific to a location, and plant (i.e., species and cultivar)-pathogen 

interaction. The main outcomes also demonstrate the suitability of assessing different 

lesions promoted by pathogens in different scales, ranging from cellular to the 

macroscopic plant (canopy) levels. The most common crops used were tomato, wheat, 

sugar beet, and soybean. In turn, from the types of pathogens studied, fungi (53%) and 

bacteria were the most considered. The experimental conditions observed in the search 

results demonstrated that most of the examined scientific articles (69%) described 

assays conducted in laboratory conditions. 

 In terms of sensing techniques, the outcomes from forty-six scientific articles 

screened demonstrated the feasibility of various sensors for the diagnosis of plant 

disease, namely Fluorescence Spectroscopy, Hyperspectral Spectroscopy, Laser-

Induced Breakdown Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, Raman 

Spectroscopy, RGB Imaging, Thermography, and X-Ray Fluorescence. Of these, 

hyperspectral spectroscopy (82% of the articles) was the most applied technique and the 

only one used in field assays (in uncontrolled environmental conditions). 
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 The data sensed underwent, in the majority of the studies, preprocessing and a 

processing step. The first identified and handled missing values and outliers, along with 

denoising and smoothing methods. The Savitzky-Golay filter was one of the most used 

techniques with this aim. Regarding the second step, two main Feature Engineering 

approaches were found, namely Feature Selection and Dimensionality Reduction 

strategies. Of these, Vegetation Indices (29%) and Principal Component Analysis (PCA, 

20%) were the most computed, referred to in almost 50% of the analyzed articles. 

Nevertheless, the VIs application can conduct information losses when narrow-band 

sensors are used since they only consider a reduced number of wavelengths. Moreover, 

since VIs are developed for unraveling biophysical information in site-specific conditions, 

they may present limited transferability between locations. 

 Data is then modeled through regression, classification, or authentication 

approaches. Specifically, classification was used in 80% of the articles screened, mostly 

following a binary categorization to distinguish between healthy and diseased tissues). 

A multi-class approach was also frequently employed, identifying samples collected into 

healthy, non-symptomatic, and symptomatic disease tissues). Machine Learning 

algorithms featured prominently across the literature were extensively used in the 

articles, and Support Vector Machines and Discriminant Analysis were used in 53% of 

the cases. Classification accuracies were mostly superior to 71% and coefficients of 

regression were superior to 61%. 

 The usage of proximal sensors allied with different modeling strategies seems to 

be a future path to be considered since these techniques allow for an accurate early 

disease diagnosis. Advantages related to in-situ, in-vivo conditions highlight the 

importance of these sensing devices in proximal-range works. 

 An additional development of high-resolution, cost-effective, and portable 

spectral sensors is suggested for enhancing the evaluation of plant diseases. By 

providing powerful tools for early, in situ, in vivo diagnosis of infections, these innovative 

methods will constitute an opportunity to perform efficient, personalized disease control. 

The possibility of coupling these devices in different ground-based platforms (e.g. robots, 

cranes, among others) to perform in-field disease mapping is another advantage to be 

explored, following a precision agriculture perspective. Fieldwork is currently a challenge 

due to non-structured environmental light conditions. The usage of light sources and 

nocturnal fieldwork can be studied to surpass this hurdle. Further research should also 

evaluate the development of multisensory / data fusion solutions for plant disease 

assessment, combined with equipment’s sensitivity and resolution enhancements.  

 The goodness and reliability of the information extracted from the analysis of the 

data captured motivate the development and establishment of protocols for 
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measurements, preprocessing, and processing of collected data, that must consider the 

variability of the environmental conditions that arise during measurements. The 

development of metadata and data ontology to support efficient data sharing between 

researchers must be considered and improved. The development of appropriate 

platforms and websites for information sharing is desirable in the near future. Moreover, 

improvements in data analysis algorithms and models for specific spectra-disturbance 

assessment will need to be continually evaluated, upgraded, or even redefined to 

improve disease investigation. Most of the developed predictive modeling strategies 

were data-driven and did not consider plants’ physiology. Thus, the development of new 

strategies based on the plant’s physiology or metabolomics should be made. In this way, 

the smart-photonic sensing strategies presented in this work could be linked to other 

omic sciences to make plant protection measures more efficient and sustainable. 
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Supplementary Material 

I. Extended research methods section 

I.1. Data analysis: search and selection strategies, and data collection methods 

 First, a full investigation of publications in scientific databases was performed. 

Numerous articles were listed for review. Thus, inclusion and exclusion criteria were 

applied to complement this process and fulfill an unbiased analysis of the listed 

publications. The online tool Parsifal (Freitas and Segatto 2021) was used to hold the 

ongoing review procedure, allowing an arrangement of the entire research process: 

procedure design, screening and removal of duplicated publications, quality evaluation, 

and data extraction. The present work appraised the primary indexed publications related 

to the usage of optical and spectroscopic sensors in plant disease assessment between 

1971 and August of 2023. The duplicated articles were removed and the remaining 

publications were evaluated and selected according to i) The application of the sensor in 

plant disease detection/diagnosis; ii) the language in which it was written (the article must 

be written in English, French, or Portuguese); iii) The article must be published after 

1970; iv) and, it must be a work that mention an experiment assay, and reports how this 

was performed or a demonstration of a new algorithm or method for crop disease 

detection/diagnosis. Review articles were considered to perform an independent 

analysis. After this process, the chosen studies were fully read and analyzed. Each one 

of them was evaluated according to its quality to confirm if the work fulfills the aims of 

the current review. For quality assessment, the following questions were regarded: i) 

‘Does the paper refer to the system configuration?’; ii) ‘Are the sensor parameters 

presented in the publication?’, iii) ‘Are the measurement parameters presented in the 

publication’?; iv) ‘Is the analy ed scenario applied in real-world tests’?; v) ‘Are the results 

of real-world tests explained in the publication’?; vi) ‘Is the application presented in the 

publication feasible with the current resources?’. All questions were answered according 

to three possibilities  ‘No’ (0.0), ‘Partially’ (0.5), and ‘Yes’ (1.0).  nly the articles that 

scored a value higher or equal to 3.5 were, then, considered for data extraction. 

 The extraction procedure retrieved information related to the: i) crop(s) studied in 

the assay; ii) pest(s) or disease(s) in analysis, iii) plant part evaluated, iv) 

sensor/technology used, v) type of sensor (imaging or non-imaging), vi) light source 

system configuration (passive or active), vii) sensor parameters (wavelengths studied), 

viii) environmental conditions (indoor, greenhouse, or infield), ix) modeling approach 

applied, x) model metric results, xi) possibility of current application (Technology 

Readiness Level – TRL). 
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 The analysis was performed on six databases: i) ACM Digital Library (Machinery 

2023), ii) El Compendex / Engineering Village (Elsevier 2023), iii) IEEE Digital Library 

(IEEE 2022), iv) ISI Web of Science (Clarivate), v) ScienceDirect (Elsevier 2023), and 

vi) Scopus (Elsevier). The search in the databases applied the base string: ("plant 

disease" OR "crop disease" OR "plant pest" OR "crop pest") AND (detect* OR diagnos* 

OR identif* OR quantif*) AND ("proximal" OR "ground" OR "remote") AND 

("spectroscopy" OR "hyperspectral" OR "multispectral") AND NOT ("satellite" OR 

"phone"  R "uav"  R "balloon”).  nly, for the ScienceDirect database were used a 

different approach since it only allows fewer boolean connectors (maximum eight per 

field): ("plant disease") AND (detection) AND ("proximal" OR "remote") AND 

("spectroscopy" OR "hyperspectral") AND NOT ("satellite" OR "uav"). 

 The term “proximal sensing” was chosen to detect all the articles that apply 

proximal sensing (i.e., ground-based) techniques in plant disease detection. 

Spectroscopic sensors were identified as one important population for this work, thus, 

the words AND (spectrosc*  R “spectral sensor”) AND (sens*  R assess*  R measur* 

OR captur*) AND ("Plant disease") AND (detect* OR assess* OR diagnos* OR 

"classification" OR "regression") were set to identify the works of proximal sensors for 

plant disease analysis. A particular interest in classification and regression modeling 

methods was determined by the application of these terms. 

I.2. Search results 

 Publication assessment on the various databases using the selected key strings 

results on 1179 documents, published between 1970 and 2023. The majority of the 

papers (62 %) were registered in the ScienceDirect database, probably due to the less 

restrictive key string used. The Scopus library registered the second higher ratio (21 %), 

which can be related to it being a more general database, responsible for reporting more 

publications from diverse publishers. The third greater percentage belongs to ISI Web of 

Science results (10 %), which is, similarly, a non-publisher-specific library, but has more 

specific indexation criteria. El Compendex, occupied the fourth place (4 %), despite also 

being non-publisher specific, most likely because it can present scope specification. The 

minor percentages corresponded to ACM Digital Library and to IEE Digital Library (2 and 

1 %), which reported a lower number of findings. Publications’ time series in these 

databases showed an increasing interest tendency in plant disease diagnosis through 

the usage of proximal devices. 

 Based on these results, a PRISMA approach was followed to determine the 

inclusion or exclusion of publications for the present systematic review (Page, Moher et 

al. 2021). In brief, we identified all the publications retrieved, compared them, and 
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removed the ones that were duplicated. After, we screened all the documents, taking 

into consideration their title, abstracts, and figures to infer the interest of the publication. 

Manuscript withdrawal occurred according to the exclusion criteria earlier defined. Then, 

the remaining manuscripts were fully analyzed to assess their quality and evaluate if they 

were suitable for responding to the hypothesis we are considering. Of the 1179 

manuscripts retrieved, only 322 publications were screened, allowing the retrieval of 46 

publications (Figure S1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1 Flow diagram of PRISMA technique for this systematic review aiming the 

analysis of the main proximal sensing technologies used for early plant disease 

diagnosis (i.e., before visual macroscopic symptom appearance). 

II. Extended description of sensing techniques in plant diseases 

II.1.       ’                         b      

RGB and Thermal Imaging 

 RGB imaging (Table 1) is a technique that blends three primary colors – Red, 

Green, and Blue (RGB) – to capture and exhibit images.  RGB digital cameras are cost-

effective, adaptable, simple to manage, and suitable for both fixed and mobile setups. 

Their calibration is, furthermore, relatively easy to perform, allowing their usage in non-

structured light conditions such as the ones occurring in field works. Nowadays, the 
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devices used for image collection and the programs applied to image analysis also 

acquire hundreds of images per hour. This data can be analyzed with great automation 

(Díaz-Lago, Stuthman et al. 2003) and stored to create a historical archive of crop status 

for a possible future application (Mirik, Michels Jr et al. 2006). 

 Thermography (or Thermal Imaging, TI) (Table 1) is another identified imaging 

technique, which involves the acquisition, processing, and interpretation of data acquired 

primarily in the thermal infrared (TIR, 3 to 14 μm) region of the electromagnetic spectrum 

(Ishimwe, Abutaleb et al. 2014). In general, thermal sensors can be thermographic or 

infrared cameras, capable of detecting emitted infrared radiation in the TIR spectrum 

region and converting the information captured into false-color images, where each 

image pixel contains the temperature value of the measured object (Li, Zhang et al. 

2014).  TI can be very useful when applied in the measurement (distribution) of the plant’s 

thermal radiation, which is correlated with changes promoted by host-pathogen 

interactions. In brief, diseased plants presented modifications in the transpiration rate 

and in the water flow of plant organs or even the entire plant, as well as local temperature 

changes due to pathogen infection or defense mechanisms (Oerke, Steiner et al. 2006, 

Oerke, Fröhling et al. 2011). All these modifications lead to deviations in the plant’s 

spectral behavior in the TIR, which these sensors can detect. 

UV-VIS and NIR Spectroscopy 

 Multispectral and hyperspectral Spectroscopy are two UV-VIS-NIR Spectroscopy 

approaches that offer a rapid, typically non-invasive, and highly specific method for crop 

disease diagnosis (Table 1).  These devices can sample and record radiation, in one or 

more regions of the electromagnetic spectrum, that is reflected, emitted, or transmitted 

from one surface.  They have the advantage of being suitable for capturing both visible 

and non-visible wavelengths. These sensors are generally categorized based on their 

spectral resolution (i.e., the number and width of measured wavebands), spatial scale, 

and the type of detector (i.e., SSPO or MSPO). Multispectral sensors are capable of 

capturing data from several discrete spectral bands. The main sensor manufacturers 

produce devices that acquire between 3 and 25 bands, which may not be continuous, 

including VIS, NIR, or a set of custom bands (Perez-Sanz, Navarro et al. 2017). Usually, 

they are smaller in volume, lighter in weight, need fewer internal components for working, 

and are less expensive than hyperspectral instruments, that work with wider wavelength 

ranges (Cotrozzi 2022). In turn, hyperspectral solutions provide high spectral resolution 

data, assessing thousands of contiguous narrow spectra bands (hundreds or thousands 

covering 5−20 nm each) from one sample, being more sensitive to subtle variations in 

measured radiation and providing more data complexity and information content. They 
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may cover the main spectral regions of the electromagnetic spectrum, including VIS, 

NIR, SWIR, MWIR (mid-wave infrared), and LWIR (longwave infrared). The data 

obtained by hyperspectral sensors provide a spectral signature of a unique sample that 

can be characterized and identify any given material (Ben-Dor, Schläpfer et al. 2013). 

Nonetheless, it is important to recognize that spectral information captured with this 

equipment may present high dimensionality, since contiguous bands may present 

redundant information (Caicedo, Verrelst et al. 2014, Rivera, Verrelst et al. 2014). Thus, 

further data processing methods may be required to improve the quality of data 

extracted. 

Fluorescence Spectroscopy 

 Fluorescence Spectroscopy (FS, also known as fluorometry or 

spectrofluorometry) (Table 1), is also a sensitive, non-invasive, and non-destructive type 

of UV-VIS-NIR technique. It assesses fluorescence from a sample after excitation with a 

beam of light (usually UV spectra, wavelength ranging from 10 to 400 nm). FS is 

interesting in plant studies since these organisms possess different pigments and 

structural pigment components which make them capable of emitting two different types 

of fluorescence, namely blue-green fluorescence (400–600 nm), and chlorophyll 

fluorescence (650–800 nm) (Belasque, Gasparoto et al. 2008). Chlorophyll fluorescence 

occurs when light is re-emitted by the chlorophyll molecules when it returns from the 

excited to the non-excited stage. Blue and red fluorescence contain complementary 

information on plant phenotyping traits and should be considered simultaneously. 

Emission-based techniques 

 Similarly to Thermography and Fluorescence Spectroscopy, three other 

technologies also measure the amount of radiation emitted by a sample. Laser-induced 

breakdown spectroscopy (LIBS) is one of them, known for being a laser-based solution 

found in the screened scientific articles (Table 1). It is an atomic emission spectroscopy 

technique for simple, fast, and in situ analysis that uses highly energetic laser pulses to 

provoke optical sample excitation. This method enables the acquisition of both qualitative 

and quantitative information regarding sample composition within a singular spectrum, 

employing a quasi-non-destructive approach. LIBS generates an emission spectrum 

produced by focusing a high-energy laser pulse on a sample, which generates plasma 

by rapidly heating and vaporizing the material. The excited atoms in the plasma emit light 

as they return to their lower energy states, and the resulting spectrum is analyzed to 

identify and quantify the elemental composition of the sample (Ferreira, Anzano et al. 

2009, Nicolodelli, Cabral et al. 2019). LIBS system configuration allows, nevertheless, 
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the creation of portable equipment suitable for in situ measurements with increased 

stability and sensitivity of the measurements, characteristics that make it attractive for 

analyses in the field (Wainner, Harmon et al. 2001, Fortes and Laserna 2010). LIBS is 

suitable for tracking changes in the standard composition of the major macro-and 

micronutrients in plants, allowing the differentiation between healthy and diseased 

individuals, even at non-symptomatic stages (Pereira, Milori et al. 2010, Ranulfi, Senesi 

et al. 2018). 

 X-ray Fluorescence (XRF) is another spectroscopic emission approach applied 

in plant disease studies. Similar to LIBS, XRF is mainly used to determine the elemental 

composition of different tissues. It is a well-established, non-destructive analytical 

method for qualitative and quantitative multielement evaluation. It involves minimal or no 

sample preparation, allowing in vivo studies. XRF work principle starts with a sample 

irradiation with X-rays, causing its inner-shell electrons to be ejected. As electrons from 

outer shells fall to fill the vacancies, characteristic X-ray photons are emitted (Rodrigues, 

Gomes et al. 2018). Thus, as the emitted radiation is typical for each chemical compound 

it can be applied as a fingerprint that makes elemental composition possible (Van 

Grieken and Markowicz 2001). XRF peak area can additionally provide quantitative 

information since the number of emitted photons is directly proportional to the number of 

emitting atoms (Rodrigues, Gomes et al. 2018). 

Vibrational Spectroscopy 

 Raman Spectroscopy (RaS), like NIR Spectroscopy, (Table 1) is a vibrational-

based technique that has been previously used in plant disease studies due to its non-

invasive, non-destructive analytical character. RaS is known for its capacity to provide 

information about the sample’s molecular vibrations and structure without requiring prior 

sample preparation. This technique uses a laser at a well-defined wavelength in the VIS 

or NIR range (frequently 532, 785, or 1064 nm) to excite a sample, producing inelastic 

scattering of light through interaction with the molecular vibrational modes of the sample 

(Sylvain and Cecile 2018). A portion of this scattered light has a wavelength distinct from 

that of the exciting laser since an energy exchange happens between the incident photon 

and the molecule. RaS is then applied to assess these modifications occurring through 

energy exchange between the incoming photons and the molecule that scatter light. RaS 

has, hence, unique advantages in practical applications since it provides crucial narrow 

and sharp characteristic peaks attributed to specific or several substances, specifically 

the fingerprint characteristics. Furthermore, RaS has the desired portability, low labor, 

and cost requirements (Weng, Hu et al. 2021). 
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 Nuclear Magnetic Resonance (NMR) Spectroscopy (Table 1) was also a 

vibrational approach identified during the article screening process as useful for plant 

studies. It is based on measuring the resonances of magnetic nuclei (such as 1H, 13C, 

and 15N) that interact with an external magnetic field. NMR allows non-invasive 

structural assessment of metabolites making in vivo analysis possible. This approach 

generates unique spectra for each single compound and can be applied in identifying 

metabolites of biological origin of which no previous knowledge is needed (Fan and Lane 

2008). NMR spectroscopy can also give quantitative information about a sample, as the 

signal intensity is directly proportional to the molar concentration (Pauli, Jaki et al. 2005). 

It also has the advantage of being highly reproducible and high throughput in sample 

analysis. 

Emerging techniques 

 Two additional techniques were identified during the screening process as 

emerging due to their increasing interest, namely Biophoton Emission and Volatile 

Organic Compounds (VOCs) analysis (Table 1). 

 Biophoton spectroscopy (BS) (Table 1) is an electromagnetic emission-based 

technique, that assesses ultraweak photon emissions produced by living organisms, 

resulting from chemically excited molecules produced in cellular biochemical reactions, 

in various metabolic processes without photoexcitation. The photon emission is related 

to the interaction between constituents of living materials (such as lipids, protein, and 

DNA) with reactive oxygen species (ROS) and/or free radicals (Cifra, Pospíšil et al. 

2014). The intensity of the biophoton emission is usually 3–6 orders lower than the light 

intensity that is visible to the naked human eye, but the wavelengths of emissions 

normally extend over the VIs region. To detect biophoton emissions is, hence, necessary 

to use a highly precise device with enough sensitivity to detect low levels of light, such 

as the state of a single photoelectron event (Creath, And et al. 2005, Nukui, Inagaki et 

al. 2013, Kobayashi and Biology 2014). 

 With a different type of operating fundamental system, VOCs assessment is also 

an interesting technique presenting suitability for non-destructive plant disease 

diagnosis. VOCs are biomolecules and metabolites emitted by plants into their 

immediate surroundings, presenting essential functions in growth, communication, 

defense, and survival processes. They usually are in the gaseous phase under standard 

temperature and pressure, generally at ultra-low concentrations, below the human 

olfactory threshold (Martinelli, Scalenghe et al. 2015, Buja, Sabella et al. 2021). VOC 

profile is influenced by the plant’s growth and stage of development, as well as by abiotic 

and biotic (i.e., pathogens, insects, animals, and herbs). The type of VOC synthesized 
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and released by plants when attacked by harmful phytopathogens can be specific, 

allowing the determination of so-called VOC signatures (Lopez-Gresa, Maltese et al. 

2010, Schlaeppi, Abou-Mansour et al. 2010, Agarrwal, Bentur et al. 2014, Ninkovic, 

Rensing et al. 2019). 
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Highlights 

• Hyperspectral biophysical health status classification accuracy is enhanced by 

wise feature selection. 

• An automated Gaussian Process Classification Band Analysis Tool (GPC-BAT) 

is presented. 

• GPC-BAT sequentially eliminated the minimum relevant spectral wavelength.   

• Two models discriminated spectra collected in healthy and diseased tomato 

tissues. 

• Two models identified spectra collected in symptomless and symptomatic kiwi 

leaves in field. 
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Abstract 

 Early and accurate disease diagnosis is pivotal for effective phytosanitary 

management strategies in agriculture. Hyperspectral sensing has emerged as a 

promising tool for early disease detection, yet challenges remain in effectively harnessing 

its potential. This study compares parametric spectral Vegetation Indices (VIs) and a 

non-parametric Gaussian Process Classification based on an Automated Spectral Band 

Analysis Tool (GPC-BAT) for diagnosing plant bacterial diseases using hyperspectral 

data. The study conducted experiments on tomato plants in controlled conditions and 

kiwi plants in field settings to assess the performance of VIs and GPC-BAT. VIs, known 

for their simplicity in extracting biophysical information, successfully distinguished 

healthy and diseased tissues in both plant species. The overall accuracy achieved was 

63% and 71% for tomato and kiwi, respectively. However, limitations were observed, 

particularly in differentiating specific disease infections accurately. On the other hand, 

GPC-BAT, after feature reduction, showcased enhanced accuracy in identifying healthy 

and diseased tissues. The overall accuracy ranged from 70% to 75% in the tomato and 

kiwi case studies. Despite its effectiveness, the model faced challenges in accurately 

predicting certain disease infections, especially in the early stages. Comparative analysis 

revealed commonalities and differences in the spectral bands identified by both 

approaches, with overlaps in critical regions across plant species. Notably, these spectral 

regions corresponded to the absorption regions of various photosynthetic pigments and 

structural components affected by bacterial infections in plant leaves. The study 

underscores the potential of hyperspectral sensing in disease diagnosis and highlights 

the strengths and limitations of VIs and GPC-BAT. The identified spectral features hold 

biological significance, suggesting correlations between bacterial infections and 

alterations in plant pigments and structural components. Future research avenues could 

focus on refining these approaches for improved accuracy in diagnosing diverse plant-

pathogen interactions, thereby aiding early disease detection and management in 

agricultural settings. 
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Graphical Abstract 
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1. Introduction 

 Plant diseases are a major threat to worldwide agriculture, causing substantial 

yield losses and impacting food security and quality (Ristaino, Anderson et al. 2021). 

Timely and accurate disease diagnosis is crucial for implementing effective management 

strategies in sustainable agriculture. These practices aim to contribute to more effective 

and precise plant protection measures due to more customized phytosanitary treatments 

regarding time, location, product used, and dose. However, traditional diagnostic 

methods often fail to detect diseases before visible symptoms emerge, limiting their 

effectiveness in proactive disease management (Martinelli, Scalenghe et al. 2015, 

Dyussembayev, Sambasivam et al. 2021). Innovative plant disease monitoring and 

diagnosis methods involving different state-of-the-art sensing approaches have recently 

been explored for precise and early in-vivo and in-situ disease assessment. Recent 

strides in innovative sensing techniques, particularly hyperspectral spectroscopy (HS), 

offer promising avenues for precise and early disease diagnosis (Martinelli, Scalenghe 

et al. 2015, Zhang, Huang et al. 2019). However, despite the potential of HS in plant 

disease diagnosis, challenges persist in harnessing its full potential due to the complexity 

of hyperspectral data and the need for efficient processing methodologies to extract 

relevant information (Thomas, Kuska et al. 2018, Galieni, D'Ascenzo et al. 2021). 
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Addressing these challenges is crucial to unlocking the full potential of HS in improved 

disease diagnosis and management strategies. 

 HS is known for acquiring data in narrow wavebands (<10 nm), with high 

precision and resolution and being able to capture detailed information from the 

electromagnetic spectrum (Galieni, D'Ascenzo et al. 2021). Nevertheless, despite this 

evident benefit, the measurement of this large number of variables (i.e., features, 

wavelengths) results in the data's high dimensionality, which increases the complexity of 

its processing to produce relevant information. Furthermore, the spectral data assessed 

in near-contiguous variables likely present similar or overlapping information. This 

potential data redundancy also increases the complexity of its analysis interpretation and 

the chance of overfitting occurrence (S ymańska 2018). Dimensionality reduction 

methods were developed to mitigate the effects of high dimensionality and collinearity, 

mostly based on identifying and extracting the most relevant and distinctive spectral 

features (without losing relevant information) (Thomas, Kuska et al. 2018). 

 The computation of spectral Vegetation Indices (VIs) is one of the most 

widespread Feature Selection (FS) approaches for retrieving crop biophysical 

information, especially due to their intrinsic simplicity. It consists of a user-defined 

mathematical combination of two or more wavelengths that improves crop biophysical 

information extraction from data, i.e., identifying spectral relationships that unravel 

specific plant properties. Hence, VIs are considered as parametric, physiological-driven 

methods. Nonetheless, it is important to note that when narrowband hyperspectral data 

is used, VIs can be a restrictive formulation since they only use some of the available 

wavelengths, failing to leverage the complete wealth of information in the continuous 

spectral data (Verrelst, Malenovský et al. 2019). Besides that, some of the VIs that have 

already been developed were designed to estimate specific vegetation traits (e.g., plant 

biomass and photosynthetic pigments research), which might not entirely suit the 

assessment of plant disease. The ones developed for studying specific plant-pathogen 

interactions (e.g., (Mahlein, Rumpf et al. 2013)) are usually only applicable in analyzing 

that specific pathosystem (usually in similar environmental conditions), mostly in 

symptomatic conditions, and are unsuitable for generalized disease assessment. 

Disease studies are usually modelled as a classification approach, which adds difficulty 

to the application of the index. 

 Another emerging strategy, recently employed for exploring hyperspectral data, 

is applying different advanced techniques (e.g., machine learning algorithms) that search 

for relationships between spectral data and biophysical variables (also known as non-
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parametric, data-driven methods).  They mostly consider all the spectral features 

measured by the hyperspectral sensors, which constitutes an important benefit 

compared to the VIs (Verrelst, Rivera et al. 2015). These methods can be based on linear 

or non-linear predictive methods. 

 Furthermore, automated band analysis tools have been developed in the domain 

of machine learning classification algorithms (MLCAs). Following a band selection 

method earlier introduced in regression (Verrelst, Rivera et al. 2016), this paper 

introduces an automated spectral band analysis tool (BAT) based on Gaussian process 

classification (GPC) for the spectral analysis of bacterial plant diseases. Briefly, starting 

from using all bands, GPC-BAT sequentially removes the least informative band in GPC 

until one band is left. By tracking the accuracy of statistics, GPC-BAT allows (1) to identify 

the most informative bands relating spectral data to a classification problem, and (2) to 

find the least number of bands that preserve optimized accurate classification tasks. 

 Hence, despite the development and availability of diverse methods for extracting 

meaningful spectral information in the context of plant bacterial disease diagnosis, it is 

necessary to address their suitability and performance when leading with different 

pathosystems. Therefore, the objectives of the present work aimed to: i) explore the 

suitability of different VIs for extracting relevant spectral features for performing plant 

bacterial disease diagnosis, using both reflectance and transmittance hyperspectral data 

(physiological driven approach); ii) investigate the potential of a GPC-BAT for performing 

plant bacterial disease diagnosis using reflectance and transmission hyperspectral data 

(data-driven approach); iii) compare and contrast the performance of VIs and GPC-BAT 

in discerning spectral features crucial for differentiating between healthy and diseased 

plant tissues; iv) and uncover the biological significance of the identified spectral features 

concerning specific plant-pathogen interactions and their implications for early disease 

diagnosis. Two case studies were conducted on tomato (controlled conditions) and kiwi 

(field conditions) plants, aiming to explore the capabilities of the developed approaches 

for performing bacterial disease diagnosis in distinct species in different environmental 

conditions. 

2. Materials and Methods 

 The present analysis focuses on two case studies: one in controlled 

environmental conditions using hyperspectral transmittance sensing data and the 

second in field conditions using hyperspectral reflectance sensing data. The first case 

consisted of collecting spectral data in healthy tomato leaflets’ tissues, along with 

measurements in inoculated (diseased) tissues with Pseudomonas syringae pv. tomato 



FCUP 
Early diagnosis of bacterial plant diseases based on proximal sensing from a precision agriculture perspective 

71 

 

 

(responsible for the bacterial speck disease of tomato), and tissues inoculated with 

Xanthomonas euvesicatoria (responsible for the bacterial spot disease of tomato). The 

second case assessed spectral data in non-symptomatic and symptomatic kiwi leaf 

tissues affected by bacterial canker of kiwi caused by Pseudomonas syringae pv. 

actinidiae. In both case studies, multiple spectral samples were gathered within an 

experimental setup at various time intervals encompassing all the plants involved in the 

study. 

 The hyperspectral data was then used in two modelling approaches involving a 

physiologically driven parametric approach based on VIs and a non-parametric approach 

based on a Gaussian Process Classification Banda Analysis Tool. 

2.1. Case studies – experimental design for kiwi and tomato 

2.1.1. Tomato bacterial diseases – Indoor assay 

 An indoor assay was performed in a walk-in growth chamber (temperature of 25 

to 27ºC, humidity of 60% approximately, photoperiod of 12/12h, and light intensity of 

30W) with nine tomato (Solanum lycopersicum L.) plants of the variety Cherry in 200 mL 

pots with a commercial potting substrate. Groups of three plants were formed and 

physically separated from each other to avoid cross-contamination; and one group was 

sprayed with distilled water (Control, healthy class), the second group with a bacterial 

suspension (1x108 cells/mL) of Pseudomonas syringae pv. tomato DC 3000 (Pst), and 

the last group with a suspension (1x108 cells/mL) of Xanthomonas euvesicatoria (Xeu), 

following a previously developed protocol (Reis Pereira, Santos et al. 2023). Plant 

phenotypical observations were performed daily to assess symptom development for 10 

days (Table 1). 

 The success of artificial bacterial inoculation was assessed by the performance 

of a viability assay and through a colony polymerase chain reaction (PCR), as stated in 

(Reis Pereira, Santos et al. 2023). The growth of Pst and Xeu in their appropriate 

selective (KB and YDC, respectively) media demonstrated that bacteria were viable at 

the moment of inoculation. PCR results proved the infection success, where the 

formation of bacteria-specific bands for each pathogen species, namely a 200-base pair 

(bp) fragment for Pst, and a 713 bp fragment for Xeu were observed. No PCR 

amplification was observed from samples collected from Control samples, assuring they 

were healthy until after the last spectral measurement. The first macroscopic lesions 

were detected in Pst inoculated samples 3 days after inoculation (DAI) and in Xeu 

inoculated samples at 8 DAI. 
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 Hyperspectral transmittance point-of-measurement (POM) data was captured 

inside a walk-in chamber using a setup comprised of a mini spectrometer (Hamamatsu 

Photonics K.K. TM Series C11697MB) with a wavelength range of 200-1100 nm, and a 

spectral resolution of 0.6 nm. This setup includes a transmission optical fiber bundle 

(FCR-7UVIR200-2-45-BX, Avantes, Eerbeek, The Netherlands), a laptop for data 

storage and processing, and a white LED spanning from 390 to 800 nm. A specialized 

evaluation software (SpecEvaluationUSB2.exe, Hamamatsu Photonics K.K., Japan) was 

used for data acquisition. Further details about the setup can be found in previous work 

(Reis Pereira, Santos et al. 2023). Subsequently, a resampling technique of 

approximately 10 nm was employed to minimize data redundancy. A dataset comprising 

2,346 samples (spectral observations) encompassing 51 wavelength features (spectral 

variables) was selected for subsequent analysis. The spectral measurements were later 

classified according to the leaflets’ plant treatment group, including the classes  i) Control 

(healthy); ii) inoculated with Pst; iii) and inoculated with Xeu (Table 1). This dataset can 

be find in (Reis Pereira, Tavares et al.). 

Table 1 Spectral data characterization of the measurements randomly performed on 

tomato leaflets (walk-in chamber - controlled conditions, transmittance) and kiwi leaves 

(in-field conditions, reflectance), showing the number of assessment dates, plants, 

observations (classified according to visual phenotyping observations). 

 Nº Dates Nº Plants* Nº NS Nº S Total 

Walk-in assay 

Tomato 8 9 1365 981 2346 

Con  3 809 --- 809 

Pst  3 93 634 727 

Xeu  3 463 347 810 

In-field assay (2 sites) 

Kiwi 9 20 281 223 504 

Control (healthy), Pst – Inoculated with Pseudomonas syringae pv. 

tomato, Xeu – Inoculated with Xanthomonas euvesicatoria, NS – Non-

Symptomatic, S – Symptomatic. *Several measurements were taken 

over time on different leaflets on each plant 

2.1.2. Kiwi bacterial diseased – Field assay 

 An assay was performed in field conditions in commercial orchards of kiwi 

(Actinidia deliciosa) of the cultivar ‘Bo.Erika’, located in Guimarães, Portugal. 

Macroscopic signs (i.e., symptoms visual to the human eye) of bacterial canker caused 

by Pseudomonas syringae pv. actinidiae (Psa) were assessed in feminine plants. Plant 



FCUP 
Early diagnosis of bacterial plant diseases based on proximal sensing from a precision agriculture perspective 

73 

 

 

visual phenotyping was performed, classifying leaves into non-symptomatic (NS, when 

no macroscopic visual symptoms were present) or symptomatic (S, when macroscopic 

symptoms were visible) as described in (Reis-Pereira, Tosin et al. 2022) (Table 1). 

 Hyperspectral reflectance measurements were collected in situ, in vivo leaves, 

using a portable spectroradiometer (ASD FieldSpec® HandHeld 2, ASD Instruments, 

Boulder, CO, USA) with a wavelength range of 325 to 1075 nm, spectral resolution of 1 

nm, and field-of-view conical angle of 25º. The detailed procedures followed during the 

spectral acquisition assay can be found in previous research (Reis-Pereira, Tosin et al. 

2022). In brief, three leaves were chosen per plant, and their spectral signatures were 

collected at different time points, resulting in 504 samples (spectral observations) and 

751 spectral features (spectral variables). Binary classification of leaves’ spectra was 

made according to the phenotype of the leaves resulting in the binary classes NS and S 

(Table 1). This dataset can be find in (Reis Pereira, Tavares et al.).   

2.2. Modeling approaches 

2.2.1. Parametric approach – Vegetation Indices (VIs) 

 Hyperspectral data, including both transmittance and reflectance spectra, usually 

have an overlapping nature and multi-scale interference (Tosin, Martins et al. 2022).To 

address this issue, a selection of 33 spectral VIs, encompassing 42 distinct wavelength 

combinations, was computed to identify the most relevant wavelengths or bands for 

discriminating healthy and disease-biological tissues (Table 2). This selection process 

aimed to integrate VI formulations commonly used to assess different crop traits as well 

as crops’ physiological conditions. The variables used in each formula corresponded to 

default values explicitly mentioned in the formula (Table 2) or values chosen by the 

authors, namely: 450 nm (representing the Blue region of the electromagnetic spectrum), 

550 nm (Green), 680 nm (Red), 700 nm (Red Edge), and 800 nm (NIR). The feature 

representing the Blue was elected due to being related to pigment absorption features 

(∼450 nm, e.g. chlorophylls and carotenoids) (Verdebout, Jacquemoud et al. 1994, 

Asner 1998) and a Blue fluorescence maximum (Lang, Stober et al. 1991). The 550 nm 

wavelength was selected because reflectance data corresponds to the green peak (or 

green edge), where reflectance values can be more than twice the surrounding 

wavelengths (Hennessy, Clarke et al. 2020, Moriya, Imai et al. 2023). This value is also 

sensitive to chlorophyll content and has been explored to detect plant stress-induced 

changes and pigment content variations (Blackmer, Schepers et al. 1994, Gitelson and 

Merzlyak 1994). Instead, 680 nm was chosen because it corresponds to the reflectance 

minimum in the Red region (Hennessy, Clarke et al. 2020, Moriya, Imai et al. 2023). The 
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Red-Edge value (700 nm) was used because it is highly sensitive to changes in 

chlorophyll-a absorption and is used to detect subtle changes related to plant 

physiological status and growth stage transitions (Gitelson and Merzlyak 1994, 

Lichtenthaler, Gitelson et al. 1996). The 800 nm spectral feature was chosen because it 

is related to the influence of changes in leaf structure and density, but it is not sensitive 

to pigment level changes (Haboudane, Miller et al. 2004). Furthermore, all these 

wavelengths have been extensively used in formulating  multiple VIs, as seen in Index 

Data Base (IDB), a database for remote sensing indices (Henrich, Götze et al. 2009, 

Henrich V., Krauss G. et al. 2023). 

 A Flexible Discriminant Analysis (FDA), applied predictive modeling with a built-

in Feature Selection (FS), was then performed to evaluate the most significant VIs used 

to discriminate between spectral data measured in i) healthy tomato tissues (Control, 

Con), diseased tomato tissues inoculated with Pst, and diseased tomato tissues infected 

with Xeu; ii) non-symptomatic (i.e., without macroscopic lesions, NS) and symptomatic 

(S) kiwi tissues. The datasets, encompassing both tomato and kiwi cases, were split 

according to the holdout method (Lantz 2019), which involved partitioning into a training 

set comprising 70% of the data and a testing set with the remaining 30% of the 

observations (Kuhn and Johnson 2013). 

 Model evaluation was employed through a resampling strategy involving 

repeated 10-fold cross-validation to estimate accuracy.  A more detailed explanation can 

be found in (Kuhn and Johnson 2013, Lantz 2019, Reis-Pereira, Tosin et al. 2023). Model 

performance was then evaluated by assessing different classification model metrics, 

including the confusion Matrix (CM), accuracy score, kappa coefficient, and F1-Score 

(Reis Pereira, Santos et al. 2023). 

 The CM is a 2D-matrix representation of the actual classes of the collected 

spectral samples in one dimension and the predicted class values in the other. When the 

predicted class values are equal to the actual value, they are considered correct 

classifications and locali ed in the CM’s diagonal. The remaining matrix cells correspond 

to incorrect classification predictions, where the predicted value is not coincident with the 

actual value. The class of interest is considered positive, while the other(s) are 

considered negative. When the predicted class is correctly classified as the class of 

interest, it is considered a true positive (TP) case. When the predicted class is accurately 

classified as not belonging to the class of interest, it is called a true negative (TN). When 

the predicted class is wrongly classified as the class of interest, it is called a false positive 



FCUP 
Early diagnosis of bacterial plant diseases based on proximal sensing from a precision agriculture perspective 

75 

 

 

(FP), and when incorrectly classified as not fitting the class of interest, it is classified as 

a false negative (FN). 

 The accuracy score (also known as Success Rate) corresponds to the number of 

rightfully classified prediction cases divided by the total number of predictions (Eq. 1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

  appa coefficient (also called Cohen’s kappa) amends the accuracy score by 

considering the probability of an accurate prediction occurring by chance alone (Lantz 

2019) (Eq. 2). Its value can range from zero, indicating an imperfect agreement, to one, 

the perfect agreement between models’ predictions and true values.  appa values (in 

percentage) can be interpreted as follows: when less than 20%, it is considered a poor 

agreement; 20% to 40% a fair agreement; 40% to 60% a moderate agreement; 60% to 

80% a good agreement; 80% to 100% a very good agreement (Lantz 2019). Kappa 

coefficient can be estimated through the following formula where Pr(a) represents the 

proportion of actual agreement and Pr(e) refers to the expected agreement between the 

classifier and the true values, under the hypothesis that they were chosen randomly (Eq. 

2). 

𝐾𝑎𝑝𝑝𝑎 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑃𝑟(𝑎) − 𝑃𝑟(𝑒)

1 − 𝑃𝑟(𝑒)
 (2) 

 The F1-score (also called F-measured) combines the proportion of positive cases 

that are truly positive (Precision) with the number of TP over the total number of positives 

(Recall, which measures how complete the results are) into a single number using the 

harmonic mean (Eq. 3). 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3) 

 Sensitivity was evaluated, indicating the models’ ability to predict the TP of each 

available class (Eq. 4). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 The Specificity metric was also calculated since it indicates the models’ suitability 

for predicting TN of each available class (Eq. 5). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5) 
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 All these computation analyses were made in the software R (Team 2021) using 

the packages ‘caret’ (Kuhn 2015), and ‘earth’ (Milborrow 2019). 

Table 2 List of the Spectral Vegetation Indices (VIs) computed in this work, mentioning 

its formula and reference (when available). 

Vegetation Indices Formula Ref. 

Ashburn Vegetation Index 
(AVI) 

2.0 × NIR − RED 
(Ashburn 1979, 
Bannari, Morin 

et al. 1995) 

Anthocyanin reflectance 
index (ARI) 

1

𝐺𝑅𝐸𝐸𝑁
−

1

𝑅𝐸𝐷
 

(Gitelson, 
Merzlyak et al. 

2001) 

Blue Green Pigment Index 
(BGI) 

𝐵𝐿𝑈𝐸

𝐺𝑅𝐸𝐸𝑁
 - 

Browning Reflectance 
Index (BRI) 

1
𝐺𝑅𝐸𝐸𝑁

−
1

𝑅𝐸𝐷
𝑁𝐼𝑅

 

(Merzlyak, 
Gitelson et al. 

2003) 

Blue/Red Pigment Index 
(BRI2) 

450 𝑛𝑚

690 𝑛𝑚
 

(Zarco-Tejada, 
Berjón et al. 

2005) 

Canopy Chlorophyll 
Content Index (CCI) 

𝑁𝐼𝑅 − 𝑅𝐸𝐷 𝐸𝐷𝐺𝐸
𝑁𝐼𝑅 + 𝑅𝐸𝐷 𝐸𝐷𝐺𝐸

𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷

 

(Barnes, Clarke 
et al. 2000, 

Clarke, Moran 
et al. 2001, 

Pinter, Hatfield 
et al. 2003, El-
Shikha, Barnes 

et al. 2008, 
Herrmann, 

Karnieli et al. 
2010, Henrich, 
Krauss et al. 

2011) 

Chlorophyll Green 
(Chlgreen) (

𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
)

(−1)

 

(Gitelson, 
Keydan et al. 

2006) 

Coloration Index (CI) 
𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸

𝑅𝐸𝐷
 

(Escadafal, 
Belghith et al. 

1994) 

Chlorophyll Index Green 
(CIgreen) 

𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
− 1 

(Gitelson, Viña 
et al. 2003, 

Ahamed, Tian 
et al. 2011, 

Hunt Jr, 
Daughtry et al. 

2011) 

Chlorophyll Index Red 
Edge (CIrededge) 

𝑁𝐼𝑅

𝑅𝐸𝐷 𝐸𝐷𝐺𝐸
− 1 

(Gitelson, Viña 
et al. 2003, 

Ahamed, Tian 
et al. 2011, 

Hunt Jr, 
Daughtry et al. 

2011) 

Chlorophyll vegetation 
index (CVI) 𝑁𝐼𝑅 

𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁2 
(Datt, McVicar 

et al. 2003) 

Double Difference Index 
(DD) 

(749𝑛𝑚 − 720𝑛𝑚) − (701𝑛𝑚 − 672𝑛𝑚) 
(Le Maire, 

François et al. 
2004, Main, 
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Cho et al. 
2011) 

Enhanced Vegetation 
Index (EVI) 

2.5 ×
𝑁𝐼𝑅 − 𝑅𝐸𝐷

(𝑁𝐼𝑅 + 6𝑅𝐸𝐷 − 7.5𝐵𝐿𝑈𝐸) + 1
 

(Huete, Didan 
et al. 2002, 

Hunt Jr, 
Daughtry et al. 

2011) 

Green atmospherically 
resistant vegetation index 
(GARI) 

𝑁𝐼𝑅 − (𝐺𝑅𝐸𝐸𝑁 − (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷)

𝑁𝐼𝑅 − (𝐺𝑅𝐸𝐸𝑁 + (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷)
 

(Gitelson, 
Kaufman et al. 
1996, Gitelson, 

ViÃ±a et al. 
2003) 

Green-Blue NDVI 
(GBNDVI) 

𝑁𝐼𝑅 − (𝐺𝑅𝐸𝐸𝑁 + 𝐵𝐿𝑈𝐸)

𝑁𝐼𝑅 + (𝐺𝑅𝐸𝐸𝑁 + 𝐵𝐿𝑈𝐸)
 

(Wang, 
HUANG et al. 

2007) 

Global Environment 
Monitoring Index (GEMI) 

(𝑛 × (1 − 0.25𝑛) −
𝑅𝐸𝐷 − 0.125

1 − 𝑅𝐸𝐷
) 

𝑛 =
2 × (𝑁𝐼𝑅2 − 𝑅𝐸𝐷2) + 1.5 × 𝑁𝐼𝑅 + 0.5 × 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5
 

(Pinty and 
Verstraete 

1992) 

Simple Ratio Greenness 
Index (GI) 

𝐺𝑅𝐸𝐸𝑁

𝑅𝐸𝐷
 

(Zarco-Tejada, 
Miller et al. 
2001, Main, 
Cho et al. 

2011) 

Green Normalized 
Difference Vegetation 
Index (GNDVI) 

𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁
 

(Ahamed, Tian 
et al. 2011, 

Hunt Jr, 
Daughtry et al. 

2011) 

Tasselled Cap – 
vegetation (GVI) 

−0.2848 × 𝐵𝑙𝑢𝑒 − 0.2435 × 𝐺𝑟𝑒𝑒𝑛 − 0.5436 × 𝑅𝑒𝑑
+ 0.7243 × 𝑁𝐼𝑅 + 0.0840 × 𝑆𝑊𝐼𝑅
− 0.1800 × 𝑆𝑊𝐼𝑅 

(Schlerf, 
Atzberger et al. 

2005, Lee, 
Alchanatis et al. 

2010) 

Infrared percentage 
vegetation index (IPVI) 

𝑁𝐼𝑅
𝑁𝐼𝑅 + 𝑅𝐸𝐷

2
× (𝑁𝐷𝑉𝐼 + 1) 

(Crippen 1990, 
Kooistra, 

Leuven et al. 
2003) 

Log Ratio (LogR) 𝑙𝑜𝑔 (
𝑁𝐼𝑅

𝑅𝐸𝐷
) - 

Misra Green Vegetation 
Index (MGVI) 

−0.386 × 𝐺𝑅𝐸𝐸𝑁 − 0.530 × 𝑅𝐸𝐷 + 0.535 × 𝑅𝐸𝐷𝐸𝐷𝐺𝐸
+ 0.532 × 𝑁𝐼𝑅 

(Misra, Wheeler 
et al. 1977, 

Bannari, Morin 
et al. 1995) 

Modified NDVI (mNDVI) 
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 − 2 × 𝐵𝐿𝑈𝐸
 

(Huete, Liu et 
al. 1997, Main, 

Cho et al. 
2011) 

Modified Simple Ratio 
(mSR) 

𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸

𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸
 

(Kooistra, 
Leuven et al. 
2003, Main, 
Cho et al. 

2011) 

Modified Simple Ratio 2 
(mSR2) 

(
𝑁𝐼𝑅

𝑅𝐸𝐷
) −

1

√(
𝑁𝐼𝑅
𝑅𝐸𝐷

) + 1

 
(Chen 1996) 

Normalized Difference 
NIR / Red Normalized 
Difference Vegetation 
Index (NDVI) 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

(Thenkabail, 
Smith et al. 

2002, Zarco-
Tejada and 
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Sepulcre-
CantÃ³ 2007) 

Normalized Green (NG) 
𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁
 

(Sripada, 
Heiniger et al. 

2006) 

Normalized Near Infrared 
(NNIR) 

𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁
 

(Sripada, 
Heiniger et al. 

2006) 

Hyperspectral 
perpendicular VI (PVIhyp) 

𝑁𝐼𝑅 − 𝑎 × 807 − 𝑏

(1 + 𝑎2)0.5  

𝑎 = 1.17, 𝑏 = 3.37 

(Schlerf, 
Atzberger et al. 

2005) 

Plant Senescence 
Reflectance Index (PSRI) 

𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅
 

(Sims and 
Gamon 2002, 
Apan, Held et 

al. 2003) 

Reflectance at the 
inflection point (Rre) 

𝑅𝐸𝐷 + 𝑁𝐼𝑅

2
 

(Clevers, De 
Jong et al. 

2002) 

Red-Edge Stress 
Vegetation Index (RVSI) 

718 + 748

2
− 733 - 

Structure Intensive 
Pigment Index (SIPI) 

𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅 − 𝑅𝐸𝐷
 

(Zarco-Tejada, 
Miller et al. 

2001, le Maire, 
Francois et al. 

2004) 

Simple Ratio (SR) NIR/ 
RED  

𝑁𝐼𝑅

𝑅𝐸𝐷
 - 

2.3. ARTMO software 

 The Automated Radiative Transfer Models Operator (ARTMO) is a modular 

MATLAB GUI toolbox initially developed for automating the simulation of radiative 

transfer models (RTMs) (Verrelst, Romijn et al. 2012). This comprehensive toolbox 

integrates various leaf and canopy RTMs alongside essential tools for semi-automated 

retrieval of biophysical and biochemical variables. ARTMO is connected to a relational 

SQL database management system (MySQL, version 5.5 or 5.6; local installation 

required) for storing all generated data (i.e., simulations, statistical results) and trained 

models along with metadata, enabling the re-execution of earlier models or simulations. 

An initial version of the machine learning classification algorithm (MLCA) toolbox was 

introduced in version 3.29, and this functionality has been expanded in subsequent 

releases. 

 The current official version (v.1.02) of the MLCA toolbox incorporates 20 

supervised MLCAs belonging to the principal families of supervised classifiers, 

predominantly affiliated with machine learning methodologies. Note that this initial 

version is limited to pixel-based classifiers, implying that object-based sub-pixel-based 

or scene-based deep learning classifiers have not been incorporated. Nevertheless, 

pixel-based classifiers enable the learning and characterization of intricate spectra.  
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 Supervised classifiers are traditionally classified into parametric and non-

parametric methods. Parametric methods are grounded in probabilistic theories, 

modeling the decision boundaries between classes from a fixed number of parameters, 

independent of the number of samples, employing global criteria for classification 

(Hubert-Moy, Cotonnec et al. 2001). By contrast, non-parametric methods guide the 

class grouping based on the digital number (single band/image) or spectral data (multi- 

and hyperspectral reflectance or transmittance). The spectral value distribution is 

independent and focused on the local data structure, requiring a substantial set of 

samples for the classification process (Phiri and Morgenroth 2017). 

 Arguably, one of the most promising non-parametric classifiers is the Gaussian 

process (GP) classification. GPs are stochastic processes where each random variable 

follows a multivariate normal distribution (Rasmussen and Williams 2006). The goal of 

GP classification is to learn a mapping from the input data (e.g., spectral reflectance or 

transmittance values) to their corresponding classification label (e.g., plant health group 

type), which can then be used on new, unseen spectral measurements. When the GP is 

developed with kernel methods (Schölkopf, Smola et al. 1998), it allows mapping the 

original data into a possibly infinite-dimensional space (Bishop and Nasrabadi 2006). In 

this space, the input-output relationship can be better estimated as the GP can consider 

more complex and flexible functions than the linear models. This enables the GP to 

capture intricate relationships between the spectral data and the health crop phenotype, 

leading to more accurate classification results. Due to its probabilistic framework, the GP 

provides uncertainty estimation per sample. This means that for each spectral 

measurement, the GP can provide a measure of how confident it is in its classification 

prediction. This uncertainty information can inform decision-making, allowing users to be 

more or less confident with the inferred classification label (e.g. see (Verrelst, 

Malenovský et al. 2019)). 

2.3.1. Machine Learning Approaches – Gaussian process classification (GPC-BAT) 

 The GP has another advantage of being capable of using more sophisticated 

kernel functions than the standard linear kernel or the radial basis function (RBF) kernel 

equation (Eq. 6), which can be optimally tuned through likelihood maximization. 

𝑘𝑅𝐵𝐹(𝑥𝑖, 𝑥𝑗) =  𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
) (6) 

where 𝑥𝑖 and 𝑥𝑗 represent two spectra, σ is the variance, and ‖𝑥𝑖 − 𝑥𝑗‖ is the Euclidean 

distance between the two spectra 𝑥𝑖 and 𝑥𝑗. 
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 In the classification case, the output values of 𝑘𝑅𝐵𝐹 are discrete (±1); this causes 

the likelihood function to be non-Gaussian, and then some approximations should be 

performed (Aghababaei, Ebrahimi et al. 2022). We chose the Laplace approximation 

which performs well and is robust. One notable kernel function is the automatic relevance 

determination (ARD) kernel equation (Eq. 7), 

𝐾𝐴𝑅𝐷(𝑥𝑖, 𝑥𝑗) =  exp (−
1

2
(𝑥𝑖, 𝑥𝑗)

⊤
∑ (𝑥𝑖, 𝑥𝑗)

−1

) (7) 

where Σ is a diagonal matrix, whose diagonal tries are constituted by 

{𝜎1
2, . . . , 𝜎𝑑

2} parameters to weight each input dimension. This kernel covariance function 

requires one parameter per input feature; it can be optimized under that framework, and 

it allows providing a band ranking based on their optimal values. 

 Following the rationale as presented in Verrelst et al., (2016) (Verrelst, Rivera et 

al. 2016) for GP regression, a GPC-based band ranking feature has been implemented 

into a so-called band analysis tool (i.e., GPC-BAT). In short, we employ a simplified and 

general iterative backward greedy algorithm to identify the most informative bands. This 

algorithm assesses the impact of each band on the prediction error in the context of the 

remaining bands. At each iteration, the algorithm removes the band with the highest 

uncertainty σb, thereby re-training the GPC model with the remaining bands. This is 

referred to as sequential backward band removal (SBBR). The SBBR algorithm is 

analogous to recursive feature elimination (RFE), a technique earlier presented with 

support vector machines or random forests. In RFE, the feature with the lowest ranking 

score is eliminated, iteratively removing insignificant features until only the most relevant 

ones remain (e.g., (Bazi and Melgani 2006, Archibald and Fann 2007, Pal and Foody 

2010, Zhang and Yang 2020)). This SBBR approach allows us to pinpoint the bands that 

most strongly influence the prediction of our target classes. These bands provide 

valuable insights into the spectral characteristics that best capture the sensitivity of the 

classes of interest, e.g., healthy, and diseased groups. 

 A principal application of GPC-BAT is that the algorithm identifies how many 

bands are minimally needed in order to retain robust results and informs us about the 

most sensitive wavelengths. Accordingly, the output GUI delivers the following band 

analysis outputs: (1) overall accuracy (OA) statistics as a function of #bands plotted over 

the sequentially removed bands until only two bands are left, (2) associated wavelengths 

selected by the tool (Figure 1). 
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Figure 1 Schematic flow diagram of GPC-BAT within ARTMO's MLCA toolbox adapted 

from (Verrelst, Rivera et al. 2016). 

3. Experimental Results 

3.1. Spectral vegetation indices – parametric approach 

 This section presents the predictive classification results of the approach 

combining the calculation of different VIs (Table 3) followed by the computation of the 

FDA model, which allowed i) the classification of tomato leaflet spectral samples 

collected on healthy (Control, Con), and both inoculated diseased tissues with Pst, and 

Xeu bacteria; ii) and the classification of kiwi leaf spectral samples measured on non-

symptomatic (NS), and symptomatic (S) diseased tissues. 

3.1.1. Tomato disease in walk-in chamber 

 Table 2 presents the results of an overall accuracy of 63.30% (proportion of 

correctly classified instances), and a kappa coefficient of 44.70 (which indicates 

agreement between the predicted and actual classes beyond random occurrence) for 

the validation dataset (Table 3, detailed information about the training results is present 

in Supplementary Materials Table S1).  The model metric analysis per class revealed 

that samples inoculated with Pst bacteria presented good precision (75.66%), sensitivity 

(65.60%), specificity (90.52%), and F1-score (70.27%) (Table 3). These metrics indicate 

the model's suitability for accurately performing correct predictions for both classes 

(healthy vs. inoculated), correctly identifying instances of these classes, distinguishing 

samples that do not belong to these classes, and a good balance in capturing true 

positives and avoiding false positives (Table 3). The control class presented a higher 

sensitivity, highlighting the model's efficiency in correctly identifying healthy samples. In 

contrast, the Xeu class had a reduced precision (52.44%), sensitivity (48.56%), and F1-

score (50.43%) which translates into a higher likelihood of false positives in Xeu 

prediction, a more probable miss of a considerable proportion of positive instances of 

this class, and an imbalance in assessing true positives and refrain false positives (Table 
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3). Therefore, although the FDA model exhibits good capabilities in differentiating 

samples measured in healthy (Control) and Pst diseased tissues, there is potential for 

improving the identification of spectra captured on Xeu inoculated tissues (Table 3). 

 A fraction of these false positives may be accounted for by the sensitivity gap 

between digital and visual phenotyping methods. These results are based on visual 

phenotyping, which only allows samples with visible symptoms to be identified. However, 

Xeu-inoculated plants may present early changes in their optical properties long before 

the appearance of symptoms, which could justify some of the false positive cases 

recorded. 

 CM results indicate that predictions of samples collected on tissues inoculated 

with Xeu were more challenging to the model when compared to the healthy and 

inoculated with Pst ones, presenting a higher number of wrong classifications than in the 

remaining classes studied (Table 4, for both training and validation sets). In fact, the 

model only correctly identified 49% of the Xeu samples. The majority of the remaining 

Xeu samples were wrongly inputted to the Control class. This can be related to the fact 

that macroscopic symptoms only appeared 8 DAI, resulting in a high number of non-

symptomatic samples (presenting a phenotype similar to the healthy ones) whose 

spectral signature is more similar to healthy samples than Pst diseased ones. In contrast, 

approximately 74% of the healthy (Control) samples were accurately classified, and 70% 

inoculated with Pst (Table 4). 

3.1.2. Kiwi bacterial canker disease in the field 

 In turn, when the IVs-based modeling approach was applied in the binary 

classification of non-symptomatic (NS in Table 3) and symptomatic (S in Table 3) 

samples of the validation set taken on kiwi leaves in field conditions, the overall accuracy 

achieved was 71.33%. The Kappa value of 41.73% demonstrates the model’s 

effectiveness in classifying the two classes (results for the training set can be seen in 

Supplementary Materials Table S1). The model metrics for the spectra collected in non-

symptomatic and symptomatic tissue’s spectra revealed that the model acceptably 

identifies a significant proportion of true positive samples of these classes, classifies 

samples belonging to both classes, and has a good ability to correctly identify instances 

that do not belong to the class in analysis, along with a good balance between finding 

positive cases and avoiding false positives (Table 3). 

 The CM values show that the model has less difficulty predicting non-

symptomatic samples correctly classifying 78% of the total samples compared to the 

symptomatic samples (67%) (Table 4).  
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Table 3 Cross-validation statistics of the Flexible Discriminant Analysis (FDA) using the 

validation set of the Vegetation Indices (VIs) computed in the hyperspectral data 

collected on tomato leaflet tissues (transmittance) and kiwi leaf tissues (reflectance). 

Model metrics by class are also provided. 

 Overall classes  Metrics per class 

Class Accuracy (%) Kappa (%)  Precision (%) Sensitivity (%) Specificity (%) F1 (%) 

        

Tomato (703 observations)    

Con 63.33 44.77  63.67 76.03 77.22 69.30 

Pst   75.66 65.60 90.52 70.27 

Xeu   52.44 48.56 76.74 50.43 

        

Kiwi (504 observations)      

NS/S 71.33 41.73  67.69 66.67 75.00 67.18 

        

Con – Control (healthy), Pst – Inoculated with Pseudomonas syringae pv. tomato, Xeu – Inoculated with 

Xanthomonas euvesicatoria, NS – Non-Symptomatic, S - Symptomatic 

Table 4 Confusion Matrix results of the Flexible Discriminant Analysis (FDA) using the 

Vegetation Indices (VIs) computed in the hyperspectral data collected on tomato leaflet 

tissues (transmittance) and kiwi leaf tissues (reflectance). The predicted samples of each 

class (column) that were correctly classified for each true class (row) for the spectral data 

collected on tomato leaflets tissues (left) and kiwi leaf tissues (right) are shown. The 

classes used in the tomato case study were control samples (healthy, Con), and samples 

inoculated with Pseudomonas syringae pv. tomato (Pst), and samples inoculated with 

Xanthomonas euvesicatoria (Xeu). In turn, the binary classes Non-Symptomatic (NS), 

and Symptomatic (S) were applied to the kiwi case study. 

  Predicted Class - Tomato   Predicted Class - Kiwi 

  Training  Validation   Training  Validation 

  Con Pst Xeu  Con Pst Xeu   NS S  NS S 

                

T
ru

e
 C

la
s
s
 Con 416 10 141  184 4 54  NS 157 40  63 21 

Pst 52 345 112  22 143 53  S 50 107  22 44 

Xeu 193 90 284  83 42 118        

               

              

3.2. GPC-BAT performance with original training data and further validation 

 This section presents the predictive classification results of the approach using 

the ARTMO GPC-BAT tools, which also allowed i) the classification of tomato leaflet 

spectral samples collected on healthy (Control, Con), Pst inoculated, and Xeu inoculated 
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tissues; ii) and the classification of kiwi leaf spectral samples measured on non-

symptomatic (NS), and symptomatic (S) tissues. 

3.2.1. Tomato diseases in walk-in chamber 

 For the selected 23 wavelengths (from the 51 available) for the tomato case study 

and 577 wavelengths (from the 611) for the kiwi case study, the models presented the 

best classification metrics (Table 5). The prediction for discriminating the different 

classes defined for the tomato dataset achieved a maximum overall accuracy of 70.46% 

and kappa of 55.60%. Furthermore, metric evaluation per class provides insights into the 

model's performance in distinguishing between healthy (Con in Table 5) and diseased 

instances (Pst and Xeu in Table 5). In terms of Precision (80.72 vs. 75.24%), Specificity 

(88.75 vs. 89.14%), and F1-values (73.87 vs. 77.31%), the Control and Pst inoculated 

classes presented good metric levels. These results, highlight the model's accuracy for 

identifying positive predictions for both classes, distinguishing samples that do not 

belong to these respective classes and achieving good balance in capturing true 

positives and avoiding false positives (Table 5). The Xeu inoculated class, compared 

with Pst, showed lower values of Precision (55.93 vs. 75.24%) and F1-Score (60.04 vs. 

71.31%), indicating a higher likelihood of false positives in their prediction and an 

imbalance in assessing true positives and refraining from false positives. This class had 

a good Specificity value, similar to the other two, suggesting the model’s performance in 

distinguishing spectral measurements that do not belong to it (Table 5). Regarding 

Sensitivity, the Pst class presented the higher level, indicating the model's effectiveness 

in correctly identifying instances of this class. However, the values for the two remaining 

classes were lower, implying that the model may miss a notable proportion of positive 

instances in the Control and Xeu classes (Table 5). 

 The CM also demonstrates that 81% of the healthy and 75% of Pst inoculated 

samples were correctly classified. Similar to the previous approach (based on VIs), the 

GPC-BAT also faced more difficulty in accurately classifying the inoculated Xeu samples, 

with only predicting 56% of the cases correctly (Table 6). Hence, while the model 

demonstrates strong capabilities in distinguishing samples collected in Control (healthy) 

tissues and those measured on Pst diseased tissues, it needs to be enhanced to 

accurately identify spectra collected on Xeu diseased tissues (Table 5). 

3.2.2. Kiwi bacterial canker disease in the field 

 The binary classification performed for the kiwi leaves hyperspectral reflectance 

measurements achieved a maximum overall accuracy of 75.40% and a kappa of 49.95%. 

The model proved effective in both class predictions, allowing the distinction between 
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non-symptomatic (NS in Table 5) and symptomatic (S in Table 5) assessments collected 

in kiwi leaves in field conditions. The model metrics for the spectra collected in non-

symptomatic and symptomatic tissue’s spectra revealed that the model effectively 

identifies a significant proportion of true positive samples of these classes, a good ability 

to classify instances that do not belong to them correctly, and a well-balanced between 

identifying positive instances and avoiding false positives (Table 5). 

Table 5 Cross-validation statistics of the Gaussian Process Classification (GPC) models 

developed using hyperspectral data collected on tomato leaflet tissues (transmittance) 

and kiwi leaf tissues (reflectance). 

 Overall classes  Metrics per class 

Class Accuracy (%) Kappa (%)  Precision (%) Sensitivity (%) Specificity (%) F1 (%) 
        

Tomato       

Con 70.46 55.60  80.72 68.09 88.75 73.87 

Pst   75.24 79.51 89.14 77.31 

Xeu   55.93 64.81 78.32 60.04 

        

Kiwi       

NS 75.40 49.95  79.36 77.16 73.02 78.25 

S  70.40 73.02 77.16 71.69 

        

Con – Control (healthy), Pst – Inoculated with Pseudomonas syringae pv. tomato, Xeu – Inoculated with 

Xanthomonas euvesicatoria, NS – Non-Symptomatic, S - Symptomatic  

 The CM demonstrates that 79% of the non-symptomatic samples were accurately 

classified, along with 70% of the symptomatic samples (Table 6). 

 The GPC model did not perform best for both case studies when all the spectral 

bands were applied. In the tomato case study, the overall accuracy and kappa values 

when all spectral features were used were lower, reaching 69.06% and 53.48%, 

respectively. Likewise, the kiwi case study’s values were 61.90% and 22.50% for 

accuracy and kappa, respectively. Furthermore, for the kiwi case study, the outcomes 

were more unstable when compared to the model developed with the wavelengths 

chosen by BAT, presenting a higher standard deviation (SD), and processing time (Table 

7). In the tomato case study, the SD value was lower when all the features were used, 

but the processing time was almost 40% superior (Table 7).  

 In terms of selected sensitive wavelengths, when the spectral data collected on 

kiwi was used, GPC profusely selected wavelengths greater than 800 nm (26 in 34 

wavelengths), these wavelengths (> 800 nm) did not prove to be important in the 

construction of the selected VIs. Only PVIhyp (800, 1000 nm) selected wavelengths at 
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800 nm, but this VI has a very modest representation (24.46%) in the distinction between 

the non-symptomatic and symptomatic classes. 

Table 6 Confusion Matrix of the GPC model results show the predicted samples of each 

class (column) correctly classified for each true class (row) for the spectral data collected 

on tomato leaflets’ tissues and kiwi leaf tissues. The classes used in the tomato case 

study were Control samples (healthy, Con), samples inoculated with Pseudomonas 

syringae pv. tomato (Pst), and Samples inoculated with Xanthomonas euvesicatoria 

(Xeu). The binary class Non-Symptomatic (NS), and Symptomatic (S) were applied to 

the kiwi case study. 

  Predicted Class - Tomato   Predicted Class - Kiwi 

  Training  Validation   Training  Validation 

  Con Pst Xeu  Con Pst Xeu   NS S  NS S 

  
   

           

T
ru

e
 C

la
s
s
 Con 595 48 221  653 52 254  NS 232 32  223 66 

Pst 31 512 89  38 547 103  S 21 169  58 157 

Xeu 102 95 419  118 128 453        

               

Table 7 Cross-validation statistics of the GPC models developed using hyperspectral 

data collected on tomato leaflet tissues (transmittance) and kiwi leaf tissues (reflectance) 

were used. 

SD Time (s) FS Wavelengths (nm) 
      

Tomato   

2.75 819.20 51 All wavelengths (300.09 to 800.34 nm) 

3.32 491.08 23 430.00, 440.21, 450.04, 460.31, 490.04, 500.00, 510.41, 520.00, 550.20, 

560.31, 570.03, 620.21, 640.35, 650.24, 660.15, 670.08, 680.02, 690.42, 

700.41, 710.41, 740.09, 750.17, 760.26 
      

Kiwi   

4.49 171.86 611 All wavelengths (400 to 1010 nm) 

3.23 14.80 34 544, 597, 754, 771, 790, 791, 795, 825, 835, 839, 845, 850, 851, 860, 864, 

866, 869, 881, 883, 888, 893, 902, 905, 906, 928, 932, 939, 945, 947, 973, 

980, 993, 999, 1006 
      

FS – Feature Selection, SD – Standard Deviation 

3.3. Comparing the performance of VIs and GPC-BAT 

3.3.1.       ’        -based comparison 

 The tested approach combining the VIs with the FDA model allowed the 

identification of the most relevant VIs analyzed for class identification for both the tomato 

and kiwi case studies (Table 8). When the tomato spectral data was used, the selected 
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wavelength combinations present in the computed VIs considered features in the Blue 

(450.04 nm), Green (500.00, and 550.20 nm), Red-Edge (680.02, 690.42, 700.41, 

730.04, and 750.17), and NIR (800.34 nm). Similar wavelengths were selected when the 

data collected on kiwi leaves were used and were mainly located in the Blue (400, and 

450 nm), Green (530, 553, and 554 nm), Red-Edge (670, 677, 700, 705, 730, and 750 

nm), and NIR (780, 800, 994, and 1000 nm) (Table 8). For both species, equal 

wavelengths were identified by the approach, such as 450 (Blue), 550 (Green), 700, 730, 

750 (Red-Edge), and 800 nm (NIR). 

 For the tomato case study, the FDA selected five VIs whose formula integrated 

three wavelengths: PSRI, CCCI, EVI, SIPI, and GARI (Table 8). In contrast, in the kiwi 

case study, all the chosen VIs presented only two wavelengths (Table 8). 

Table 8 Vegetation Index (VI) importance for classification according to Flexible 

Discriminant Analysis (FDA). The importance value corresponds to the t-statistic value 

scaled to the maximum. 

Case study - Tomato  Case study - Kiwi 

VI Wavelengths (nm) Importance (a.u.)  VI Wavelengths (nm) Importance (a.u.) 

mSR2 700.41, 750.17 100.00  Chlgreen 553, 800 100.00 

BRI2 450.04, 690.42 70.30  mSR2 705, 750 67.15 

GEMI 680.02, 800.34 42.92  CI 450, 700 52.94 

PSRI 550.20, 680.02, 750.17 31.69  GI 554, 677 44.45 

CCCI 550.20, 700.41, 800.34 27.59  BRI2 450, 690 40.55 

EVI 450.04, 680.02, 800.34 22.41  AVI 400, 994 33.71 

SIPI 450.04, 680.02, 800.34 16.50  PVIhyp 800,1000 24.46 

Chlgreen 550.20, 730.04 10.71  Chlgreen 530, 730 19.65 

SIPI 500.00, 690.42, 800.34 6.66  Rre 670, 780 16.46 

GARI 450.04, 550.20, 680.02, 

800.34 

0.00     

AVI—Ashburn Vegetation Index, BRI2 — Blue/Red Pigment Index, CCCI - Canopy Chlorophyll Content Index, 

Chlgreen—Chlorophyll Green, CI—Coloration Index, EVI - Enhanced Vegetation Index, GEMI - Global Environment 

Monitoring Index, GI—Simple Ratio Greenness Index, mSR2—Modified Simple Ratio, PSRI - Plant Senescence 

Reflectance Index, PVIhyp—Hyperspectral perpendicular VI, Rre—Reflectance at the inflection point, and SIPI - 

Structure Intensive Pigment Index 

 The spectral wavelengths identified by GPC-BAT as the most sensitive for 

performing bacterial plant disease diagnosis in tomato (in controlled environmental 

conditions) were mainly located in the Blue (430.00, 440.21, 450.04, and 460.31 nm), 

Green (510.41, 520.00, 550.20, and 560.31 nm), Red (640.35, 650.24, and 660.15 nm), 

Red-Edge (670.08, 680.02, 690.42, 700.41, 710.41, 740.09, 750.17, and 760.26 nm) 

(Table 5, Fig. 2). In turn, the model identified the most sensitive features for 

discriminating in field diseased kiwi leaves infected with bacterial canker (caused by Psa) 
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as mainly occurring in the Green (544, and 597 nm), Red-Edge (754 nm), and NIR (771, 

790, 791, 795, 825, 835, 839, 845, 850, 851, 860, 864, 866, 869, 881, 883, 888, 893, 

902, 905, 906, 928, 932, 939, 945, 947, 973, 980, 993, 999, and 1006 nm) (Table 5, Fig. 

3). Similar features were only selected for the two species in the Green (550.20 vs. 544 

nm), and Red-Edge (750.17 vs. 754 nm) spectral regions. In contrast, the Blue and Red 

spectral regions were only considered in the tomato case study, and the NIR was 

considered only in the kiwi case study (since only the spectral sensor used in this assay 

had wavelengths assessed in these region) (Table 5). 

 Both approaches, the one using VIs and FDA and the one using the GPC-BAT, 

for the tomato case study, selected coincident wavelengths in the Blue (450.04 nm), 

Green (550.20 nm), and Red-Edge (680.02, 690.42, 700.41, and 750.17 nm). The same 

consistency was not observed for the kiwi case study since different features were 

chosen. Nevertheless, these were similar in the Red-Edge (750 vs 754 nm), and NIR 

(795 vs 800 nm, 994 vs 993 nm, 999 vs 1000 nm) (Table 5). 

 In GPC-BAT the predictive power of each wavelength for the target variable is 

evaluated by the index sigma (σ). Accordingly, the lower the sigma value, the more 

important the feature is. Thus, the contribution of each spectral feature can be ranked 

through the quantification of this property. In the tomato case study, for the selected 

spectral features, it is possible to observe in Fig. 2 that for the identification of the Control 

(Con) class the 440.21, 450.00, 460.31, 490.04, 510.41, 520.00, 640.35, 680.02, and 

750.17 nm were the more relevant wavelengths since they presented a lower sigma 

value (i.e., more weight in model) leading to a higher distance from the plots’ center (blue 

dots). The most significant features for predicting samples made on tomato leaflet tissues 

inoculated with Pst were 440.21, and 450.04 nm (red dots). In classifying samples 

collected on leaflet tissues inoculated with Xeu the 440.21, 450.04, 660.15, and 680.02 

nm (orange dots). In turn, in the kiwi dataset, from the selected wavelengths, the 

identification of samples belonging to both classes was more influenced by the 597, 771, 

791, 835, 869, 883, 902, and 999 nm features (Fig. 3). The wavelengths selected as 

relevant for the classification of non-symptomatic samples are the same as those chosen 

to predict the opposing symptomatic class (Fig. 3). This tendency was expected since 

this is a binary classification task, where the differences between the two categories in 

the study are expected to occur in coincident spectral features. 

3.3.2. Biological interpretation of sensitive wavelengths 

 These wavelengths chosen in both case studies present an interesting biological 

significance since they coincide with the spectral absorption regions of several 
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photosynthetic pigments, namely: i) chlorophylls, in the Blue region around 430 to 480 

nm, and the Red, from 640 to 680 nm; ii) carotenoids, including xanthophylls, in the Blue-

Green region nearby 400 to 550 nm; iii) flavonoids, in the UV-Blue wavelengths ranging 

from 315 to 500 nm, including anthocyanins whose absorption band is from 500 to 550 

nm, iv) and pheophytins, whose absorption action is located in the Blue (430 to 480 nm) 

and Red (640 to 680 nm). Furthermore, the selected wavelength features also overlap 

the NIR spectral range associated with interactions between light and leaf water content 

and between light and leaf structural components (such as cellulose, and lignin). All 

these pigments and structural components are affected by the action of Psa, Pst, and 

Xeu bacteria in kiwi and tomato leaves, respectively. 

 

Figure 2 Gaussian Process Classification sigma bands polar plot, representing the most 

significant wavelengths for each class in the study: Control samples (healthy, Con), 

samples inoculated with Pseudomonas syringae pv. tomato (Pst), and samples 

inoculated with Xanthomonas euvesicatoria (Xeu). The lower the sigma value, the 

greater the importance of the wavelength. 
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Figure 3 Gaussian Process Classification sigma bands polar plot, representing the most 

significant wavelengths for the binary class in the study: Non-Symptomatic (NS), and 

Symptomatic (S). The lower the sigma value, the greater the importance of the 

wavelength. 

4. Discussion 

 This work analyzed two methodologies for performing bacterial disease 

classification in tomato (assay performed in controlled environmental conditions, using a 

transmittance-based sensor) and kiwi (assay made in the field, using a reflectance-based 

sensor) plants. One approach combines the calculation of different VIs described in the 

literature and a machine learning algorithm with a built-in FS method (FDA). Another 

approach uses the two distinct hyperspectral datasets combined through the ARTMO 

GPC-BAT. In both approaches, the most relevant spectral wavelengths for class 

detection were identified and linked to their biological significance. The first approach 

uses VIs developed according to the physiological information of plants. In contrast, the 

second approach constitutes a data-driven approach. The tomato experiment (3 classes: 

Control vs. Pst and Xeu), compared to the kiwi (binary), represents a more complex 

classification model. The sensor used in the tomato experiment allows obtaining spectral 

information from the visible spectrum up to 800 nm, with wavelength resampling to 10 

nm intervals (approximately), whereas the sensor used in the field experiment with kiwi 
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allows data from the visible spectrum up to 1000 nm, with a more precise step of 1 nm 

wavelength. 

 It is possible to observe that both approaches allowed the identification of the 

different classes in the study, using the tomato and kiwi datasets. Nevertheless, the 

strategy involving the application of VIs as an FS technique showed lower classification 

metrics than the methodology that used the GPC-BAT. This may be related to the fact 

that the VIs used, despite being well established in the literature, were developed for 

specific plant traits and situations differing from the bacterial plant disease diagnosing 

problem in the study. Furthermore, since they are calculated using only available spectral 

features, they may not use all the information in spectral narrowband, high-dimensional 

hyperspectral data [5]. In contrast, GPC-BAT considered all the available spectral 

features and performed a selection according to their relevance for identifying the class 

in the study. 

 The GPC-BAT, when applied to the analysis encompassing all wavelengths 

captured by the hyperspectral sensors, exhibited lower classification metrics than the VIs 

approach in both the tomato and kiwi case studies. For instance, in the kiwi study, where 

the hyperspectral data indicated a narrowband field of 1 nm, the model's performance 

using all available features was as poor as when only three wavelengths were utilized 

(data not displayed). This may be related to hyperspectral data being super-imposed in 

the recorded spectra at different interference scales (Tosin, Martins et al. 2022), (i.e., the 

data collected corresponds to several structural and metabolic plant compounds present 

in the area measured), and to the significant amount of redundant information embedded 

in contiguous wavelengths. As a result, only a few specific spectral variables are relevant 

to identify diseased plant tissues (Caicedo, Verrelst et al. 2014, Rivera, Verrelst et al. 

2014).  

 In this regard, Feature Selection or spectral reduction techniques are, thus, 

recommended to overcome this hurdle. In this work, two approaches were analyzed 

namely an FDA algorithm and the BAT of ARMO.  Given the selected wavelengths, both 

studied strategies (VIs-based vs. GPC-BAT) presented comparable results for both case 

studies, notably when dealing with the more complex tomato dataset especially when 

the tomato data set. Equivalent wavelengths were found in the Blue (450 nm), Green 

(550 nm), and Red-Edge (680, 690, 700, and 750 nm). VIs further highlighted the 800 

nm wavelength in the NIR. In the kiwi case study, the features selected by the two 

algorithms were similar but not entirely coincident, namely in the Green (where VIs 

selected the 530, 553, and 554 nm, and the GPC-BAT chosen the 544, 597 nm), Red-
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Edge (VIs identified the 670, 677, 700, 705, 730, and 750 nm as relevant, and GPC-BAT 

only considered the 754 nm), and NIR (VIs picked a lower amount of wavelengths, 

namely 780, 800, 994, and 1000 nm, when compared to the GPC-BAT which took into 

account the following wavelengths 771, 790, 791, 795, 825, 835, 839, 845, 850, 851, 

860, 864, 866, 869, 881, 883, 888, 893, 902, 905, 906, 928, 932, 939, 945, 947, 973, 

980, 993, 999, and 1006 nm). Only the VIs presented features in the Blue 400, and 450 

nm. Thus, it is important addressing that despite the two modeling strategies applied to 

work with different types of spectra (reflectance vs. transmittance), having different 

spectral resolution (~10-10 nm vs. 1-1 nm) and presenting different pre-processing 

methods, they selected similar wavelengths.  

 These findings present biological significance since the relationship between the 

plant host and the pathogen causes changes in photosynthetic pigment content, water 

levels, and structural composition (e.g., cellulose and lignin levels) (Blancard 2012). This 

ultimately leads to modifications in the tissues’ spectral behavior. In particular, the 

variance in spectral characteristics among diseased leaves infected by distinct bacteria 

could be linked to the generation of unique molecules by each pathogen, which may 

influence the spectral signature of the host. For instance, Pst bacteria produce a specific 

phytotoxin named coronatine that induces changes in chlorophyll fluorescence (by 

altering photosystem II – PSII), impacting tomato plant tissues’ absorption and scattering 

of light (Zhang, He et al. 2021). Moreover, the host tomato plant can activate diverse 

defence responses upon encountering a pathogen, initiating a cascade of biochemical 

and molecular reactions that further contribute to spectral modifications in the visible 

wavelength ranges. Phytoalexins (e.g., flavonoids) serve as an example, with their 

production hypothesized to be linked to an increase in the spectral reflectance of plants 

in the VIS range (Leucker, Wahabzada et al. 2016). 

 Previous studies performed by our team also reported similar outcomes. In 

particular, that study developed a methodology for early diagnosing two bacterial 

diseases of tomato, caused by Pst and Xeu bacteria, using hyperspectral transmittance 

data and an applied predictive modeling approach (Reis Pereira, Santos et al. 2023). A 

total of 3478 spectral measurements were normalized and subjected to a Linear 

Discriminant Analysis (LDA) aiming to reduce data dimensionality. This algorithm 

highlighted similar relevant wavelengths in Blue, Green, and Red spectral regions. 

Furthermore, a modeling approach using a Support Vector Machine was applied for 

spectral classification. It achieved an accuracy of 100% for samples measured on tissues 

inoculated with Pst and 74% for tissues inoculated with Xeu when samples collected 

before symptom appearance were used (Reis Pereira, Santos et al. 2023). Likewise, 
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another study performed on a kiwi orchard allowed the identification of hyperspectral 

reflectance samples collected on non-symptomatic and symptomatic Psa disease leaf 

tissues. Several methodologies involving different Feature Selection techniques 

combined with different Machine Learning algorithms were explored, and the one 

combining a stepwise forward various selection (SFVS) approach followed by the 

computation of an SVM algorithm was selected, achieving an overall accuracy of 85%. 

Like the other strategies explored, the SFVS elected the Blue, Green, and NIR regions 

as the most relevant for sample classification. 

 Furthermore, other researchers reported similar classification findings to the ones 

found in the present work, namely when studying different tomato and kiwi diseases 

based on modelling hyperspectral spectroscopy data. The suitability of a portable 

hyperspectral spectrometer combined with various algorithms for FS and data modeling 

for early non-destructive diagnosis of tomato bacterial wilt disease (Erwinia tracheiphila) 

in leaves was explored (Cen, Huang et al. 2022). The model presenting higher evaluation 

metrics (overall accuracy of 90.70%) applied Genetic Algorithms for FS and SVM to 

predict classification. The Simple Ratio Pigment Index (SRPI) was the VI and found to 

have a higher contribution in the developed model. It considers 430 and 680 nm 

wavelengths and is sensitive to leaf nitrogen content and photosynthetic efficiency (and 

is similar to our findings) (Cen, Huang et al. 2022).  

 Another study using tomato plants explored the usage of a portable high-

resolution spectroradiometer combined with VIs, Principal Component Analysis (PCA), 

and a classification model K-nearest neighbor (KNN) for the diagnosis of late blight 

(Phytophthora infestans), target (Corynespora cassiicola), and bacterial spot 

(Xanthomonas euvesicatoria) (Lu, Ehsani et al. 2018). They successfully identified the 

spectral samples collected on detached tomato leaflets with an accuracy reaching the 

100% level even in non-symptomatic stages (Error Rate of 9.50%), when the 15 VIs 

selected by PCA in the first principal component (PC) were considered. Interestingly, it 

is possible to observe that when 30 VIs selected by PCA and belonging to the first PC 

were used, the model showed a lower accuracy value (65.20%) and a higher error rate 

(28.6). In terms of VIs, the ones selected presented similar features to the ones found in 

our study (such as the 680, and 800 nm used in the Normalized difference index and the 

Simple Ratio, Structure-intensive pigment index, among others) (Lu, Ehsani et al. 2018). 

 Hyperspectral VIS-NIR spectroscopy was, moreover, used for the non-

destructive early diagnosis of tomato chlorosis virus (ToCV) (Morellos, Tziotzios et al. 

2020). They used a Neighborhood component analysis (NCA) for performing FS and for 
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selecting the most relevant VIs in the study, along with two ML models for data modeling 

(XY-fusion network – XY-F – and Multilayer Perceptron with Automated Relevance 

Determination – MLP-ARD). The best overall accuracy (92.1% before outlier removal 

and 100% after outlier removal) was obtained using MLP-ARD. In terms of relevant VIs, 

is possible to observe that wavelengths like 550, 670, 700, 720, 740, and 800 nm, among 

others, were present in the most notable VIs formulae (such as Anthocyanin Reflectance 

Index – ARI – Pigment Specific Simple Ratio – PSSR –, Red Edge Inflection Point – 

REIP –, Simple Ratio – SR –, and Vogelmann Index – VOG). In turn, from the 15 

wavelengths selected by the NCA, these were mostly located in the Blue (402.20 to 

449.20 nm), green (556.40 to 566.40 nm), Red-Edge (676.40 to 726.30 nm), and NIR 

(862.10 nm). These outcomes coincided with our observations (Morellos, Tziotzios et al. 

2020). 

 The feasibility of multispectral data for predicting kiwifruit decline (probably 

caused by Phytophtora spp. and Phytopythium spp.) in diseased orchards was also, 

tested (Savian, Martini et al. 2020). Multispectral data included the 550, 660, and 790 

nm spectral features, and when combined with K-means clustering allowed the 

determination of kiwi plants’ vigor affected or not by the disease with 73% (or more) 

Accuracy and 82% Precision. These results are, thus, in line with ours also identifying 

the Green, Red, and NIR as relevant for estimating plant biophysical traits (Savian, 

Martini et al. 2020). 

 The present outcomes demonstrate that hyperspectral transmittance and 

reflectance spectroscopy can identify healthy and diseased tissues, such as tomato 

(herbaceous) and kiwi (woody) crops, in laboratory or field conditions. Further research 

is advised to explore if specific host-pathogen interactions require customized modeling 

approaches to be predicted or if it is possible to elaborate a unified strategy that allows 

bacterial disease assessment. Nevertheless, it should be taken into consideration that 

model comparison may be challenging due to several factors: pathogen species in the 

study; the occurrence of specific host-pathogen interactions; the number of spectral 

points measured; the environmental conditions where the data is collected; and, the 

stage of the disease cycle where the spectral assessments are made, among others. 

Furthermore, hyperspectral spectroscopy sensors present a relatively low Technology 

Readiness Level (TRL), indicating that these sensors have a large margin to be 

improved. In this regard, developing and enhancing effective FS strategies or 

Dimensionality Reduction approaches may be conducted to identify specific spectral 

regions valuable for performing plant disease diagnosis, which may be incorporated in 

multispectral sensors involving lower production and data processing costs. 
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5. Conclusions 

 This study aimed to explore and compare two distinct modelling approaches, 

namely the parametric Spectral Vegetation Indices (VIs) and the Gaussian Process 

Classification based on an Automated Spectral Band Analysis Tool (GPC-BAT), for 

diagnosing bacterial diseases in plants using hyperspectral sensing. This comparative 

analysis was conducted across controlled conditions with tomato plants and field 

conditions with kiwi plants, highlighting performances and insights from each approach. 

 VIs demonstrated moderate success in differentiating healthy and diseased 

tissues in both tomato and kiwi plants. For tomato plants, VIs revealed good precision in 

distinguishing healthy tissues from those inoculated with Pst bacteria. However, the 

identification of Xeu-inoculated tissues showed limitations, possibly due to early spectral 

modifications before visible symptoms occurred later than in the Pst case. In kiwi plants, 

VIs performed reasonably well in discriminating between non-symptomatic and 

symptomatic tissues, although with slightly lower accuracy in the latter. 

 The feature reduction by GPC-BAT leads to enhanced accuracy in identifying 

healthy and diseased tissues in both tomato and kiwi plants. The model's precision in 

classifying healthy and Pst-inoculated tomato tissues was commendable. However, its 

performance in identifying Xeu-inoculated tissues required improvement. For kiwi plants, 

GPC-BAT displayed notable accuracy in distinguishing non-symptomatic and 

symptomatic tissues, though with a slight struggle in predicting symptomatic cases. 

 Both approaches demonstrated spectral bands in common across tomato and 

kiwi plants, particularly in the Blue, Green, Red-Edge, and NIR regions. VIs showed 

consistency in selecting specific wavelengths for differentiating healthy and diseased 

tissues in both plant species. GPC-BAT selected distinct wavelengths for each plant 

species, yet with overlaps in critical regions, indicating spectral sensitivity to disease 

presence. 

 The chosen wavelengths align with the absorption regions of various 

photosynthetic pigments and plant structural components. These spectral regions 

affected by bacterial infections align with alterations in chlorophylls, carotenoids, 

flavonoids, pheophytins, and interactions with water content and structural components 

in plant leaves. 

 The comparative analysis of VIs and GPC-BAT highlights their efficacy in 

diagnosing plant bacterial diseases through hyperspectral sensing. While VIs provides a 

simplistic yet moderately effective means of disease diagnosis, GPC-BAT, after feature 
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reduction, showcases improved accuracy. However, further refinements are necessary 

to enhance the identification of specific bacterial infections, especially in the early stages. 

 The identified wavelengths hold biological significance, suggesting a correlation 

between bacterial infections and alterations in photosynthetic pigments and leaf 

structural components. Future research could focus on refining and integrating these 

approaches to develop more robust and accurate diagnostic tools for various plant-

pathogen interactions, thereby aiding in early disease detection and management in 

diverse agricultural settings. 
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Supplementary Material 

Table S1 Cross-validation statistics of the Flexible Discriminant Analysis (FDA) for the 

training hyperspectral data set collected on tomato leaflet tissues (transmittance) and 

kiwi leaf tissues (reflectance).  

Class Accuracy (%) Kappa Precision (%) Sensitivity (%) Specificity (%) F1 (%) 

       

Tomato (1643 observations)     

Con 63.60 45.22 52.93 73.37 77.23 67.75 

Pst  77.53 67.78 91.18 72.33 

Xeu  52.89 50.09 76.49 51.45 

       

Kiwi (354 observations)     

NS/S 74.58 48.16 72.79 68.15 79.70 70.39 

       

Con – Control (healthy), Pst – Inoculated with Pseudomonas syringae pv. tomato, Xeu – Inoculated 

with Xanthomonas euvesicatoria, NS – Non-Symptomatic, S – Symptomatic. 
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Abstract 

 Pseudomonas syringae pv. actinidiae (Psa) has been responsible for numerous 

epidemics of bacterial canker of kiwi (BCK), resulting in high losses in kiwi production 

worldwide. Current diagnostic approaches for this disease usually depend on visible 

signs of the infection (disease symptoms) to be present. Since these symptoms 

frequently manifest themselves in the middle to late stages of the infection process, the 

effectiveness of phytosanitary measures can be compromised. Hyperspectral 

spectroscopy has the potential to be an effective, non-invasive, rapid, cost-effective, 

high-throughput approach for improving BCK diagnostics. This study aimed to 

investigate the potential of hyperspectral UV–VIS reflectance for in-situ, non-destructive 

discrimination of bacte-rial canker on kiwi leaves. Spectral reflectance (325–1075 nm) of 

twenty plants were obtained with a handheld spectroradiometer in two commercial kiwi 

orchards located in Portugal, for 15 weeks, totaling 504 spectral measurements. Several 

modeling approaches based on continuous hyper-spectral data or specific wavelengths, 

chosen by different feature selection algorithms, were tested to discriminate BCK on 

leaves. Spectral separability of asymptomatic and symptomatic leaves was observed in 

all multi-variate and machine learning models, including the FDA, GLM, PLS, and SVM 

mailto:mccunha@fc.up.pt
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methods. The combination of a stepwise forward variable selection approach using a 

support vector machine algorithm with a radial kernel and class weights was selected as 

the final model. Its overall accuracy was 85%, with a 0.70 kappa score and 0.84 F-

measure. These results were coherent with leaves classified as asymptomatic or 

symptomatic by visual inspection. Overall, the findings herein reported support the 

implementation of spectral point measurements acquired in situ for crop disease 

diagnosis. 

Keywords 

Actinidia; Leaf bacterial canker; Pseudomonas syringae; Plant pathology; In-situ 

diagnosis; Hyperspectral spectroscopy; Feature selection; Support Vector Machine 

1. Introduction 

 Bacterial canker of kiwi (BCK) is an emerging disease caused by the Gram-

negative bacteria Pseudomonas syringae pv. actinidiae (Psa), which are responsible for 

several epidemics and important losses in kiwi production worldwide (Balestra, 

Mazzaglia et al. 2009, Scortichini, Marcelletti et al. 2012, Vanneste 2013, Kim, Kim et al. 

2016). In the early stages of the disease, the Psa pathogen colonizes the surface of the 

host plant without causing significant lesions, but after systemic invasion, may cause 

severe damage and even death (Donati, Cellini et al. 2018, Saavedra, Abud et al. 2018, 

Donati, Cellini et al. 2020). Therefore, the early stage of Psa infection may pass 

unnoticed as the plant has no macroscopic manifestations of the disease (symptoms), 

jeopardizing the efficiency of phytosanitary procedures to contain the disease (Lowe, 

Harrison et al. 2017). In turn, advanced stages of the infection are more easily detectable 

since they present characteristic symptoms, consisting of brown leaf spots with chlorotic 

yellow haloes (Figure 1), necrotic discoloration of buds, cankers with exudate on trunks 

and twigs, and collapsed fruits (Balestra, Mazzaglia et al. 2009). This symptomatologic 

manifestation reveals that there is a microbial load that has probably already spread to 

other plants, making it difficult to implement control measures. Thus, it is crucial to 

develop an early and rapid in situ diagnostic tool for controlling the spread of Psa, through 

frequent and inexpensive monitoring. 

 Current diagnostic procedures usually focus on scouting and laboratory-based 

techniques. The first consists of the inspection of fields (generally visual) by specialized 

trained observers, to detect and identify infected plants based on the presence of disease 

symptoms (Parker, Shaw et al. 1995). It is subjective, error-prone (since symptoms alone 

are not entirely disease-specific), labor-intensive, time-consuming, and expensive 

(Sankaran, Mishra et al. 2010, Mahlein 2016, Khaled, Abd Aziz et al. 2018, Ali, Bachik 
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et al. 2019). Laboratory-based methods, in turn, include serological and molecular tests 

and are generally applied due to their sensitivity, accuracy, and effectiveness. The most 

common laboratory methods include the enzyme-linked immunosorbent assay (ELISA) 

and polymerase chain reaction (PCR). They entail detailed sampling procedures, which 

require several hours to be completed, and involve disruptive sample preparation, not 

allowing a follow-up of the disease progression nor its field mapping to support precision 

agriculture systems (e.g., site-specific management) (Fang and Ramasamy 2015, 

Martinelli, Scalenghe et al. 2015). Since these laboratory methods were designed to 

confirm the presence of pathogens, they do not have the necessary high throughput and 

speed required for supporting real-time agronomic decisions in field extensions. 

Moreover, they still present some diagnostic limitations, mainly in the asymptomatic and 

early stages of the disease infection process, due to the uneven spread of pathogens 

inside plants (Fang and Ramasamy 2015, Martinelli, Scalenghe et al. 2015). 

 

(A)                    (B) 

Figure 1 (A) Median of the spectra of the 25% observations best classified as 

‘asymptomatic’ (green) and ‘symptomatic’ (red) for the selected model, combining the 

SFVS with SVM with radial kernel and class weights (stepsvmrw); (B) Variance of the 

reflectance data measured by spectral wavelength and class (green line representing 

the variance in the mean spectra of ‘asymptomatic’ samples, and red line illustrating the 

variance in the mean data of ‘symptomatic’ leaves). 

 Innovative plant disease diagnostic tools are expected to provide additional 

information, namely related to plant–pathogen interactions and resulting changes in the 

host’s biochemical and biophysical behavior, to that currently generated by the 

conventional methods mentioned above and should be combined with them. 

Furthermore, these new techniques, namely spectroscopic approaches, must allow a 
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faster and earlier diagnosis of the disease, and ultimately its field mapping, contributing 

to more precise agricultural practices. Phytosanitary products can, thus, be applied in 

the exact area, moment, and dose as required, resulting in a reduction in chemical 

usage, and consequently in fewer expenses for the producer, residues in crop 

production, and environmental contamination (Zhang, Yang et al. 2020). 

 Hyperspectral spectroscopy (HS) is a non-invasive and high-throughput 

technology for measuring early indicators of BCK (Golhani, Balasundram et al. 2018). 

HS has been successfully applied in the assessment of a wide variety of plant structural, 

chemical, biophysical, and metabolic traits in living tissues (Thenkabail, Smith et al. 

2000, Delalieux, van Aardt et al. 2007, Blackburn and Ferwerda 2008, Monteiro-Silva, 

Jorge et al. 2019, Martins, Barroso et al. 2022). HS also performed well in the detection 

of pests (Herrmann, Berenstein et al. 2017, Zhang, Wang et al. 2017) and 

phytopathogenic fungi (Yu, Anderegg et al. 2018, Skoneczny, Kubiak et al. 2020), 

bacteria (Bagheri, Mohamadi-Monavar et al. 2018), and viruses (Morellos, Tziotzios et 

al. 2020) affecting different crops, even at asymptomatic stages (Gold, Townsend et al. 

2020). Through spectral measurements in the visible (VIS, 400–700 nm), and infrared 

(IR, 800–2500 nm), HS captures quantitative and qualitative changes in the optical 

properties of plant tissue, which derive from modifications in pigments, sugars, and water 

levels (among other constituents) (Curran 1989, Thenkabail, Gumma et al. 2014, Tosin, 

Pocas et al. 2021, Tosin, Martins et al. 2022). In a simplified way, plants’ spectral 

behavior in VIS wavelengths is mainly related to pigment concentration and physiological 

processes (such as photosynthesis). In turn, in the IR region it is mainly correlated with 

leaf water levels, chemical composition (namely lignin and protein content), structure, 

and internal scattering processes (Hunt and Rock 1989, Jones and Vaughan 2010). This 

information is super-imposed in the recorded spectra at different scales of interference 

(Martins 2019, Martins, Barroso et al. 2022). Thus, the detection of BCK using spectral 

information can be based on the existence of a particular sequence of both metabolic 

and structural changes, promoted by host–pathogen interactions, which result in the 

development of characteristic symptoms and, consequently, in modifications in plants’ 

spectral behavior in VIS–NIR. 

 HS data may contain a large amount of redundant information from adjacent 

bands, and only a few wavelength features might be interesting in classifying a diseased 

plant (Blackburn 2007, Caicedo, Verrelst et al. 2014, Rivera, Verrelst et al. 2014). 

Appropriate strategies usually involving statistical signal-processing approaches, 

mathematical combinations of different spectral bands, and predictive modeling 

techniques that can be applied to analyze spectral data and extract useful information 
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and contribute to dimensionality reduction and wavelength selection (Mahlein, Steiner et 

al. 2010, Mahlein, Rumpf et al. 2013, Thenkabail, Gumma et al. 2014, Ahmadi, Muharam 

et al. 2017, Thenkabail, Lyon et al. 2018, Saleem, Potgieter et al. 2019, Zhao, Fang et 

al. 2020). Machine learning (ML) algorithms have also been applied to handle the high 

dimensionality of hyperspectral information (Saha and Manickavasagan 2021). Several 

modeling approaches have been computed in previous studies to identify and classify 

plant stress and diseases from spectral data, using either direct spectral reflectance data 

or information with reduced dimensionality/features selected (Sankaran, Ehsani et al. 

2012, Bajwa, Rupe et al. 2017, Gold, Townsend et al. 2020, Meng, Lv et al. 2020). The 

present research aims to explore the suitability and discrimination capability of different 

multi-variate and machine learning methods in the distinction of asymptomatic and 

symptomatic kiwi leaves affected by bacterial canker disease, using in-situ, ground-level, 

UV–VIS hyperspectral measurements. Modeling approaches evaluated the performance 

of the flexible discriminant analysis (FDA), general linear model (GLM), partial least 

squares (PLS) classification, and support vector machines (SVM, with different kernels 

and class weights) algorithms. The data gathered and the proposed workflow are 

expected to be a robust contribution to extend the HS approaches to plant disease 

diagnostics in field settings. 

2. Materials and methods 

2.1. Study area 

 The monitoring of kiwi plants (Actinidia deliciosa) was performed in two test sites, 

integrated in commercial orchards at Guimarães, Portugal, located in Caldas das Taipas 

(CT; 41°29′09.8′′ N 8°21′54.3′′ W) and Briteiros (BT; 41°30′53.3′′ N 8°19′20.5′′ W). In CT, 

where the orchard was 5 years old when the assay was performed (2020), twelve 

feminine kiwi plants of the variety Bo.Erika® were selected, marked with tape, and 

divided according to the presence or absence of visual symptoms characteristic of BCK 

(small greasy dark spots that become brown to black, that are distributed randomly on 

leaves, Figure 1). The same procedure was performed for the BT test site, whose 

orchard was 30-years-old, where eight plants of the same variety were selected to 

integrate the study. 

 Disease identification was accomplished by a visual assessment of BCK 

characteristic symptoms on the kiwi leaf’s adaxial and abaxial sides (Figure 1). Samples 

were classified as asymptomatic (showing no BCK symptoms) or symptomatic 

(presenting at least one typical BCK chlorotic or necrotic spot). The monitoring of these 

two sites allowed the evaluation of the impact of different environmental and meso- and 
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microclimatic conditions, as well as the influence of different agricultural practices and 

plant age. 

2.2. Spectral reflectance acquisition through ground measurements 

 Leaf hyperspectral data were obtained with a portable spectroradiometer (ASD 

FieldSpec® HandHeld 2, ASD Instruments, Boulder, CO, USA). Reflectance data were 

recorded in the wavelength range from 325 nm to 1075 nm, with 1 nm of spectral 

resolution. The spectroradiometer has a full conical field-of-view angle of 25°. During the 

data acquisition, the sensor was maintained 30 cm above the kiwi leaf, directed vertically 

downward (nadir view), giving a sampling footprint close to 13.3 cm. The leaf was placed 

upon a black card to reduce background noise. Prior to the hyperspectral acquisition, an 

internal dark calibration was performed, followed by a white calibration through a 

spectralon (white reference panel). 

 Measurements were acquired in the nadir position, in cloud-free conditions, 

between 11:00 and 14:00 h (local time), minimizing changes in the solar zenith angle. 

Weekly hyperspectral data on plant’s reflectance were obtained between May and June 

2020, which corresponded to the full development of Psa symptoms in kiwi plant leaves 

during the growing season. After, biweekly measurements were performed between July 

and August 2020. Three random leaves were chosen for each plant, and hyperspectral 

information was collected from one point, totaling 504 measurement points (Table 1). In 

each spectral measurement, 10 repetitions were performed and later averaged to 

minimize the noise effect. 

 The measurements were balanced regarding the test site and symptomatology 

(asymptomatic or symptomatic). Nearly 43% of the samples were collected in the BT 

region, presenting 59% of the typical symptoms of BCK. The remaining 57% of 

observations were collected in the CT region, where only 33% of them showed visual 

signs of the disease. In fact, differences in disease intensity were observed, with the BT 

test site being more severely affected by BCK than CT. 

 A multiplicative scatter correction log (MSC log) was applied in the hyperspectral 

reflectance according to (Martins, Barroso et al. 2022). 

2.3. Modeling approaches 

2.3.1. Feature selection 

 Hyperspectral data are superimposed and result from multi-scale interference, 

resulting in an auto-correlated signal at various scales (Mariotto, Thenkabail et al. 2013, 
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Martins 2019, Martins, Barroso et al. 2022). The state-of-the-art enumerates several 

techniques useful for reducing the impacts of this high dimensional, redundant 

information (Thenkabail, Gumma et al. 2014). One approach consists of feature selection 

techniques applied to identify the most relevant bands and/or range of bands within 

hyperspectral data associated with the explaining variable. By directly choosing 

wavelengths, redundant information is removed, retaining only the more relevant 

discrimination features. If the removal of wavelengths is distributed, information is 

maintained with minimal loss since the spectrum is auto-correlated (Martins 2019, 

Martins, Barroso et al. 2022). In our study, the performance of different modeling 

approaches in BCK discrimination was assessed when (Figure 2): (i) all the 751 

wavelengths predictors were considered (325–1075 nm), (ii) when built-in features 

selection models were computed, (iii) and, when different wavelength selection methods 

were applied, namely a sequential forward floating selection using Jeffries–Matusita 

distance, a stepwise forward variable selection method using Wilk’s Lambda criterion, 

and a Lasso regularized generalized linear model. The main goal of feature selection 

was to capture systematic information, ensuring that the model description of data was 

optimal without under or overfitting. 

Sequential Forward Floating Selection Search Strategy and the Jeffries–Matusita (SFFS 

+ JM) Distance 

 A feature selection using the sequential forward floating selection search strategy 

and the Jeffries–Matusita (SFFS + JM) distance (Pudil, Novovičová et al. 1994) was 

computed to assess the spectral separability between the distributions of asymptomatic 

and symptomatic samples. This approach is an extension of the sequential forward 

selection algorithm. It comprehends a backward step that allows the variables included 

in the prior steps to be reconsidered, increasing the number of possible combinations 

evaluated. The Jeffries–Matusita (JM) distance was selected as a separability metric, 

whose value ranges from zero to two, with values above 1.9 being considered indicators 

of clear separability (Richards and Richards 1999). The JM distance among the 

distributions of the two classes 𝜔𝑖 and 𝜔𝑗 can be calculated by Equation (1) (Dalponte, 

Bruzzone et al. 2012): 

𝐽𝑀𝑖𝑗 = ∫ [√𝑝𝑖(𝑥|𝜔𝑖) − √𝑝𝑗(𝑥|𝜔𝑗)]

2

𝑑𝑥 
𝑥

(1) 

where p (𝑥/𝜔𝑖) and p (𝑥/𝜔𝑗) are the conditional probability density functions for the feature 

vector 𝑥, given the data classes 𝜔𝑖 and 𝜔𝑗, respectively. It can be rewritten according to 

the Bhattacharyya distance (𝐵𝑖𝑗): 
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𝐽𝑀𝑖𝑗 = √2(1 − 𝑒−𝐵𝑖𝑗) (2) 

 In hyperspectral remote sensing data, class distributions are often modeled as 

Gaussian distributions (Dalponte, Bruzzone et al. 2012). Under this hypothesis, the 

Bhattacharya distance can be mathematically written as Equation (3): 

𝐵𝑖𝑗 =
1

8
(𝜇𝑖 − 𝜇𝑗)𝑇 (

∑ 𝑖 + ∑ 𝑗

2
)

−1

(𝜇𝑖 − 𝜇𝑗) +
1

2
𝑙𝑛 [

1

2

|∑ 𝑖 + ∑ 𝑗|

√|∑ 𝑖||∑ 𝑗|
] (3) 

where 𝜇i and 𝜇j represent the vector means of classes i and j, respectively, and ∑i and 

∑j are the covariance matrices of the same classes. 

 JM distance was selected since it is an efficient method for class separation 

distances. The JM performs good feature ranking for two-class comparisons (Laliberte, 

Browning et al. 2012), and shows a saturated performance when the separability 

between the measured classes increases. When the saturation point is achieved, any 

further feature provided does not increase the separability (Dalponte, Bruzzone et al. 

2012). 

S   w       w  d      b                  d       W  k’  L  bd            (    ) 

 A stepwise forward variable selection (SFVS) approach was performed for 

feature selection within the initial 751 predictor candidates. This procedure is based on 

determining the predictive variables that most contribute to the model improvement in 

each step, compared to the model in the previous step. The choice is based on Wilk’s 

Lambda criterion. This statistic measures distance based on scalar transformations of 

the covariance matrixes between and within groups (El Ouardighi, El Akadi et al. 2007). 

Lasso Regularized Generalized Linear Models (LASSO) 

 Lasso regularized generalized linear models (LASSO) was also computed since 

this is considered an efficient procedure for fitting the entire Lasso regularization path for 

linear regression models via penalized maximum likelihood (Hastie and Qian 2014, 

Friedman, Hastie et al. 2021). 

 Computing models with built-in feature selection were also tested to compare 

their performance with the algorithms where the search routine for the right predictors is 

external to the model. These models generally work by pairing the predictor search 

algorithm with the parameter estimation and are usually optimized with a single objective 

function (e.g., error rates or likelihood) (Kuhn 2015). Generalized linear model with 
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stepwise feature selection (glmStepAIC) and the flexible discriminant analysis (FDA) 

were chosen to integrate this study. 

 

Figure 2 Conceptual diagram for the predictive modeling approaches of bacterial canker 

of kiwi (BCK). 

2.3.2. Predictive modeling in classification mode 

 Seven predictive modeling approaches were evaluated to detect the bacterial 

canker of kiwi disease (Figure 2). The leaf symptomatology was used as a binary variable 

in the models tested taking the values ‘No’ (asymptomatic) and ‘Yes’ (symptomatic). The 

algorithms computed included (i) flexible discriminant analysis (FDA); (ii) general linear 

model (GLM); (iii) partial least squares (PLS) classification; (iv) support vector machines 
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with linear kernel (SVM-L); (v) support vector machines with radial basis function kernel 

(SVM-R); (vi) linear support vector machines with class weights (SVM-LW); and (vii) 

radial support vector machines with class weights (SVM-RW). 

Flexible Discriminant Analysis (FDA) 

 The FDA was selected since it is a multigroup nonlinear 

discrimination/classification and pattern-recognition method based on nonparametric 

regression followed by linear discriminant analysis (LDA). It uses optimal scoring to 

convert the response variable so that the data are better for linear separation, and 

multiple adaptive regression projections to generate the discriminant surface. FDA can 

be applied with standard linear regression, resulting in Fisher’s discriminant vectors 

(Hastie, Tibshirani et al. 1994, Hastie, Tibshirani et al. 2009). 

Generalized Linear Model (GLM) 

 GLM was chosen as a parametric, statistical approach that consists of an 

extension of linear models. GLM establishes the relationships between the explanatory 

factors and the responses through an estimated regression parameter via confidence 

intervals [78]. It evaluates the temporal variational pattern of signals instead of their 

absolute magnitude, being robust in many cases, including severe optical signal 

attenuations due to scattering or poor contact (Ye, Tak et al. 2009). 

Partial Least Squares (PLS) Classification 

 PLS was computed as a multivariate statistic since it proved that PLS is a 

prominent modeling method capable of dealing with several, multicollinear variables, and 

in cases where the number of explanatory (number of wavelengths) variables is superior 

to the number of observations (Wold, Sjöström et al. 2001). It aims to minimize the 

sample prediction error, pursuing linear functions of the predictors that explain as much 

variation in each response as possible. Also, PLS aims to account for variation in the 

predictors, under the hypothesis that directions in the predictor space, which are well 

sampled, should offer an improved prediction for new observations when the predictors 

are highly correlated (Liu, Huang et al. 2007).  

Support Vector Machines (SVM) 

 SVMs were used as a set of machine learning methods built on the concept of 

optimal separating hyperplane (Vapnik 1999), and they can be used for regression and 

classification tasks (Mosavi, Sajedi Hosseini et al. 2021). They are non-linear classifiers 

capable of finding the most extensive margin between two classes in feature space [84]. 
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SVMs have several hyperparameters and different kernel types. The SVM methodology 

intends to reduce the error test and model complexity (Ballabio and Sterlacchini 2012). 

The kernel function transforms raw data inputs from the original user space into kernel 

space through a user-defined feature map. The kernel functions include linear, 

polynomial, and radial basis functions (RBF) (Patle and Chouhan 2013, Ding, Liu et al. 

2021). Some SVMs approaches assign different weights to different data points such 

that SVM learns the decision surface according to the relative importance of the data 

points in the training set (Xulei, Qing et al. 2005). 

Model Development and Selection 

 Symptomatology was then used as the response variable in modeling 

approaches, and the 751 wavelengths were considered predictor candidates. To run the 

predictive models, the dataset was divided into training data (70% of random 

observations) and validation data (30% of the remaining observations) (Kuhn and 

Johnson 2013), following a holdout method (Lantz 2019). The training and validation 

datasets integrate the pairs of concurrent measurements of the symptomatology and the 

corresponding values of the predicting variables (Figure 2). 

 For model evaluation criteria, a resampling strategy was considered following a 

repeated cross-validation strategy using a repeated 10-fold cross-validation to estimate 

accuracy. The dataset was split into 10 parts, trained in 9, and tested on 1. The process 

was repeated for all combinations of train–test splits. The final model accuracy was then 

taken as the mean from the number of repeats (Kuhn and Johnson 2013, Lantz 2019). 

This strategy allows the execution of verification steps by the model before the final 

verification is measured on the testing set, decreasing the possibility of overfitting (Berrar 

2019, Valier 2020). 

 Different metrics were then considered to assess model performance and model 

selection, namely the confusion matrix (CM), accuracy score, kappa coefficient, and the 

F1-score (Figure 2). 

 The CM presented possible categories of predicted values in one dimension and 

the possible categories for actual values in the other. Correct classifications (when the 

predicted value was equal to the actual value) felt on the diagonal in the CM. The off-

diagonal matrix cells corresponded to the incorrect predictions, where the predicted 

value diverges from the actual value. The class of interest was positive, while the other 

was identified as negative. The prediction was then classified as a true positive (TP) 

when it was correctly classified as the class of interest; true negative (TN) when it was 

properly categorized as not the class of interest; false positive (FP) when it was 
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incorrectly considered as the class of interest; and, false negative (FN) when it was 

mistakenly labeled as not the class of interest. 

 The accuracy can be considered as the number of correctly classified prediction 

instances divided by the total number of predictions. The accuracy (also known as 

success rate) can be calculated through the proportion of TP and TN in all evaluated 

cases with the confusion matrix results. Mathematically, this can be stated as presented 

in Equation (4) (Lantz 2019): 

Accuracy =  
TP + TN

TP + TN + FP + FN
 (4) 

 The kappa statistic, or Cohen’s kappa, corrects the accuracy by accounting for 

the possibility of an accurate prediction by chance alone (Lantz 2019). Its value can vary 

from zero to one. The interpretation of the kappa statistic may be different according to 

how a model is to be implemented. The value one indicates a perfect agreement between 

the model’s predictions and the true values, and values lower than one indicate an 

imperfect agreement. Usually, kappa results can be interpreted as followed: less than 

0.20—poor agreement; 0.20 to 0.40—fair agreement; 0.40 to 0.60—moderate 

agreement; 0.60 to 0.80—good agreement; and 0.80 to 1.00—very good agreement 

(Lantz 2019). The Kappa statistic can be calculated through the following formula, 

Equation (5): 

𝑘 =
Pr(𝑎) − Pr(𝑒)

1 − Pr(𝑒)
 (5) 

where Pr(a) represents the proportion of actual agreement and Pr(e) refers to the 

expected agreement between the classifier and the true values, under the hypothesis 

that they were chosen randomly. 

 F-measure (F1 score or F-score) was also used as an indicator of model 

performance that merged precision (proportion of positive cases that are truly positive) 

and recall (a measure of how complete the results are, which is computed as the number 

of TP over the total number of positives) into a single number using the harmonic mean, 

a type of average that is applied for levels of change, as represented mathematically by 

the formula in Equation (6): 

F − measure =
2 ×  precision ×  recall

recall + precision
=  

2 × TP

2 × TP + FP + FN
 (6) 

 These metric scores were applied to the between model selection through a 

prediction process using the (i) total dataset (including training and test set), and (ii) site-
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independent datasets (BT and CT observations). Between model selection was 

ultimately achieved through the evaluation of the mean and the coefficient of variation 

(CV) values for the different model metrics of the global (training and testing data), BT, 

and CT sets, being selected the model with an overall higher means and lower CV for 

the accuracy, kappa, and F-measure metrics. 

 For the best model, the percentage of correct predictions was determined by 

dividing the number of cases where the model attributes the correct class to the 

prediction compared to the actual class through the total number of predictions 

performed. Also, the median of the spectra of the 25% predictions classified with higher 

probability as ‘asymptomatic’ and ‘symptomatic’ by the best model was computed. 

 All the computational analyses were performed in the software R (Team 2021) 

with the following packages  ‘AppliedPredictiveModeling’ (Kuhn, Johnson et al. 2013), 

‘caret’ (Kuhn 2015), ‘e1071′ (Meyer, Dimitriadou et al. 2019), ‘earth’ (Milborrow 2019), 

‘ggplot2’ (Villanueva and Chen 2019), ‘glmnet’ (Friedman, Hastie et al. 2021), ‘kernlab’ 

(Karatzoglou, Smola et al. 2019), ‘klaR’ (Roever, Raabe et al. 2020), ‘MASS’ (Ripley, 

Venables et al. 2013), and ‘mda’ (Hastie 2020). 

2. Results 

2.1. Spectra filtering and feature selection 

 After data scatter correction using the MSC log algorithm (Figure 3), an SFFS + 

JM strategy was computed to assess separability between asymptomatic and 

symptomatic leaves as a function of the wavelength variables. From a total of 751 

predictors in the VIS–NIR spectral region, the procedure selected 33 variables (Table 1) 

essentially involving wavelengths located in the blue (326–408 nm), green (562, 583 

nm), and NIR (777–1068 nm) regions. The JM value was 1.41 indicating high separability 

between variables. An SFVS approach was also performed for feature choice within the 

initial 751 predictor candidates. The 35 wavelengths chosen are described in Table 2, 

including features belonging to the blue (388–446 nm), green (510–556), red (671–754 

nm), and NIR (759–1070 nm) regions. 
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(A) 

(B) 

Figure 3 Representation of the spectra collected (A), and after its filtering (B) using the 

MSC log algorithm. 

 With built-in feature selection, the FDA model only identified seven variables from 

the total predictors. They belonged to the blue region (424 and 464 nm), green (549 nm), 

red (719,753 nm), and NIR (759,935 nm) regions. In turn, GLM with the built-in stepwise 

feature selection sorted out 20 predictors, mainly localized in the blue (388–443 nm), 

green (510 nm), and NIR (759–1066 nm) regions. 

 The LASSO method recognized 22 predictors from the total 751 wavelengths 

available. These spectral features fitted the blue (329–375 nm), green (510, 536 nm), 

red (617, 671 nm), and NIR (771–1070 nm) regions. 
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 All feature selection methodologies identified similar wavelengths and spectral 

bands important for discriminating BCK detection. 

Table 1 Selected discriminative wavelengths for model development. 

Method Selected Discriminative Wavelengths (nm) 

SFFS + JM (n = 33) 
326,327,329,330,335,336,352,359,360,364,365,408,562,583,762,777,778,779,786,828,897,908,923,995, 

1018,1031,1038,1045,1057,1059,1061,1067,1068 

SFVS (n = 35) 
388,401,406,414,415,419,443,446,510,515,556,671,724,754,759,781,794,807,969,970,981,983,1009, 

1027,1031,1032,1035,1045,1048,1049,1050,1053,1066,1068,1070 

FDA (n = 7) 424, 464, 549, 716, 753,759, 935 

glmStepAIC (n = 20) 388,414,415,419,443,510,759,794,970,981,982,1001,1031,1035,1045,1048,1049,1050,1053,1066 

LASSO (n = 22) 329,369,375,510,531,536,617,671,771,772,778,903,932,959,969,970,1045,1048,1050,1052,1061,1070 

SFFS + JM sequential forward floating selection using Jeffries–Matusita Distance; SFVS—Stepwise forward variable 

selection; glmStepAIC—Generalized linear model with stepwise feature selection; LASSO—Lasso regression (glmnet). 

2.2. Model discrimination of Psa leaf symptom 

 Table 2 presents the metric values used to compare the model approaches 

computed to discriminate between asymptomatic and symptomatic kiwi leaves infected 

by the Psa pathogen, based on random sampling (with no temporal sequence correlated 

in the samples). Considering all of the available 751 predictors, the mean metrics of the 

three sets studied (total, BT, and CT data), including all the tested modeling approaches, 

presented mean values ranging from 0.71 to 0.82 for accuracy, 0.36 to 0.63 (fair to good 

agreement) for kappa, and 0.65 to 0.81 for the F-measure. In turn, CV ranged from 2.15 

to 3.45, 2.62 to 10.16, and 4.57 to 15.18 for the same metrics. 
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Table 2 Validation results for models classifying bacterial canker of kiwi (BCK) disease. 

Feature 

Selection 
Model 

Validation set Statistics of validation sets 

Total BT CT Mean CV 

Acc K F1 Acc K F1 Acc K F1 Acc K F1 Acc K F1 

None PLS 0.7083 0.4047 0.6589 0.6806 0.3329 0.7356 0.7292 0.3536 0.5412 0.7060 0.3637 0.6452 3.4530 10.1605 15.1756 

N = 751 SVM-L 0.8274 0.6444 0.7883 0.8012 0.6154 0.8313 0.8403 0.6167 0.7262 0.8230 0.6255 0.7819 2.4209 2.6188 6.7574 

 SVM-LW 0.8115 0.6274 0.8104 0.7917 0.5464 0.8421 0.8264 0.6324 0.7685 0.8099 0.6021 0.8070 2.1494 8.0180 4.5747 

 SVM-R 0.7857 0.5628 0.7500 0.7593 0.5015 0.7969 0.8056 0.5435 0.6818 0.7835 0.5359 0.7429 2.9643 5.8482 7.7908 

Built-in SVM-RW 0.8056 0.6066 0.7822 0.7778 0.5367 0.8154 0.8264 0.6073 0.7368 0.8033 0.5835 0.7781 3.0356 6.9508 5.0708 

N = 7 FDA 0.7698 0.5339 0.7411 0.7546 0.4876 0.7969 0.7812 0.5013 0.6631 0.7685 0.5076 0.7337 1.7364 4.6856 9.1599 

N = 20 glmStepAIC 0.8147 0.6243 0.8342 0.7824 0.5471 0.7283 0.8392 0.6318 0.8814 0.8121 0.6011 0.8049 3.5081 7.8006 13.4507 

Mean 0.7890 0.5720 0.7552 0.7609 0.5034 0.8030 0.8015 0.5425 0.6863 0.7866 0.5456 0.7539 2.7431 5.9137 5.1895 

SFVS GLM 0.7937 0.5806 0.7636 0.7454 0.4754 0.7826 0.8299 0.6121 0.7380 0.7897 0.5560 0.7614 5.3686 12.8742 2.9395 

N = 35 PLS 0.7679 0.5249 0.7247 0.7685 0.527 0.7984 0.7674 0.4553 0.6215 0.7679 0.5024 0.7149 0.0717 8.1217 12.4302 

 SVM-L 0.7619 0.5115 0.7143 0.7454 0.4942 0.7769 0.7708 0.4649 0.6292 0.7609 0.4902 0.7068 1.3715 4.8054 10.4888 

 SVM-R 0.8512 0.6994 0.8344 0.8426 0.6773 0.864 0.8542 0.6667 0.7742 0.8485 0.6811 0.8242 0.8821 2.4494 5.5521 

 SVM-LW 0.7897 0.583 0.7854 0.7778 0.5153 0.8322 0.8125 0.595 0.7404 0.7933 0.5644 0.7860 2.2226 7.6132 5.8401 

 SVM-RW 0.8532 0.7035 0.8370 0.8472 0.6831 0.8716 0.8542 0.6753 0.7857 0.8515 0.6873 0.8314 0.4446 2.1187 5.1982 

Mean 0.8029 0.6004 0.7766 0.7882 0.5621 0.8210 0.8148 0.5782 0.7148 0.8020 0.5803 0.7708 1.6668 3.3257 6.9143 

SFFS+JM GLM 0.7202 0.4327 0.6831 0.7222 0.4109 0.7778 0.7500 0.4162 0.5955 0.7308 0.4199 0.6855 2.2794 2.7074 13.3009 

N = 33 PLS 0.7242 0.4355 0.6729 0.7407 0.4501 0.7926 0.7257 0.3209 0.4968 0.7302 0.4022 0.6541 1.2495 17.5938 22.7478 

 SVM-L 0.7222 0.4253 0.6517 0.7593 0.4894 0.8074 0.7153 0.2849 0.4605 0.7323 0.3999 0.6399 3.2317 26.1576 27.1545 

 SVM-R 0.7639 0.5117 0.7047 0.7639 0.5184 0.7935 0.8194 0.5618 0.6829 0.7824 0.5306 0.6270 4.0955 5.1256 31.9489 

 SVM-LW 0.7381 0.4637 0.6887 0.7639 0.4984 0.8118 0.7188 0.2957 0.4706 0.7403 0.4193 0.6570 3.0567 25.8569 26.2985 

 SVM-RW 0.8075 0.6057 0.7707 0.7824 0.5532 0.8127 0.8333 0.6022 0.7176 0.8077 0.5870 0.7670 3.1509 5.0002 6.2135 

Mean 0.7440 0.4747 0.6419 0.7460 0.4791 0.6453 0.7554 0.4867 0.7993 0.7539 0.4598 0.6718 0.9695 8.7409 17.3572 

LASSO GLM 0.7560 0.5056 0.7248 0.7176 0.4021 0.7732 0.7847 0.4973 0.6517 0.7528 0.4683 0.7166 4.4724 12.2796 8.5361 

N = 22 PLS 0.7560 0.5028 0.7172 0.7407 0.4501 0.7926 0.7674 0.437 0.5939 0.7547 0.4633 0.7012 1.7752 7.5177 14.3045 

 SVM-L 0.7599 0.5127 0.7269 0.7361 0.4393 0.7897 0.7778 0.4725 0.6279 0.7579 0.4748 0.7148 2.7601 7.7407 11.4114 

 SVM-R 0.8353 0.6654 0.8118 0.8009 0.5842 0.8352 0.8611 0.6774 0.7778 0.8324 0.6423 0.8083 3.6282 7.8933 3.5709 

 SVM-LW 0.7639 0.523 0.7373 0.7269 0.4217 0.4807 0.7917 0.5213 0.6739 0.7608 0.4887 0.6306 4.2728 11.8692 21.1945 

 SVM-RW 0.8373 0.6708 0.8178 0.8009 0.5828 0.8365 0.8646 0.6913 0.7914 0.8343 0.6483 0.8152 3.8307 8.8915 2.7795 

Mean 0.7847 0.5634 0.7560 0.7539 0.4800 0.7513 0.8079 0.5495 0.6861 0.7822 0.5310 0.7311 3.4659 8.4093 5.3430 

CV—Coefficient of Variation; Acc—Accuracy; F1—F-measure; GLM—Generalized linear model; glmSte-pAIC—Generalized linear model with 

stepwise feature selection; FDA—Flexible discriminant analysis; K—Kappa; LASSO—Lasso regression (glmnet); PLS—Partial least squares; SFFS 

+ JM—Sequential forward floating selection using Jeffries–Matusita distance; SFVS—Stepwise forward variable selection; SVM—Support vector 

machine (L—Linear kernel; LW—Linear kernel with class weights; R—Radial kernel; RW—Radial kernel with class weights). 

 Three independent feature selection methods were then applied and combined 

with the same models (except for FDA) to verify if selected wavelengths would improve 

model performance for the discrimination of Psa disease. For the SFVS approach, the 
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mean metric values of the three sets studied ranged from 0.76 to 0.85 for accuracy, 0.49 

to 0.69 (moderate to good agreement) for kappa, and 0.71 to 0.83 for the F-measure. 

The CV scores ranged from 0.07 to 5.37 for accuracy, 2.12 to 12.87 for kappa, and 2.94 

to 12.43 for the F-measure. For the SFFS + JM procedure, similar findings were 

observed, and the mean results covered the interval 0.73 to 0.81 for accuracy, 0.40 to 

0.59 (moderate agreement) for kappa, and 0.63 to 0.77 for the F-measure. The CV 

numbers fluctuated from 0.97 to 4.10, 2.71 to 26.16, and 6.21 to 31.95 for accuracy, 

kappa, and the F-measure, respectively. These approaches, thus, generally showed 

higher relative dispersion of the data points in the datasets around the mean, for all the 

metrics. Lastly, for Lasso, the mean outcomes extended from 0.75 to 0.83, 0.46 to 0.65 

(moderate to good agreement), and 0.63 to 0.82 for accuracy, kappa, and the F-

measure, respectively. CV, for the same metrics, registered values of 1.78 to 4.48, 7.52 

to 12.28, and 2.78 to 21.19. 

 Between models, the selection was achieved by determining the mean and the 

CV for the global (encompassing the training and testing data), BT, and CT datasets. 

The SFVS followed by an SVM algorithm with radial kernel and class weights 

(stepsvmrw) presented a higher mean (accuracy of 0.85, kappa of 0.69, and an F-

measure of 0.83) and lower CV (0.45 for accuracy, 2.12 for kappa and 5.20 for the F-

measure) for the different metrics. This model was, hence, selected. 

 Table 3 presents the confusion matrix for the selected model (stepsvmrw) for the 

three validation datasets. In the predictions using the total (training and validation set) 

data, the model correctly classified 190 (TP) spectra of the 223 spectra acquired over 

the symptomatic leaves (33 observations were wrongly classified — FN). The spectra 

acquired over the asymptomatic leaves allowed the correct classification of 240 (TN) of 

the 281 spectra (41 cases of FP) (Table 3). 

 Figure 4 presents the temporal prediction trend of correct classification as 

‘asymptomatic’ in both test sites, based on the stepsvmrw model. According to dates and 

test sites, the percentage of cases where the stepsvmrw model attributed the correct 

classification as ‘asymptomatic’ to each observation ranged from 71% to 96% (Figure 4). 

The percentage of asymptomatic observations correctly classified decreased for the BT 

region over time but showed an inverse tendency for the CT site. The BT orchard 

presented more advanced symptoms of BCK and their growth was relatively stable 

throughout the measurement period. The lower values of correct asymptomatic class 

prediction of the last dates can be related to disease asymptomatic leaves showing a 

spectral signature more similar to symptomatic samples than healthy ones. In turn, for 
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the CT region, spectral measurements allowed complete surveillance from the 

appearance and development of the first signs of BCK to its full development throughout 

the time, coinciding with the visual separation between healthy and diseased leaves. 

Table 3 Confusion matrix for the selected model characterized by executing SFVS 

followed by an SVM algorithm with radial kernel and class weights (stepsvmrw) using the 

BT, CT, and complete dataset. 
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Actual value  

‘No’ ‘Yes’ ‘No’ ‘Yes’ ‘No’ ‘Yes’ 

‘No’ 71 15 ‘No’ 169 19 ‘No’ 240 33 

‘Yes’ 18 112 ‘Yes’ 23 77 ‘Yes’ 41 190 

‘No’ and ‘Yes’ correspond to asymptomatic and symptomatic leaves, respectively. 

 

Figure 4 Percentage of correct classification predictions as ‘asymptomatic’ by date and 

test site using the SFVS strategy, followed by an SVM algorithm with radial kernel and 

class weights (stepsvmrw model). Values of BT site are represented with triangles and 

CT with circles. DOY—Day of the year. 

 Figure 5A represents the median spectra of the 25% of observations classified 

with higher probability as ‘asymptomatic’ and ‘symptomatic’ by the predict function of the 

‘caret’ package which was computed for the selected model. Reflectance curves of 

asymptomatic samples were characteristic of healthy green leaves, presenting lower 

reflectance values in the VIS spectral region, and a high reflectance level in the NIR 

region. In turn, symptomatic samples showed characteristic, divergent reflectance 

curves. Visual changes were observed between asymptomatic and symptomatic 

samples for wavelengths ranging from 515–650 nm (green–yellow–orange region), 651–

714 nm (red region), and 715–850 nm (red-edge and NIR regions). Higher reflectance 
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values were observed for the blue region (450–520 nm) and most NIR regions (850–

1075 nm) for symptomatic leaves compared to the asymptomatic ones. The opposite 

tendance was observed in the green, red-edge, and beginning of the NIR region (<850 

nm). Nevertheless, spectral variance (Figure 5B) was reduced for wavelengths higher 

than 800 nm. 

(A) 

(B) 

Figure 5 (A) Median of the spectra of the 25% observations best classified as 

‘asymptomatic’ (green) and ‘symptomatic’ (red) for the selected model combining the 

SFVS with SVM with radial kernel and class weights (stepsvmrw); (B) Variance of the 

reflectance data measured by spectral wavelength and class (green line representing 

the variance in the mean spectra of ‘asymptomatic’ samples, and red line illustrating the 

variance in the mean data of ‘symptomatic’ leaves). 

3. Discussion 

 Proximal sensing techniques can be a useful tool for helping producers detect 

early crop diseases in situ. However, qualitative and/or quantitative differences between 
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the spectral information according to leaf symptomatology must be retrieved. In this 

regard, our study investigated the possibility of using different model approaches of 

hyperspectral data to correctly classify kiwi leaves according to the presence of 

characteristic symptoms of BCK disease. The analysis was performed in two kiwi 

orchards, where 504 spectral signatures were randomly acquired from symptomatic 

(diseased) and asymptomatic kiwi plant leaves over time (Table 4). Monitoring of these 

two kiwi orchards allowed the evaluation of the impact of different environmental and 

meso- and microclimatic conditions, and the influence of different agricultural practices 

and plant age on model development. A cross-validation strategy was applied to test the 

null hypothesis, which was assumed to occur when the training and validation sets are 

randomly sampled, resulting in similar predictions in both datasets. An n-series random 

sampling can, furthermore, be performed to assure a general evaluation of the error. 

Hence, cross-validation models can be derived from all datasets, taking the error of a 

predicted sample (Refaeilzadeh, Tang et al. 2009, Krstajic, Buturovic et al. 2014). Model 

transferability was later demonstrated by the results obtained in the modeling process. 

Table 4 Number of observations (leaves and plants) per test site and symptomatology. 

Test site Sites Dates Plants 
Asymptomatic 

Leaves 

Symptomatic 

Leaves 

Total 

Measurements 

Briteiros (BT) 1 9 8 89 127 216 

Caldas das 

Taipas (CT) 
1 8 12 192 96 288 

Total 2 9 20 281 223 504 

 Hyperspectral data is acknowledged for containing many redundant adjacent 

features, prone to multicollinearity (Mariotto, Thenkabail et al. 2013), and suggested 

feature selection allows the identification of the most relevant information (Figure 2). 

Hyperspectral data may, in fact, hold limited useful information, reducing model 

performance due to overfitting, and increasing computational time (Morellos, Tziotzios et 

al. 2020). Thus, different feature selection techniques were applied to hyperspectral 

filtered data to identify relevant features having significance in the classification process, 

namely a sequential forward floating selection using Jeffries–Matusita distance (SFFS + 

JM), a stepwise forward variable selection method using Wilk’s Lambda criterion (SFVS), 

and a Lasso regularized generalized linear model (LASSO). Furthermore, two models 

with built-in feature selection techniques were also computed, specifically the 

generalized linear model with stepwise feature selection (glmStepAIC) and the flexible 

discriminant analysis (FDA) (Figure 2). 

 All approaches (Figure 2) identified similar spectral wavelengths located mainly 

in the blue (350–500 nm), green (500–600 nm), red (600–750 nm), and NIR (>750 nm) 
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regions (Table 1). These results are coherent, presenting biological significance since 

the symptoms caused by Pseudomonas syringae pv. actinidiae (Psa) promote 

modifications in leaf biochemical and structural composition, as previously mentioned. 

These selected features for discriminating asymptomatic and symptomatic kiwi leaves 

are in line with those found for other crops with different diseases, namely: (i) for 

grapevine, where wavelengths near the green region of the visible (534, 576, 430, and 

368 nm), and near-infrared spectra were selected by a stepwise-based approach (Naidu, 

Perry et al. 2009); (ii) also for grapevine, other wavebands also seem to have high 

discriminatory power, being mainly located at the green (520–550 nm), chlorophyll-

associated wavelengths (650–670 nm), red edge (700–720 nm), beginning of near-

infrared (800–900 nm) and shortwave infrared spectral regions (Junges, Almança et al. 

2020); (iii) for soyabean, wavelengths in the green and red regions of the spectrum (top 

ten wavebands selected by: linear discriminant analysis—523, 535, 592, 658, 694, 700, 

733, 766, 931, 1015; logistic discriminant analysis—400, 421, 427, 559, 571, 589, 679, 

682, 688, 703; and linear correlation analysis—458, 461, 476, 479, 485, 494, 500, 626, 

632, 686) similarly exhibit the best correlation with disease (Bajwa, Rupe et al. 2017); 

(iv) for wheat affected by Puccinia triticina, the relevant spectral characteristics 

corresponded to the wavelengths of 605, 695, and 455 nm, for various levels of the 

infection (Ashourloo, Mobasheri et al. 2014); (v) for oil palms diseased with ganoderma 

basal stem rot disease, the features with higher importance were found mainly in the 

green (from 550 to 560 nm), and in the red-edge (around 650 to 780 nm) regions 

(Ahmadi, Muharam et al. 2017); (vi) for rice, different levels of panicle blast could be 

differentiated at six different effective wavelengths, specifically 459, 546, 569, 590, 775, 

and 981 nm (WU, Cao et al. 2009). 

 In crop remote sensing studies, spectral vegetation indices (VIs) are still the most 

common approaches studied to identify and manage abiotic and biotic stresses in 

different crops [58–60]. VIs are composed of numerous combinations of different bands, 

providing spectral information with reduced dimensionality (Mahlein, Oerke et al. 2012, 

Oerke, Mahlein et al. 2014, Thenkabail, Gumma et al. 2014). Despite its extended usage 

and utility, it is not always clear if this plethora of VIs is sensitive to the variable of interest 

and, simultaneously, if they respond insensitively to confounding factors, namely 

variations of other leaf or canopy properties, background soil reflectance, solar 

illumination, and atmospheric composition, this may induce variability in the spectral 

properties of surfaces (Morcillo-Pallares, Rivera-Caicedo et al. 2019). In turn, feature 

selection methods may provide more robust and customized spectral information since 

they can identify the variables that are effective for modeling data class characteristics, 
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reducing the dimensionality of the original feature space by choosing only the best and 

minimum subset of features (Thenkabail, Lyon et al. 2018). 

 Data modeling was then performed using different statistical and machine 

learning approaches applied in the complete dataset and the wavelengths identified by 

the different feature selection approaches (Figure 2). The mean overall accuracy and 

coefficient of variation of the models allowed the identification of the combination of a 

stepwise forward variable selection with a support vector machine with radial kernel and 

class weights (stepsvmrw) as the best modeling approach among those evaluated (Table 

2). In this model, the kernel trick reduced dimensions and provided the necessary class 

separation of non-linear features to the support vectors method [e.g., (e.g. Luts, Ojeda 

et al. 2010)]. However, kernels are not theoretically derived for spectroscopy (Martins, 

Barroso et al. 2022). This handicap may lead to non-optimal selection, that does not 

represent the relationship between spectral features and discrimination among 

symptomatic and asymptomatic leaves. This might explain the better performance of 

SVM models when combined with feature selection algorithms (e.g., stepwise feature 

selection; SFVS). 

 Stepsvmrw presented a classification accuracy of 85%, kappa score of 0.70 

(good agreement), and f-measure of 0.84, when the total dataset (training and test sets) 

was used for prediction. It correctly classified 190 spectra of the 223 spectra acquired 

over the symptomatic leaves and classified 240 of 281 spectra belonging to 

asymptomatic observations. The percentage of asymptomatic observations correctly 

classified by this model ranged from 71% to 96% for both test sites, having decreased 

for the BT region over time but showing an inverse tendency for the CT region (where it 

increased) (Figure 4). The misclassification regarding the symptomatology of leaves in 

the early stages (Table 4) may indicate initial disease phases in the NIR domain of the 

spectrum when typical disease symptoms (e.g., chlorosis and necrosis) are not yet 

visually detectable by the human eye. In turn, for the CT region, spectral measurements 

allowed complete surveillance from the appearance and development of the first signs 

of BCK to its full development over time, coinciding with the visual separation between 

healthy and disease leaves. 

 Our results showed lower accuracies than those found by Lu et al. (Lu, Ehsani et 

al. 2017) for classifying strawberry leaves infected with Colletotrichum gloeosporioides 

using multitemporal indoor and in-field assessments. Their classification accuracy for 

indoor measurements varied from 81.6% to 89.7% for discriminant analysis (FDA), 

84.2% to 93.1% for stepwise discriminant analysis (SDA), and 84.2% to 87.5 % for k-
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nearest neighbor (KNN), corresponding the lower value to the classification accuracy for 

asymptomatic samples and the higher value to the accuracy of healthy plants. KNN 

misclassified healthy samples as asymptomatic. In-situ evaluations had lower accuracy 

scores ranging from 54.7% to 75.8% for FDA, 62.5% to 77.3% for SDA, and 15.4% to 

90.6% for KNN. These poorer values obtained in in-field assessments were probably 

related to limitations in the dataset, namely the asymptomatic sample size being larger 

than the healthy and symptomatic sample, and uncontrolled environmental conditions 

acknowledged as the most important variations in sunlight during measurements. Zhao 

et. al. (Zhao, Fang et al. 2020) used three dimensionality reduction algorithms and three 

machine learning models to classify and identify powdery mildew (Blumeria graminisf. 

sp. tritici) on wheat under laboratory conditions. When applied to hyperspectral data, 

SVM achieved a classification accuracy of 88.0%. The best model combined principal 

component analysis (PCA), for dimensionality reduction, and SVM, having achieved an 

identification accuracy of 93.3% by cross-validation methods. The authors only assessed 

75 picked leaves, with the number of diseased samples (60) being considerably higher 

than the number of healthy ones. Huang et al. (Huang, Ding et al. 2019) studied the 

wheat powdery mildew disease using 145 in-situ hyperspectral measurements (90 

healthy and 55 diseased samples), different vegetation indices (alone and combined with 

each other), and three model classifiers. They obtained classification accuracies ranging 

from 74.5% to 94.8%. Despite our accuracy values being similar or slightly lower than 

these examples, their scores were generally obtained by performing indoor assessments 

(made under supervised, controlled conditions), and/or through modelling approaches 

developed with small datasets, where spectral noise and variability are low. Moreover, 

most models were only applied to a single test site, with restricted soil, climate conditions, 

and plant age, not being able to generalize to a practical application. 

 Model results were further supported by the empirical analysis of the spectral 

information of BCK disease. Asymptomatic leaves mostly revealed the typical spectral 

behavior of green and photosynthetically active vegetation (Figure 5a). In turn, spectral 

responses of symptomatic leaves registered variations in the VIS and NIR regions; 

having some spectral bands presenting a greater response to the BCK infection (Figure 

5a,b). Overall, the mean spectral reflectance records of symptomatic leaves showed 

higher values of reflectance for the blue and the majority of the NIR regions (850–1075 

nm), and lower values for the red-edge and beginning of the NIR regions (<850 nm), 

when compared to the asymptomatic cases. These results are consistent with the 

infection caused by Psa, since it results in necrotic leaf spots, which are related to 

membrane damage and cell death (Balestra, Mazzaglia et al. 2009). Modifications in the 
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content of chlorophyll and brown pigments, water, and structural components influence 

crop spectral behavior in these spectral regions (Asner 1998, Penuelas and Filella 1998). 

Other studies, performed on different crops, also reported an increase in diseased leaf 

reflectance in the VIS region (mainly in the green and red ranges of the spectrum), and 

a decrease in the NIR region, specifically: (i) sugar beet infected with Cercospora, in the 

VIS region from 550 to 700 nm and the NIR region from 700 nm to 850 nm (Mahlein, 

Rumpf et al. 2013); (ii) grapevine infected with leaf stripe disease (esca complex) in the 

green region (520–550 nm), and red region (650 nm) of the spectra (Junges, Almança 

et al. 2020); (iii) soybean affected by the soybean cyst nematode (SCN) and sudden 

death syndrome (SDS) (Bajwa, Rupe et al. 2017). 

 Our results are thus relevant for detecting and discriminating the bacterial canker 

disease of kiwi in leaves. Hyperspectral data provides a large amount of information, 

allowing the screening of samples based on their chemical composition rather than only 

their size, shape, and visible color (that RGB devices permit). Despite the promising 

findings supporting this proof-of-concept, this was a single season, in-field analysis 

(without control over agronomic, environmental, and infectious conditions). Future 

studies are thus needed, namely by analyzing the same leaf over time, to better 

understand the plant–pathogen interaction and its impact on host spectral behavior. 

Furthermore, supplementary laboratory assessments will be highly beneficial and allow 

more comprehensive knowledge about the disease caused by the Psa pathogen. 

5. Conclusions 

 This study proposes the diagnostics of bacterial canker of kiwi (BCK) disease 

caused by Pseudomonas syringae pv. actinidiae (Psa), on kiwi leaves using 

hyperspectral in-field measurements. Asymptomatic leaves revealed the typical spectral 

behavior of green and photosynthetically active vegetation, while symptomatic leaves 

presented deviations in their spectral signature in the VIS and NIR regions. The different 

feature selection methods allowed the identification of several wavelengths as more 

important for BCK discrimination, being mainly located in the blue (350–500 nm), green 

(500–600 nm), red (600–750 nm), and NIR (>750 nm) regions. Spectral separability 

between asymptomatic and symptomatic observations were observed in the dataset, 

and a stepwise forward variable selection approach with an SVM algorithm with a radial 

kernel and class weights presented the best results in terms of disease discrimination. 

The model presented an overall accuracy of 0.85, with a 0.70 kappa score and 0.84 F-

measure. Our findings allowed a rapid, non-destructive, in situ disease classification, 

supporting the implementation of spectral point measurements for crop disease 
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discrimination. Nonetheless, more research is necessary to better comprehend the 

plant–pathogen dynamics and their effects on host spectral behavior. Furthermore, 

feature selection approaches for disease diagnosis must be further explored to develop 

more economic, multiband sensors. Multi- and hyperspectral sensors can be coupled on 

different platforms, forming distinct functioning measurement systems. This results in 

more precise agronomic practices, such as mapping, monitoring, scouting, and 

treatment of crop diseases. Handheld sensors, terrestrial (e.g., robots) and aerial 

platforms (e.g., drones), and satellites can assess plant spectral behavior on different 

scales, including leaf, single-plant, canopy, plot, and farm levels. 
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Abstract 

 Early diagnosis of plant diseases is needed to promote sustainable plant 

protection strategies. Applied predictive modeling over hyperspectral spectroscopy (HS) 

data can be an effective, fast, cost-effective approach for improving plant disease 

diagnosis. This study aimed to investigate the potential of HS point-of-measurement 

(POM) data for in-situ, non-destructive diagnosis of tomato bacterial speck caused by 

Pseudomonas syringae pv. tomato (Pst), and bacterial spot, caused by Xanthomonas 

euvesicatoria (Xeu), on leaves (cv. cherry). Bacterial artificial infection was performed on 

tomato plants at the same phenological stage. A sensing system composed by a 

hyperspectral spectrometer, a transmission optical fiber bundle with a slitted probe and 

a white light source were used for spectral data acquisition, allowing the assessment of 

3478 spectral points. An applied predictive classification model was developed, 

consisting of a normalizing pre-processing strategy allied with a Linear Discriminant 

Analysis (LDA) for reducing data dimensionality and a supervised machine learning 

algorithm (Support Vector Machine – SVM) for the classification task. The predicted 

model achieved classification accuracies of 100% and 74% for Pst and Xeu test set 

assessments, respectively, before symptom appearance. Model predictions were 

mailto:mccunha@fc.up.pt


FCUP 
Early diagnosis of bacterial plant diseases based on proximal sensing from a precision agriculture perspective 

127 

 

 

coherent with host-pathogen interactions mentioned in the literature (e.g., changes in 

photosynthetic pigment levels, production of bacterial-specific molecules, and activation 

of plants’ defense mechanisms). Furthermore, these results were coherent with visual 

phenotyping inspection and PCR results. The reported outcomes support the application 

of spectral point measurements acquired in-vivo for plant disease diagnosis, aiming for 

more precise and eco-friendly phytosanitary approaches. 

Graphical abstract 

 

Keywords 

Plant disease diagnosis, Early diagnosis, Proximal sensing, Hyperspectral 

Spectroscopy, Point of Measurement, Applied Predictive Modeling, Linear Discriminant 

Analysis, Machine learning 

1. Introduction 

 The tomato (Solanum lycopersicum L.) crop holds great importance worldwide 

due to its significant impact on agriculture, the economy, and human nutrition. This 

globally cultivated vegetable crop is very sensitive to diseases leading to dramatic yield 

and economic losses (Blancard 2012). Bacterial diseases of tomato plants caused by 

the Gram-negative bacteria Pseudomonas syringae pv. tomato (Pst, bacterial speck) 

and Xanthomonas euvesicatoria (Xeu) formerly known as Xanthomonas campestris pv. 

vesicatoria, bacterial spot, are two important etiological agents responsible for several 

plant outbreaks and considerable losses in tomato production worldwide. These two 

diseases are responsible for severe alterations in the host physiology, biochemistry, and 

structural composition, causing plant phenotype modifications (e.g., reduction of the 

photosynthetic capacity of diseased foliage, defoliation, flower abortion, and fruit lesions, 

among others). Ultimately, they result in yield reductions due to the damage caused to 

plants and fruits, which makes them unsuitable for the fresh market or processing. 

Control measures for these two crop diseases may be ineffective, especially when the 
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bacteria are well-established in a production site (medium to late stage of the disease 

infection process. Phytosanitary products, such as copper and antibiotics (Alves, Ribeiro 

et al. 2023), can be applied to mitigate the negative effects of the disease. Nevertheless, 

this approach can lead to bacteria tolerance to phytosanitary compounds (Blancard 

2012), and conduct to considerable damage to the environment and food security due to 

non-targeted applications of these products (Zhang, Yang et al. 2020). 

 Nowadays, bacterial diseases are diagnosed essentially through scouting and 

‘wet lab’ -based approaches. The first requires a careful and detailed inspection of crop 

fields (usually visual) by specialized trained observers. They must detect and identify 

diseased plants based on modifications to the characteristic phenotype of the crop, and 

the presence of disease symptoms (Parker, Shaw et al. 1995). Thus, it is subjective, 

error-prone (as symptoms alone are not entirely disease-specific, and can be promoted 

by other biotic and abiotic stresses), labor-intensive, time-consuming, and expensive 

(Mahlein 2016). In turn, laboratory-based techniques consist of serological and 

molecular assays, frequently applied due to their sensitivity, accuracy, and effectiveness. 

The most widespread lab methods include Enzyme-Linked Immunosorbent Assay 

(ELISA) and Polymerase Chain Reaction (PCR) methods. They involve comprehensive 

sampling procedures, which require several hours to be completed, and destructive 

sample preparation, precluding the accompaniment of disease development nor its field 

mapping to support precision agriculture systems (e.g. Site-Specific Management) (Fang 

and Ramasamy 2015, Martinelli, Scalenghe et al. 2015). Nevertheless, laboratory-based 

approaches lack appropriate high throughput and speed for supporting real-time 

agronomic precision decisions in-field since they were developed to verify the presence 

of pathogens. They also still have some diagnostic constraints, mostly in the non-

symptomatic and early disease infection stages, related to the irregular spread of 

bacteria inside plants (Fang and Ramasamy 2015, Martinelli, Scalenghe et al. 2015). 

 Hyperspectral spectroscopy (HS) is one innovative approach that has been 

studied and successfully applied to assess different plant(host)-pathogen interactions in 

a fast, sensitive, standardized cost-effective, high-throughput, and non-invasive way 

(Golhani, Balasundram et al. 2018). Through spectral measurements in the visible (VIS, 

400-700 nm) and infrared (IR, 800-2500 nm) regions, HS showed the capability of 

effectively assessing a wide variety of plant structural, chemical, biophysical, and 

metabolic traits in living tissues (Thenkabail, Smith et al. 2000, Delalieux, van Aardt et 

al. 2007). Changes in the typical spectral phenotype of a crop may indicate deviations in 

its health status, leading to an indirect method of diagnosing diseases. Plant-pathogen 

interactions shift plant metabolism and tissue composition, resulting in detectable 
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variations in the plant's optical behavior. In brief, these dynamics typically promote 

modifications in the VIS spectra of plants, due to changes in pigments’ concentration and 

physiological processes. Furthermore, variations in the IR region may also occur and are 

essentially linked to leaf water levels, chemical compounds (namely lignin's and proteins 

content), structural elements, and internal scattering processes (Thenkabail, Gumma et 

al. 2014, Tosin, Martins et al. 2022). 

 Different types of pathogens, such as pests (Herrmann, Berenstein et al. 2017, 

Zhang, Wang et al. 2017), fungi (Yu, Anderegg et al. 2018, Skoneczny, Kubiak et al. 

2020), bacteria (Bagheri, Mohamadi-Monavar et al. 2018), and viruses (Morellos, 

Tziotzios et al. 2020) affecting different crops have already been detected using the HS 

technique, mostly in symptomatic stages. Thus, this spectral phenotyping technique 

constitutes an interesting diagnosis method, allowing the distinction between the spectral 

signature of healthy and disease tissues, as well as between the spectral signature of 

diseased tissues infected with different pathogens. 

 HS holds great potential for early disease diagnosis, i.e., when plants are 

diseased but still don’t manifest any visual symptoms of the infection (Gold, Townsend 

et al. 2020, Reis-Pereira, Tosin et al. 2022). However, the use of this approach for non-

symptomatic plant disease diagnosis remains largely unexplored. Understanding host-

pathogen specific interactions and overcoming technical challenges related to the 

biophysical status of infected plants, organ of the plant assessed, sensing technology, 

data processing, and modeling approaches is essential for the effective application of 

HS in vivo crop disease diagnosis (Mahlein, Kuska et al. 2018). Addressing these 

challenges is crucial for real-time monitoring of disease progression. 

 The most used sensing devices for plant disease detection are non-imaging (e.g., 

point-of-measurement, POM) and imaging sensors. In POM sensing, light usually enters 

the leaf, and undergoes internal reflections conditioned by tissue structures and 

composition status. Thus, this technique can indirectly infer certain internal tissue 

characteristics affected by the host-pathogen interaction. POM sensors are typically 

designed to measure specific parameters without being significantly affected by factors 

like lighting conditions or surface textures. This reduces the potential for external 

interference and ensures more accurate and consistent measurements. This allied with 

their higher spectral resolution, cost-effectiveness, compactness, and reduced data 

processing requirements, makes them an attractive option for plant studies (Martins, 

Barroso et al. 2022). 
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 Spectral information provided by HS is extremely valuable, nonetheless, in 

biological tissues, it is super-imposed in the recorded spectra at different scales of 

interference (Barroso, Ribeiro et al. 2022, Tosin, Martins et al. 2022). Moreover, HS data 

can present substantial amounts of redundant information in contiguous wavelengths, 

and just some specific spectral features might be relevant to predict and classify 

diseased tissues (Caicedo, Verrelst et al. 2014, Rivera, Verrelst et al. 2014). Applied 

predictive classification modeling strategies can be developed to study spectral data and 

extract useful information. Diverse approaches of data correction and pre-processing 

(e.g., data scaling and normalization) can be computed to reduce undesired spectral 

effects, such as ‘noise’ and scattering effects. Additionally, modeling strategies, as well 

as feature selection (FS), feature extraction and dimensionality reduction techniques 

(DR), can be useful for determining the wavelength features which have more influence 

in disease discrimination (Mahlein, Steiner et al. 2010, Ahmadi, Muharam et al. 2017). 

In plant disease research, different predictive approaches using HS data have been 

explored to classify tissues affected by biotic stress, considering all the spectral features 

or only specific variables, designated by FS or DR techniques (Gold, Townsend et al. 

2020, Meng, Lv et al. 2020). Nevertheless, there is a lack of standardized protocols for 

acquiring hyperspectral data from tomato leaves. Different studies employ various 

acquisition setups, lighting conditions, and preprocessing techniques, making comparing 

and integrating findings challenging. 

 This work addresses the main technological challenges for efficiently applying 

hyperspectral technologies in phenotyping to diagnose plant diseases. Conducting 

analysis for healthy and bacterial inoculated plants over time, this study aims i) to 

compare visual phenotyping against spectral phenotyping based on the hyperspectral 

point-of-measurement (HS-POM) for healthy and diseased tomato leaflets, ii) to evaluate 

the HS-POM ability to accurately classify samples at various stages of disease 

development, including those without any visible symptoms and iii) distinguish the 

etiological agents of distinct tomato bacterial diseases. The specific goals include 

developing an applied predictive modeling strategy (combining data pre-processing, 

dimensionality reduction, and a supervised machine learning algorithm) for tomato 

bacterial disease classification and establishing causal relationships between plant 

health status, specific spectra characteristics, and the physiological changes that occur 

during infection dynamics to advance theoretical knowledge and provide a foundation for 

further research. 
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2. Materials and methods 

2.1. Bacterial inoculation and plant growth 

2.1.1. Inoculation on tomato leaflets 

 Tomato (Solanum lycopersicum L.) plants of the cultivar Cherry were grown in 

200 mL pots containing a commercial potting substrate, in a walk-in plant growth 

chamber under controlled conditions (25-27 ºC, humidity of approximately 60%, 

photoperiod of 12 / 12 h and light intensity 30W). Plants were divided into three groups 

of three plants each (nine plants in total), being a) one group of plants inoculated with 

Pseudomonas syringae pv. tomato DC 3000 (Pst) bacteria, b) a second group of plants 

inoculated with Xanthomonas euvesicatoria LMG 905 (Xeu) bacteria, and c) a third group 

of plants was treated with sterile distilled water only (Control group) (Figure 1). Plants 

were physically separated to avoid cross-contamination. 

 Plants were inoculated in the laboratory, at the growth stage of 5-6 fully expanded 

leaves, by spraying until they became fully wet, and run-off occurred. The bacterial 

suspensions used for these inoculation assays consisted of 1 x 108 cells / mL. They were 

prepared from 48-h-old cultures of Pst grown in KB medium (peptone, 20.0g; K2HPO4, 

1.5g; MgSO4, 1.5g; glycerol, 10 mL; agar, 15g; distilled water up to 1.0 liter), and of Xeu 

cultures grown in YDC medium (yeast extract, 10.0g; dextrose, 20.0g; CaCO3, 20.0g; 

agar, 15.0g; distilled water up to 1.0 liter). The inoculated plants were then covered with 

transparent polythene bags for 48 h to increase the relative humidity that fosters bacterial 

entry into plant tissues through natural openings such as stomata (Lamichhane 2015). 

Plants were monitored daily for symptom development for 18 days (Figure 1). 

 During the inoculation period, to verify if the bacteria cultures used in these 

inoculation tests were viable, 20 μL of Pst solution and 20 μL of Xeu solution were 

cultured in Petri dishes containing KB and YDC media, respectively. After 48 h was 

possible to observe the bacteria growth in both nutrient media, proving that bacteria were 

viable at the moment of inoculation. 

2.1.2. Bacterial isolation from diseased leaflets 

 After the last spectral measurement, sample preparation for bacterial isolation 

was performed for all the leaflets. Leaflets were excised from plants using a sterile 

scalpel (Fernandes, Albuquerque et al. 2017). Bacterial isolation was carried out as 

defined by Fernandes et al. (2017, 2021). Briefly, each sample of excised leaflet tissue 

was disinfected by immersion in 70% ethanol followed by washing with sterile distilled 

water (SDW), and then macerated with SDW in extraction bags. The suspensions 
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obtained, and corresponding dilutions, were streaked on KB (samples inoculated with 

Pst bacteria), and on YDC medium (samples infected with Xeu pathogen). Characteristic 

colonies from these two bacteria species (milky white colonies in the case of Pst, and 

mucoid yellow colonies in the case of Xeu) were selected for growth on fresh nutrient 

agar medium to ensure purity. 

 

Figure 1 Experimental setup of the bacterial inoculation assay performed on tomato 

leaves (A), and visual and spectral assessments (of the 4th, 5th, and 6th leaves) made in 

a dark room (B). Spectral measurements were performed on the adaxial side of leaflets, 

using a spectrometer combined with an optical fiber bundle with a reflection probe. A 

white LED was placed beneath each leaflet. Both visual and spectral assessments were 

made 18 Days After Inoculation (DAI), collecting leaflets’ spectral signatures and 

registering modifications in their phenotype (e.g., the appearance of the first symptoms, 

both chlorosis and necrosis). 

 Pst characteristic symptoms resemble small greasy dark stains (circular or 

slightly angular), that become brown to black, and appear randomly on the leaflets (often 

on the youngest or the ones located at the edge of the canopy plant). These lesions may 

typically show a yellow halo of various sizes. They are about 2–3 mm and can develop 

and coalesce (especially in the presence of moisture), affecting large areas of the leaf, 
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that may later become necrotic and desiccate (Blancard 2012). In turn, Xeu characteristic 

symptoms comprise small, circle, or slightly angular, translucent, and water-soaked 

lesions, which turn brown with time. They appear randomly in leaflets, and eventually 

become necrotic spots, with light gray centers and dark margins, which also can become 

surrounded by a yellow hallow with time. Smaller lesions can coalesce into each other 

forming larger injuries, whose diameter can range from 2 to 3 mm. In severe cases, 

tissues in the center of a lesion become dry and fall out, leading to “shot-hole” symptoms 

(Ritchie 2000, Blancard 2012). 

2.1.3. Colony PCR protocol 

 A colony PCR was performed to validate the presence of both bacteria species 

on tomato leaflets isolates. PST2 (Vieira, Mendes et al. 2007) and XV14 (Albuquerque, 

Caridade et al. 2012) were the chosen markers, for Pst and Xeu, respectively, with 

amplicon lengths of 200, and 713 bp, correspondingly. A 20 µL PCR reaction mix 

consisted of 1 × DreamTaq Buffer (ThermoFisher Scientific, Waltham, MA, USA), 0.2 

mM of each deoxynucleotide triphosphate (dNTP) (Grisp, Porto, Portugal), 0.2 mM of 

each forward and reverse primers, 1 U of DreamTaq DNA Polymerase (ThermoFisher 

Scientific, Waltham, MA, USA) and 10 µL of DNA isolate solution. Sterile distilled water 

was used as the negative control. PCR cycling parameters were defined as stated by 

Vieira, Mendes et al. (2007) for Pst, and Albuquerque, Caridade et al. (2012) for Xeu. 

PCR products were then separated by electrophoresis on a 0.8% agarose gel (1 × TAE 

buffer) and visualized using Xpert Green DNA stain (Grisp, Porto, Portugal) with a 

Molecular Imager Gel Doc XR+ System (Bio-Rad, Hercules, CA, USA). 

2.2. Spectral measurements in vivo tissue 

2.2.1. Experimental setup for plant spectral acquisition 

 Figure 1 presents the main procedures for spectral measurements in the 

experimental setup. Hyperspectral point-of-measurements (HS-POM) were collected in 

vivo from the adaxial side of healthy and diseased leaflets of the nine tomato plants in 

the study, in a dark room. For each plant, spectral assessments were performed 

randomly on nine points of different leaflets, belonging to the 4th, 5th, and 6th expanded 

leaflets. 

 Hyperspectral data were acquired using a Hamamatsu Photonics K.K. TM Series 

C11697MB spectrometer, which covers a wavelength range of 200-1100 nm with a 

spectral resolution of 0.6 nm. A transmission optical fiber bundle (FCR-7UVIR200-2-45-

BX, Avantes, Eerbeek, The Netherlands) with a range of 200-2500 nm was used along 
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with a stainless-steel slitted reflection probe that was positioned 0.5 cm above the 

sample surface to capture the leaflet's spectral signal and direct it to the spectrometer's 

entrance lens. A white LED light was placed underneath the leaflet to provide uniform 

illumination to its entire abaxial surface. The spectral range of the LED emits light from 

390 to 800 nm. Therefore, the LED spectra were used as a reference to the spectral 

range measured by the spectrophotometer and to check measurement and light 

emission stability (Figure 1 B). The hyperspectral data were collected using specialized 

evaluation software (SpecEvaluationUSB2.exe, Hamamatsu Photonics K.K., Japan). 

2.2.2. Preprocessing hyperspectral data 

 The performance of the modeling approach in detecting bacterial diseases in 

tomato leaflets was assessed using only the spectral region of 400 to 800 nm, 

approximately. This decision was based on the spectral wavelength range of the light 

LED source used (where possible useful information could be retrieved) and due to the 

observation of spectral noise near the limits of the equipment’s spectral range, which 

could negatively affect the performance of the classification process. Therefore, a total 

of 944 features (wavelength) were used in the development of the prediction modeling 

(Figure 2). 

 Preprocessing data was performed following spectra normalization (Figure 2, 3). 

This approach aimed to standardize the data to a common scale, enabling meaningful 

comparison and analysis across different scenes or datasets. Additionally, it aims to 

decrease spectral signal oscillations, related to measurement equipment specifications 

(including devices’ internal noise), variations in data assessment conditions (comprising 

differences in global spectral trend, total energy, high-frequency noise, and/or local 

background) (Randolph 2006), associated to changes in environmental conditions or 

induced by the operator in the moment of assessment (e.g. variations in sample-sensor 

distance, uneven illumination conditions, choice of leaflets sample point location, 

appropriate scan parameters, spectral calibration, among others). This results in model 

abilities improvement by aiding in class separation (Randolph 2006, Guezenoc, Gallet-

Budynek et al. 2019). Furthermore, this process enables the elimination of the spectral 

response of both the sensor and light source, making possible the transfer of the 

acquired classifier to a different sensing device. Spectral data retrieved from 

measurements in tomato leaflets 𝑆(𝜆𝑛)𝑚
𝑟𝑎𝑤 were normalized through their division by the 

white LED source spectral signature 𝑆(𝜆𝑛)
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

(considering the time of exposure of 

the spectral measurements), through the computation of the following forming (Equation 

1):  
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𝑆(𝜆𝑛)𝑚
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑆(𝜆𝑛)𝑚

𝑟𝑎𝑤/𝑆(𝜆𝑛)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 (1) 

 

Figure 2 Conceptual diagram for the applied predictive modeling approaches of bacterial 

tomato leaflet disease. 
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Figure 3 Original (raw, A) and normalized (B) hyperspectral signatures assessed in 

tomato leaflets during the experimental assay. 

2.3. Modeling leaflets symptomatology over time 

2.3.1. Data set structure 

 Seeking bacterial tomato disease classification, spectral signatures from leaflets 

were then grouped to perform an applied predictive modeling approach related to the 

plants’ experimental condition. Leaflets were classified according to the plant treatment 

group and their health status, including the classes: i) healthy, including all the 

measurements which were performed before bacteria inoculation, and the remaining 

assessments that were made in non-inoculated plants considered as control plants; ii) 

non-symptomatic Pst; iii) non-symptomatic Xeu; iv) symptomatic Pst; and v) symptomatic 

Xeu. All the spectral data collected from tomato leaflets on different dates were unified 

in a single classification model (Figure 1, 2). 

 1 

 2 

 3 

A 

B 
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 Data classification was, thus, performed seeking the unraveling of spectral 

phenotyping differences between i) healthy and non-symptomatic diseased tissues 

(early diagnosis), ii) healthy and diseased tissues (showing visual modifications due to 

changes in chemical and structural composition), ii) healthy and diseased tissues 

affected by different bacterial etiological agents (which present distinct host-pathogen 

specific interactions), iii) and diseased tissues infected by different bacteria species 

(responsible for causing similar visual symptoms but showing different pathogenic 

dynamics). 

2.3.2. Dimensionality reduction of spectram data 

 Multi-scale interference in plants’ tissue promotes superimposition on 

hyperspectral data, resulting in autocorrelations in their spectral signal at several scales 

(Martins, Barroso et al. 2022). To mitigate the effects of high dimensional, redundant 

information, several methodologies have been cited in the state-of-the-art, including 

dimensionality reduction (DR) approaches (Lapajne,  napič et al. 2022, Reis-Pereira, 

Tosin et al. 2022). DR techniques are a class of predictor transformations. They can 

reduce data by creating a minor set of predictors that aim to retain most of the information 

contained in the original variables. Usually, these approaches generate new predictors 

which are functions of the original ones (signal extraction or feature extraction 

techniques) (Kuhn and Johnson 2013). 

 This study examined a DR approach called Linear Discriminant Analysis (LDA), 

generally computed as a pre-processing. It is a supervised learning algorithm used for 

classification tasks. LDA is usually applied as a feature extraction technique, performed 

to reduce the dimensionality of the data while maximizing the class separability. It 

projects the high-dimensional data onto a lower-dimensional space while preserving the 

discriminative information between classes. In brief, data is projected onto a linear 

subspace that maximizes the ratio of between-class variance to within-class variance. 

Thus, the projected data points are as far apart as possible in the new space, while the 

points belonging to the same class are as close as possible. Therefore, LDA contributes 

to reducing the problem’s computational complexity and avoiding overfitting. It can also 

be useful for visualizing the data in a lower-dimensional space, helping interpret patterns 

in data (Tharwat, Gaber et al. 2017). Furthermore, this technique was applied since our 

dataset is not linearly separable, and LDA can organize it in another space with the 

maximum possible linear separability (Sachin 2015).  

 LDA feature space loadings (also called coefficients or weights) were additionally 

used to infer the most relevant wavelength variables, through the computation of the 
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interquartile range (IQR) for the weights. A threshold at 1.5 times the IQR beyond the 

upper quartile was established. This process aimed to increase sensitivity to the weight 

distribution, enabling the capture of outliers and extreme values. An applied predictive 

classification model was later computed to help deal with the non-linearity of the data. 

2.3.3. Machine learning classification model 

 A Support Vector Machines (SVMs) algorithm was chosen to integrate this 

modeling strategy. This supervised machine learning algorithm performs classification 

based on the concept of optimal separating hyperplane (Vapnik 1999, Mosavi, Sajedi 

Hosseini et al. 2021). SVMs are nonlinear approaches that discover the most extensive 

margin between two classes in feature space. These approaches aim to decrease the 

error test and model complexity (Ballabio and Sterlacchini 2012). SVMs can present 

distinct hyperparameters and kernel forms, which convert raw data inputs from the 

original user space into kernel space through a user-defined feature map (Patle and 

Chouhan 2013, Ding, Liu et al. 2021). This study used a radial basis function (RBF) 

kernel was used since it allows SVMs to capture non-linear relationships between input 

features and target variables. It may also allocate distinct weights to different points since 

they learn the decision surface according to the relative importance of the data points in 

the training set (being well-suited for handling outliers and noisy data) (Xulei, Qing et al. 

2005). More detailed information about the SVM algorithm, including relevant principles 

and calculation formulas, can be found in Ballabio et al (2012) and in Chang et al. (2011). 

The parameters of the SVM applied corresponded to the default values of the algorithm 

implemented in the ‘Scikit-learn’ machine learning library (Pedregosa, Varoquaux et al. 

2011), which also can be found in Table 1. 

 The datasets were divided into training data (70% of random observations) and 

validation data (30% of the remaining observations) (Kuhn and Johnson 2013), following 

a holdout method (Lantz 2019). The training and validation sets combined the pairs of 

concurrent measurements of the group and health status and the corresponding values 

of the predicting variables. A resampling strategy was performed as stated in Reis-

Pereira, Tosin et al. (2022) to reduce the possibility of overfitting (Berrar 2019, Valier 

2020). 
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Table 1 Default parameters of the SVM algorithm of ‘Scikit-learn’ library used in this 

study. 

Parameter Value  Parameter Value  Parameter Value  Parameter Value 

C 1.0  Probability False  Verbose False  Break ties False 

 

Kernel rbf  Shrinking True  Cache size 200  Tolerance 1e-3 

 

Gamma ‘scale’ 

 

1/(n_features 

*X.var())  

 Class 

weight 

None   

Decision 

function 

shape 

 

One-vs-rest 

(ovr) 

 

 Random 

state 

None 

 

Max 

iteration 

 

-1 

  

2.3.4. Model performance evaluation 

 Different metrics were additionally retrieved to investigate model performance, 

namely the Confusion Matrix (CM), accuracy score (Equation 2), and F1-Score (Equation 

3) whose description is detailed in Reis-Pereira, Tosin et al. (2022). Furthermore, 

precision (the fraction of correct positive predictions out of all positive predictions, 

Equation 4) and recall (fraction of correct positive predictions out of all observed positive 

samples, Equation 5) were also computed using the following formula, where true 

positive, false positive, false negative, and true negative values are denoted by TP, FP, 

FN, and TN, respectively: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (2) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 All the computational analyses were performed in the Jupyter Notebook software 

using the libraries ‘Matplotlib’ (Ari and Ustazhanov 2014), ‘numpy’, ‘pandas’ (Betancourt, 

Chen et al. 2019), and ‘Scikit-learn’ (Pedregosa, Varoquaux et al. 2011). 
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3. Results 

3.1. Observational-based phenotyping of leaflets symptomatology over time 

3.1.1. PCR validation 

 Tomato plants were inoculated with Pst and Xeu bacteria, respectively. After 

spectral analysis, leaf samples from each treatment were tested for the presence of 

these bacteria. Proper controls from samples known to be positive and negative for Pst 

and Xeu bacteria were included to confirm the assay results. After the colony PCR 

reaction, the amplified products were separated by agarose gel electrophoresis and 

visualized under UV light. The PCR results showed bacteria-specific bands for each 

bacteria species, namely a 200-base pair (bp) fragment of Pst, and a 713 bp fragment 

for Xeu, indicating that Pst and Xeu bacteria were present in each inoculation treatment 

group. No PCR amplification was observed from samples collected from healthy leaves. 

3.1.2. Visual and hyperspectral phenotyping 

 Tomato plants infected with Pst bacteria showed the first visual typical chlorotic 

symptoms mostly between four and five days after infection (DAI). These spots evolved 

into necrotic lesions at six to seven DAI. In turn, chlorotic lesions in samples inoculated 

with Xeu mainly developed among twelve to fifteen DAI, only evolving to the necrotic 

stage at seventeen to eighteen DAI. Pst-infected plants died 12 DAI (Figure 4). 

 

Figure 4 Observational-based phenotyping of leaflet symptomatology over time. 

Spectral measurements were performed before bacteria inoculation (Day 0), until day 15 

(Pseudomonas syringae pv. tomato diseased leaflets), and 18 days after infection 

(Control and Xanthomonas euvesicatoria diseased leaflets).  In the last measurement 

date, tomato leaflets were detached from each diseased plant and isolated in different 

bags for later performing the bacteria isolation assay.  
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 Table 2 presents the dataset structure used, composed of 3478 spectral point 

measurements, from which 1377 (39.6%) observations correspond to the healthy class. 

Of these, 1215 (34.9%) assessments belonged to Control leaflets, 81 to measurements 

performed on Pst leaflets before bacteria inoculation, and 81 to captures made on Xeu 

leaflets also before bacterial infection. Spectral records performed before symptom 

appearance reached the value of 844 (24.3%), where 101 (2.9%) measurements 

belonged to non-symptomatic leaflets inoculated with Pst, and 743 (21.4%) to leaflets 

inoculated with Xeu bacteria. Lastly, after symptom development, 1257 (36.1%) spectra 

were captured (866 – 24.90% – from symptomatic Pst leaflets, and 391 – 11.24% – from 

Xeu symptomatic tissue). Class imbalance is observed due to the disease infection 

process’s dynamic, resulting in symptoms appearing throughout the measurements 

dates at different rates (Table 1). Spectral assessments were performed during 18 DAI 

for Control and Xeu leaflets. For Pst, the process was only made until 15 DAI because 

the plants presented high-stress levels, and leaf dehydration after this date, interfering 

with the spectral signal recording (Figure 1, Table 1). 

 Hyperspectral signatures captured in healthy leaflets showed the typical spectral 

behavior of healthy green tissues. On the other hand, spectral assessments belonging 

to disease leaflets (both with Pst and Xeu bacteria) presented deviations in their format 

(Figure 5). Thus, a more detailed analysis was performed for these measurements to 

evaluate the spectral modifications caused by the different bacteria, resulting in a higher 

number of classes in the study.  Spectra signatures belonging to Pst inoculated samples 

had a more distinct spectral curve (for both, non-symptomatic and symptomatic stages) 

compared to the healthy measurements, showing higher intensity on the wavelength 

ranges of approximately 430 to 520 nm, and 560 to 680 nm. Nevertheless, the lower 

intensity was captured from 710 to 800 nm (Figure 6 A, B). Xeu-inoculated tissues also 

displayed modification in their spectral signature in these regions. The intensity 

measured in the first two spectral intervals was marginally higher than the one captured 

on healthy leaflets. However, a more evident variance was observed in the 710 to 780 

nm range (Figure 6 A, C). When measurements belonging to disease samples were 

compared, the data showed differences between the samples infected with the different 

etiological agents. Pst measurements (for both non- and symptomatic stages) 

demonstrated greater intensity in the ranges of 430 to 520 nm, and 560 to 680 nm, but 

lower intensity in the 710 to 800 nm interval (Figure 6 A, D). 
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Table 2 Spectral data characterization of the measurements randomly performed on 

tomato leaflets (healthy, diseased with Pseudomonas syringae pv. tomato – Pst –, and 

diseased with Xanthomonas euvesicatoria – Xeu), showing the number of assessments 

made by class and date. 

Days after 

Infection (DAI) 

 

Non-inoculated 

 Inoculated classes 

 Non-symptomatic  Symptomatic 

  Xeu Pst  Xeu Pst 

0 243*  0 0  0 0 

3 81  81 81  0 0 

4 81  81 17  0 64 

5 81  81 3  0 78 

6 81  81 0  0 81 

7 81  81 0  0 81 

8 81  81 0  0 81 

10 81  71 0  10 80 

11 81  63 0  18 80 

12 81  33 0  48 80 

13 81  28 0  53 81 

14 81  28 0  53 79 

15 81  34 0  47 81 

17 81  0 --  81 -- 

18 81  0 --  81 -- 

Total 1377  743 101  391 866 

(n=3478) 39.6%  21.4% 2.9%  11.2% 24.9% 

* Including all plants. After day 0, only Control plants belong to this class. 

 

Figure 5 Mean normalized spectra of healthy, non-symptomatic, and symptomatic leaflet 

measurements for the first ten measurements performed (12 DAI, A). Healthy and non-
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symptomatic infected leaflets presented equal visual phenotype (B). With infection 

evolution over time, chlorotic symptoms started to appear and later turned into necrotic 

lesions (C). 

 

Figure 6 Mean normalized spectra per class in study (i.e., healthy, non-symptomatic, 

and symptomatic Pseudomonas syringae pv. tomato – Pst – leaflet measurements, and 

non-symptomatic Xanthomonas euvesicatoria – Xeu – assessments) for the first ten 

measurements performed (12 DAI). 

3.2. Hyperspectral sensing-based phenotyping of leaflets symptomatology over 

time 

3.2.1. Reducing the spectral dataset dimensionality 

 A Linear Discriminant Analysis (LDA) was performed to reduce the dimensionality 

of the normalized dataset, organizing the spectral observations in a new space as the 

maximum linear separability possible. LDA results were plotted and showed spectral 

separability between the different classes studied (Figure 7 A). It was possible to see an 

evolution pattern through LD 1 for spectral data belonging to healthy, and Pst diseased 

leaflets regardless of whether they exhibit symptoms or not (Figure 7 A, B). In turn, 

healthy and Xeu-diseased leaflets (including, non- and symptomatic data) presented a 

 1 

 2 

  3 

  4 
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spectral separation gradient through LD2 (Figure 7 A, C). When data of diseased leaflets 

infected with distinct bacteria were compared, it was possible to observe a divergence 

gradient between the LD1 and LD2, especially at the symptomatic stage (Figure 7 A, D). 

Since data presented a non-linear characteristic, overlapping between classes was 

observed. Thus, these findings demonstrated the efficacy of the LDA technique for 

reducing the dataset dimensionality to the most important features. LDA’s DR results 

were, then, applied in the following steps of the modeling process helping in the 

classification task and avoiding overfitting. 

 The most relevant wavelength variables for LD1 were assessed based on their 

coefficients, equaling 44 features. These variables were mostly located in the blue-green 

and red VIS regions of the electromagnetic spectrum (blue - 434.9, 435.72, 438.17, 

438.58, 440.21, 441.44, 442.67, 443.08, 445.53, 445.94, 448.4, 448.81, 494.6 nm; green 

- 503.74, 508.74, 527.53 nm; red - 556.09, 562.0, 562.84, 590.37, 607.82, 609.1, 611.24, 

618.5, 643.36, 650.24, 673.97, 680.02 nm), coinciding with the wavelength absorption 

range of chlorophylls (430 to 480 nm, and 640 to 700 nm), and carotenoids pigments, 

namely β-carotenes (whose primary and secondary absorption peaks are respectively 

located at 450 to 480 nm, and 600 to 650), and xanthophylls (520 to 580 nm) (Figure 8). 

This coincides with the action of Pst and Xeu bacteria on tomato leaves' levels of 

photosynthetic pigments during the infection process. 

 Other plants whose metabolites are affected by these two bacteria also have their 

absorption spectrum coinciding with the selected wavelengths of LD1, namely some 

phenolic compounds (e.g., flavonoids, 400 to 500 nm), and composts derived from 

chlorophylls decomposition, namely pheophytins (400 to 500 nm, and 600 to 700 nm) 

(Figure 8). 
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Figure 7 Scatter plots of the outcomes of the application of Linear Discriminant Analysis 

on the normalized data, for Linear Discriminant 1 (LD1) and Linear Discriminant 2 (LD2). 

 Applied predictive classification modeling was, then, performed using the LDA-

reduced normalized data (including all classes: i) healthy; ii) non-symptomatic diseased 

Pst leaflets; iii) non-symptomatic Xeu samples; iv) symptomatic inoculated Pst tissues; 

v) symptomatic Xeu observations) and an SVM algorithm with a Radial Basis Function 

(RBF) kernel. The model was trained using 70% (2434) of the spectral observations 

(randomly selected), and then, it was validated using the remaining 30% (1044) of the 

observations (test set), and the complete dataset. The test set comprised 413 healthy 

samples, 30 non-symptomatic Pst disease leaflets, 223 non-symptomatic Xeu, 260 

symptomatic Pst observations, and 118 symptomatic Xeu. 
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Figure 8 Absolute values of the coefficients results of Linear Discriminant Analysis for 

Linear Discriminant 1. Forty-four spectral wavelengths were identified as relevant when 

variable weights were computed. These variables coincided with the absorption spectra 

of different photosynthetic pigments, namely chlorophylls (Chl, highlighted in green for 

chlorophyll), and carotenoids (β-carotenes, β-car, highlighted in yellow; and 

xanthophyll’s, Xan, highlighted in orange). 

 The developed model performed well for both the test set and the complete 

dataset. The model achieved an accuracy of 0.85 for the test set and 0.86 for the 

complete dataset, indicating that it can correctly classify most of the measurements 

(Table 3, Figure 9). Furthermore, it demonstrated high metric values (precision, recall, 

and F1-score) for all the classes, indicating that it can identify both healthy and infected 

measurements. In detail, higher precision, recall, and F1-score values were found for the 

healthy and non-symptomatic Pst leaflets measurements (Table 3). This shows that the 

model more easily predicted spectral assessments belonging to these classes. 

Nevertheless, it showed more difficulties in classifying measurements of Xeu inoculated 

leaflets, especially those captured before symptom appearance (indicated by lower 

metric scores). It is important to note that the model's performance was consistent across 

both the test set and the complete dataset, indicating that the model is robust and can 

be used to classify new spectral samples accurately. 

 Model predictions for the non-symptomatic Pst class did not present any 

misclassification in the test set. In the complete dataset, the model accurately predicted 

 1 
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96% of the spectral measurements but missed 1% of the predictions, which it classified 

as assessments made on non-symptomatic leaflets infected by Xeu (Figure 9). 

Symptomatic spectral captures performed in Pst diseased leaflets were correctly 

categorized in 94% of the cases for both the test and complete sets. Nevertheless, the 

model mistakenly classified these assessments as non-symptomatic Xeu observations 

in 4% and 3% of the cases, and as healthy samples in 2% when the test set and complete 

dataset were used, respectively. Predictions of Xeu spectral assessments were more 

challenging to the model, presenting a higher number of wrong classifications in the non-

symptomatic class than in the remaining classes studied. In fact, the model successfully 

classified 77% of the measurements of this class in the test set, and 78% when all data 

was used. However, it attributed 11% and 10% of the measurements as healthy, 5% and 

8% as symptomatic diseased Xeu leaflets assessments, 3% as non-symptomatic 

inoculated Pst observations, and 2% as symptomatic Pst captures, when the test set and 

complete dataset were used, respectively. The model showed more efficacy in identifying 

symptomatic Xeu leaflets measurements, predicting 83% of these samples in the test 

and complete datasets. In terms of missed classifications, it predicted 6% and 5% of the 

assessments as non-symptomatic, 3% and 2% as healthy, 3% and 1% as non-

symptomatic spectral captures of Pst infected leaflets, and 1% and 2% as symptomatic 

Pst, in the test set and complete dataset, respectively (Figure 9 A, B). 

Table 3 Performance metrics for the classification SVMs-based model using all the data 

(train and test set – All), only the train set (Trn) and only the test set (Test). 

Class of 

leaflets 

status 

Precision  Recall  F1-score  Accuracy 

Trn All Test 
 

Trn All Test 
 

Trn All Test 
 

Trn All Test 

Healthy 0.86 0.85 0.84  0.89 0.89 0.88  0.88 0.87 0.86  0.89 0.85 0.88 

N Sym. Pst 0.97 0.96 0.94  0.86 0.90 1.00  0.91 0.93 0.97  0.86 0.90 1.00 

N Sym. Xeu 0.78 0.78 0.77  0.74 0.74 0.74  0.76 0.76 0.75  0.74 0.74 0.74 

Sym. Pst 0.94 0.94 0.94  0.95 0.94 0.93  0.95 0.94 0.93  0.95 0.94 0.93 

Sym. Xeu 0.83 0.83 0.83  0.80 0.79 0.77  0.81 0.81 0.80  0.79 0.79 0.77 

Weighted  

Avg ± s.d 

0.86

± 

0.07 

0.86 

± 

0.07 

0.85

± 

0.07 

 0.86

± 

0.07 

0.86 

± 

0.08 

0.85

± 

0.10 

 0.86

± 

0.07 

0.86 

± 

0.07 

0.85 

± 

0.08 

 0.86 

± 

0.07 

0.86 

± 

0.08 

0.85 

± 

0.10 

SVMs – Support Vector Machines, Trn – Train, N Symp. – Non- symptomatic, Sym. – Symptomatic, Avg. 

– Average, s.d. – standard deviation 

 For the complete dataset prediction, we investigated the number of 

misclassifications per class and date (Figure 10). As expected, the observed tendency 

for healthy spectral assessments showed a regular number of observations per date 
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(81). Nonetheless, the developed model categorized more samples than the true value 

per date, except for 7, 13, 17, and 18 DAI. On the other hand, the spectral model 

consistently underfit the infected Xeu leaflets, regardless of whether they exhibit 

symptoms or not (Figure 10 A). 

 

Figure 9 Confusion Matrix of the percentage of predicted samples for each class 

(column) that were correctly classified for each true class (row), for the complete (a) and 

test (b) sets. (Legend: N Symp. – Non-symptomatic, Sym. – Symptomatic). 

 In plants inoculated with Xeu, discrepancies between observed and predicted 

classes are more evident in the non-symptomatic Xeu class in the observations recorded 

up to 10 days after infection. During this period, which included seven measurement 

dates of the non-symptomatic Xeu class, 53 observations were recorded below the 

predicted value of the developed model. In contrast, the healthy class accumulated 47 

observations above the predicted value during the same period. Furthermore, according 

to the confusion matrix results (All data), 10% (148) of the non-symptomatic Xeu 

observations were misclassified as healthy. Considering the period up to 10 days after 

infection (data not shown), out of the 150 observations wrongly classified as healthy, 100 

were from the non-symptomatic Xeu class. These results indicate that in the early stages 

of Xeu-induced disease infection, the symptoms developed in the plant leaflets are not 

strong enough for the developed model to distinguish them from healthy observations 

efficiently. Therefore, the non-symptomatic Xeu class, compared to other tested classes, 

exhibits the lowest model performance indicators (all data: accuracy 0.74, precision 0.78, 

recall 0.74, and F1-score 0.76). For the non-symptomatic stage, the actual observations 

presented a stable pattern until 8 DAI, and after a sharp drop was observed until 13 DAI, 

where the rate of infected leaflets increased up to 65%. A stable number of observations 

was maintained until 15 DAI, after which a period of exponential increase in observed 

 1 
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symptomatic spectral measurements was registered. After this day, all leaflets were 

symptomatic. The model was rigorous in discriminating non-symptomatic Xeu leaflet 

measurements after 9/10 DAI, presenting a percentage of error inferior to 10% (correctly 

classifying 64 of the 71 observations) when about 90% of the sampled leaflets (71 of the 

initial 81 assessments) still didn’t show any typical symptoms of the disease (Figure 10 

B). 

 For the prediction of the Pst disease samples, the non-symptomatic phase was 

very similar for both observed and predicted. Nevertheless, the prediction of the 

symptomatic phase showed irregularities between the five and seven days 

(corresponding to the dates were necrosis appeared). Is possible to observe that most 

of the Pst inoculated leaflets (79%) started to show the first symptoms of the disease 4 

DAI. The number of symptomatic sampled leaflets increased until 6 DAI, where all the 

leaflets assessed were symptomatic (Figure 10 C).  

4. Discussion 

 Plant infectious diseases are critical in agriculture and food security, impacting 

crop yields and quality. Understanding and effectively managing them is crucial for more 

sustainable agriculture, based on more preventive measures and early diagnosis. 

 The suitability of spectral phenotyping based on hyperspectral spectroscopy 

point-of-measurement (HS-POM) for diagnosing bacterial infectious diseases in tomato 

plants, namely bacterial speck and spot, was evaluated. In this approach, light 

penetrates the leaflet tissue and undergoes internal reflections, before ultimately being 

redirected to the spectrometer via a central fiber optics pinhole. This method ensures 

that all light reaching the sensor interacts with the leaf tissues, thereby maximizing the 

spectral information from all internal tissues, including any changes caused by the 

interaction between the host and bacteria.  
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Figure 10  Number of observed and predicted samples by date of measurement for 

healthy (A), Xanthomonas euvesicatoria diseased (B), and Pseudomonas syringae pv. 

tomato diseased (C) leaflets’ assessments. 

  

 

C 

A 

B 
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 An applied predictive model integrating an SVM algorithm showed the capacity 

to accurately classify healthy and diseased tomato leaflets at various stages of disease 

development (specifically healthy, non-symptomatic diseased Pst, non-symptomatic 

disease Xeu, symptomatic Pst, and symptomatic Xeu). Even before symptom 

appearance, it showed a classification accuracy of 74% for Xeu and 100% for Pst 

diseased leaflets measurements, and a weighted average accuracy, precision, recall, 

and F1-score of 85%.This model was, thus, capable of categorizing healthy, disease 

(both non-symptomatic and symptomatic), and disease leaflet tissues infected with 

distinct bacteria species (both before and after symptom appearance), being coherent 

with visual phenotyping and PCR results. These outcomes, thus, demonstrate the 

suitability of this technique for performing an early disease assessment and class 

distinction (according to the phytosanitary health status, and type of pathogen 

responsible for the infection). This is extremely valuable since crops in the field are 

generally exposed to variable environmental and phytosanitary conditions and 

vulnerable to different types of abiotic and biotic stresses (which may cause similar visual 

lesions, difficult to distinguish by the naked eye). Also, bacterial spot and speck of tomato 

can develop in 6 to 14 days, depending on several factors (e.g., environmental 

conditions, pathogen strain, infection severity, inoculum concentration, and the 

susceptibility of the plants’ variety) (Horst 2013, Borkar and Yumlembam 2016), and their 

spread among several plants in a production field is not immediate and may take time to 

occur. Thus, early diagnosis is crucial to prevent disease spread, promote preventive 

treatments, and lead to environmentally friendly practices, promoting precision 

agriculture principles. 

 LDA computation revealed spectral divergence between the different classes in 

study through LD1 and LD2 and uncovered relevant wavelengths for diagnosing the 

diseases caused by Pseudomonas syringae pv. tomato (Pst), and Xanthomonas 

euvesicatoria (Xeu). These were mostly located in the blue-green and red visible regions 

of the electromagnetic spectrum, corresponding to chlorophyll (mainly: 430 to 480 nm, 

and 640 to 700 nm) and carotenoid pigments' absorption spectra (i.e., 450 to 480 nm, 

520 to 580 nm, and 600 to 650 nm), indicating modifications in the photosynthetic 

pigment’s levels throughout the infection process. These findings are aligned with the 

impact of both bacteria species on host leaves’ pigments values during infection, which 

start prior to symptoms appearance and became more pronounced with the formation of 

chlorotic and necrotic lesions. In this medium / late stages of infection, the breakdown of 

chlorophyll, in particular, can result in a subsequent accumulation of pheophytins (brown 

pigments, whose maximum absorption peak is located at 660-670 nm, and secondary 
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peak around 430-450 nm), which also affect plant spectral behavior (Bhandari, Wang et 

al. 2015). Also, spectral divergences in the 700 to 800 nm range may indicate that 

structural components of leaves are affected during the infection process, resulting in 

the degradation of leaf structures along disease development. Spectral divergence 

between diseased leaves infected by different bacteria may be related to the production 

of specific molecules by each pathogen, which may affect the host spectral signature. 

As an example, Pst produces a phytotoxin called coronatine which alters chlorophyll 

fluorescence (by modifying the photosystem II – PSII) and can affect the absorption and 

scattering of light by plant tissues, leading to modifications in the spectra (Zhang, He et 

al. 2021). In turn, the host plant can activate different defense responses when in contact 

with distinct pathogens, triggering a series of biochemical and molecular responses, 

which also promote spectral modifications in the visible wavelength ranges. An example 

are phytoalexins (e.g., flavonoids), whose production was hypothesized to be related to 

increased plants’ spectral reflectance in the VIS range (Leucker, Wahabzada et al. 

2016). 

 Hence, the present research findings demonstrate that HS-POM holds promise 

as an effective, fast, and cost-effective overtime method for early diagnosis of two 

bacterial infections caused by distinct pathogen species in vivo tomato plants, and for 

unraveling specific host-pathogen spectral dynamics. In the future, it is advisable to 

conduct further analysis, entailing the expansion of the dataset under study, test various 

values for SVM algorithm parameters, and enhance the modeling algorithms, among 

other potential approaches. This study corroborates previous research performed by our 

team using HS-POM for the early detection of bacterial tomato spot caused by Xeu 

bacteria. The spectral response properties of disease tomato leaves presented a 

divergent behavior when compared to healthy tissues, even before symptom 

appearance. This tendency was more evident in the absorption regions of photosynthetic 

pigments (namely, chlorophyll). A Principal Component Analysis (PCA) allowed the 

identification of relevant discriminative wavelengths at approximately 454-654 nm (Reis-

Pereira, Martins et al. 2021), coinciding with the wavelengths identified by the LDA 

approach. 

 Other studies also demonstrated the potential of hyperspectral data and SVM-

based classification modeling for disease diagnosis, presenting similar model evaluation 

metrics.  As an example, Cen et al. (2022) studied the possibility of early detection of 

bacterial wilt in tomato by applying a portable hyperspectral spectrometer. Their model 

combined Genetic Algorithms and SVM and achieved overall accuracies (OA) of 90.7% 

in the distinction of healthy and symptomatic tissues. Tomaszewski et. al (2023) also 
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demonstrated the suitability of hyperspectral measurements and machine learning for 

the early detection of anthracnose, bacterial speck, early blight, late blight, and septoria 

leaf, using a temporally-aggregated approach. When all the data were analyzed, the 

researchers found that the best-quality classification approach (integrating a Ridge 

classifier) presented an F1 score ranging from 0.71 to 0.95 (0.84 average) for the period 

of the first two weeks from inoculation. Despite being possible to find research 

diagnosing different types of biotic stress agents in the same assay, they are usually 

more related to fungi identification. Scarce results can be retrieved for studies comparing 

the assessment of diseases caused by different types of bacterial species. 

 Besides tomato crop studies, hyperspectral measurements were also valuable to 

achieve disease diagnosis in several plant species with agronomic interest. For instance, 

Rumpf et al. (2010) studied the suitability of hyperspectral reflectance, SVM, and 

vegetation indexes (VIs) for detect and classify diseases on sugar beet leaves (namely, 

Cercospora leaf spot, leaf rust, and powdery mildew). Early differentiation between 

healthy and inoculated plants, as well as among specific diseases was achieved using 

SVM, registering accuracy values ranging from 65 to 90%. When data belonging to 

healthy and diseased leaves (including all the samples affected by the three different 

pathogens) was used, the classification model achieved an accuracy higher than 86%. 

Furthermore, Tian et. al (Tian, Xue et al. 2021) also proved the efficacy of spectroscopy 

and machine learning techniques for rice leaf blast infection from non-symptomatic to 

mild stages. An approach integrating an SVM algorithm achieved maximum classification 

accuracies of over 80% and 83% for the early infection stage of the 2018 and 2019 

experiments. 

 The desirable possibility of applying hyperspectral data for in-field detection and 

classification of diseases was also proved. Deng et al. (2019) also demonstrated the 

possibility of applying hyperspectral reflectance in-field detection and classification of 

citrus Huanglongbing disease. They developed an SVM learner which achieved 90.8% 

accuracy in healthy, asymptomatic, and symptomatic discrimination. Our team, likewise 

demonstrated the capability of using HS to diagnose in situ bacterial canker disease, 

caused by another Pseudomonas pathovar, specifically Pseudomonas syringae pv. 

actinidiae (also known as Psa). asymptomatic and symptomatic leaves were 

successfully discriminated through the computation of several modeling approaches 

involving different feature selection techniques, as well as multivariate analysis methods 

and machine learning algorithms. The best predictive classification model for 

discriminating the bacterial kiwi canker disease showed an overall accuracy of 0.85, with 

an F1-score (Reis-Pereira, Tosin et al. 2022). These findings suggest that hyperspectral 
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data can be successfully used to predict plant diseases both indoor and infield 

conditions, caused by different etiological agents (e.g., fungi, bacteria, and virus), in both 

herbaceous and woody crops. Despite these encouraging findings, it is important to 

highlight that comparison between different research can be challenging due to the 

pathogens in study (e.g., generally disease detection using HS is mostly performed for 

fungal infections), host-pathogen specific interactions, number of samples used, number 

of classes analyzed, moment of disease assessment (before or after symptoms 

appearance, in a specific date or overtime), environmental and experimental conditions 

on the moment of data acquisition, among others. Thus, future studies using tomato 

plants should be performed to evaluate the efficacy of this approach. 

 In summary, point-of-measurement Hyperspectral Spectroscopy devices 

combined with applied predictive models seem to be suitable for spectral phenotyping of 

bacterial-infected tomato leaflets. Nevertheless, HS-POM approaches as plant disease 

diagnostic methods are still in a very initial phase of development, and their Technology 

Readiness Levels (TRLs) must be improved. Standardized protocols for hyperspectral 

data acquisition should be developed aiming to uniformize the diagnosis processes and 

reduce noise and undesired spectral interferences. Also, more research on different 

host-pathogen interactions must be performed. Classification models developed under 

controlled conditions can be highly effective and constitute an important step for 

improving and maturing the diagnosis process. In fact, these models usually can detect 

symptoms earlier than in field assays (since optimal conditions for bacteria development, 

dissemination, and infection can be recreated), making the process faster and specific 

to the host-pathogen in study. Hence, the more challenging in-field application of HS-

POM for disease diagnosis, posing additional complexities due to sensing system 

configurations (e.g., light source, probe position, among others), can be established and 

improved.  

 Future studies must be conducted to complement these gaps and validate the 

application of this technique as a suitable tool for accurately predicting different host-

pathogen interactions and their impact on the crops' spectral signature. Further 

methodological developments are necessary to address these challenges and enhance 

the suitability of HS-POM for real-time disease monitoring and precision agriculture 

systems. Moreover, the implementation of feature selection techniques and 

dimensionality reduction approaches can help identify relevant wavelengths for 

distinguishing crop diseases, making possible the development and production of more 

cost-effective multiband sensors. These devices can be integrated into different 
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platforms, enabling spectral data acquisition at different levels, such as leaf, single-plant, 

and canopy scales. 

5. Conclusion 

 The present research explored the application of in-vivo POM hyperspectral 

spectroscopy combined with applied predictive modeling to classify bacterial leaf 

diseases in tomato crop, caused by Pseudomonas syringea pv. tomato and 

Xanthomonas euvesicatoria. Healthy leaves showed a characteristic spectral signature 

of green and photosynthetically active vegetation, while symptomatic leaves presented 

differences in their spectral signature in the VIS region. Spectral differentiation between 

healthy and diseased leaves was observed, even in the early stages of the infection 

process, when diseased samples didn’t present any visual symptom (asymptomatic 

stage). Furthermore, plants inoculated with Pst bacteria also revealed a divergent 

spectral behavior from the ones infected with Xeu, indicating that this approach may be 

suitable for differentiating the etiological agents. Colony PCR also validated the 

effectiveness of the infection process for each sample group. The developed model 

revealed a classification accuracy for the test set of 100% for Pst disease leaflets without 

any visual symptom, and of 74% for Xeu disease leaflets also in a non-symptomatic 

stage of infection. The developed model achieved a weighted average accuracy, 

precision, recall, and F1-score of 85% for the test set. These findings strength the 

applicability of applied predictive classification modeling using HS-POM to early detect 

bacterial crop diseases. Nevertheless, complementary, and additional studies are 

recommended to unravel the host-pathogen interactions and their impact on the crop 

spectral signature. More economic, multiband devices can be developed hereafter 

considering the features selected for crop disease discrimination. Thus, different 

agronomic tasks (including mapping, monitoring, scouting, and treatment of plant 

diseases) can be performed more accurately with this methodology, fulfilling the 

precision agriculture concept. Spectroscopy sensors can also be mounted on diverse 

platforms, creating different functioning measurement systems, which can assess 

spectral data on distinct levels (namely, leaf, single-plant, and canopy scale). 
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Highlights 

• DD-SIMCA as a one-class classifier was applied to Vis-NIR spectroscopic data 

for healthy tissue authentication. 

• DD-SIMCA classified spectroscopic data measured on healthy tissues as target 

class members.  

• DD-SIMCA identified biological data measured on diseased tissues as non-target 

class members.  

• MCR-ALS successfully retrieved pure Vis-NIR spectral profiles of healthy and 

biological diseased tissues. 

Abstract 

 This contribution proposes a promising non-destructive methodology for the early 

diagnosis of bacterial diseases in tomato plants leveraging hyperspectral point-of-

measurement (POM) data acquisition and chemometric processing tools utilizing Data-
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Driven Soft Independent Modeling of Class Analogy (DD-SIMCA) and Multivariate Curve 

Resolution − Alternating Least-Squares (MCR-ALS). The present study aims to conduct 

a classification task to deal with the authentication problem leading to detaching the 

target class of control healthy plant leaflet tissues from a non-target class of plant leaflet 

tissues inoculated with the bacteria Pseudomonas syringae pv. tomato, Pst, and 

Xanthomonas euvesicatoria, Xeu at different stages of evolving bacterial disease. These 

plant-pathogen interactions result in a very broad alternative class and do not form a 

specific class, making it inappropriate to apply a discrimination task. Thus, hyperspectral 

POM data collected in healthy tomato leaflets were correctly identified throughout the 

rigorous DD-SIMCA optimization as members of the target class with 100% sensitivity in 

the training step. Subsequently, in the validation step, DD-SIMCA successfully 

differentiated these healthy samples from those inoculated with Pst or Xeu bacteria, even 

before the manifestation of macroscopic lesions associated with the diseases, detecting 

changes as early as 72 hours post-bacterial inoculation. The full distance that acts as a 

classification analytical signal calculated in the process of building the DD-SIMCA model 

was able to predict the distance value from which non-target class of samples are located 

farness the acceptance threshold. This classification result indicates a more advanced 

stage of bacterial infection, reflecting evident spectral modifications resulting from host-

pathogen interactions, preceding phenotypical changes. On the other hand, non-target 

class of samples with higher proximity to the acceptance boundary suggested that they 

were at earlier stages of infection compared to more distant ones, presenting lower 

distance values. MCR-ALS constrained analysis allowed the description of the bacterial 

inoculation process, detecting the impact of Pst bacteria on diseased tissues was 

observed in the pure spectral bands between 430 and 475 nm, while the influence of 

Xeu was identified in the pure spectral range from 675 to 800 nm. These findings indicate 

that the hyperspectral POM technology is sufficiently sensitive to be used in acquiring 

biological data with suitable chemometric modeling for early disease diagnosis and 

prompt intervention, leading to sustainable agricultural practices, and ultimately 

enhancing crop yield and food security. 

Keywords 

Plant disease diagnosis, Hyperspectral spectroscopy, MCR-ALS, Healthy tissue 

authentication, One-class modeling 

1. Introduction 

 Cutting-edge sensing technology for acquiring hyperspectral spectroscopic data 

(spectrum per sample) is now ubiquitously used to monitor and diagnose plant diseases 
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(Sankaran, Mishra et al. 2010, Mahlein 2016). An additional effort is being made to apply 

them at the early stages of pathogen infection, spanning from the incubation period, even 

when the symptoms are not visible to the human vision. This strategy allows more 

accurate and targeted plant protection measures (Cheshkova 2022). Currently, 

hyperspectral point-of-measurement (POM) sensing has already enabled a fast and non-

destructive indirect diagnosis of plant diseases at an early stage of infection  (Reis 

Pereira, Santos et al. 2023, Tomaszewski, Nalepa et al. 2023) in contrast to time-

consuming and destructive direct diagnostic approaches based on biochemistry assays, 

which cannot be successfully applied in this early non-symptomatic phase of the infection 

process. 

 Hyperspectral spectroscopic datasets acquired throughout the early plant-

pathogen interactions are unresolved spectral overlapping profiles (Atanassova, Nikolov 

et al. 2019), containing a complex mixture of metabolic changes in tissues with the 

characteristic reflection band at 550 nm (Lowe, Harrison et al. 2017). Different 

multivariate processing tools have been reviewed to decode useful information on 

hyperspectral spectroscopic data collected during host-pathogen interactions (Jackulin 

and Murugavalli 2022). However, the review paper (Jackulin and Murugavalli 2022) 

interchanged the meaning between classification and discrimination tasks, which has 

been recently clarified in the relevant literature (Pomerantsev and Rodionova 2021). 

Selected research reports on bioanalytical applications that couple a variety of cutting-

edge sensing technologies with discrimination (Naidu, Perry et al. 2009, Liu, Gu et al. 

2015, Fernández, Leblon et al. 2021) and classification (Pereira, Milori et al. 2010, 

Sankaran, Mishra et al. 2010, Atanassova, Nikolov et al. 2019) models for a reliable crop 

health-monitoring platform are briefly examined. 

 Conventional hard partial least-squares − discriminant analysis (PLS-DA) was 

applied to spectroscopic data containing healthy wheat (representing the control group 

without inoculation, denoted as class one) and another class of wheat inoculated with 

three predominant races of Puccinia striiformis f. sp. tritici at three concentrations level. 

This analysis was conducted subsequent to the manifestation of symptoms, aimed at 

differentiating leaves infected and uninfected by stripe rust pathogen (Liu, Gu et al. 

2015). Prediction results suggested that when the ratio of the training set to the testing 

set was 4:1, the model had better recognition of test samples in their respective classes 

than other PLS-DA models (Liu, Gu et al. 2015). The reasonability of revealed PLS-DA 

performances in various training-to-testing set ratios (Liu, Gu et al. 2015) is attributed to 

the distinctiveness of one class, which exhibits a more consistent and compact grouping 

consisting of healthy wheat samples. Whereas another class is very broad and does not 
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form a specific class at all.  This diverse class encompasses biological tissues damaged 

in different ways throughout plant-pathogen interactions (Liu, Gu et al. 2015), generating 

non-linear data that the linear PLS‐DA model fails to discriminate effectively 

(Pomerantsev and Rodionova 2018). From an operational chemometric viewpoint, non-

linear discriminant models are recommended when both classes are available in a non-

linear case instead of using linear discriminant models like PLS-DA. 

 In this perspective, a non-linear discriminant model based on a support vector 

machine − discriminant analysis (SVM-DA) was applied to a dataset composed of tissue 

samples comprising 1000 healthy pixels and 1000 infected pixels, displaying visible 

symptoms (Fernández, Leblon et al. 2021) for disease diagnosis. Nevertheless, the 

effectiveness of a non-linear discriminant model is compromised during the initial phases 

of the infection, especially when external visual symptoms are absent. In such cases, 

where the healthy class (control group) lacks crucial information on the composition of 

another class of samples acquired from plant-pathogen interactions, the non-linear 

discriminant model faces challenges integrating their profiles during the training phase. 

Otherwise, the discriminant model will fail because it cannot properly assign new 

samples that do not belong to any predefined classes in the training phase (Rodionova, 

Titova et al. 2016). 

 Alternatively, a one-class classification (OCC) model (Rodionova, Titova et al. 

2016) is a wise choice for a rigorous approach (Rodionova, Oliveri et al. 2016), i.e., one 

which only uses information regarding the target class (healthy samples) and does not 

utilize any information about the non‐target classes (e.g., samples under plant-pathogen 

interaction), even when the data regarding such extraneous classes are available. 

 A classical soft independent modelling of class analogy (SIMCA) (Wold and 

Sjöström 1977) as an OCC was trained using only spectroscopic data of healthy plants 

(control group) as the target class (Pereira, Milori et al. 2010, Atanassova, Nikolov et al. 

2019). The original SIMCA (Wold and Sjöström 1977) was developed in its simplest 

class-modeling version, where the decision rule relies on residual variance lately called 

orthogonal distance (Pomerantsev 2008) that belongs to the Q-statistics (Bro and Smilde 

2014) further referred to as 𝑞𝑖 of a given object 𝑖 (Jouan-Rimbaud, Bouveresse et al. 

1999). This metric is used to delineate an acceptance area, as detailed in the 

Pirouette_Toolbox guide (Infometrix 2014) used for creating SIMCA models. However, 

the developed classical SIMCA model (Pereira, Milori et al. 2010, Atanassova, Nikolov 

et al. 2019) overlooks the statistical leverage scores (Mazivila and Borges Neto 2021), 

usually represented as ℎ𝑖 for a given object 𝑖 (Jouan-Rimbaud, Bouveresse et al. 1999) 
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and recently termed as score distance (Pomerantsev 2008). These approaches focused 

on the classical SIMCA that does not incorporate the advancements introduced in its 

subsequent four upgrade versions (Vitale, Cocchi et al. 2023), marking an evolution 

since its interception as the pioneering model which have evolved over time since the 

pioneering model (Wold and Sjöström 1977). SIMCA initially produced a description of 

the target class of objects and, subsequently, detected whether a new object resembles 

the target class (namely healthy or infected plants at a non-symptomatic stage) or 

diverges from it (plants exhibiting developed symptoms of the disease) (Pereira, Milori 

et al. 2010, Atanassova, Nikolov et al. 2019). 

 The present contribution extends prior studies based on the original SIMCA 

(Pereira, Milori et al. 2010, Atanassova, Nikolov et al. 2019), with a grounding-breaking 

perspective, including the application of the data-driven version of SIMCA (DD-SIMCA) 

(Rodionova, Titova et al. 2016) as a one-class classifier. In addition to the DD-SIMCA 

with decision rule (Pomerantsev and Rodionova 2020) based on a parallel data-driven 

estimation (Pomerantsev and Rodionova 2014), multivariate curve resolution − 

alternating least-squares (MCR-ALS) constrained analysis (Mazivila and Santos 2022) 

was applied. MCR-ALS bilinearly decomposed the contribution of the hyperspectral Vis-

NIR responsive constituents to the entire signal. This facilitated the extraction of pure 

spectral signatures of either target class (specifically healthy plants or infected plants at 

a non-symptomatic stage) or not (plants with developed disease symptoms). 

 In this study, two hyperspectral POM datasets were acquired from two 

experimental biological assays to validate plant-pathogen interactions during infection 

and disease phenotyping. These hyperspectral POM datasets were collected in healthy 

tomato leaflets and diseased leaflets infected by Pseudomonas syringae pv. tomato (Pst) 

and Xanthomonas euvesicatoria (Xeu) during at least thirteen days after the artificial 

infection (Figure 1). DD-SIMCA optimization was performed by using only healthy 

samples (control group) in the training phase to establish a boundary around a class of 

interest (green line in Figure 1D) that helps to detach the target class of samples of the 

control (healthy tomato leaflets from other non-target classes (Pst diseased and Xeu-

infected tomato leaflets) in the validation phase. Subsequently, MCR-ALS was subjected 

to each class assigned by DD-SIMCA, aiming to appraise pure profiles of samples, 

providing valuable additional information that might aid in developing real-time plant 

disease management strategies. Available results graphically summarized in Figure 1 

provide a conceptual representation, anticipating that: 
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• The first hyperspectral POM data (Figure 1C), acquired from tomato leaflets 

before the bacteria inoculation assays (Figure 1A), were subjected to DD-SIMCA. 

This OCC model was trained using only a target class of healthy samples (Figure 

1D), which classified all validation samples inside the decision area (green line in 

Figure 1E) as healthy samples with strong evidence demonstrated through the 

MCR-ALS retrieval of healthy tomato leaflet pure spectral profile (Figure 1F) that 

was found to be similar to the validation samples profile (Figure 1G). Outside the 

decision area in the validation phase, samples might be allocated non-target 

class of samples (plants inoculated with either Pst or Xeu), as will be 

demonstrated throughout this paper. 

 

Figure 1 Analytical flowchart showing that hyperspectral point-of-measurement (POM) 

was performed in tomato leaflet tissues before bacterial inoculation (A, B). A part of this 

biological data was uploaded in MATLAB environment as the training set (C), used as a 
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target class in a Data-driven Soft Independent Modelling of Class Analogy (DD-SIMCA) 

model to establish the acceptance boundary (D). The remaining healthy samples were 

used as the validation set to check authenticity, revealing that all samples were in the 

acceptance boundary (E). In DD-SIMCA each sample can be depicted in the coordinates 

𝑙𝑛(1 + ℎ𝑖/ℎ0)    𝑣𝑠    𝑙𝑛(1 + 𝑞/𝑞0), together with the two tolerance boundaries 

(acceptance area and outlier threshold). The fingerprint Vis-NIR spectral profile of the 

healthy tomato leaflet tissue spectra was then successfully retrieved in the training (F) 

and validation (G) datasets by Multivariate Curve Resolution − Alternating Least-Squares 

(MCR-ALS).  

2. Experimental setup of plant growth and data acquisition 

2.1. Plant growth and bacterial inoculation assays 

 In a walk-in plant growth chamber (temperature: 25-27 ºC, humidity: 60%, 

photoperiod: 12:12 h, light intensity: 30 W), eighteen tomato plants (Solanum 

lycopersicum L.) cv. ‘Cherry’ were grown in 200 mL pots containing a commercial potting 

substrate. The plants were separated into two equal sets. The second set was inoculated 

one week later than the first one, as depicted in Figure 2C. This approach aimed to 

assess the impact of plant age on infection dynamics, especially observing the evolving 

pace of the infection. In each set, the nine plants were grouped in three triads, which 

were physically separated. The first group was sprayed with only sterile distilled water 

and was used as a control (i.e., it was only composed of healthy plants). The second 

group was inoculated with Pseudomonas syringae pv. tomato DC 3000, the etiological 

agent responsible for causing the disease bacterial speck of tomato. The third one was 

infected with Xanthomonas euvesicatoria, the bacteria responsible for the tomato 

bacterial spot disease. The inoculation process was performed using our Lab’s 

previously optimized protocol (Reis Pereira, Santos et al. 2023). Bacterial suspensions 

of each pathogen presented a concentration of 1 × 108 cells mL-1.  The plants were 

subsequently covered in transparent polythene bags for 48 hours to increase the 

humidity levels, facilitating bacteria entry into plant tissues through natural openings 

(Lamichhane 2015). 

 The viability of the bacterial cultures used in the infection assays was tested by 

plating 20 µL of a 1 ×  108 cells mL-1 aqueous solution of Pst and an aqueous solution 

of Xeu (1 ×  108 cells mL-1, 20 µL) in Petri dishes containing KB and YDC media, 

respectively. Bacterial growth was visible 48 hours after both nutrient media, confirming 

the bacterial viability at the moment of the inoculation (Fernandes, Albuquerque et al. 

2017). Furthermore, on the last spectral measurement date, sample preparation for 
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bacterial isolation was made to verify the presence of the pathogen species inoculated 

in each group using a standard approach based on Colony PCR. 

2.2. Hyperspectral POM data acquisition 

 Spectral phenotyping was performed in a dark room, through the assessment of 

hyperspectral POM of the adaxial side of in vivo tomato leaflets (both healthy and 

diseased) (Figure 2A). Hyperspectral POM data acquisition was made on the nine plants 

in the study on nine distinct random points of the 4th, 5th, and 6th expanded leaflets. 

The setup configuration included a Hamamatsu Photonics K.K. TM Series C11697MB 

mini-spectrometer with USB 2.0 interface connected to a PC (processor Intel(R) Core 

(TM) i7-10510U CPU @ 1.80 GHz   2.30 GHz, RAM 16.0 GB, graphic NVIDIA ® 

GeForce®) through an evaluation software (SpecEvaluationUSB2.exe). This portable 

mini-spectrometer encompasses a wavelength range spanning from 200 to 1100 nm, 

with a spectral resolution of 0.6 nm (Figure 2D). It comprises a transmission optical fiber 

bundle (FCR-7UVIR200-2-45-BX, Avantes, Eerbeek, The Netherlands) covering 200-

2500 nm, a stainless-steel slitted reflection probe, and a white LED (390 to 800 nm). 

Notably, conversion factors delineating how to translate sensor pixel numbers into 

specific wavelengths were unavailable (Hamamatsu 2023). While the spectrometer 

acquires information across the 200 to 1100 nm range, the LED emits light solely within 

the Vis-NIR region, specifically from 400 to 800 nm, which was the spectral information 

used in the plant measurements. During the plant measurements the probe was 

positioned 0.5 cm above the leaflet surface. This arrangement allowed for evaluating the 

leaflet’s spectral signal and promoting its direct transmission to the mini-spectrometer’s 

entrance lens. The light source was positioned below the sample to supply uniform 

enlightenment to all the leaflets’ abaxial sides (Figure 2A), measuring light transmittance. 

The hyperspectral POM data were directly exported to .CSV files and subsequently 

imported to the MATLAB environment for data processing. 

2.3. Bioanalytical monitoring – disease evolving 

 Visual and spectral phenotyping procedures started 24 h before the bacteria 

inoculation procedures, for both process assays (Figure 2B, C). All plant leaflets were 

visually screened to assess noticeable phenotypic modifications (e.g., modifications in 

color, texture, or other visible traits) from the ones expected to be found in healthy 

tissues. Hyperspectral POM data acquired at this stage were divided into training and 

validation datasets. During the training phase, DD-SIMCA was optimized using healthy 

samples (green dots) from the training dataset, successfully classifying (for tolerance 

level) all samples within the acceptance area (green line in Figure 1D). Subsequently, 
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the trained model was able to allocate all samples from the validation dataset within the 

defined acceptance area intended exclusively for healthy samples as depicted by green 

dots in Figure 1E, thereby confirming their authentication. The retrieved pure spectral 

signatures from both training (Figure 1F) and validation (Figure 1G) datasets were similar 

spectral fingerprints, suggesting that MCR-ALS results might be useful for in-depth 

forensic analysis. 

 The measurements were restarted 48 hours after infection, after the plastic bag 

removal from the tomato plants. They were performed daily before the symptom’s 

observation (homogeneous visual phenotyping) and after the observable lesion’s 

appearance (heterogeneous visual phenotyping in Figure 2F). The data collected at 

different points of diseased leaflets were carefully authenticated based on DD-SIMCA. 

The fingerprinting profiles were measured for both target (healthy) and non-target class 

of samples (diseased measurements) (Figure 2E) with similar physical spectral 

characteristics, making it necessary to apply a proper chemometric model, as will be 

demonstrated in the next sections. 

2.4. Plant diseases modeling strategies and software 

 Hyperspectral POM data (Figure 1B) acquired from the two data sets were 

subsequently imported into MATLAB R2022a workspace (Figure 1 C) for chemometric 

data analysis. A mathematical algorithm based on the Savitzky-Golay filter (Savitzky and 

Golay 1964) was computed for spectral smoothing using a third-degree polynomial with 

a fifteen-sensor window as a part of the data pre-processing step. Subsequently, an 

additional mathematical pre-processing algorithm relying on Standard Normal Variate 

(SNV) (Barnes, Dhanoa et al. 1989) was applied. The application of the pre-processing 

algorithms on hyperspectral POM data aimed at performing spectral signal correction, 

along with the minimization of dispersive effects (Figure 2D). Therefore, the chemometric 

model might focus on the biochemical/structural composition dynamic of the studied 

leaflets (healthy and infected) with higher efficiency, requiring less principal components 

(PCs in the case of principal component analysis PCA). 

 Multivariate data processing involving DD-SIMCA that operates as dual 

PCA/SIMCA (Pomerantsev and Rodionova 2014) was conducted using DDSGUI, a 

graphical user interface (Zontov, Rodionova et al. 2017) freely available 

(https://github.com/yzontov/dd-simca.git). The MCR-ALS using GUI (Jaumot, de Juan et 

al. 2015) freely available online at http://www.mcrals.info. PLS_Toolbox R9.2.1 

(Eigenvector Research 2023) was employed for PCA bilinear data decomposition. 

https://github.com/yzontov/dd-simca.git
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 All chemometric tasks were performed in a MATLAB environment R2022a. A brief 

fundamental theory on how DD-SIMCA and MCR-ALS operate will be explained below 

in connection with specific examples involving (i) hyperspectral POM data acquired 

throughout the early disease detection that was defined as a stage when the bacteria 

had already inoculated in the plant; however, its symptoms were not visible to the human 

eye (Figure 2C) and (ii) hyperspectral P M data collected during the visual lesion’s 

appearance (Figure 2C) to provide in-depth understanding on ground-breaking research 

herein proposed pedagogically. 

 

Figure 2 Hyperspectral point-of-measurement (POM) was performed in the adaxial side 

of in vivo tomato leaflet tissues belonging to the 4th, 5th, and 6th leaves (A). A spectrometer 

combined with an optical fiber bundle with a reflection probe was used to acquire Vis-

NIR spectroscopic data. A white LED was placed beneath each leaflet to provide uniform 

light to all the sampled surfaces. Spectral measurements were initiated 24 hours before 

bacteria inoculation in all the plants in the study when all tissues presented the 

characteristic phenotype of healthy leaflets (B). The bioanalytical procedures involved 

performing data acquisition and visual phenotyping in two bacterial inoculation assays, 

using two distinct groups of tomato plants, and initiated with one week difference (first 

assay represented in blue, and second assay in red, DAI corresponds to the designation 

‘Days after inoculation’) (C). The host-pathogen interactions analyzed involved the usage 
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of Pseudomonas syringae pv. tomato (Pst) and Xanthomonas euvesicatoria (Xeu) 

belong to two different species and genera but are responsible for causing similar 

symptoms in tomato-diseased tissues. The hyperspectral data collected was pre-

processed using an algorithm based on Savitzky-Golay filter for spectral smoothing and 

a Standard Normal Variate (SNV) to minimize dispersive effects (D). This procedure was 

performed over time, registering the appearance of the first macroscopic lesions caused 

by the bacteria in the study until their full development (E, F). 

3. Results and discussion 

3.1. Early disease detection at a stage when Pst and Xeu bacteria had already been 

inoculated in the plant leaflets non-symptomatic at visual inspection through 

hyperspectral POM data with DD-SIMCA and MCR-ALS 

 This subsection discusses the selected multivariate results on hyperspectral 

POM acquired in the two datasets (Figure 2C) and supplementary material. The follow-

up on the evolution of tomato disease in the two sets of data allows for confirming the 

obtained results with a broader generalization of the acquired models. The first results 

correspond to the data obtained 72h after bacterial inoculation of tomato plants, since all 

leaflets were diseased but non-symptomatic. In turn, the results at 96h are also reported 

since they correspond to the date when Pst inoculated plants started to reveal the first 

macroscopic lesions (Figure 2C). Nevertheless, the Xeu inoculated plants remained 

phenotypically unchanged. Thus, these two dates were considered fundamental for the 

study of early bacterial disease diagnosis in tomato in the present study. 

 The multivariate samples involving hyperspectral POM data were acquired at a 

stage after the inoculation of Pst and Xeu bacteria into the plant leaflets, despite the 

absence of symptoms at the macroscopic level level (visual phenotyping). At this stage, 

the plant-pathogen interactions originated a non-linear data system (Figure 2C, E). 

These non-linearity systems result from the diverse damages inflicted on biological 

tissues during plant-pathogen interactions within the validation group, contrasting to the 

control group (healthy samples). Consequently, the application of DD-SIMCA, known for 

its quadratic approach (Pomerantsev and Rodionova 2018), became necessary to 

successfully models this non-linear data system. DD-SIMCA chemometric model under 

a rigorous approach (Rodionova, Oliveri et al. 2016) was developed by using only the 

target class composed of healthy samples herein denoted as the control group with 

acronym C (Figure 3B). This one-class modeling under rigorous approach employs a 

decision rule on the membership of the class that the threshold delineates the 

acceptance area, involving a two-step procedure. 
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 The first step in the DD-SIMCA framework was the application of PCA 

(Rodionova, Kucheryavskiy et al. 2021) to the training dataset (𝐼 × 𝐽) derived from the 

target class (C samples in Figure 3B) as a rigorous approach (Rodionova, Oliveri et al. 

2016), containing a data matrix D with dimensions of 57 × 971 (Figure 3A). Where I refers 

to the number of target class of samples or objects (57) while J corresponds to Vis-NIR 

variables (971). These Vis-NIR spectroscopic data were mathematically pre-processed 

(Figure 2D) and subsequently processed according to Equation (1): 

D = TPT +   E                                                                                                                               (1) 

where T = {𝑡𝑖𝑎} is the (𝐼 × 𝐴  𝑜𝑟 57 × 𝐴) scores matrix; 𝐏 = {𝑝𝑗𝑎} is the (𝐽 × 𝐴  𝑜𝑟 971 × 𝐴) 

loadings  matrix; E = {𝑒𝑖𝑗} is the (𝐼 × 𝐽  𝑜𝑟 57 × 971) matrix of residual; 𝐴 is the number 

of PCs required to explain a given data set, 3 PCs were required to explain D. 

 In the second step of the DD-SIMCA framework, PCA results were employed to 

calculate two meaningful distances for each sample or object 𝑖 = 1, … . , 𝐼 of the training 

set (𝐼 × 𝐽). They were already referenced in the Introduction section as ℎ𝑖 linked to score 

distance and 𝑞𝑖 associated with the orthogonal distance of a given object 𝑖. The score 

distance is more exactly ℎ𝑖 refers to the position of a sample within the score 

multidimensional space (Rodionova, Oliveri et al. 2016), which can be computed as the 

squared Mahalanobis distance between the projection of the point and the 

multidimensional subspace origin (Rodionova, Kucheryavskiy et al. 2021) following 

Equation (2): 

ℎ𝑖 = t𝑖
𝑡(T𝑡T)−1t𝑖   =  ∑

𝑡𝑖𝑎
2

𝜆𝑎

𝐴

𝑎=1

                                                                                                    (2) 

where eigenvalues 𝜆𝑎 associated with the eigenvectors, 𝑎 = 1, . . , 𝐴, are the diagonal 

elements of matrix T𝑡T.  

 The orthogonal distance is more exactly 𝑞𝑖 characterizes a sample distance to 

the score multidimensional space (Rodionova, Oliveri et al. 2016), which is calculated as 

the sum squared residuals according to Eq. 3. Chemometrically speaking, 𝑞𝑖 is the 

squared Euclidean distance between a data point related to the object, and the PC space 

computed in the original variable space (Rodionova, Kucheryavskiy et al. 2021). 

𝑞𝑖 = ∑ 𝑒𝑖𝑗
2

𝐽

𝑗=1

                                                                                                                                    (3) 

 The contribution from a sum of both distances ℎ and 𝑞, whose values follow a 

chi-square distribution (Pomerantsev 2008) are employed to estimate the full distance 
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(FD) as recently introduced in the relevant literature (Rodionova and Pomerantsev 2020) 

through Equation (4).  

𝐹𝐷 =   𝑁ℎ

ℎ

ℎ0
 + 𝑁𝑞

𝑞

𝑞0
                                                                                                                (4) 

where parameters ℎ0 and 𝑞0 are the scaling factors while 𝑁ℎ and 𝑁𝑞 are the number of 

the degrees of freedom (DoF). These scaling factors and DoFs are considered unknown 

a priori and subsequently estimated by using a parallel data-driven approach 

(Pomerantsev and Rodionova 2014) through a classic regression in our regular dataset 

without outliers (Figure 3B) instead of using a robust one, achieving 𝑁ℎ = 4 and 𝑁𝑞 = 5 

throughout the DD-SIMCA optimization.  

 One of the ground-breaking strategies of this contribution, when compared to the 

previous ones (Pereira, Milori et al. 2010, Atanassova, Nikolov et al. 2019), is the flexible 

way of defining the acceptance area established by inequality in a selected confidence 

level 𝛼-value (for instance, 0.007262 in Figure 3B). The flexibility enables the 

establishment of the critical full distance (𝐹𝐷𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) with a tolerance level (1 − 𝛼)100% 

depicted in Figure 3B, which is mathematically computed according to Equation (5): 

𝐹𝐷𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝑥−2 (1 − 𝛼, 𝑁ℎ +  𝑁𝑞)                                                                                         (5) 

where 𝑥−2 is the quantile of the chi-squared distribution. From the inequality, when a 

sample presents 𝐹𝐷 ≤  𝐹𝐷𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, it is classified as belonging to the target class in the 

case of rigorous OCC model. Whereas if a sample shows 𝐹𝐷 ≥  𝐹𝐷𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, the sample 

is not compatible with the profile characteristics of the target class. From an operational 

perspective, 𝐹𝐷 statistics is connected to the so-called classification analytical signal 

(Pomerantsev, Vtyurina et al. 2023) in the DD-SIMCA, useful for multiple purposes.  

 It is worth highlighting the importance of the acceptance area in the DD-SIMCA 

performance in each confidence level that specifies a type I error in decision-making 

connected to a false negative decision. From this perspective, an evaluation of the 

acceptance area with a confidence level 𝛼-0.007262 (green line) displayed in Figure 3B 

reveals that a training sample well-identified as “C 3” was classified as a regular one in 

the acceptance border. However, if the confidence level 𝛼-value is changed (for instance) 

to 𝛼-0.01, “C 3” might be classified as an extreme sample as graphically demonstrated 

in (Mazivila and Borges Neto 2021). Another tolerance boundary is the outlier threshold 

(O) introduced for a given 𝛾-value (for instance, 0.01 in Fig. 3B), which can be 

adequately computed according to Equation (6):   

𝑂𝛾 = {(ℎ, 𝑞): 𝐹𝐷 >  𝑥−2 ((1 − 𝛾)
1
𝐼 , 𝑁ℎ  +  𝑁𝑞)}                                                        (6) 
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where the position of the outlier border relies on 𝐼-size of the training set (𝐼 × 𝐽), i.e., the 

greater 𝐼-size is, consequently the farther the outlier border will be. 

 Finally, DD-SIMCA training and validation results (Figure 3B, C) can be displayed 

by using a two-dimensional plot (Pomerantsev and Rodionova 2014), where each object 

(sample) is often shown in the coordinates 𝑙𝑛(1 + ℎ𝑖/ℎ0)    𝑣𝑠    𝑙𝑛(1 + 𝑞/𝑞0), together 

with the two tolerance boundaries (acceptance area and outlier threshold). 

 A rigorous OCC was developed, meaning the DD-SIMCA optimization was 

completely based on a target class composed of healthy samples (non-symptomatic 

plants) in a total of 57 that were correctly attributed as members of the target class Figure 

3B with a sensitivity of the training phase equal to 100%. An additional 

‘validation data set’ with 186 samples loaded to MATLAB Workspace (Figure 3A) with 

a complex composition (24 samples of the target class or control group in the validation 

set with acronym VC, 81 samples inoculated with Pst bacteria with acronym P, and 81 

samples inoculated with Xeu bacteria with acronym X) to help in the OCC model 

validation. 

 DD-SIMCA results depicted in Figure 3C revealed that OCC was able to delineate 

the target class (VC) consisting of healthy samples (non-symptomatic plants) located 

within this acceptance boundary (green line) that detaches its members from other non-

target classes (P and X), meaning a successful authentication task. In this Figure 3C, 

the sample with higher distance (“P 67”) revealed that its bacterial infection stage is 

likely more advanced when compared to the healthy samples, presenting a higher value 

than the FD statistics (Equation 4). In contrast to sample “P 67”, samples “P 33”, 

“P 42”, “P 49”, “P 63”, and “X 31”, “X 52”, “X 54” barely surpassed the threshold 

established in the selected acceptance level (green line) suggesting that the disease 

phase of these leaflets was at an earlier stage. This enables to draw some findings on 

the sensitivity and specificity of the validation phase in the context of a rigorous OCC 

model built using only the target class as pointed out in the literature (Pomerantsev and 

Rodionova 2021), as well as taking into consideration that the real health-condition (non-

symptomatic or symptomatic) of the alternative classes (P and X) included in 

‘validation data set’ was unknown, as follows  

• Sensitivity can be properly calculated according to Equation (7) in the rigorous 

DD-SIMCA since throughout the optimization phase (Figure 3B) only employed 

a set of the target class of samples (healthy plants or control group with acronym 

C). Therefore, no specificity value might be found because the attribution of non-

target class of symptomatic plant samples is unknown. Samples belonging to the 
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target class (VC) were correctly attributed to VC, corresponding to true positive 

in Equation (7), thereby achieving a test sensitivity of 100%. It is worth directing 

the readers to the pertinent literature (Pomerantsev and Rodionova 2021) for 

comprehensive guidance on  computing figures of merit across various of 

approaches. For instance, within compliant OCC optimization, only specificity 

might be computable, while the remaining figures of merit necessitate the 

confusion matrix (Pomerantsev and Rodionova 2021). This requirement is 

applicable not only in intricate scenarios of multi-class classification but also in a 

simpler case of binary discrimination (Pomerantsev and Rodionova 2021). 

• Although 72h after alternative classes (P and X) had been inoculated with Pst 

and Xeu bacteria, many samples were located below the acceptance threshold 

and categorized as belonging to the target class (green dots). These results 

indicate that, at this time span from inoculation, their health-condition is in a non-

symptomatic state, similar to the control group identified as VC during the 

validation phase. Whereas a few numbers of samples of these alternative classes 

(P and X) are located beyond the acceptance boundary, being classified as 

belonging to the non-target classes (red dots), which indicates that the plant-

pathogen interaction throughout the biological process was faster in these 

samples than others (green dots). The health condition of alternative classes (P 

and X) undergoes evolution. Among 162 samples within these alternative classes 

(P and X), the non-symptomatic state (green dots) indicates no bacterial effect, 

while the symptomatic state (red dots) showcases a substantial bacterial effect 

in 31 samples. Out of the symptomatic plants (red dots) with marked bacterial 

effect, only 6 samples (X) and 16 samples (P) depicted in Figure 3D were 

selected for bilinear decomposition aiming fingerprint profile retrieval. This 

selection was due to the noticeable overlap observed among their red dots 

(Figure 3C). This decision was made in conjunction with the well-documented 

health-condition of the validation group of control (VC). The aim was to address 

the question  “which is the biochemical composition of these alternative classes 

(P and X) classified either as target class or non-target class from a forensic 

standpoint?” 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                                                     (7) 

 This question can be answered through a bilinear decomposition through pure 

fingerprint profiles. The PCA bilinear decomposition using Equation (1) retrieved linear 

combination spectral profiles (PT in Fig. 3F) lacking physical meaning from a forensic 
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viewpoint when compared to the measured hyperspectral POM data (Figure 2D). This 

discrepancy arises from model’s data decomposition adhering to orthogonal constraints, 

aiming to maximize the explained variance in each PC (Mazivila and Santos 2022). 

Alternatively, a bilinear data decomposition based on MCR-ALS was successfully 

initialized with pure variables under mathematical or natural constraints and computed 

according to Equation (8). 

 The MCR-ALS constrained analysis facilitated the extraction of distinct pure 

spectral signatures (ST in Fig. 3E) corresponding to the validation group of control (VC), 

Pst (P), and Xeu (X). These signatures provide supplementary forensic insights, 

reinforcing the robust authentication of the DD-SIMCA outcomes concerning the 

alternative classes (P and X) classified as either target or non-target classes. 

D = CST  +  E                                                                                                                               (8) 

where D is an 𝐼 × 𝐽 data matrix containing a group of 𝐼 samples individually acquired in 

a vectorial signal (hyperspectral POM) at 𝐽 measured variables in different wavelengths, 

as can be seen in Fig. 2D, C is an 𝐼 × 𝑁 matrix that contains the concentrations of 𝑁 

species in the 𝐼 samples, ST is an 𝑁 × 𝐽 matrix containing the pure spectral signatures of 

𝑁 intervening species at 𝐽 measured variables in different wavelengths, i.e., 

corresponding to the molar absorptivities of Beer-Lambert law (Mazivila and Santos 

2022), and E is the error matrix. 

 Another advantage of this contribution is that curve resolution analysis provided 

a unique spectral profile for the above-raised question from a forensic perspective. In 

Figure 3E, the control samples belonging to the validation set (VC, blue profile) 

presented a spectral profile characteristic of healthy (non-symptomatic) leaflets, 

providing additional forensic evidence. This profile is statistically similar to most samples 

from the alternative classes (P and X) with green dots yet without typical bacterial 

symptoms. Nonetheless, in P samples (yellow profile) classified as symptomatic (red 

dots), the bacterial effect is visibly manifested in the band between 430 and 475 nm when 

compared to control samples (VC), while to the X samples (red dots), the bacterial impact 

is clearly expressed in the spectral range of 675-800 nm. This in-depth forensic analysis 

(Figure 3E) offers a complementary investigation to the conducted pure authentication 

task (Figure 3C) aimed at protecting the target class (non-symptomatic plants) against 

the non-target class (symptomatic plants). These findings demonstrate the feasibility of 

the methodology established for performing the early diagnosis of bacterial diseases in 

tomato plants since it allowed the detection of inoculated samples before they showed 

macroscopic lesions (i.e., detectable by the human eye). Through the analysis of the 
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spectroscopic profiles, the procedure identified microscopic modifications (i.e., not visible 

to the human eye) present in diseased samples, leading to their identification (red dots). 

Thus, agricultural practices can be performed early in the disease cycle, resulting in more 

effective, precise, and sustainable measures to control bacterial diseases. 

 The methodology was then applied to the spectral data collected 96h after 

bacterial inoculation. At this stage, the samples infected with Pst began showing initial 

macroscopic lesions, while the samples affected by Xeu did not exhibit any macroscopic 

sign of disease (Figure 2C, E, F). DD-SIMCA optimization was executed similarly, 

concentrating solely on a target class of healthy samples (non-symptomatic plants) out 

of 57. All 57 samples were correctly identified as belonging to the target class, as 

depicted in Figure 4B, resulting in a training phase sensitivity of 100%. Nevertheless, it 

is important to notice that “C 12” in Figure 4B might be classified as an extreme sample, 

since fluctuations at significance level 𝛼 = 0.002453 might impact its classification. The 

model validation was achieved by uploading an additional ‘validation data set’ with 184 

samples to MATLAB Workspace (Figure 4A) composed of a single target class (control, 

VC) that represents 22 authentic samples, and an unlimited number of alternative 

classes that contain 162 non-authentic samples (81 measurements captured in tissues 

inoculated with Pst bacteria (P), and 81 measurements from tissues inoculated with Xeu 

bacteria (X)). 

 DD-SIMCA results demonstrated that the model was capable of prescribing a 

process that allows us to confirm that the target class (VC) is composed of healthy 

samples (non-symptomatic tissues) within the acceptance boundary (green line), 

effectively detaching them from members of other non-target classes (P and X) (Figure 

4C). The OCC model accurately identified all samples (VC) of a single target class with 

test sensitivity equal to 100%. In turn, 98 samples of alternative classes infected with Pst 

(P) and Xeu (X) bacteria were contained in the acceptance threshold and linked to the 

target class (green dots). 
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Figure 3 Hyperspectral point-of-measurement (POM) was performed in vivo tomato 

leaflets before macroscopic evidence of the bacterial diseases caused by Pseudomonas 

syringae pv. tomato (Pst) and Xanthomonas euvesicatoria (Xeu) (72 hours after bacterial 

inoculation) (A). The spectroscopic data was then inserted into MATLAB, where a part 

of the measurements performed in healthy tomato leaflet tissues (C green dots in B) was 
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used as a training set, and the remaining healthy samples (VC in C) together with 

measurements made in inoculated non-symptomatic tissues (P for samples inoculated 

with Pst, and X for samples inoculated with Xeu in C) were used as validation set in the 

computation of a Data-driven Soft Independent Modelling of Class Analogy (DD-SIMCA) 

model. The training set was used to establish the acceptance boundary (green line) (B). 

In turn, the validation set was applied to demonstrate that the target class was composed 

of healthy (VC green dots) samples and spectral measurements were performed in non-

symptomatic diseased tissues at earlier stages of the diseased process (P, X green dots) 

(C). In turn, samples in which microscopic lesions occurred were located out of the 

acceptance boundary (P, X red dots), indicating their disease stage was more advanced. 

A bilinear data decomposition was, then, performed (D) to retrieve the pure spectral 

signatures using Multivariate Curve Resolution − Alternating Least-Squares (MCR-ALS) 

initialized with pure variables under mathematical or natural constraints, and to retrieve 

the linear combination spectral profiles (F) by performing a Principal Component Analysis 

(PCA) under orthogonal constraint for comparison purpose. 

 Thus, their health state is believed to be considered as a non-symptomatic phase 

like the control group (VC) in the validation step, showing that host-pathogen interactions 

are still evolving as manifested also in the second experimental inoculation (Figure 2C) 

depicted in Figure S1C available at supplementary information. The remaining 64 

samples, on the contrary, were found to be located outside the acceptance boundary, 

being identified as non-target classes (red dots) and subsequently subjected to bilinear 

decomposition (Figure 4D) to provide in-depth forensic evidence. The curve resolution 

analysis was conducted aiming at providing forensic evidence through unique spectral 

profiles, which belonged to the target class of control samples (VC, blue profile), non-

target class of Pst (P, yellow profile), and non-target class of Xeu (X, orange profile) were 

provided (Figure 4E, Figure S1E) to confirm with high confidence that VC is declared to 

be as the target class (non-symptomatic plants). 

3.2. DD-SIMCA and MCR-ALS applied to hyperspectral POM data acquired 

throughout plant-pathogen interactions with developed symptoms of the disease 

for leaflets authentication 

 In this subsection, biological data measured eleven days after the bacterial 

inoculation (Figure 2C) were considered for chemometric data modeling. This date was 

chosen since both Pst and Xeu inoculated samples showed, for the first time, 

macroscopic lesion characteristics of the bacterial speck and spot diseases, 
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respectively. This also happened in the second biological assay performed where the 

symptoms also appeared eleven days after infection (Figure 2C, E, F). 

 The optimization step of the rigorous DD-SIMCA model focused on the target 

class including just 57 healthy samples (non-symptomatic plants), which were correctly 

identified as members of the target class Figure 5C with 100% of training phase 

sensitivity (Eq. 7). Samples “C 49” and “C 37” in Figure 5C can be considered an 

extreme observation, given the potential impact of variations at a significant level 𝛼 =

0.01. A further ‘validation data set’ comprising 186 samples (Figure 5B) was utilized to 

evaluate the performance of the DD-SIMCA model. This dataset encompassed 24 

authentic samples belonging to the target class of the control (healthy, VC) plants, along 

with 81 measurements from Pst inoculated samples (P) and another 81 from Xeu 

diseased samples (X). The evaluation of the DD-SIMCA model was centered on its 

accuracy in correctly classifying samples within the target class. 

 The OCC model proved that the target class of the control (healthy) plants (non-

symptomatic measurements) contained in the acceptance boundary (green line), with 

test sensitivity of 100% denoting a share of correctly identified 24 control plants (healthy, 

VC) of the target class (Equation 7). It is worth pointing out that sensitivity (Equation 7) 

is computed separately in the training dataset (Figure 5C) and validation dataset (Figure 

5D). DD-SIMCA differentiated these samples from other belonging to non-target classes 

(P and X) (Figure 5D). In the validation step, the model identified 67 samples of non-

target classes (inoculated with Pst – P –, and Xeu – X) as part of the acceptance area 

(green dots) and associated them to the target class. These measurements are assumed 

to be collected in healthy tissues (non-symptomatic), like the validation step control group 

(VC). In turn, the remaining 119 samples were not contained in the acceptance boundary 

and were categorized as non-target classes (red dots) (Figure 5D). To present thorough 

forensic proof, a bilinear decomposition was made (Figure 5E). MCR-ALS allowed the 

determination of spectral profiles associated with control samples (VC, depicted in blue), 

non-target class of Pst (P, represented in yellow), and non-target class of Xeu (X, shown 

in orange) (Figure 5F, Figure S2F). This confirmation, achieved with a high level of 

confidence, demonstrates that VC is accurately identified as the target class, 

representing non-symptomatic plants. Consequently, a fully validated methodology could 

combine DD-SIMCA and MCR-ALS applied to hyperspectral POM data. This 

combination serves to confirm the farness (FD in Equation 4) of each visual phenotyping 

throughout the evolving bacterial disease (P and X, for instance, samples “P 31”, “P 8”, 

“X 14” in Fig. 5D) concerning the target class of the control (healthy) plants (VC) and 

pure biological profiles (yellow and orange in Figure 5F). 
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Figure 4 Hyperspectral point-of-measurement (POM) was performed in vivo tomato 

leaflets after macroscopic evidence of the disease caused by Pseudomonas syringae 

pv. tomato (Pst) but before macroscopic evidence of the disease caused by 

Xanthomonas euvesicatoria (Xeu) (96 hours after bacterial inoculation) (A). The spectral 

data was then inserted into MATLAB, where a part of the measurements performed in 

healthy tomato leaflet tissues (C green dots in B) were used as training set, and the 

remaining healthy samples (VC in C) together with measurements made in inoculated 

tissues (P for samples inoculated with Pst, and X for samples inoculated with Xeu in C) 

were used as validation set in the computation of a Data-driven Soft Independent 
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Modelling by Class Analogy (DD-SIMCA) model. The training set was used to establish 

the acceptance boundary (green line) (B). In turn, the validation set was applied to 

demonstrate that the target class was composed of healthy (VC green dots) samples, 

and spectral measurements which were performed in non-symptomatic diseased tissues 

at earlier stages of the diseased process (P, X green dots) (C). In turn, samples that 

presented only microscopic (X red dots) or microscopic and macroscopic lesions (P red 

dots) were located outside the acceptance boundary, indicating their disease stage was 

more advanced. A bilinear data decomposition was, then, performed (D) to retrieve the 

pure spectral signatures (E) using Multivariate Curve Resolution − Alternating Least-

Squares (MCR-ALS) initiated with − pure variables under mathematical or natural 

constraints 

 The combination of the hyperspectral POM analytical technique with suitable 

chemometric models relying on DD-SIMCA and MCR-ALS allowed the distinction of 

measurements collected in target class - non-symptomatic tissues (healthy samples 

recognized with green dots) and those from non-target class measurements (diseased 

samples identified with red dots). This distinction was evident not only during the early 

stages, preceding the formation of visible lesions (Figure 3), but also during the later 

phases of the disease cycle (Figure 5). 

 Despite the innovative results presented in this study, there remains a pressing 

need for the early identification of the non-target class of diseased samples. Achieving 

this goal would significantly enhance the precision, efficacy, and environmentally 

sustainable nature of phytosanitary measurements. Therefore, our primary operational 

message underscores the recommendation to utilize the model performance illustrated 

in Figure 3 for early diagnosis of tomato bacterial disease. This approach holds immense 

potential, enabling timely interventions by agronomists and farmers. 

4. Conclusions 

 The present work developed a non-destructive methodology to diagnose two 

bacterial tomato diseases early. This approach combines hyperspectral point-of-

measurement with chemometric approaches, leveraging DD-SIMCA as one-class 

classification assisted by MCR-ALS to provide forensic evidence through pure biological 

profiles. The groundbreaking nature of this study represents an advance concerning the 

previously published papers in the same field, particularly in contrast to the original 

version of SIMCA. This advancement lies in the comprehensive consideration of the full 

distance (FD) calculated in the process of building the rigorous DD-SIMCA. This model 

is instrumental in predicting distance values that reflect the evolving bacterial infection 
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within plant leaflet tissues. These predictions are then juxtaposed against the target class 

of control healthy plant leaflet tissues in a 2D plot, providing a novel perspective in 

disease assessment. 

 The main conclusions drawn from this contribution are that: 

i) Vis-NIR spectroscopic data acquired from healthy tomato tissues were correctly 

identified as members of the target class, with 100% sensitivity. These healthy 

samples were effectively differentiated from those assessed on tissues 

inoculated with Pst or Xeu, a differentiation noticeable even before the 

appearance of characteristic macroscopic lesions associated with the disease, 

detectable as early as 72 hours following bacterial inoculation. 

ii) Non-target class of samples located beyond the acceptance threshold indicated 

a more advanced of bacterial infection in these instances. This suggests that 

discernible spectral alterations resulting from host-pathogen interactions 

occurred even before noticeable phenotypical changes. Samples closer to the 

acceptance boundary are therefore, presumed to be at earlier stages of the 

infection process, contrasting with those farther away exhibiting a greater FD, 

indicating a more pronounced advancement in the infection stage. 

iii) The unique Vis-NIR spectral profile obtained for each health group (control – 

healthy, inoculated with Pst, inoculated with Xeu), retrieved throughout the MCR-

ALS optimization process, revealed specific bacterial effects on plant. The impact 

of the Pst bacterial infection is discernible within the spectral bands ranging from 

430 to 475 nm, while the influence of Xeu was evident in the spectral range 

between 675 and 800 nm. These comprehensive findings, serving as forensic 

evidence, provided an additional layer of analysis beyond the primary 

authentication task. They significantly contributed to understanding host-

pathogen interactions, particularly the evolving bacterial infection within the plant 

specimens. 

iv) The modeling analysis of the data collected in the second biological assay 

reinforces the results obtained using the data of the first assay, despite the plants 

being inoculated with one week difference. In terms of bacterial evolution, plants 

start to develop symptoms in similar days: Pst between the 72h (2nd assay) and 

96h (1st assay), and Xeu eleven days after inoculation (for both the 1st and 2nd 

biological assays). DD-SIMCA showed that, in both cases, the validation samples 

collected on the target class of healthy leaflet tissues were allocated inside the 

acceptance boundary. In contrast to non-target class of samples (measured in 

symptomatic diseased tissues) were located outside this acceptance threshold. 
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MCR-ALS also revealed that the retrieved fingerprinting spectral profiles for each 

class in study were analogous in the first and second biological assays. 

 These findings underscore the efficiency of the developed methodology for the 

early diagnosis of bacterial diseases in tomato plants. This approach facilitated the 

identification of subtle modifications at the microscopic level, indistinguishable from the 

human eye but evident in diseased samples. Consequently, it enables agricultural 

interventions, including disease monitoring and management and phytosanitary 

measures at earlier stages of the disease progression. This capability enhances the 

effectiveness and precision of interventions, aligning with the principles and goals of 

precision agriculture. 
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Supplementary materials 

 

Figure S1 Hyperspectral point-of-measurement (POM) was performed in a second 

assay where in vivo tomato leaflets after macroscopic evidence of the disease caused 

by Pseudomonas syringae pv. tomato (Pst) but before macroscopic evidence of the 

disease caused by Xanthomonas euvesicatoria (Xeu) (72 hours after bacterial 

inoculation) (A). The spectroscopic data was then inserted into MATLAB, where a part 

of the measurements performed in healthy tomato leaflet tissues (C green dots in B) 

were used as training set, and the remaining healthy samples (VC in C) together with 

measurements made in inoculated tissues (P for samples inoculated with Pst, and X for 

samples inoculated with Xeu in C) were used as validation set in the computation of a 
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Data-driven Soft Independent Modelling by Class Analogy (DD-SIMCA) model. The 

training set was used to establish the acceptance boundary (green line) (B). In turn, the 

validation set was applied to demonstrate that the target class was composed of healthy 

(VC green dots) samples, and spectral measurements which were performed in 

symptomless diseased tissues at earlier stages of the diseased process (P, X green 

dots) (C). Samples that presented microscopic or macroscopic lesions were located out 

of the acceptance boundary (P, X red dots), indicating their disease stage was more 

advanced. A bilinear data decomposition was, then, performed (D) to retrieve the pure 

spectral signatures (E) using Multivariate Curve Resolution − Alternating Least-Squares 

(MCR-ALS) initiated with pure variables under mathematical or natural constraints. 

Figure S2 Hyperspectral point-of-measurement (POM) was performed in vivo tomato 

leaflets after macroscopic lesions of the diseases caused by Pseudomonas syringae pv. 
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tomato (Pst) and Xanthomonas euvesicatoria (Xeu) (eleven days after bacterial 

inoculation, second assay) (A). The spectral data was then inserted into MATLAB (B), 

where a part of the measurements performed in healthy tomato leaflet tissues (C green 

dots in B) were used as training set, and the remaining healthy samples (VC in C) 

together with measurements made in inoculated tissues (P for samples inoculated with 

Pst, and X for samples inoculated with Xeu in C) were used as validation set in the 

computation of a Data-driven Soft Independent Modelling by Class Analogy (DD-SIMCA) 

model. The training set was used to establish the acceptance boundary (green line) (C). 

In the validation set was applied to demonstrate that the target class was composed of 

healthy (VC green dots) samples and spectral measurements were performed in 

symptomless diseased tissues at earlier stages of the diseased process (P, X green 

dots) (D). Samples in which microscopic or macroscopic signs were manifested were 

located out of the acceptance boundary (P, X red dots), indicating their disease stage 

was more evolved. A bilinear data decomposition was, then, performed (E) to retrieve 

the pure spectral signatures (F) using Multivariate Curve Resolution − Alternating Least-

Squares (MCR-ALS) initiated with pure variables under mathematical or natural 

constraints. 
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Case Study 6 

VIS-SWIR spectroscopy and microscope imaging fusion towards 

reagent less and in vivo diagnosis of bacterial infection in 

tomato plants Pseudomonas syringae pv. tomato and 

Xanthomonas euvesicatoria 

In this case study, we briefly refer to an ongoing study currently under development. The 

collaborative efforts of researchers involved in this case study are as follows (in no 

particular authorship order): 

• Doctoral Program Students: Mafalda Reis Pereira1,2, Filipe Monteiro Silva1,2 

• Senior Researchers: Filipe Neves dos Santos2, Rui Martins1,2 

• Associate Professors: Fernando Tavares1,3,4, Mário Cunha1,2,* 

1 Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, 

4169-007 Porto, Portugal 

2 Institute for Systems and Computer Engineering, Technology and Science (INESC 

TEC), Campus da Faculdade de Engenharia da Universidade do Porto, Rua Roberto 

Frias, 4200-465 Porto, Portugal 

3 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO 

Laboratório Associado, Cam-pus de Vairão, Universidade do Porto, 4485-661 Vairão, 

Portugal 

4 BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de 

Vairão, 4485-661 Vairão, Portugal 

Introduction 

 Crops are susceptible to various abiotic and biotic stressors throughout their 

agronomic process, damaging productivity, yields, nutritional quality, and aesthetic 

appeal. This multifaceted impact extends to both economic and consumer dimensions, 

resulting in financial losses attributable to crop damage, increased expenses linked to 

phytosanitary treatments, elevated prices, and constrained availability of plant-derived 

products. This ripple effect influences the sectors of food, feed, clothing, and building 

materials, ultimately affecting consumers in terms of quantity and quality (Oerke 2006, 

Flood 2010, Savary, Ficke et al. 2012). 
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 Biotic stresses caused by pests and pathogens are responsible for losses in crop 

yields between 20% and 40% (Savary, Ficke et al. 2012). Phytopathogens, in particular, 

are estimated to cause annual economic losses of around $220 billion for the agricultural 

sector, causing problems with access to food for more than 800 million people (Mitra 

2021). Contemporary agricultural methods contribute to plant disease epidemics' 

proliferation and pathogens' swift evolution. This trend is exacerbated by the widespread 

adoption of intensive monoculture across expansive regions, cultivating genetically 

uniform plant varieties, and establishing extensive global supply chains and logistical 

networks. Collectively, these practices create an environment conducive to the rapid 

transmission of diseases and the adaptive evolution of pathogens (Zhan, Thrall et al. 

2015). Phytosanitary products can be applied to prevent and control crop biotic stresses, 

leading to considerable damage to the environment and affecting food quality and 

security (Bonner and Alavanja 2017, Zhang, Yang et al. 2020). 

 Early detection and precise identification of plant pathogens are crucial for 

mitigating their adverse effects and implementing effective phytosanitary measures. 

Conventional disease diagnosis techniques primarily hinge on the manifestation of 

observable symptoms, constituting what are commonly known as 'direct' methods. These 

approaches are mainly based on scouting or laboratory approaches. The first entails 

visual field inspection performed by specialized trained observers to detect and identify 

infected plants based on the presence of disease symptoms (Parker, Shaw et al. 1995), 

which is subjective, error-prone (since symptoms alone are not entirely disease-specific), 

labor-intensive, time-consuming, and expensive (Sankaran, Mishra et al. 2010, Mahlein 

2016, Khaled, Abd Aziz et al. 2018, Ali, Bachik et al. 2019). The second includes 

serological and molecular tests, which are generally applied due to their sensitivity, 

accuracy, and effectiveness. The most common techniques consist of polymerase chain 

reaction (PCR), enzyme-linked immunosorbent assay (ELISA), fluorescence in situ 

hybridization (FISH), immunofluorescence (IF), and flow cytometry (FCM) (Mohammad-

Razdari, Rousseau et al. 2022). Usually, these methods involve detailed sampling 

procedures, which take several hours to complete and require destructive sample 

preparation. They do not allow a follow-up of the disease progression nor field mapping 

to support Precision Agriculture systems (e.g. site-specific management). They can have 

limited diagnostic abilities, mainly in the asymptomatic and early stages of the disease 

infection process, related to the uneven spread of pathogens inside plants (Fang and 

Ramasamy 2015, Martinelli, Scalenghe et al. 2015). These approaches are also not 

suitable for supporting real-time agronomic decisions in-field, because they do not 

present the necessary high throughput and speed, since they have been developed only 
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to confirm the presence of pathogens in samples (Fang and Ramasamy 2015, Martinelli, 

Scalenghe et al. 2015). 

 More recently, strategies for phytopathogen diagnosis have been developed 

based on identifying the changes they cause on crops due to host-pathogen interaction 

(also called ‘indirect’ methods). Generally, they are focused on monitoring changes in 

morphological traits, transpiration rates, temperature, and volatile organic compounds 

(VOCs) released by disease plants (Mohammad-Razdari, Rousseau et al. 2022).  

 Visible near-infrared (Vis-NIR) hyperspectral spectroscopy (HS) has a high 

potential for point-of-measurement (POM) reagent-less crop disease diagnosis, 

promoted by fungi (Yu, Anderegg et al. 2018, Skoneczny, Kubiak et al. 2020), bacteria 

(Bagheri, Mohamadi-Monavar et al. 2018), and viruses (Morellos, Tziotzios et al. 2020) 

affecting different crops, even at asymptomatic stages of the disease (Gold, Townsend 

et al. 2020). This is an information-rich approach that captures both chemical and 

physical information about a sample, where their characteristics are distributed across 

several wavelengths. HS POM detects modifications in plants’ tissue optical properties, 

which arise from variations in pigments, sugars, and water levels (amongst other 

components) (Curran 1989, Thenkabail, Gumma et al. 2014, Tosin, Pocas et al. 2021, 

Tosin, Martins et al. 2022). The dominant spectral information in plant tissues comes 

from highly absorbent compounds in VIS-NIR. Photosynthetic pigments, with 

chlorophylls being the most relevant, influence the spectral behavior in the visible region, 

whereas, the water levels, chemical and structural composition (including the action of 

lignins and proteins), and internal scattering processes affect the NIR range (Hunt and 

Rock 1989, Jones and Vaughan 2010). Spectral information of plant tissue is, thus, 

super-imposed in the recorded spectra at different scales of interference (Martins 2019, 

Martins, Barroso et al. 2022, Tosin, Martins et al. 2022). 

 Nevertheless, HS may present redundant information from adjacent wavebands, 

and only a few of these features may be important in classifying a diseased individual 

(Blackburn 2007, Caicedo, Verrelst et al. 2014, Rivera, Verrelst et al. 2014). Statistical 

signal processing, mathematical combinations of various spectral bands, and the 

implementation of predictive modeling techniques – such as Machine Learning 

algorithms – are commonly employed strategies for the analysis of hyperspectral data. 

These approaches aim to distill valuable information from the dataset, facilitating 

dimensionality reduction and the selection of pertinent wavelengths (Mahlein, Steiner et 

al. 2010, Mahlein, Rumpf et al. 2013, Thenkabail, Gumma et al. 2014, Ahmadi, Muharam 

et al. 2017, Thenkabail, Lyon et al. 2018, Saleem, Potgieter et al. 2019, Zhao, Fang et 
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al. 2020, Saha and Manickavasagan 2021). Previous research based on direct spectral 

data, information with reduced dimensionality, or selected waveband features evidence 

that different model approaches were effective for identifying and classifying several 

plant stress and diseases (Sankaran, Ehsani et al. 2012, Bajwa, Rupe et al. 2017, Gold, 

Townsend et al. 2020, Meng, Lv et al. 2020). 

 The present Case Study, hence, aimed to explore the suitability of hyperspectral 

transmittance point-of-measurement data for early bacterial disease diagnosis. 

Moreover, it investigated the potential of fusing this information with microscopic imaging 

collected in real time for providing more detailed information related to the host-pathogen 

interactions and effects, along with the monitoring of the infection progression and 

evolution over time. The study aimed to verify if i) bacterial infection promotes changes 

in the optical properties of the host plant, detectable by hyperspectral point-of-

measurement sensors, ii) the possibility of discriminating healthy from diseased tissues, 

iii) the capacity of discriminating diseased tissues affected by different bacteria, iv) 

hyperspectral transmittance point-of-measurement data fused with RGB microscopic 

imaging enhances the diagnostic process, and v) data fusion allows the follow-up of the 

disease spectral and microscopically visual phenotypes. 

2. Materials and methods 

2.1. Experimental design 

 Tomato (Solanum lycopersicum L.) plants of the cultivar Cherry were grown in 

200 mL pots containing a commercial potting substrate, in a walk-in plant growth 

chamber under controlled conditions (25-27 ºC, humidity of approximately 60%, 

photoperiod of 12 / 12 h and light intensity 30W). Plants were divided into three groups, 

one of them inoculated with Xanthomonas euvesicatoria LMG 905 (Xeu) bacteria, other 

with Pseudomonas syringae pv. tomato DC 3000 (Pst), and the last was treated with 

sterile distilled water only (Control group). Plants were inoculated in the laboratory, at 

the growth stage of 5-6 fully expanded leaves, by spraying until they became fully wet, 

and run-off occurred. The bacterial suspensions used for these inoculation assays 

consisted of 1 x 108 cells / mL. They were prepared from 48-h-old culture grown on KB 

medium (peptone, 20.0g; K2HPO4, 1.5g; MgSO4, 1.5g; glycerol, 10 mL; agar, 15g; 

distilled water up to 1.0 liter), in the case of Pst Bacteria, and YDC medium (yeast extract, 

10.0g; dextrose, 20.0g; CaCO3, 20.0g; agar, 15.0g; distilled water up to 1.0 liter) for Xeu 

bacteria. The inoculated plants were then covered with transparent polythene bags for 

48 h to increase the relative humidity that fosters bacterial entry into plant tissues through 
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natural openings such as stomata (Lamichhane 2015). Plants were monitored daily for 

symptom development for 7 days. 

 At the same time, to verify if the bacteria cultures used in these inoculation tests 

were viable, 20 μL of Pst solution and 20 μL of Xeu solution were cultured in different 

Petri dishes containing KB and YDC media, respectively. After 48 h bacterial growth was 

observed in both nutrient media, proving that bacteria were viable at the moment of 

inoculation. 

2.2. Visual and PCR-based confirmation of bacterial infection 

2.2.1. Visual confirmation (Scouting) 

 A visual search for typical symptoms of the infection caused by Pst and Xeu was 

made daily during the assay duration. Pst disease-specific symptoms usually consist of 

small, greasy dark stains that become brown to black and appear randomly. They vary 

between circular or slightly angular shapes and typically have a yellow halo of various 

sizes. In the first moment, lesions are about 2–3 mm, which can develop and coalesce 

(especially in the presence of moisture), affecting large leaflet areas, that may later 

become necrotic and desiccate (Blancard 2012). In turn, Xeu characteristic symptoms 

affecting leaves comprise small, brown, angular, and water-soaked lesions. Smaller 

lesions can coalesce into each other forming larger angular injuries, whose diameter can 

range from 1.6 to 6.4 mm. With time, they can evolve and form necrotic spots, presenting 

light gray centers with dark margins, which can become surrounded by a yellow hallow 

with time. In severe cases, tissues in the center of the lesion become dry and fall out, 

leading to “shot-hole” symptoms (Jones, Jones et al. 1991, Rudolph 1993, Stall, Beaulieu 

et al. 1994, Ritchie 2000, Dutta, Gitaitis et al. 2014, Teper, Girija et al. 2018).  

2.2.2. Bacterial isolation 

 Sample preparation for bacterial isolation was carried out for asymptomatic and 

symptomatic leaves at 24 hours and 48 hours. Leaves were excised from plants using a 

sterile scalpel (Fernandes, Albuquerque et al. 2017). Bacterial isolation was performed 

as described by Fernandes et al. (2017, 2021). Briefly, each sample of excised leaflet 

tissue was disinfected by immersion in 70% ethanol followed by washing with sterile 

distilled water (SDW) and then macerated with SDW in extraction bags. The suspensions 

obtained were streaked on KB (samples inoculated with Pst bacteria) and on YDC 

medium (samples infected with Xeu pathogen). Characteristic colonies from these two 

bacteria species (milky white colonies in the case of Pst, and mucoid yellow colonies in 

the case of Xeu) were selected for growth on fresh nutrient agar medium to ensure purity. 
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2.2.3. PCR validation 

 A colony PCR was performed to validate the presence of Pst and Xeu bacteria 

on tomato leaflet isolates. PST2 (Vieira, Mendes et al. 2007) and XV14 (Albuquerque, 

Caridade et al. 2012) were the chosen markers for Pst and Xeu, respectively, with 

correspondingly amplicon lengths of 200, and 713 bp. A 20 µL PCR reaction mix 

consisted of 1 × DreamTaq Buffer (ThermoFisher Scientific, Waltham, MA, USA), 0.2 

mM of each deoxynucleotide triphosphate (dNTP) (Grisp, Porto, Portugal), 0.2 mM of 

each forward and reverse primers, 1 U of DreamTaq DNA Polymerase (ThermoFisher 

Scientific, Waltham, MA, USA) and 10 µL of DNA isolate solution. Sterile distilled water 

was used as the negative control. PCR cycling parameters consisted of an initial 

denaturation step of 5 min at 95ºC, followed by 35 cycles of 30 s at 95ºC, 30 s at 57ºC, 

59ºC or 61 ºC, and 30 s at 72ºC with a final extension step of 10 min at 72ºC 

(Albuquerque, Caridade et al. 2012) for Xeu, and an initial denaturation step of 3 min at 

95ºC followed by 35 cycles of 30 s at 95ºC, 30 s at 63ºC and 30 s at 72ºC and a final 

extension step of 10 min at 72ºC (Vieira, Mendes et al. 2007) for Pst. 

 PCR products were then separated by electrophoresis on a 0.8% agarose gel (1 

× TAE buffer) and visualized using Xpert Green DNA stain (Grisp, Porto, Portugal) with 

a Molecular Imager Gel Doc XR+ System (Bio-Rad, Hercules, CA, USA).  

2.3. Spectral measurements 

 Hyperspectral data were collected in vivo from the adaxial side of excised healthy 

and diseased tomato plant leaflets. Measurements were performed through a 

randomized process, on three leaves per plant, on three points per leaf, at different times 

(24, 48, 72, and 96 hours for all treatments, and a final measurement at 144 hours only 

for control and Xeu diseased plants since the ones inoculated with Pst were very 

weakened). The experimental design involved an in-house compact benchtop system, 

consisting of a laptop, a spectrometer (HR4000, Ocean Optics Inc., USA) with a 200-

1100 nm range, a transmission optical fiber bundle (UV-VIS-NIR, FCR-7UVIR200-2-45-

BX, Avantes, Eerbeek, The Netherlands) with a 200-2500 nm range, a stainless-steel 

slitted reflection probe (placed 1 cm above the sample surface, to conduct leaflet’s 

spectral signal to the entrance lens of the spectrometer), and a white LED light (placed 

beneath the leaflet for provide homogeneous illumination to its entire abaxial surface). 

Specialized software (SpectraSuite, Ocean Optics Inc., USA) were used. 

2.4. Microscope imaging acquisition 

 Leaflet samples of each plant were excised from the plant and readily analyzed: 

samples were laid between glass slides and placed on the microscopical setup for data 
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acquisition. A 5×5 mm spacing sampling grid was devised on each leaflet, comprising 

25 data points of spectroscopic data; sampling grid initial coordinates were randomly set, 

yet assuring the avoidance of the leaflet main stem line. No further sample preparation 

was required or performed. 

 The hyperspectral microscopy system consisted of a Zeiss Axiovert.A1, in 

transmission mode, fitted with a UV-Vis-NIR fiber optic (I.D. 600 μm) connected to an 

Ocean Optics model HR4000 spectrometer. An adapter was developed to allow the 

alignment of the fiber optic with the microscope camera in order to allow the collection of 

detailed hyperspectral information of the acquired microscopic images. Microscopical 

imaging was performed using the “Best Fit” option for macro (Red, Green, Blue – RGB) 

images, whereas spectroscopic data acquisition was conducted under the same 

illumination conditions as for microscopical imaging and within the 200-1100 nm range 

and every 24 h, until the 4th day, and one final sampling moment at 144h, in a total of 5 

sampling moments per group. 

2.4. Data modeling 

 The measured hyperspectral data was modeled using a Principal Component 

Analysis (PCA). PCA is a multivariate data analysis approach applied to reduce the 

dimensionality of the hyperspectral data while preserving its structure by projecting the 

data into a new coordinate system. This methodology retains the overall variance of the 

dataset while minimizing mean square approximation errors. Principal Component 

Analysis (PCA) utilizes eigenvectors and eigenvalues to establish the reduced subspace, 

representing the original coordinate system. It generates principal components (PC), 

which are linear combinations of interrelated variables. PC1 encapsulates the highest 

proportion of variance information from the original dataset, as explained by the 

eigenvalue. Subsequent principal components (PC2, PC3, etc.) consecutively 

encapsulate the highest proportion of the unexplained residual variance (Lee, Alchanatis 

et al. 2010, Liu, Cheng et al. 2012). 

 Linear Discriminant Analysis (LDA) was also applied since it is a supervised 

learning algorithm usually applied in classification tasks using hyperspectral data since 

it can reduce the dimensionality of the data while maximizing the class separability. LDA 

projects the high-dimensional data onto a lower-dimensional space while maintaining the 

discriminative information between classes. Shortly, data is projected onto a linear 

subspace that maximizes the ratio of between-class variance to within-class variance. 

Therefore, the projected data points are as far apart as possible in the new space, while 

the points of the same class are as close as possible. Hence, it contributes to reducing 
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the classification computational complexity and avoiding overfitting. Moreover, LDA can 

also facilitate data visualization in a lower-dimensional space, helping interpret patterns 

(Sachin 2015, Tharwat, Gaber et al. 2017). 

 In turn, Partial Least Squares Discriminant Analysis (PLS-DA) is a statistical 

method that aims to maximize the covariance between the predictor variables and the 

class information, enabling effective discrimination between different groups or 

categories. PLS-DA extracts latent variables that capture the essential information for 

classification, making it particularly valuable in situations with multicollinearity and high-

dimensional data (Lee, Liong et al. 2018). 

3. Main Findings  

3.1. Visual phenotyping timeline of healthy and inoculated leaflets 

 Control tomato plants maintain an identical phenotype from the first to the last 

visual and spectral measurement (Figure 1). On the contrary, tomato plants infected with 

Pst and Xeu bacteria showed the first visual typical symptoms of the disease between 

48 and 72 h after inoculation (Figure 2, 3). Pst bacteria promote chlorotic spots on leaves 

at 48h, which evolve into necrotic tissues at 72 hours (Figure 2). Chlorotic lesions in 

samples inoculated with Xeu mostly appeared at 72 hours, only evolving to the necrotic 

stage at 144h (Figure 3). 

 

Figure 1 Control leaflet phenotype evolution over time (from 24 to 144 hours). 
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Figure 2 Pseudomonas syringae pv. tomato (Pst) inoculated leaflet phenotype evolution 

over time (from 24 to 144 hours). 

 

Figure 3 Xanthomonas euvesicatoria (Xeu) inoculated leaflet phenotype evolution over 

time (from 24 to 144 hours). 

3.2. PCR validation 

 After the phenotypical and spectral analysis, leaflet samples from each treatment 

were tested for the presence of these bacteria through a colony PCR. Bacteria-specific 

bands were amplified from samples, for each bacteria species (Figure 4). No 

corresponding DNA bands were amplified in PCR from samples collected from healthy 

leaves. These results indicated that Pst and Xeu bacteria were present in each 

inoculation treatment group (Figure 4). 
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Figure 4 A) Colony PCR of infected tomato leaflets with DNA markers XV14 to detect 

Xanthomonas euvesicatoria LMG 905. C- - Template sample (distilled water). 1, 2, 3 – 

DNA from different bacterial colonies obtained through a pathogen isolation assay 

performed 24 hours after infection (AI). 4, 5 – DNA samples from different bacterial 

colonies were obtained through a pathogen isolation assay performed 48 hours AI. C+ - 

Xanthomonas euvesicatoria DNA belonging to the laboratory bacterial collection. B) 

Colony PCR of infected leaflets with DNA markers PST2 to detect Pseudomonas 

syringae pv. tomato. C- - Template sample (distilled water). 1-6 – DNA from different 

bacterial colonies obtained through an isolation assay 24 hours AI. 7-13 – DNA from 

different colonies obtained through an isolation assay performed 48 hours AI. C+ - 

Pseudomonas syringae pv. tomato DNA belonging to the laboratory bacterial collection. 

3.3. Hyperspectral point-of-measurement data analysis 

 LDA analysis allowed class distinction in hyperspectral samples collected on 

tomato leaflets only 24 hours after inoculation, especially between healthy (Control, 

green dots), and diseased tissues (red and blue dots) (Figure 5). At this point, no clear 

separation between the spectral data collected in tomato leaflet tissues inoculated with 

Pst, and the ones measured in Xeu-inoculated tissues. After 48 hours, class 

discrimination is even more evident, especially between the spectral measurements 

performed in tissues inoculated with different bacteria species. At 96 hours, all classes 

were fully discriminated against by the LDA algorithm (Figure 5). So, these results show 

that diseased tissues were detectable 24 hours after bacterial inoculation, and disease 

discrimination was achievable after 48 hours (Figure 5). 

A B 
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Figure 5 LDA results using all the collected spectral measurements, and the spectra 

assessed only at 24, 48, 72, and 96 hours.  

3.4. Hyperspectral microscopic tomography findings 

 Spectral differences between healthy (green line) and diseased (red and blue 

lines) at 96h were visible even when no macroscopic symptoms were visible in the RGB 

image, and then only slight variations in the green color were visible in the microscopic 

image (Figure 6) 

 4 4  

      

   b  
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Figure 6 Diagram showing the RGB image of the excised tomato leaflet and 

corresponding microscopic (200x) image and hyperspectral data (spectral curve in 

nanometers). Hyperspectral data represented in green corresponds to spectra measured 

at healthy (Control) leaflet tissues, in red to spectra collected on tissues inoculated with 

Pseudomonas syringae pv. tomato bacteria (Pst), and in blue to spectra assessed in 

leaflets inoculated with Xanthomonas euvesicatoria (Xeu), 96 hours after infection. 

 Results of a PCA applied to the hyperspectral data fused with microscopy 

imaging information showed that, at 144h after bacterial inoculation with Pst and Xeu, 

spectral variance can be spawned into three principal components (Figure 7). Thus, they 

can classify each category’s spectra, namely Control (healthy), Pst, or Xeu. Moreover, 

in the third principal component, it is possible to observe a distinction between the 

spectral patterns from tissues inoculated with Pst from the ones infected with Xeu 

bacteria. This finding may be related to the fact that samples inoculated with Pst 

presented higher damage levels (related to a higher aggressiveness/virulence of the 
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bacteria), and the spectral patterns were indicative of necrosis. In turn, Xeu-inoculated 

leaflets showed more uniform damage over hyperspectral data (Figure 7).  

 A PLS-DA algorithm was, then, computed to estimate the probability of each 

bacteria at each node of the hyperspectral image (Martins, Santos et al. 2023). Spectral 

variance at each hyperspectral image was significant, due to both leaflet structures and 

compositional differences. Nevertheless, it did not influence the classification 

performance made by the linear classifier (Figure 7). PLS-DA predicted that the Control 

samples presented a small probability of infection, as expected (green, Figure 7). In 

contrast, PLS-DA predicted a high probability of infection for the samples inoculated with 

Pst and Xeu bacteria (Figure 7). These findings support the correspondent microscopy 

images, where at 144 hours all tissues are infected, not existing non-infected regions 

(Martins, Santos et al. 2023). Thus, the present outcomes indicate that microscopic 

analysis has the potential for early-stage diagnosis, confirming the results obtained by 

macroscopic tomography. 

 

Figure 7 Microscopic (200×) and hyperspectral data collected on tomato leaflets at 144 

h after infection. The main outcome of Principal Component Analysis (PCA) is shown, 

along with the microscope images of healthy and diseased tomato leaflets, 

corresponding hyperspectral analysis by variance imaging, and the corresponding 

probability of infection determined by Partial Least Squares Discriminant Analysis (PLS-

DA). The algorithm predicted that Control samples presented a small probability of 

infection, and a high probability of infection for the samples inoculated with 

Pseudomonas syringae pv. tomato and Xanthomonas euvesicatoria bacteria. Source: 
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WO2023126532 – Method and device for non-invasive tomographic characterization of 

a sample comprising a plurality of differentiated tissues (Martins, Santos et al. 2023). 

4. SpecTOM Technology - A Spectroscopy-based Metabolomics Tomography 

Prototype System 

 These findings were integrated into the development of the SpecTOM project, a 

spectroscopy-based metabolomics tomography prototype system. It aimed to develop a 

non-invasive spectroscopy tomography system for providing compositional imaging of 

plant and animal tissues. This project was an upgrade of the MetBots (Metabolomic 

robots with self-learning artificial intelligence for precision agriculture) system 

(INESCTEC 2018). SpecTOM allowed the previous system to explore in detail plant 

internal structures and composition for a new omics approach, where molecular biology 

and plant physiology are key enablers of new diagnosis and agricultural practices. 

 SpecTOM is based on image reconstruction using latent hierarchical information 

fusion approaches to decode the recorded hyperspectral spectroscopy signal into its 

several components of the sampled tridimensional structures, i.e., the different plant 

tissues being assessed (e.g., tomato leaflet tissues). Hierarchical relations analyzed the 

parallax effect, which changes the spectral fingerprint depending on the point-of-view 

angle of the spectroscopy probe. This basic principle was used to develop the proof-of-

concept of microscopic tomography for assessing spectral patterns that can be used to 

diagnose at very early stages different tomato bacterial infections, such as the ones 

caused by Pseudomonas syringae pv. tomato and Xanthomonas euvesicatoria. Proof-

of-concept findings demonstrated the suitability of the technique. 

 SpecTOM won 2021 the BIP PROOF 20/21 (INESCTEC 2021) and in 2022, the 

project won the 8th edition of the Caixa Agrícola Entrepreneurship and Innovation Award, 

in the Agro-industry 4.0 category, which aimed to support digital technological solutions 

that promoted production optimization and efficient resource management (AGROTEC 

2022, Negócios 2022, Silva 2022). 

 This project will also contribute to the development of the OmicBots project (High-

Throughput Integrative Omic-Robots Platform for a Next Generation Physiology-based 

Precision Viticulture) (FCUP 2021, OMICBOTS 2024), which aims to explore the 

metabolic pathways of the grapevines to understand the physiology and metabolism of 

the vine in situ. 
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5. Patent WO2023126532 – Method and device for non-invasive tomographic 

characterization of a sample comprising a plurality of differentiated tissues 

 The described findings were furthermore used as a proof-of-concept for the 

development of a patent titled ‘Method and device for non-invasive tomographic 

characterizations of a sample comprising a plurality of different tissues’. The patent 

discloses a method and device for non-invasive tomographic characterization of a 

biological sample involving a plurality of differentiated tissues. In specific, it provides a 

computer-based approach for non-invasive tomographic metabolite characterization of 

a biological sample (from plant or animal base) (Martins, Santos et al. 2023).  
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Case Study 7 
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4169-007 Porto, Portugal 

2 Institute for Systems and Computer Engineering, Technology and Science (INESC 

TEC), Campus da Faculdade de Engenharia da Universidade do Porto, Rua Roberto 

Frias, 4200-465 Porto, Portugal 
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Vairão, 4485-661 Vairão, Portugal 

1. Contextualization 

 Due to the interesting findings regarding the usage of Thermography for early 

disease diagnosis presented in the review article mentioned in Chapter I of this thesis, 

and following the evidence that imaging information may carry important spectral 

information as related in the previous case study (Case study 6), two preliminary 

laboratory assays using tobacco plants (Nicotidiana tabacum) were conducted. They 

aimed to provide proof-of-concept of the suitability of Thermal and RGB Imaging for the 

early bacterial disease diagnosis, i.e., before the appearance of macroscopically visible 

lesions, at a non-symptomatic stage of the diseased plant. In this regard, further scientific 

experiments applying these two approaches for the early diagnosis of bacterial diseases 

are currently under development, whose outcomes are being prepared for later 

publication. 

 The tobacco species was chosen because it is currently considered a plant 

system model, presenting a high capacity to adapt itself to several environments, through 

the development of a broad range of morphological and chemical phenotypes (Baldwin 

2001). Moreover, tobacco plants are natural allotetraploids that produce a million seeds 

per plant in three months after germination (Ganapathi, Suprasanna et al. 2004), 
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facilitating its maintenance and renewal. Moreover, in early disease diagnosis studies, 

the tobacco’s leaf morphology facilitates the operability of the sensor used, along with 

the evaluation of its performance. The preliminary results shown here were partially 

communicated at two scientific conferences through oral presentations (Appendix D and 

Appendix E). 

2. Tobacco plants bacterial infection assay 

 Tobacco plants were used in a hypersensitive reaction (HR) assay. Typically, HR 

is characterized by the rapid death of individual plant cells that come into contact with 

pathogenic organisms and is generally associated with disease resistance of the whole 

plant to the pathogen (Kiraly 1980, Klement 1982). In this HR analysis, the tobacco 

behavior after being inoculated with different bacteria was studied. With this purpose, 12 

plants were selected and divided into four groups of 3 plants each. The plants were 

grown in 80 ml pots containing a commercial potting substrate in a plant Walk-in growth 

chamber at 25-27ºC, with a photoperiod of 12 / 12 hours, and humidity of 50 %. 

 Different bacterial strains, namely Pseudomonas syringae pv. tomato (Pst) DC 

3000, Xanthomonas arboricola pv. juglandis (Xaj) CFBP 7179 (these two bacteria 

pathovars were considered the positive controls), Xaj CPBF 427, and Xaj CPBF 1521, 

were used in these inoculation assays. They were initially stored at -80ºC in the bacterial 

culture collection of the Microbial Diversity and Evolution (MDE) Group (CIBIO 2024). 

The bacterial growth occurred in Petri dishes incubated in a greenhouse at 28ºC, from 

24 to 48 h, which was the time necessary to obtain isolated (pure) colonies. Xaj was 

cultured in Petri dishes containing the Nutrient Agar (NA) and Yeast extract-dextrose-

CaCO3 media, and Pst DC 3000 was cultured in NA and King's B (KB) media. Later, an 

isolated (i.e., pure colony) of each one of these pathogens was suspended in liquid 

Lysogeny Broth (LB) nutritive medium, in Falcon tubes, and it was incubated at 28ºC, 

with agitation (220 rpm) overnight. 

 The plants were, then, inoculated by infiltration using blunt-ended syringes, in the 

4th, 5th, and 6th leaves, following the next arrangement: 3 plants were used as control 

plants (inoculated with purified water only); 3 plants were inoculated with a suspension 

of Pst DC 3000 in purified water at 108 colony forming unit (CFU) ml−1; 3 plants were 

inoculated with a suspension of Xaj CFBP 7179 in purified water at 108 CFU ml−1; 3 

plants were inoculated with a suspension of Xaj CPBF 427 in purified water at 108 CFU 

ml−1; and, 3 plants were inoculated with a suspension of Xaj CPBF 1521 in purified water 

at 108 CFU ml−1. The first symptoms appeared 12-24 hours after the inoculation process, 

and they were fully developed 48 hours after the inoculation in every plant. 
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3. Thermography for the early assessment of the hypersensitive 

response in bacterial inoculated tobacco plants 

  “Convective temperature” changes undergo alterations in plants affected by non-

symptomatic diseases, and these changes can be detected by using a portable thermal 

camera (FLIR 335, FLIR Systems, Sweden). This approach enables early detection of 

diseases in a non-contact and non-destructive manner. The assessment of the plant's 

emittance using this specialized equipment is crucial in achieving accurate results.   

   

  

  
  *Plants in this RGB image are in a slightly different arrangement than in the corresponding thermal image. 

Figure 1 Images captured with thermal camera of tobacco plants inoculated with 

Pseudomonas syringae pv. tomato. In the first hour after the inoculation, in the thermal 

image is possible to see the sites where the bacterial infiltration was performed, i.e., dark 

1 h 

12 h* 

24 h 

h 

23.9ºC 

17.9ºC 
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blue spots (highlighted by white circles). These spots are, generally, surrounded by a 

higher temperature area, presenting a yellow color. The corresponding RGB image is on 

the left. At 12 hours yellow areas (higher temperature) can be observed in the diseased 

leaves, near the infiltration spots. At 24 hours, these yellow areas (of higher temperature) 

in the thermal image, are shown as lesioned leaf areas in the corresponding RGB image. 

The thermal image color scale is provided on the left side of the figure. 

 Measurements were performed in the first 72 hours that followed the inoculation 

process. The thermal images showed that after inoculation, the area near the infiltration 

site registered a higher temperature (represented with yellow in the thermal image, 

Figure 1), even when only one hour had passed. In these areas of higher temperature, 

disease symptoms later appeared, and originated necrotic lesions 24h after inoculation 

(Figure 1).  

 These findings seem to indicate that Thermography images may be suitable for 

early bacterial disease diagnosis. Nevertheless, modeling analyses are recommended 

to provide more robust evidence. Furthermore, it would be beneficial to verify the 

bacterial solution’s temperature at the moment of inoculation to determine if it is inferior, 

equal, or higher than the temperature of the inoculated leaf. In that way, the origin of the 

thermal difference ‘spots’ around the local bacterial inoculation may be fully attributed to 

the host-pathogen interaction. Further assays may also consider the analysis of plants 

punctured with a syringe only, and plants inoculated with purified water only. 

Complementary research exploring different pathosystems and thermography sensors 

with different spectral resolutions is recommended. 

4. RGB imaging captured under different LED light sources 

stimulation for the assessment of the hypersensitive response 

in bacterial inoculated tobacco plants 

 The results from Chapter I, which highlighted the use of RGB imaging for disease 

studies, prompted further investigation through exploratory assays employing this cost-

effective and user-friendly system. 

 Image acquisition was made using a set-up including an RGB camera (Panasonic 

Lumix DC-FZ82) in combination with different light sources including individual Red, 

Green, Blue, and White LEDs, a UV LED floodlight, and an RGBW LED floodlight (Figure 

2). This setup allowed the simultaneous imaging of 6 plants (3 control and 3 inoculated) 

(Figure 3). 
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Figure 2 Set-up composed of an RGB camera (1) in combination with different light 

sources including individual Red, Green, Blue, and White LEDs (2) mounted on an 

aluminum plate, and a floodlight (UV and RGBW) (3). 

 

Figure 3 Diagram showing the experimental conditions, the image acquisition set-up, 

and the plant arrangement assessed (three control and three inoculated plants). 

 The different artificial light sources were explored to investigate the distinct plant-

light-sensor interactions and determine the efficacy of each illumination source in the 

diagnosis of bacterial diseases in plants. The outcomes may also justify the development 

1 

2 

3 
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of an active RGB sensor-based system, using these LEDs, of reduced cost and high 

operability. 

 The photos were taken in a dark room, and the process started 4 hours before 

the inoculation process began, being repeated every 4 hours (between 09 and 20 hours). 

This assay was performed in the first 72 hours that followed the inoculation process. The 

data was then stored on an SD card and loaded on a computer. 

 A part of the images captured at 0, 12, and 24 hours after bacterial inoculation 

can be seen in Figure 4. RGB images of tobacco plants were taken using the Green, 

Red, Blue, and White individual LEDs. Of the six plants analyzed, three were inoculated 

with purified distilled water only and the remaining with a bacterial solution of Pst bacteria 

following the protocol described in the previous subsection 2.  

 At the moment, no significant visual enhancement could be observed in the 

outputs shown. Further image and spectral processing analysis (both qualitative and 

quantitative) are, hence, recommended to verify if there are non-visual differences 

between the images captured that could enhance the early bacterial diagnosis, providing 

more robust conclusions. Complementary experimental assays should also be repeated 

to validate the results, and different plant-pathogen interactions should be studied. 
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Figure 4 Images captured with an RGB camera using stimulation with different individual 

LEDs source 0, 12, and 24 hours after the bacterial inoculation process in three tobacco 
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(left) plants using Pseudomonas syringae pv. tomato bacteria. Three control plants were 

also included in the image for comparison. For each time point (0, 12, 24 hours), the 

letters in each figure represent the type of LED radiation used to stimulate the plants: A) 

Red LED, B) Green LED, C) Blue LED, and D) White LED. Yellow pale circles highlight 

the hypersensitive response lesions. 
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General Discussion 

 The main objective of this doctoral thesis was to investigate the suitability of using 

proximal optical sensed data for the early diagnosis of bacterial plant diseases in tomato 

(herbaceous, annual crop) and kiwi (woody, perennial crop). Moreover, several 

predictive modeling approaches were investigated for discriminating healthy and 

bacterial diseased tissues, as well as discriminating diseased tissues affected by 

different pathogen species.  

 A critical review (Case Study 1) exploring the scientific works regarding the 

application of proximal sensing for early disease diagnosis was made, aimed to identify 

the type of crop and pathogen studied, the environmental conditions (i.e., laboratory, 

greenhouse, and field) of the experimental assays, the sensor used, and the data 

handling and modeling procedures computed, and the performance of the predictive 

approaches for disease assessment. 

1. Pathosystem dynamics and experimental environment: 

Unraveling the Disease Triangle Components 

 Tomato, wheat, sugar beet, and soybean were identified as the most studied 

crops in Case Study 1, mentioned in 16%, 13%, 9%, and 9% of the screened articles, 

respectively. These four species present high economic importance due to their 

widespread cultivation and consumption worldwide, especially wheat, which is 

furthermore considered a staple food source. Beyond their socio-economic importance, 

these crops exhibit straightforward cultivation and maintenance requirements. Their 

short life cycles contribute to their suitability for diverse research studies conducted 

within a relatively condensed timeframe. This combination of economic significance, 

global prevalence, and ease of study positions tomato, wheat, sugar beet, and soybean 

as valuable subjects for comprehensive agricultural investigations. In this thesis, tomato 

plants were used as herbaceous, annual species of interest in Case Studies 2, 4, and 

5 (Supplementary Materials | Paper I), along with tobacco plants used in Case Studies 

6, and 7. Furthermore, kiwi plants were also investigated as a woody, permanent species 

of interest in Case Studies 2, 3 (and Supplementary Materials | Paper II), due to their 

great agronomic, and economic relevance in Portugal, and Europe. The studies also 

wanted to provide some new insights for this crop which was scarcely used in the 

literature regarding the usage of proximal sensing for bacterial disease diagnosis. 

 Regarding the etiological agents analyzed, fungi were the most used pathogen 

(referred to in 53% of the articles assessed in Case Study 1), followed by viruses (24%), 
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bacteria (approximately 18%), and pests (around 9%). The economic importance of 

these pathogens, global distribution, visibility, symptomatology, historical emphasis, 

pathogen collection availability, pathogen complexity, ecological significance, and 

resistance to phytosanitary products may be related to these outcomes. Also, fungal 

diseases frequently manifest themselves more conspicuously in plants compared to 

viral, bacterial, or pest-related diseases (even before symptom appearance). Thus, this 

may enable the understanding related to changes promoted by plant-pathogen 

interactions, motivating more research using these organisms. 

 In this study, bacteria were chosen as the etiological agent of interest due to being 

used in a lesser extension in the screened scientific literature, aiming to fill this gap, and 

also because their diagnosis poses an extra challenge due to the localized infection 

(more difficult to assess). The Pseudomonas spp. and Xanthomonas spp. were, 

moreover, selected to integrate the studies since they belong to different genera but 

affect a broad range of plant hosts, causing similar macroscopic symptoms in plant 

leaves (especially in the first visual lesions). Hence, the possibility of discriminating 

disease tissues affected by different bacteria could also be explored, complementing the 

distinction between healthy and diseased samples. 

 The majority of the aforementioned works were conducted in laboratory (control, 

69% of the articles analyzed in Case Study 1) conditions, followed by greenhouse 

(22%), and field assays (20%). This may be related to laboratory conditions making 

possible a more detailed assessment of the host-pathogen interactions in the study due 

to the controlled environmental conditions which prevent the occurrence of any noise 

deriving from other types of biotic (e.g. action of other pathogens), and abiotic agents 

(e.g. effects of water, nutritional, light and temperature imbalances). Furthermore, these 

conditions also allow a more conducive environment for the use of sensors due to their 

structured light properties. On the contrary, field conditions allow the same study but in 

real circumstances, which are currently more complex and challenging to explore but 

also more interesting. They also allow the validation of previous studies made in 

controlled conditions. This thesis endeavored to encompass investigations spanning 

both controlled environments (Case Studies 2, 4, 5, and Supplementary Material | 

Paper I) and field conditions (Case Studies 2, 3, and Supplementary Material | Paper 

II). This comprehensive approach aimed at enhancing the generalizability of the results 

obtained. 
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2. Proximal Sensing technologies and instrumentation 

 In terms of proximal sensing technologies,  Biophoton Emission, Fluorescence 

Spectroscopy, Laser-Induced Breakdown Spectroscopy, Multi- and Hyperspectral 

Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, Raman Spectroscopy, RGB 

Imaging, Thermography, Volatile Organic Compounds (VOC) assessment, and X-ray 

Fluorescence Imaging were the main identified during the screening process made in 

Case Study 1. Hyperspectral spectroscopy emerged as the predominant technique, 

referenced in 82% of the evaluated articles, for conducting early disease diagnosis—

detecting issues prior to the visible manifestation of macroscopic symptoms. Notably, 

this method demonstrated the highest Technology Readiness Level among the various 

approaches investigated. In this regard, it was investigated the suitability of two types of 

hyperspectral sensors for early bacterial disease diagnosis. The first was based on a 

passive reflectance spectroradiometer, measuring data between 325 and 1075 nm, and 

was mainly applied in studies involving kiwi plants (Case Study 2, 3, and 

Supplementary Material | Paper II). The second sensing technique was based on an 

active (i.e. using a proper light source for sample irradiation) point-of-measurement 

transmittance spectrometer, capturing data between 400 and 800 nm, and was mostly 

used in studies using tomato plants (Case Study 2, 4, 5, and Supplementary Material 

| Paper II). Transmittance data conveys information from the sample's surface and first 

tissue layers, similar to reflectance data, and also from more in-depth parts (where 

bacterial development and colonization usually happen). This type of data allowed the 

discrimination of not only healthy and diseased tissues but also between diseased 

tissues affected by distinct bacteria (Case Study 2, 4, 5), even before symptom 

appearance (Case Study 4, 5). 

 The potential of imaging-based techniques, as well as of spectral data fusion 

(between single and multi-point measurement devices) for early disease diagnosis 

identified in Case Study 1 was further explored in Case Study 6 and Case Study 7. 

Both strategies are currently under development, but the first insights indicate their 

suitability for the early diagnosis of bacterial diseases, namely when Thermography 

images or hyperspectral and imaging data fusion were used. 

 Overall, the outcomes showed that both hyperspectral transmittance and 

reflectance spectroscopic data can be used to identify healthy and diseased tissues and 

discriminate diseased tissues affected by different bacteria, both in laboratory and field 

conditions, in tomato (herbaceous) and kiwi (woody) crops. Nevertheless, only 

hyperspectral point-of-measurement transmittance data, captured in laboratory 

conditions, allowed the early diagnosis of bacterial diseases. The outcomes allowed us 
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to accomplish the main objectives and goals of the present thesis, as well as to respond 

to the research questions previously made in Section I.  

3. Explore the modelling approaches 

 Case Study 1 also identified the main strategies employed after data collection 

in handling and modeling steps. Usually, data is sequentially subjected to four 

preparation steps: preprocessing, Feature Engineering (i.e., Feature Selection and/or 

Dimensionality Reduction techniques), modeling, and performance evaluation (Figure 

1). 

  

Figure 1 Flowchart of the main steps for spectral data analysis.   

 The most used pre-processing techniques were the Normalization (used in 7% of 

the articles analyzed in Case Study 1), Standard Normal Variate (4%), Multiplicative 

Scattering Correction (4%), and Savit ky−Golay filter (4%). They dealt with missing 

values and outliers, as well as with denoising and smoothing data tasks. In the present 

thesis, Multiplicative Scattering Correction and normalization were used in Case Studies 

3 and 4, and in Case Study 5 a Savitzky-Golay filter and Standard Normal Variate were 

used. 

 In terms of Feature Engineering, it was mostly used for reducing spectral data 

high dimensionality, resulting from similar or even overlapping information presented in 

continuous variables. This redundancy increases the complexity of data analysis and 

increases the risk of overfitting occurrence when modeling strategies are later computed. 

Furthermore, it was used to deal with the super-imposed information present in spectral 

data collected at biological tissues, which occurs at different interference levels (Tosin, 

Martins et al. 2022). Spectral Vegetation Indices (VIs) were largely used in the articles 

screened (28% of the studies). In this regard, several Vegetation Indices and wavelength 

combinations were tested in this thesis in Case Study 2 (Supplementary Material | 

Paper 2). Despite their suitability and relevant results, VIs only consider a limited number 

of wavelengths and may lead to information losses when hyperspectral narrowband 

sensors are used. Other important strategies identified in Case Study 1, included data 

condensation into 10 nm bands (that we later used in Case Study 2), Sequential Forward 

Floating Selection Search Strategy and the Jeffries–Matusita Distance, Stepwise 

Forward Variable Selection Method using Wilk’s Lambda Criterion, and Lasso 

Regularized Generalized Linear Model (used in Case Study 3). 
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 In turn, Dimensionality Reduction was computed to transform the original feature 

data space into a lower-dimensional representation. Principal Component Analysis 

(mentioned in approximately 20% of the publications presented in Case Study 1), Partial 

Least Squares (9%), Partial Least Squares Discriminant Analysis (7%), and Linear 

Discriminant Analysis (4%). In this regard, Case Study 3 explored the effects of Linear 

Discriminant Analysis, and Supplementary Material | Paper 1 tested Principal 

Component Analysis. All these data preparation techniques improve interpretability, 

simplify visualization, decrease the computational cost, help identify and improve useful 

spectral features, and enhance model performance. 

 Applied modeling techniques are usually then computed for performing predictive 

tasks. In instances where the variable in analysis was continuous, and represented 

mostly by numeric values, a regression technique was used (quantitative analysis). On 

the contrary, when the target variable was based on categorical values (e.g., classes or 

categories), classification models were computed (qualitative approach).  

 Classification approaches were mentioned in 80% of the analyzed scientific 

articles in Case Study 1. Our results demonstrate that the most applied techniques were 

Machine Learning based, namely Support Vector Machines (used in 20% of the studied 

scientific articles in Case Study 1), Discriminant Analysis (22%), k-nearest Neighbor 

(16%), Partial Least Squares (13%), and PLS-Discriminant analysis (16%). Hence, the 

potentialities of predictive classification models based on Machine Learning approaches 

were explored in Case Studies 2, 3, and 4. Case Study 2 explored Discriminant 

Analysis and an innovative Gaussian Process Classification Band Analysis Tool recently 

released in ARTM ’s (Verrelst, Rivera et al. 2011) software. Case Study 3 also studied 

Discriminant Analysis, as well as Generalized Linear Model, Partial Least Squares, and 

Support Vector Machines. In turn, Case Study 4 investigated the potential of Support 

Vector Machines. In an innovative approach, a chemometrics-based classification model 

technique was tested in Case Study 5, namely authentication, aiming for the earlier 

identification of bacterial diseases in tomato. The Data-Driven Soft Independent 

Modelling by Class Analogy (DD SIMCA) was the model computed to perform this task. 

  All the strategies showed potential for discriminating healthy from diseased 

tissues (Case Study 2, 4, 5) and between symptomless and symptomatic samples 

(Case Study 2, 3), both in laboratory and field conditions, and using transmittance and 

reflectance hyperspectral data. Furthermore, Support Vector Machines and Data-Driven 

Soft Independent Modelling by Class Analogy using hyperspectral point-of-measurement 

transmittance data showed great potential for classifying samples even before the 
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macroscopic manifestation of disease symptoms, i.e., in the non-symptomatic stage 

(Case Study 4, 5). Thus, these two approaches are recommended to perform early 

bacterial diagnosis in both herbaceous and woody crops.  

 Despite the success of all the strategies explored in this thesis, authentication 

demonstrated a great potential for early distinguishing healthy from diseased tissues only 

requiring the spectral data of healthy samples to perform the classification task. This 

relevant finding streamlines the classification process, eliminating the need for prior plant 

inoculation in controlled environments or the identification of diseased plants in the field 

to establish their spectral behavior for use in predictive classification. 

 In general, the literature data was split into training and validation sets. The model 

was usually developed using the training data and later validated or tested on separate 

datasets. This procedure prevents overfitting, which occurs when a model becomes 

excessively attuned to the intricacies of the training data. Overfitting can lead the model 

to incorporate not only the underlying structured patterns within the data but also the 

inherent noise and random fluctuations. Consequently, an overfitted model might 

struggle to offer consistent and reliable predictions [123]. The present thesis used the 

same strategy in Case Studies 2, 3, 4, and 5. 

 Cross-validation approaches were also performed to provide a reliable estimate 

of a model’s generali ation performance (used in approximately 35% of the articles 

screened in Case Study 1). This strategy was also followed in our thesis, in Case 

Studies 2, 3, and 4). 

 Predictive models were, lastly, evaluated to assess the success or failure of their 

performance. In the literature review made in Case Study 1, regression models were 

mainly appraised according to their coefficient of regression (R2), and root mean square 

error (RMSE) (mentioned in 20% of the scientific articles). Classification models, in turn, 

were ranked by determining their confusion matrix (CM), accuracy, precision, F1-score, 

and Kappa coefficient (mentioned in more than 20% of the articles). These metrics were 

also computed in this thesis. 

4. Biophysical meaning associated with the predictions 

 Most of these predictive modeling strategies assessed in the literature review 

were data-driven and did not consider plants’ physiology and the biological significance 

of the results. This thesis attempted to establish these connections in all the case studies 

performed, especially by determining which were the most relevant wavelengths 

contributing to class discrimination. In Case Study 2, the spectral wavelengths selected 
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by both modeling strategies were in the blue (450.04 nm), green (550.20 nm), and red 

edge (680.02, 690.42, 700.41, and 750.17 nm) spectral regions when the tomato dataset 

was used.  In turn, when the kiwi dataset was analyzed the features were located in the 

blue (400, and 450 nm), green (530, 544, 553, 554, and 597 nm), red-edge (670, 677, 

700, 705, 730, 750, and 754 nm), and NIR (Vegetation Indices picked 780, 800, 994, 

and 1000 nm, and Gaussian Process Classification Band Analysis Tool choose 771, 790, 

791, 795, 825, 835, 839, 845, 850, 851, 860, 864, 866, 869, 881, 883, 888, 893, 902, 

905, 906, 928, 932, 939, 945, 947, 973, 980, 993, 999, and 1006 nm). Case Study 3 

presented similar results for diagnosing bacterial diseases in kiwi leaves. Spectral 

wavelengths located mainly in the blue (350–500 nm), green (500–600 nm), red (600–

750 nm), and NIR (>750 nm) regions were identified as relevant. The same finding was 

performed in Case Study 4 where forty-four spectral features were considered 

important. They and were mostly located in the blue-green and red visible regions of the 

electromagnetic spectrum (blue - 434.9, 435.72, 438.17, 438.58, 440.21, 441.44, 442.67, 

443.08, 445.53, 445.94, 448.4, 448.81, 494.6 nm; green - 503.74, 508.74, 527.53 nm; 

red - 556.09, 562.0, 562.84, 590.37, 607.82, 609.1, 611.24, 618.5, 643.36, 650.24, 

673.97, 680.02 nm). Lastly, in Case Study 5 the bacterial effect in Pst inoculated 

samples was visibly manifested in the band between 430 and 475 nm when compared 

to control samples, while in Xeu inoculated samples, the bacterial impact was clearly 

expressed in the spectral range of 675-800 nm. 

 These variables align with the absorption wavelength ranges of chlorophylls (430 

to 480 nm and 640 to 700 nm) and carotenoid pigments, specifically β-carotenes, with 

primary and secondary absorption peaks located at 450 to 480 nm and 600 to 650 nm, 

respectively. Additionally, the spectral ranges of xanthophylls (520 to 580 nm), certain 

phenolic compounds (e.g., flavonoids, 400 to 500 nm), and composts derived from 

chlorophyll decomposition, namely pheophytins (400 to 500 nm and 600 to 700 nm), 

coincide with the observed findings. 

 Since plant-pathogen interactions induce changes in the photosynthetic pigment 

content, water levels, and structural composition of the host, changing its spectral 

behavior in the VIS-NIR region, these findings present important biological relevance 

(Blancard 2012).  

5. Advancing early disease diagnosis 

 The integration of proximal sensors with diverse modeling strategies emerges as 

a promising avenue for advancing early disease diagnosis, occurring prior to the visible 

appearance of symptoms. The inherent advantages associated with in-situ, in-vivo 
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conditions underscore the significance of these sensing devices in close-range 

applications. The proposed methodologies contribute to more proactive and timely 

agricultural interventions, encompassing disease monitoring, management, and the 

execution of phytosanitary measures. This approach enhances the efficacy and 

precision of protective measures, facilitating the judicious selection of appropriate 

phytosanitary compounds, administered at the right dosage and timing. Consequently, it 

aids in minimizing product residues and mitigating pathogen resistance. In effect, these 

practices align with the principles and objectives of precision agriculture, fostering more 

sustainable agricultural practices. 

 Nevertheless, more research is recommended to unveil specific host-pathogen 

interactions, including the related metabolic, structural, and physiological changes. Since 

this is an indirect method of disease diagnosis, it is also important to discriminate the 

effect of these changes in the spectral signature of diseased plants from modifications 

occurring due to other types of stress (e.g. water deficit, nutritional imbalances, among 

others). Relating predicting modeling outcomes with the plant’s physiology and biological 

significance holds the potential to address this inquiry and substantially enhance the 

diagnostic method's utility. Additionally, incorporating authentication classification 

approaches that integrate the retrieval of the sample's pure spectral profiles can serve 

as forensic evidence regarding the sample's health status. This proactive measure helps 

prevent confusion arising from interferences caused by other biotic and abiotic agents. 

 Furthermore, Hyperspectral Spectroscopy sensors still present a technological 

maturity level with a high potential for progression, and further studies and improvements 

in these sensors are necessary. Additional development of high-resolution, cost-

effective, portable, and easy-to-use spectral devices is suggested for enhancing the 

diagnosis of bacterial plant diseases, especially in greenhouse or field conditions. The 

spectral wavelengths highlighted as relevant for early disease diagnosis may contribute 

to this point. Also, spectral data acquisition and modeling protocols should be developed 

and standardized. 
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Remarques and 

perspectives  
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Final remarks and perspectives 

Plant diseases greatly impact agricultural production worldwide, affecting crop 

yields and, consequently, leading to negative impacts on farmers’ incomes, availability, 

and quality of agricultural products (affecting the supply of food, feed, clothing, and 

building materials), and resulting in higher prices of these products for consumers. Thus, 

it's urgent to develop innovative solutions for precocious disease diagnosis. Currently, 

professional visual scouting, biochemical analysis, and pathological analysis have been 

well investigated and explored. Non-invasive technologies have also been considered in 

recent years and have begun to be explored. 

This work highlights the potential of hyperspectral spectroscopy combined with 

chemometrics or applied predictive modeling as a simple, quick, reliable, non-disruptive, 

reagent-less, cost-effective tool for diagnosing different bacterial plant diseases, both in 

controlled (laboratory) and in-field environmental conditions, as can be seen in Case 

Study 2, 3, 4, and 5. It describes several protocols for spectral data acquisition and 

modeling, which are effective for early discriminating healthy from bacterial-diseased 

leaves, in both herbaceous (tomato) and woody (kiwi) crops.  

Nevertheless, it is important to address that the proposed protocols constitute an 

indirect method of diagnosis and may suffer from interferences with other types of stress, 

mostly with abiotic factors (e.g., meteorological, nutritional, and water conditions). Thus, 

additional studies in different plant conditions and stages might be relevant. Further 

research should also be carried out for different pathosystems, including the study of 

distinct bacteria species and even pathovars to see if the relevant spectral wavelengths 

for disease diagnosis are stable or if, on the contrary, they change. Also, the study of 

different types of pathogens (such as fungi, viruses, and pests) could fortify the suitability 

of hyperspectral data combined with different predictive models for biotic stress 

assessment. 

Additional development of high-resolution, cost-effective, and portable spectral 

sensors is recommended for enhancing the evaluation of crop diseases. By providing 

powerful tools for early, in situ, in vivo diagnosis of infections, these innovative methods 

will constitute an opportunity to perform efficient, personalized disease control. Also, the 

possibility of coupling these hyperspectral sensors in robotic platforms will create the 

opportunity for continuous monitoring of plants.  

These ambitions may be currently achievable, since more cost-effection sensors 

may be developed considering the most relevant spectral wavelengths identified in the 
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different case studies presented in this thesis. These sensors may, then, be coupled on 

different types of ground-based platforms, such as high throughput phenotypic platforms 

and robots, performing data collection and storage with inter-institutional standards and 

protocols (e.g., meta-data, ontology, semantics), which allows for efficient data 

exchange. 

In the future, the currently used commercial sensors, as well as future design 

broad band devices, are intended to be added to the AgIoT modules (INESCTEC) 

developed by the author’s team TRIBE - Laboratory of Robotics and IoT for Smart 

Precision Agriculture and Forestry (INESCTEC 2024). This solution is already equipped 

with other sensors and integrates robots and tractors to acquire data in field conditions. 

The information from here could be used for plant disease forecast, diagnosis, and for 

the application of several plant protection measurements, providing insights about the 

microclimate (at leaf, canopy level), phenology, canopy’s biometric parameters (e.g. Leaf 

Area Index – LAI). 

Concerning data storage, the information gathered can be gathered on the team’s 

server http://vcriis01.inesctec.pt:1880/ui/#/0/ considering the FIWARE framework. The 

archived data may be, additionality, stored considering the ‘meta formats’ designed in 

the H2020 DEMETER project (DEMETER 2021), in which the team participated. 

Furthermore, the four datasets shared in Zenodo could also be used in new studies, 

regarding plant disease and pathology studies, also encouraging data sharing between 

researchers. 

Furthermore, ground sensors, performing measurements at the leaf level, can be 

used as reference or training input for airborne-based platforms and scaled to field and 

plot levels, i.e., allowing the upscaling of the disease predictive models. The findings and 

deliverables of this study may now serve as the basis for further studies on this subject. 

Also, the potential of the robotic platforms coupled with different optic and environmental 

sensors can be used to map the differentiated risk of disease. This mapping can, then, 

be considered for differentiated phytosanitary treatments through spraying at a variable 

rate, even in preventive cases (i.e., before the development of macroscopic disease 

lesions), following a precision agriculture perspective. The use of this information to 

support plant protection decisions will make the treatments more efficient, either by 

reducing the cost of production or the environmental impact due to the lower amount of 

phytosanitary products used. The team’s Weta ground-based robot (Figure 1) capable 

of transporting a sprayer may be an effective solution to be explored since it is able to 

perform precision spraying and apply UV-C treatments, avoiding the application of 

http://vcriis01.inesctec.pt:1880/ui/#/0/
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fungicides (INESCTEC 2023, INESCTEC 2024) developed under the scope of 

SCORPION H2020 project (SCORPION 2022). 

 

Figure 1 WETA Agro Robot: a hardworking autonomous platform conceived for helping 

people in agriculture and forestry developed under the scope of the SCORPION H2020 

project (SCORPION 2022, INESCTEC 2024). 

Further research should also evaluate the development of multisensory / data 

fusion solutions for plant disease assessment, combined with enhancements in 

equipment’s sensitivity and resolution. The goodness and reliability of the information 

extracted from the analysis of the data captured motivate the development and 

establishment of protocols for measurements, preprocessing, and processing of 

collected data, that must consider the variability of the environmental conditions that 

arise during measurements. Moreover, improvements in data analysis algorithms and 

models for specific spectra-disturbance assessment will need to be continually evaluated 

and upgraded or even redefined to improve disease investigation. 

Data fusion should also explore the integration of the advanced optical 

technologies already described (that also can be known as smart photonics) and omics 

for advancing plant disease diagnosis, through the lens of systems biology. The different 

Omics sciences, such as genomics, transcriptomics, proteomics, and metabolomics, 

provide a comprehensive understanding of the molecular compounds and processes 
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within a biological system. In the context of plant disease diagnosis, omics technologies 

may be very relevant since they allow the identification of key biomarkers associated 

with different pathogens. The synergy between these two approaches may be 

particularly powerful since the recognition of specific molecular markers through omics 

can guide the design of targeted smart photonics sensors for precise diagnosis. The real-

time, non-invasive nature of smart photonics complements the static snapshot provided 

by omics, allowing for dynamic monitoring of plant responses to pathogenic invasions. 

This would contribute to a holistic understanding of plant-pathogen interactions at various 

levels, from the molecular to the macroscopic. 

Moreover, through the computation of several data analysis and model 

techniques, future studies can unravel intricate networks of molecular events associated 

with host-pathogen interactions and with the development of plant diseases, providing 

insights into the underlying mechanisms and potential targets for intervention, fulfilling 

the requisites of system biology. 

 This pathway is already being explored by the author’s team in the  micbots 

project (OMICBOTS 2024) a High-Throughput Integrative Omic-Robots Platform for Next 

Generation Physiology-based Precision Viticulture (Figure 2). It aims to integrate multi-

omics, smart-photonics, and robotics into system biology. The final purpose is to 

increase crop productivity and nutritional quality, through precise inputs (e.g. water use 

efficiency), in terms of quantity and location, achieve crop resilience under different 

environmental conditions, and monitor biotic and abiotic stress (Figure 2).  
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Figure 2 Conceptual model of advanced precision agriculture (‘molecular precision’) 

combined omics, smart-photonics and system biology.   Developed in the project 

Omicbots project: High-Throughput Integrative Omic-Robots Platform for a Next 

Generation Physiology-based Precision Viticulture  (OMICBOTS 2024). Omics tools like 

systems biology and bioinformatics are currently available and allow the development of 

very thorough computer simulations of this omics cascade (fluxomics) and the respective 

production of in-silico models to connect the information between the genotype and the 

phenotype. These omic tools, combined with high-dimensional, high-throughput sensors, 

support the transfer of information to measure the plant's response at the cellular and 

metabolic level in the field, in a non-invasive way, thus enhancing the transition to a 

molecular precision agronomic model. Adapted from (Cunha et al. 2022) 
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Abstract 

 This study analyzed the potential of proximal optical sensing as an effective 

approach for early disease detection. A compact, modular sensing system, combining 

direct UV-Vis spectroscopy with optical fibers, supported by a Principal Component 

Analysis (PCA) was applied to evaluate the modifications promoted by the bacteria 

Xanthomonas euvesicatoria in tomato leaves (cv. Cherry). Plant infection was achieved 

by spraying a bacterial suspension (108 CFU mL−1) until run-off oc-curred, and a similar 

approach was followed for the control group where only water was applied. A total of 270 

spectral measurements were performed on leaves, on five different time instances, in-

cluding pre- and post-inoculation measurements. PCA was then applied to the acquired 

data from both healthy and inoculated leaves, which allowed their distinction and 

differentiation, three days after inoculation when unhealthy plants were still 

asymptomatic. 
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1. Introduction 

 Biotic agents, specifically pests and pathogens, cause significant losses in crop 

yields from levels that can range between 20% and 40% (Savary, Ficke et al. 2012). 

Chemical phytosanitary products are usually applied to prevent and combat these 

organisms. However, their usage can negatively impact the environment, mainly when 

applied to treat plant diseases that appear suddenly and spread to large scales (Zhang, 

Yang et al. 2020). 

 Nowadays, phytopathology methods are considered major challenges because 

to be implemented they often rely on the presence of indicator visible signs of the 

infection (disease symptoms), which frequently only manifest themselves at the middle 

to late stages of the process, compromising the effectiveness of phytosanitary measures 

(Lowe, Harrison et al. 2017). An example is the scouting technique, which involves 

inspecting a crop field to detect and identify infected plant through disease symptoms 

(Parker, Shaw et al. 1995). Despite being extremely useful, this approach requires 

specialized trained observers (who must be capable of identifying disease symptoms 

and distinguishing them from those caused by other abiotic stresses), can be labor-

intensive, time-consuming, expensive (Sankaran, Mishra et al. 2010, Liaghat, Ehsani et 

al. 2014, Mahlein 2016, Khaled, Abd Aziz et al. 2018, Ali, Bachik et al. 2019). Moreover, 

this approach can be an inefficient in the early stages of the infection and on large areas. 

Other strategies consist of laboratory-based techniques, namely serological and 

molecular tests, largely used due to their sensitivity, accuracy, and effectiveness. They 

include enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction 

(PCR) methods. Their development boosted plant disease diagnosis since they allow the 

simultaneous processing of several samples and perform a precise pathogen 

identification. Furthermore, PCR enables the detection of pathogens that have not been 

cultured. Nevertheless, these procedures present some limitations, especially in the 

early phase of the infection process, due to the uneven spread of pathogens inside 

plants, compromising their effectiveness in analyzing asymptomatic samples (Sankaran, 

Mishra et al. 2010, Fang and Ramasamy 2015, Martinelli, Scalenghe et al. 2015). Other 

drawbacks can also be enumerated since they require several hours to be completed, 

require the realization of detailed sampling procedures, and destructive sample 

preparation, not allowing a follow-up of the disease progression (Fang and Ramasamy 

2015, Martinelli, Scalenghe et al. 2015). 

 Therefore, arises the necessity of developing fast, accurate, and selective in-vivo 

techniques for plant disease detection. These innovative approaches must provide 
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complementary information to the current methods applied in the phytopathology field 

and combine with them. Several non-invasive methods have been developed in the last 

decade and proved to be sensitive, consistent, standardize, rapid, cost-effective, and 

have high throughput (Golhani, Balasundram et al. 2018). Hyperspectral spectroscopy 

(HS) is one of them and seems to be effective in estimating a wide variety of plant 

chemical, biophysical, and metabolic traits in living tissue (Thenkabail, Smith et al. 2000, 

Zhao, Reddy et al. 2003, Delalieux, van Aardt et al. 2007, Jain, Ray et al. 2007, 

Blackburn and Ferwerda 2008, Abdel-Rahman, Ahmed et al. 2010, Couture, Serbin et 

al. 2013), namely foliar structure, plant chemical composition, water concentration, and 

metabolic status (Agrios 2009). Through spectral measurements in the visible (VIS, 400-

700 nm), near-infrared (NIR, 700-1100 nm), and shortwave infrared wavelengths (SWIR, 

1100–2500 nm), this approach assesses changes in optical properties of leaves, which 

derive from interactions between light, chemical bonds, and cellular structure (Curran 

1989). Briefly, modifications in plants' reflectance in the VIS range are mostly related to 

pigment concentration and physiological processes such as photosynthesis. In turn, 

changes in the NIR are correlated with leaf structure and internal scattering processes. 

The SWIR region is affected by leaf structural and chemical composition (including 

lignins’ and proteins) and water content (Hunt and Rock 1989, Guyot 1990, Jacquemoud 

and Baret 1990, Jones and Vaughan 2010, Haq and Ijaz 2020). 

 Since phytopathogens induce physiological, biochemical, and structural changes 

in host plants, HS seems to be promising in plant disease detection, identification, and 

quantification (Grisham, Johnson et al. 2010, Mahlein, Steiner et al. 2010, Menesatti, 

Antonucci et al. 2013, Arens, Backhaus et al. 2016, Couture, Singh et al. 2018, Gold, 

Townsend et al. 2020, Riefolo, Antelmi et al. 2021). Hyperspectral sensors can be used 

alone or mounted in different platforms allowing the performance of mapping, monitoring, 

scouting, and application tasks (Zhang, Yang et al. 2020). Their flexibility allows them to 

assess leaf, single-plant, canopy (proximal sensing), and even plot and regional scales 

(remote sensing) (Zhang, Yang et al. 2020). Some examples, sorted by measurement 

scale, include handheld sensors, rail systems, vehicle, and tractor-mounted systems, 

drones UAVs, as well as aircrafts and satellites (Thomas, Kuska et al. 2018). 

 Despite the possibilities provided by these optical devices for simple, rapid, non-

destructive disease detection and identification, its application is still very limited due to 

the scarce of extensive agronomic and phytopathological studies aiming to explore their 

full potential. Their Technology Readiness Levels (TRLs) is close to TRL3 (analytical and 

experimental critical function and/or characteristic proof-of-concept) (Hirshorn and 

Jefferies 2016). Hence, this study aimed to evaluate the potential of UV-Vis spectroscopy 
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to detect diseased tomato leaves and discriminate between healthy and infected leaves, 

through a multi-temporal approach. Furthermore, it was also analyzed the capability of 

this technology in detecting changes in the reflectance spectrum of infected leaves 

before the first symptoms became visible.  

2. Materials and methods 

2.1. Experimental design 

 Tomato (Solanum lycopersicum L.) plants of the cultivar Cherry were grown in 

200 mL pots containing a commercial potting substrate, in a walk-in plant growth 

chamber under controlled conditions (temperature of 25-27 ºC, humidity of approximately 

60%, and photoperiod of 12 / 12 h). Plants were divided into two groups, being one of 

them inoculated with Xanthomonas euvesicatoria LMG 905 (Xeu) bacteria, and the other 

being treated with sterile distilled water only (Control group). Plants were inoculated in 

the laboratory, at the growth stage of 5-6 fully expanded leaves, by spraying until they 

became fully wet, and run-off occurred. The bacterial suspensions used for these 

inoculation assays consisted of 1 x 108 cells / mL. They were prepared from a 48-h-old 

culture grown on YDC medium (yeast extract, 10.0g; dextrose, 20.0g; CaCO3, 20.0g; 

agar, 15.0g; distilled water up to 1.0 liter). The inoculated plants were then covered with 

transparent polythene bags for 48 h to increase the relative humidity that fosters bacterial 

entry into plant tissues through natural openings such as stomata (Lamichhane 2015). 

Plants were daily monitored for symptom development for 7 days. 

 At the same time, to verify if the bacteria cultures used in these inoculation tests 

were viable, 20 μL of Xeu solution were culture in different Petri dishes containing YDC 

media. After 48 h was possible to observe the bacteria growth in both nutrient media, 

proving that bacteria were viable at inoculation. 

2.2. Spectral measurements 

 Hyperspectral data were collected in vivo from the adaxial side of healthy and 

infected tomato plant leaves by a compact benchtop system consisting of a D2 

(deuterium) light source (Ocean Optics model DH-2000-BAL), a spectrometer (Ocean 

Optics model HR4000), a transmission optical fiber bundle (UV), and a stainless-steel 

slitted reflection probe for sample measurement. The spectrometer operated in the 195-

1100 nm wavelength range with a high spectral response and good optical resolution of 

0.025 nm (full width at half maximum - FWHM). The measurements were carried out 

using an experimental setup in the laboratory. An LED light source was placed beneath 

the leaf and provided homogeneous illumination to its entire surface. The light signal 
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from the sample analyzed was guided to the entrance lens of the spectrometer by the 

fiber-optic cable placed perpendicularly 1 cm above the measured surface. Specialized 

software was used for data acquisition and processing. Data acquisition was performed 

with 10 scans for an integration period of 60 ms, in three leaves per plant, on nine 

locations on each leaf. 

2.3. Data pre-processing 

 A spectral pre-processing method was required to reduce the instrumental noise. 

In this regard, a pretreatment with a Fast Fourier Transform (FFT) was carried out on 

spectral data to smooth/denoise it. FFT is an algorithm that computes the discrete 

Fourier transform (DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts 

a signal from its original domain (often time or space) to a representation in the frequency 

domain and vice versa. The DFT is obtained by decomposing a sequence of values into 

components of different frequencies (Heideman, Johnson et al. 1985). Spectral data pre-

processing was performed with RStudio software. 

2.3. Data processing – Analytical Techniques 

 Spectral data were subjected to a Principal Component Analysis (PCA), a 

multivariate data analysis technique used to reduce the dimensionality, while preserving 

its structure, by projecting it into a new coordinate system. It can preserve the total 

variance of the dataset and minimize the mean square approximate errors. PCA uses 

eigenvectors and eigenvalues to define the reduced subspace (representing the original 

coordinate system). It originates principal components (PC) which are linear 

combinations of interrelated variables. PC1 accounts for the maximum possible 

proportion of the variance information of the original dataset (explained by the 

eigenvalue), and subsequent principal components (PC2, PC3, …) account for the 

maximum proportion of the unexplained residual variance, and so forth (Lee, Alchanatis 

et al. 2010, Liu, Cheng et al. 2012). 

 Contigou hyperspectral wavebands present redundant information (Thenkabail, 

Smith et al. 2002). The application of a PCA allows the transformation of this type of 

high-dimensional data into a few wavebands that contain most of the information in the 

original bands. The importance of these hyperspectral bands in each PC is then 

established based on the magnitude of eigenvectors or factor loadings for crop 

biophysical and biochemical traits, being that the higher the eigenvector, the higher is 

the importance of the band. So, PCA allows the selection of the best wavebands to model 

biophysical and biochemical quantities and the elimination of redundant bands (by 

highlighting the main bands) (Zhang, Migliavacca et al. 2021). 
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3. Results 

 The spectral response properties of tomato leaves to the stress caused by 

Xanthomonas euvesicatoria LMG 905 is very important for discriminating bacterial 

infection levels in precise pest management using hyperspectral proximal sensing data. 

The averaged raw spectral curves of healthy and diseased tomato leaves were slightly 

different in some spectral ranges, namely through the visible region of the wavelength 

spectrum (~ 420-730 nm). 

 Figure 1 presents the principal components (PCs) Gabriel plot for the healthy 

(Con) and diseased (Xeu) leaves spectra, three days after inoculation (before the 

appearance of the first symptoms). The PCA algorithm has obtained two PCs accounting 

for 99.6% of the total variance. PC1 (94.3%) discriminates the effects on the variance of 

these two types of tomato leaves, which is more evident in PC2 (5.3%). 

 

Figure 1 Gabriel plot of PC1, PC2 and PC3 resulting from the PCA of the dataset three 

days after inoculation (all leaves were asymptomatic, showing no symptoms of the 

disease caused by Xanthomonas euvesicatoria LMG 905). 

 The wavelengths that have a higher contribution in these PCs are in the interval 

of ~454 – 654 nm (visible range of the wavelength spectrum). The ones between ~492 

– 510 nm (essentially the blue region of the electromagnetic spectrum) explain 30% of 

the variance of the PC1, whereas ~454-461 nm (blue region) explain 40% of the variance 
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of the PC2 and 50% of the PC3. In all the first four dimensions of this analysis, the 

wavelengths ranging from approximately 445-480 nm (blue) and 580-700 nm (red) were 

the ones that explain most of the variance of the data. 

 This evidence can be related to the symptoms caused by Xeu, since these 

bacteria cause small, brown, angular lesions on leaves (which can be surrounded by a 

yellow hallow with the time), affecting the levels of photosynthetic pigments (contributing 

especially to the reduction of the chlorophyll levels, whose absorption features are more 

evident in the blue and red ranges of the VIS spectral region), cellular content and 

structural arrangement. 

4. Discussion 

 The spectral behavior of tomato plants depends on their biochemical and 

structural profile. In Brief, plants’ spectral signature in the visible spectral region (400–

700 nm) depends mainly on the content of photosynthetic pigments. These compounds 

are good absorbers of red and blue wavelengths. Of the major pigments, Chlorophyll a 

(Chl a) has maximum absorption in the 410–430 and 600–690 nm regions, whereas 

Chlorophyll b (Chl b) has maximum absorption in the 450–470 nm range. The green part 

of the spectrum, on the other hand, is less strongly absorbed resulting in a reflectance 

peak in the green domain (at about 550 nm) (Jacquemoud and Baret 1990). In the NIR 

region, plants’ spectral response is related to their structure, structural components, and 

internal scattering processes. Likewise, the SWIR region is also affected by leaf 

structural and chemical composition (including the action of lignin’s and proteins) and 

water content (Hunt and Rock 1989, Guyot 1990, Jacquemoud and Baret 1990, Jones 

and Vaughan 2010, Haq and Ijaz 2020). 

 Since phytopathogens cause changes in plants' biochemical and structural 

composition, affecting the levels of photosynthetic pigments and structural elements, 

tracking changes in plants’ spectral behavior can allow an indirect analysis of their 

phytosanitary status. Generally, unhealthy plants have more reflection in the blue and 

red regions and lower reflectance in the NIR. In fact, stress usually causes a rapid 

decrease of chlorophylls which exposes the absorption characteristics of other pigments, 

such as carotenoids (responsible for the yellowing of the leaves) and xanthophylls 

(responsible for the reddening of the leaves). With continuing stress, leaf structures 

decompose, resulting in extra intra-leaf scattering and an increased NIR signal. At the 

same time, concentrations of brown pigments, which absorb radiance in the VIS and at 

the onset of the NIR, can increase leading to a flattening of the red edge. Also, the 

absorption in the SWIR decreases due to reduced leaf moisture. With a decay of the leaf 
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tissue, the absorption features characteristic of healthy plants gradually disappear 

(Nagler, Daughtry et al. 2000). 

 Our findings seem to be in accord with the previous information showing evidence 

that UV-Vis spectroscopy can be suitable for plant disease assessment in laboratory 

conditions. Data collected in a randomized experimental design combined with a PCA 

allowed the discrimination of healthy and diseased tomato leaves, even at the third day 

after bacteria inoculation, when no visual symptoms were observable. Most of the 

variance of the data can be comprised with the first four PCs. In all of them, the 

wavelengths that explain most of the variance of the data ranged from approximately 

445-480 nm (blue) and 580-700 nm (red), which was expected since Xanthomonas 

euvesicatoria causes tissue lesions, degrading the chlorophylls levels, and affecting their 

absorption features in these spectral regions. 

 Therefore, our results can be related to those obtained in different researches 

where sensor-based approaches proved to be capable of assessing modifications in 

plants’ spectral behavior, allowing the detection, identification, and quantification of 

different types of plant diseases (Grisham, Johnson et al. 2010, Mahlein, Steiner et al. 

2010, Menesatti, Antonucci et al. 2013, Arens, Backhaus et al. 2016, Couture, Singh et 

al. 2018, Gold, Townsend et al. 2020, Riefolo, Antelmi et al. 2021). They involve the 

capture and analysis of the optical properties of plants, within different regions of the 

electromagnetic spectrum, and their relationship with modifications in plant physiology, 

namely alterations in tissue color, structural composition, and transpiration rate 

(Blackburn and Ferwerda 2008). These non-invasive methods have been explored in the 

last decade, presenting the benefits of being sensitive, consistent, standard, high 

throughput, rapid, and cost-effective (Nagler, Daughtry et al. 2000), surpassing the 

limitations of the current methods used in plant disease detection. 

5. Conclusions 

 The present study suggests that UV-Vis spectroscopy can be a potential tool for 

the early detection of plant diseases under laboratory conditions, even when unhealthy 

plants are asymptomatic. Despite these findings, its application is still very limited due to 

the scarcity of comprehensive agronomic and phytopathological studies aiming to 

explore their full potential, and to the development of applied advanced statistical 

approaches for data analysis. More research is necessary, especially in field conditions 

where more external factors have to surpass, including atmospheric, edaphic, and biotic 

conditions. Future research should also include more stress levels to discriminate not 

only healthy leaves from the diseased ones but also different levels of disease severity. 
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Abstract 

 The potential of hyperspectral UV–VIS–NIR reflectance for in-field, non-

destructive discrimination of bacterial canker on kiwi leaves caused by Pseudomonas 

syringae pv. actinidiae (Psa) was analyzed. Spectral data (325–1075 nm) of twenty kiwi 

plants were obtained in-vivo, in-situ, with a handheld spectroradiometer in two 

commercial kiwi orchards in northern Portugal, for 15 weeks, resulting in 504 spectral 

measurements. The suitability of different vegetation indexes (VIs) and applied pre-

dictive models (based on supervised machine learning algorithms) for classifying non-

symptomatic and symptomatic kiwi leaves was evaluated. Eight distinct types of VIs were 

identified as relevant for disease diagnosis, highlighting the relevance of the Green, Red, 

Red-Edge, and NIR spectral features. The class prediction was achieved with good 

model metrics, achieving an accuracy of 0.71, kappa of 0.42, sensitivity of 0.67, 

specificity of 0.75, and F1 of 0.67. Thus, the present findings demonstrated the potential 
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of hyperspectral UV–VIS–NIR reflectance for non-destructive dis-crimination of bacterial 

canker on kiwi leaves. 

1. Introduction 

 Bacterial Canker of Kiwi (BCK) disease, caused by Pseudomonas syringae pv. 

actinidiae (Psa), is accountable for numerous epidemics in Kiwi orchards annually 

(Balestra, Mazzaglia et al. 2009, Scortichini, Marcelletti et al. 2012). Scouting and 

laboratory-based techniques (e.g., Polymerase Chain Reaction – PCR –, and Enzyme-

linked Immunosorbent assay – ELISA) are currently applied as diagnostic procedures. 

While insightful, these methods are hindered by labor intensiveness, time requirements, 

complex sampling, and unsuitability for rapid real-time field decisions, thus limiting their 

use in disease monitoring and field mapping (Fang and Ramasamy 2015, Martinelli, 

Scalenghe et al. 2015). 

 Early diagnosis, especially before symptoms’ visible appearance, is of paramount 

importance in plant disease diagnosis. This proactive approach allows for timely and 

targeted intervention, reducing the spread of the disease and minimizing crop damage. 

It also enables more efficient resource allocation and cost-effective management 

strategies, safeguarding agricultural productivity and food security. 

 Hyperspectral Spectroscopy (HS) techniques have alternatively been recently 

applied as an innovative indirect plant disease diagnostic tool capable of retrieving 

relevant information about host-pathogen interactions related to the host’s biochemical 

and biophysical modifications. Briefly, changes promoted by pathogens related to plants’ 

pigment concentration and physiological processes (e.g., photosynthesis) produce 

changes in the quantitative and qualitative patterns of plants’ spectral behavior, namely 

in the visible region of the electromagnetic spectrum (VIS, 400–700 nm). In turn, 

modifications in leaf water levels, chemical composition (i.e., lignin and protein content), 

structure, and internal scattering processes impact the spectral signatures in infrared 

wavelengths (IR, 800–2500 nm) (Hunt and Rock 1989, Jones and Vaughan 2010). 

Hence, HS could be successfully applied in the detection of pests (Herrmann, Berenstein 

et al. 2017, Zhang, Wang et al. 2017) and fungi (Yu, Anderegg et al. 2018, Skoneczny, 

Kubiak et al. 2020), bacteria (Bagheri, Mohamadi-Monavar et al. 2018), and viruses 

(Morellos, Tziotzios et al. 2020) affecting different crops, even at non-symptomatic 

stages (Gold, Townsend et al. 2020). 

 Nevertheless, data collected from HS frequently presents redundant information 

from proximal bands. Hence, only a few spectral wavelengths might help assess plant 

disease (Caicedo, Verrelst et al. 2014, Rivera, Verrelst et al. 2014). Approaches 
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including statistical signal processing, mathematical combinations of different bands, and 

applied predictive models may be computed to extract meaningful information, reduce 

data dimensionality, and/or select relevant features (Gold, Townsend et al. 2020, Meng, 

Lv et al. 2020). Vegetation Indices (VIs) exemplify these techniques, as they are 

numerical measures derived from the parametric formulations of different spectral bands 

or wavelengths associated with essential plant biophysical parameters like 

photosynthetic pigments, structural molecules, and water content. These indices are 

widely employed because of their simplicity and comprehensiveness, users’ limited 

knowledge requirement, fast processing, and computationally inexpensiveness (Verrelst, 

Camps-Valls et al. 2015). VIs formalizations can be combinations of two-bands (most 

frequent case), three-bands, and four or more bands (combination of two VIs) (Verrelst, 

Camps-Valls et al. 2015). Among the most frequently computed VIs are the Normalized 

Difference Vegetation Index (NDVI) (Thenkabail, Smith et al. 2002, Zarco-Tejada and 

Sepulcre-CantÃ³ 2007), and the Enhanced Vegetation Index (EVI) (Huete, Didan et al. 

2002, Hunt Jr, Daughtry et al. 2011), which are effective in assessing parameters related 

to the plant’s status and structure. VIs developed specifically for parameter estimation 

(e.g., leaf’s photosynthetic pigment and water levels) are frequently employed. Some 

examples include the Anthocyanin reflectance index (ARI) (Gitelson, Merzlyak et al. 

2001), Browing Reflectance Index (BRI) (Merzlyak, Gitelson et al. 2003), Chlorophyll 

Green (Chlgreen) (Gitelson, Keydan et al. 2006), and Coloration Index (CI) (Escadafal, 

Belghith et al. 1994), among others. Furthermore, Vegetation Indices (VIs) can undergo 

band optimization procedures, enhancing their spectral sensitivity to the target 

parameters and enabling a more comprehensive analysis of the variable under 

consideration (Verrelst, Malenovský et al. 2019). 

 The present research aims to compare the suitability of VIs and classification 

modeling for discriminating non-symptomatic and BCK symptomatic kiwi leaves in-field, 

using ground-level UV–VIS hyperspectral reflectance assessments. 

2. Methods 

2.1. Experimental site 

 Two commercial orchards cultivated with kiwi plants (Actinidia deliciosa) were 

monitored in 2020, both located at Guimarães, Portugal: one situated in Caldas das 

Taipas (CT; 41°29′09.8′′ N 8°21′54.3′′ W), and the other in Briteiros (BT; 41°30′53.3′′ N 

8°19′20.5′ ′W). Twelve feminine kiwi plants of the variety Bo.Erika® in CT, and eight in 

BT were chosen, identified with tape, and classified according to the absence or 

presence of typical BCK visual symptoms (i.e., minor greasy dark lesions which turn 
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brown to black overtime, and are usually randomly spread on leaves surface). Visual 

phenotyping was performed on both the adaxial and abaxial sides of the leaves. 

2.2. Ground-based hyperspectral reflectance acquisition 

 A portable spectroradiometer (ASD FieldSpec® HandHeld 2, ASD Instruments, 

Boulder, CO, USA) was used for leaf spectra capturing between May and August 2020 

(9 visits), ending when the full development of Psa symptoms was reported in the plants’ 

growing season. More details of the spectra measurement procedure can be found in 

(2022). 

 A total of 504 spectral averaged signatures were collected in both test sites, and 

the dataset was balanced regarding class distribution (Table 1). 

Table 1 Number of test sites, visits, plants, and leaves assessed per location of 

experimental sites (Reis-Pereira, Tosin et al. 2022). 

Experimental site Sites Visits Plants 
Non-symptomatic 

leaves 
Symptomatic 

leaves 
Total 

measurements 

Briteiros (BT) 1 9 8 89 127 216 

Caldas das Taipas (CT) 1 8 12 192 96 288 

Total 2 17 20 281 223 504 

2.3. Data modeling 

 Spectral pre-processing was performed by computation of a multiplicative scatter 

correction (MSC) (Kucheryavskiy 2020). A total of 751 wavelength predictors were 

considered (325–1075 nm). Due to overlapping nature of hyperspectral data and multi-

scale interference, auto-correlated signals may arise across various scales (Martins, 

Barroso et al. 2022). Thus, techniques capable of identifying the most relevant 

wavelengths or bands for discrimination and not considering redundant information are 

essential. 

 In this regard, reflectance data were processed into 32 spectral VIs, resulting in 

41 distinct band combinations (Table A1). To calculate them, the wavelengths 

considered were: i) the ones enumerated in their original formula (as indicated in Table 

A1) or ii) default values chosen by the authors, namely 450 nm (representing the Blue 

region of the electromagnetic spectrum), 550 nm (Green), 680 (Red), Red Edge (700 

nm), and 800 nm (NIR). 

 Applied predictive modeling was then performed using a model with a built-in 

Feature Selection (FS) method called Flexible Discriminant Analysis (FDA) (Figure 1). 

Leaf symptomatology was used as a binary variable in the models tested taking the 
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values ‘No’ (asymptomatic) and ‘Yes’ (symptomatic). The dataset was split into training 

(70% of random observations) and validation data (the remaining 30% of the 

observations), following a holdout method. A resampling approach was performed 

followed by a repeated cross-validation strategy using a repeated 10-fold cross-

validation to estimate model evaluation criteria. The confusion matrix (CM), accuracy 

score, kappa coefficient, and F1-score were considered to determine model 

performance. A detailed description of these metrics applied, and about the R packages 

used can be found in (Reis-Pereira, Tosin et al. 2022). 

3. Results 

 Model results showed the capacity of classifying the kiwi leaf measurements into 

‘Non-symptomatic’ and ‘Symptomatic’ with 0.71 accuracy (proportion of correctly 

classified instances), 0.42 of Cohen’s kappa (agreement between predicted and actual 

classes beyond random occurrence), 0.67 of sensitivity (ability to identify diseased 

measurements), 0.75 of specificity (ability to identify healthy assessments), and 0.67 of 

F1 score (harmonized measure of precision and recall) for the test set (Table 2). 

Confusion matrix (CM) results (Table 3) demonstrate that 63 samples were correctly 

classified as non-symptomatic (True Negatives), and 44 as symptomatic (True 

Positives). Nevertheless, 21 measurements were wrongly classified as symptomatic 

(False Positives), and 22 as non-symptomatic (False Negatives). Thus, the model 

performs better at predicting non-symptomatic assessments than symptomatic 

measurements. These findings indicate a reasonably effective model performance, with 

an overall ability to distinguish between classes and make accurate predictions. 

 The built-in Feature Selection tool highlighted eight distinct VIs for sample 

discrimination, namely the Chlorophyll Green (Chlgreen), modified Simple Ratio (mSR), 

Coloration Index (CI), Simple Ratio Greenness Index (GI), Browning Reflectance Index 

(BRI), Ashburn Vegetation Index (AVI), Hyperspectral perpendicular VI (PVIhyp), and 

Reflectance at the inflexion point (Rre). These VIs are mostly based in the NIR, Red and 

Green regions of the electromagnetic spectrum (Table 2). 

Table 2 Classification results of the Flexible Discriminant Analysis (FDA) model 

computed for the train and test datasets. Legend: Acc. – Accuracy, Kap. – Kappa 

coefficient, Sen. – Sensitivity, Spe. – Specificity, Pre. – Precision, Rec. Recall, F1 – F1 

score. 

Modeling Approach Acc. Kap. Sen. Spe. Pre. Rec. F1 
FDA Train 0.76 0.48 0.68 0.80 0.73 0.68 0.70 

Test 0.71 0.42 0.67 0.75 0.68 0.67 0.67 
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Table 3 Vegetation Index (VI) importance for class discrimination and Confusion Matrix 

(CM) results according to Flexible Discriminant Analysis. Legend: Pred – Predicted, ‘No’ 

– Non-symptomatic, ‘Yes’ – Symptomatic. 

VI Wavelength (nm) Importance (a.u.) CM Train 
Chlgreen 553, 800 100 Pred ‘No’ ‘Yes’ 
mSR 705, 750 67.15 ‘No’ 157 50 
CI 450, 700 52.94 ‘Yes’ 40 107 
GI 554, 677 44.45    
BRI 450, 690 40.55 CM Test 
AVI 400, 994 33.71 Pred ‘No’ ‘Yes’ 
PVIhyp 800, 1000 24.46 ‘No’ 63 22 
Chlgreen 530, 730 19.65 ‘Yes’ 21 44 
Rre 670, 780 16.46    
Chlgreen– Chlorophyll Green, mSR – Modified Simple Ratio, CI – Coloration Index, 
GI – Simple Ratio Greenness Index, BRI – Browning Reflectance Index, AVI – Ashburn 
Vegetation Index, PVIhyp – Hyperspectral perpendicular VI, Rre – Reflectance at the 
inflexion point 

4. Discussion 

 Eight distinct VIs (nine wavelength combinations) were identified as highly 

relevant for disease discrimination. They mostly consider the NIR, Green, and Red 

spectral regions. These findings present biological significance since they are coherent 

with the impact of Pseudomonas syringae pv. actinidiae (Psa) in kiwi leaves. Briefly, 

these pathogens cause modifications in pigment concentration and physiological 

processes (e.g., photosynthesis), resulting in changes in plants’ spectral behavior in the 

VIS wavelengths (Blue, Green, Red). Furthermore, they cause changes in the leaf water 

levels, chemical composition (namely lignin and protein content), structure, and internal 

scattering processes which impact the NIR features (Hunt Jr and Rock 1989, Jones and 

Vaughan 2010). Similar spectral regions were also identified as relevant for late blight, 

target and bacterial spots detection in tomato leaves (Lu, Ehsani et al. 2018), and for the 

assessment of Cercospora leaf spot, sugar beet rust and powdery mildew in sugar beet 

plants (Mahlein, Rumpf et al. 2013). Model evaluation metrics also supported the model 

ability in discriminating non-symptomatic from symptomatic samples. Model 

performance may be enhanced by further fine-tuning, particularly in addressing models’ 

sensitivity and minimizing the occurrence of false negatives. 

 Hyperspectral data may have redundant information in adjacent bands, and only 

a few wavelength features might be interesting in classifying a diseased plant (Rivera, 

Verrelst et al. 2014). For that reason, in crop remote sensing (both, ground, aerial and 

satellite-based solutions) spectral VIs are still the most common approaches studied to 

identify and manage biotic stresses in different crops (Verrelst, Rivera et al. 2015). 

Despite its substantial inherent potential, the discernment of the responsiveness of this 

extensive array of VIs to the target variable remains occasionally ambiguous. 

Furthermore, concerns related to the susceptibility to disturbances from confounding 
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elements can arise, mostly encompassing fluctuations in leaf or canopy properties, 

background soil reflectance, solar illumination, and atmospheric composition. Such a 

confluence of factors can generate instabilities in the spectral attributes of surfaces 

(Morcillo-Pallarés, Rivera-Caicedo et al. 2019). Furthermore, VIs were developed when 

the first applications of broadband sensor occurred, when only a small set of spectral 

bands were available and the computational power was limited. With the development 

of narrowband devices (i.e., with a few hundred spectrally narrow bands), this VIs may 

use the available information within the spectral observation range inefficiently, often 

relying on only a partial spectral subset. Algorithms for extracting optimized band 

information were thus created, utilizing well-established index formulations such as 

simple ratios and normalized differences. These algorithms involved the correlation of all 

potential band combinations to generate 2D correlation matrices, allowing for the visual 

identification of the most effective band combinations. Nevertheless, this approach can 

conduct to optimize indices which are strongly case specific, successfully optimized for 

local applications but not to generic cases (Verrelst, Camps-Valls et al. 2015). FS non-

parametric methods which evaluate all the spectral wavelengths provided by 

hyperspectral sensors constitute an interesting option for disease assessment, providing 

more robust and customized information for modeling data class characteristics, and 

greater model performance (Thenkabail, Lyon et al. 2018, Reis-Pereira, Tosin et al. 

2022). Thus, future research is needed to better explore different information extraction 

(e.g., modeling) approaches suitable to comprehend plant–pathogen interactions and 

their effect on host spectral behavior. 

5. Conclusion 

 The present work aimed to apply hyperspectral reflectance in-field 

measurements for the diagnosis of bacterial canker of kiwi (BCK) disease, which is 

caused by the bacteria Pseudomonas syringae pv. actinidiae (Psa). Different vegetation 

indices were computed, and later used to classify symptomless and symptomatic kiwi 

leaves signatures. Chlgreen, mSR, CI, GI, BRI, AVI, PVIhyp, and Rre were signed as 

the most relevant for disease discrimination, highlighting the Green, Red, Red Edge, and 

NIR regions of the electromagnetic spectrum. These findings are in line with the 

metabolic and structural changes promoted by the pathogen in the host tissues. 

Classification modeling allowed disease discrimination with fair model metrics, showing 

the suitability of this approach for disease assessment. Nevertheless, further research 

exploring different Feature Selection methods considering a broader range of 

wavelengths is advised. 
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Supplementary materials 

Appendix A 

Table A1 Spectral Vegetation Indices (VIs) computed in this study. 

 

Vegetation Indices Formula Ref. 

Ashburn Vegetation Index (AVI) 2.0 × NIR − RED (Ashburn 1979, 
Bannari, Morin 

et al. 1995) 

Anthocyanin reflectance index 
(ARI) 

1

𝐺𝑅𝐸𝐸𝑁
−

1

𝑅𝐸𝐷
 

(Gitelson, 
Merzlyak et al. 

2001) 

Blue Green Pigment Index 
(BGI) 

𝐵𝐿𝑈𝐸

𝐺𝑅𝐸𝐸𝑁
 

- 

Browning Reflectance Index 
(BRI) 

1
𝐺𝑅𝐸𝐸𝑁

−
1

𝑅𝐸𝐷
𝑁𝐼𝑅

 

(Merzlyak, 
Gitelson et al. 

2003) 

Chlorophyll Green (Chlgreen) 
(

𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
)

(−1)

 
(Gitelson, 

Keydan et al. 
2006) 

Coloration Index (CI) 𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸

𝑅𝐸𝐷
 

(Escadafal, 
Belghith et al. 

1994) 

Chlorophyll Index Green 
(CIgreen) 

𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
− 1 

(Gitelson, Viña 
et al. 2003, 

Ahamed, Tian 
et al. 2011, 

Hunt Jr, 
Daughtry et al. 

2011) 

Chlorophyll Index Red Edge 
(CIrededge) 

𝑁𝐼𝑅

𝑅𝐸𝐷 𝐸𝐷𝐺𝐸
− 1 

(Gitelson, Viña 
et al. 2003, 

Ahamed, Tian 
et al. 2011, 

Hunt Jr, 
Daughtry et al. 

2011) 

Chlorophyll vegetation index 
(CVI) 𝑁𝐼𝑅 ∗

𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁2 
(Datt, McVicar 

et al. 2003) 

Double Difference Index (DD) (749𝑛𝑚 − 720𝑛𝑚) − (701𝑛𝑚 − 672𝑛𝑚) (Le Maire, 
François et al. 
2004, Main, 
Cho et al. 

2011) 

Enhanced Vegetation Index 
(EVI) 2.5 ×

𝑁𝐼𝑅 − 𝑅𝐸𝐷

(𝑁𝐼𝑅 + 6𝑅𝐸𝐷 − 7.5𝐵𝐿𝑈𝐸) + 1
 

(Huete, Didan 
et al. 2002, 

Hunt Jr, 
Daughtry et al. 

2011) 
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Green atmospherically 
resistant vegetation index 
(GARI) 

𝑁𝐼𝑅 − (𝐺𝑅𝐸𝐸𝑁 − (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷)

𝑁𝐼𝑅 − (𝐺𝑅𝐸𝐸𝑁 + (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷)
 

(Gitelson, 
Kaufman et al. 
1996, Gitelson, 

ViÃ±a et al. 
2003) 

Green-Blue NDVI (GBNDVI) 𝑁𝐼𝑅 − (𝐺𝑅𝐸𝐸𝑁 + 𝐵𝐿𝑈𝐸)

𝑁𝐼𝑅 + (𝐺𝑅𝐸𝐸𝑁 + 𝐵𝐿𝑈𝐸)
 

(Wang, 
HUANG et al. 

2007) 

Global Environment Monitoring 
Index (GEMI) (𝑛 × (1 − 0.25𝑛) −

𝑅𝐸𝐷 − 0.125

1 − 𝑅𝐸𝐷
) 

𝑛 =
2 × (𝑁𝐼𝑅2 − 𝑅𝐸𝐷2) + 1.5 × 𝑁𝐼𝑅 + 0.5 × 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5
 

(Pinty and 
Verstraete 

1992) 

Simple Ratio Greenness Index 
(GI)  

𝐺𝑅𝐸𝐸𝑁

𝑅𝐸𝐷
 

(Zarco-Tejada, 
Miller et al. 
2001, Main, 
Cho et al. 

2011) 

Green Normalized Difference 
Vegetation Index (GNDVI) 

𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁
 

(Ahamed, Tian 
et al. 2011, 

Hunt Jr, 
Daughtry et al. 

2011) 

Tasselled Cap – vegetation 
(GVI) 

−0.2848 × 𝐵𝑙𝑢𝑒 − 0.2435 × 𝐺𝑟𝑒𝑒𝑛 − 0.5436 × 𝑅𝑒𝑑
+ 0.7243 × 𝑁𝐼𝑅 + 0.0840 × 𝑆𝑊𝐼𝑅
− 0.1800 × 𝑆𝑊𝐼𝑅 

(Schlerf, 
Atzberger et al. 

2005, Lee, 
Alchanatis et al. 

2010) 

Infrared percentage vegetation 
index (IPVI) 

𝑁𝐼𝑅
𝑁𝐼𝑅 + 𝑅𝐸𝐷

2
× (𝑁𝐷𝑉𝐼 + 1) 

(Crippen 1990, 
Kooistra, 

Leuven et al. 
2003) 

Log Ratio (LogR) 
𝑙𝑜𝑔 (

𝑁𝐼𝑅

𝑅𝐸𝐷
) 

- 

Misra Green Vegetation Index 
(MGVI) 

−0.386 × 𝐺𝑅𝐸𝐸𝑁 − 0.530 × 𝑅𝐸𝐷 + 0.535 × 𝑅𝐸𝐷𝐸𝐷𝐺𝐸
+ 0.532 × 𝑁𝐼𝑅 

(Misra, Wheeler 
et al. 1977, 

Bannari, Morin 
et al. 1995) 

Modified NDVI (mNDVI) 𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 − 2 × 𝐵𝐿𝑈𝐸
 

(Huete, Liu et 
al. 1997, Main, 

Cho et al. 
2011) 

Modified Simple Ratio (mSR) 𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸

𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸
 

(Kooistra, 
Leuven et al. 
2003, Main, 
Cho et al. 

2011) 

Modified Simple Ratio 2 
(mSR2) (

𝑁𝐼𝑅

𝑅𝐸𝐷
) −

1

√(
𝑁𝐼𝑅
𝑅𝐸𝐷

) + 1

 
(Chen 1996) 

Normalized Difference NIR / 
Red Normalized Difference 
Vegetation Index (NDVI) 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

(Thenkabail, 
Smith et al. 

2002, Zarco-
Tejada and 
Sepulcre-

CantÃ³ 2007) 

Normalized Green (NG) 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁
 

(Sripada, 
Heiniger et al. 

2006) 
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Normalized Near Infrared 
(NNIR) 

𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁
 

(Sripada, 
Heiniger et al. 

2006) 

Hyperspectral perpendicular VI 
(PVIhyp) 

𝑁𝐼𝑅 − 𝑎 × 807 − 𝑏

(1 + 𝑎2)0.5  

𝑎 = 1.17, 𝑏 = 3.37 

(Schlerf, 
Atzberger et al. 

2005) 

Plant Senescence Reflectance 
Index (PSRI) 

𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅
 

(Sims and 
Gamon 2002, 
Apan, Held et 

al. 2003) 

Reflectance at the inflexion 
point (Rre) 

𝑅𝐸𝐷 + 𝑁𝐼𝑅

2
 

(Clevers, De 
Jong et al. 

2002) 

Red-Edge Stress Vegetation 
Index (RVSI) 

718 + 748

2
− 733 

- 

Structure Intensive Pigment 
Index (SIPI) 

𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅 − 𝑅𝐸𝐷
 

(Zarco-Tejada, 
Miller et al. 

2001, le Maire, 
Francois et al. 

2004) 

Simple Ratio (SR) 𝑁𝐼𝑅

𝑅𝐸𝐷
 

- 
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Tracking changes on host physiological traits promoted by 

Xanthomonas euvesicatoria: proximal optical sensing as an 

innovative tool for plant disease detection 
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mario.cunha@inesctec.pt (Mário Cunha); 

Abstract 

Xanthomonas euvesicatoria (Xeu) is a bacterial pathogen known to cause disease in 

crops of high economic importance worldwide threatening their yield, quality, and 

economic value. The current methods used to assess this pathogen often depend on the 

presence of visible signs of the infection, which frequently manifest themselves only in 

the late stages of this process, compromising the effectiveness of protection measures. 

Therefore, complementary methods based on proximal optical sensing (POS) have 

recently been explored. Based on evidence that plant-pathogen interactions promote 

changes in the biochemical and internal structures of the host, resulting in modifications 

to their optical properties, this study evaluated the potential use of a POS as an effective 

technique for the early detection of pathogen infection. A compact, modular sensing 

system, combining direct UV-Vis spectroscopy with optical fibers, supported by a robust 

Self-Learning Artificial Intelligence (SLAI), was used to assess the modifications 

promoted by Xeu in tomato leaves (cv. Cherry). Plant infection was performed by 
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spraying a bacterial suspension (1.0 x 108 cells/mL−1) until run-off occurred, and a similar 

approach was followed for the control group where only water was applied. A total of 270 

spectral assessments were performed on leaves, on five different dates, which included 

pre- and post-inoculation measurements. The spectral signatures were then analyzed 

by principal components analysis coupled with an innovative SLAI algorithm, which 

allowed the distinction and differentiation of healthy and infected leaves. These findings 

indicate that this non-destructive, in vivo POS approach may be a promising tool for 

detecting the changing spectral behavior of diseased plant leaves. 

Keywords 

Plant disease detection, Plant Pathology, Proximal sensing, Spectroscopy, Precision 

agriculture 
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Supplementary materials 

 

Figure 1 Diagram showing the moment of the bacterial inoculation assay performed in 

tomato leaflets, along with the moment of performance of the phenotypical and spectral 

measurements (M) overtime. Here it is possible to see the appearance and development 

of the lesions through time.  
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Figure 2 Principal Component Analysis (PCA) results of the principal component (PC) 

1, 2, and 3 resulting from the PCA of the dataset three days after inoculation (all leaves 

were asymptomatic, showing no symptoms of the disease caused by Xanthomonas 

euvesicatoria LMG 905). 
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Figure 3 Principal Component Analysis (PCA) loading results of the principal component 

(PC) 2, and 3 resulting from the PCA of the dataset three days after inoculation (all leaves 

were asymptomatic, showing no symptoms of the disease caused by Xanthomonas 

euvesicatoria LMG 905). 
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as new tools for an early detection 
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Abstract 

 Early diagnosis of plant diseases, alongside their mapping in the field, are justified 

by agronomic, environmental, economic, and humanitarian reasons. These practices 

prevent a crop from being severely affected, as well as allow the targeted application of 

protection products. A reduction in the use of pesticides and herbicides is expected, 

which translates into a beneficial impact on the protection of the environment and 

ecosystem services, on the income of the producer and on the quality of the product that 

reaches the final consumer. Aligned with this, the European Commission has the aim of 

applying the set of policy initiatives called Green Deal, namely the mechanisms 

established in the Farm to Fork to reduce the use of plant protection products and 

fertilizers by 50% by 2030. 

 Currently, detection and identification of phytopathogens are done through direct 

methods, being the most used the visual assessment of symptoms and the use of 

molecular and serological techniques. The first approach, despite being very useful, can 

be demanding and may not be suitable for monitoring all crops. In turn, molecular and 

serological methods allow the processing of several samples, precise identification of 

phytopathogens, identification of strains with different virulence, and characterization of 

the pathogens’ diversity. However, these methods can be ineffective for the detection of 

pathogens in asymptomatic plants, require specialized resources, and do not allow the 

tracking of all infected plants in cultivated areas. 

 To respond to these limitations, indirect diagnostic methods have been emerging. 

They are based on plant-pathogen interactions, which may result in changes in the 

internal and biochemical structure of leaves. These changes promote modifications in 
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the optical properties of the host plants which can be detected by optical proximity 

sensors (multi / hyperspectral, fluorescence or thermal). Thus, arises the hypothesis of 

analyzing the spatio-temporal pattern of the development of plant diseases through their 

spectral properties, to allow an early diagnosis in an easy, non-destructive, and specific 

way. 

 In this context, a doctoral project was conceived on the theme ‘Early detection 

and identification of plant diseases caused by bacteria based on proximal sensing from 

a precision agriculture perspective'. This project aims to develop assessment methods, 

based on the spectral properties of plants, for the early detection and identification of 

bacteria responsible for diseases in crops. The tests are being carried out under 

laboratory and field conditions, using different pathovars of Xanthomonas spp. and 

Pseudomonas syringae, as well as different crops (kiwi, walnut, and tomato). Its 

implementation will contribute to enhance the detection of diseases, allowing an early 

intervention and the development of predictive methods to map diseases, preventing a 

crop from being severally affected and granting a focused application of protection 

products. 

Supplementary materials 

 

Figure 1 Examples of spectral signatures of tomato plants (left) and kiwi plants (right) 

obtained using a spectroradiometer, a portable proximal detection sensor. Legend: 

Control – ‘Controlo’, Diseased – ‘Infectada’. 
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Figure 2 Images captured using a thermal camera as part of monitoring the infection of 

tobacco plants in the laboratory. The upper line contains the RGB images collected 1 h 

(left) and 48 h (right) after infection, and the bottom line shows the corresponding thermal 

imaging. In the thermal images, it is possible to observe yellow areas on the leaf, 

corresponding to the areas surrounding the places where the infiltration was carried out 

even before symptom development. After 48 h, in the inoculated tobacco leaves occurred 

the full formation of bacterial lesions in the place where here were previously yellow spots 

in the thermal image. 
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Abstract 

 Predictive modeling based on hyperspectral transmittance data can be a fast and 

cost-effective approach for improving crop disease assessment. This study investigated 

the potential of transmittance for in-vivo detection of Xanthomonas euvesicatoria on 

tomato leaves. Infection was accomplished by spraying leaves with a bacterial 

suspension. Hyperspectral assessments were randomly performed on different leaves 

for 18 days in a dark room, building a data set of 2430 observations. A supervised 

machine learning model was tested to discriminate between control and diseased leaves, 

as well as between healthy, pre-symptomatic, and symptomatic samples. The best 

leaves’ classification accuracy before symptom appearance achieved 85% (healthy vs 

pre-symptomatic) and 90% (control vs diseased). These findings support the application 

of in-vivo spectral measurements for disease diagnosis. 
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Abstract 

Tomato disease, Xanthomonas spp. diagnosis, Early detection; Proximal Sensing, 

Hyperspectral data 

Introduction 

 Plant diseases are responsible for causing major losses in numerous crops 

worldwide, affecting their yield, and their economic and nutritional value. Early disease 

detection, promoted by applied predictive classification methods, allows a more 

immediate and precise intervention, preventing a crop from being severely affected. A 

reduction in the usage of phytosanitary products is expected, which translates into a 

beneficial impact on the protection of the environment and ecosystem services, on the 

producer’s income and on the quality of the product that reaches the final consumer. 

Proximal hyperspectral spectroscopy approaches combined with applied predictive 

classification models are a helpful solution for assisting producers in early disease 

diagnosis in vivo tomato plants. In this regard, spectral data must be collected and 

evaluated to retrieve qualitative and quantitative information, identifying divergences 

between samples with different health statuses. 

Objectives 

 The aims of this research were i) to verify if the spectral behaviour of healthy and 

diseased tomato leaves presented differences; ii) to investigate the capacity of applied 

predictive models to early detect bacterial tomato diseases (diagnose in pre-

symptomatic stages); iii) to develop applied predictive models to classify leaves 

according to their treatment group (control vs. inoculated plants), and their health status 

(healthy, pre-symptomatic, and symptomatic). 

Materials and methods 

 Tomato plants were cultivated in a walk-in plant growth chamber, and divided into 

two groups, one of them being inoculated with Xanthomonas euvesicatoria LMG 905 

(Xeu) bacteria and the other being treated with sterile distilled water only (control group, 

Con) according to [1]. Plants were monitored daily for symptom development for 18 days. 

Hyperspectral data were randomly collected in vivo from the adaxial side of leaves using 

an in-house compact benchtop system composed by laptop, mini spectrometer (TM 

Series C11697MB, Hamamatsu Photonics K.K., Japan), and a transmission optical fibre 

bundle with a reflection probe. The probe was placed 1 cm above the sample, in a dark 

room, and a white LED light was used to provide even illumination to the abaxial surface 

of the leaf. Measurements were taken from 2430 points, belonging both to healthy and 

diseased leaves. 
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 To assess the predictive modelling of bacterial diseases in tomato leaves, only 

the spectral region of 400 to 800 nm was used. Raw and normalized spectra were used 

for data analysis. The normalized spectral signatures were obtained through the division 

of leaves raw spectral signatures by the spectral signal of the white LED source 

(according to the time of exposure of the spectral acquisitions). Spectral modelling was 

then applied to classify tomato leaves pooled according to their health status (HS, 

independent variable): HS1 (control and Xeu disease plants), and HS2 (healthy, pre-

symptomatic and symptomatic). For each approach, class discrimination was performed 

by date (days after inoculation, DAI). The datasets were randomly divided into training 

data and validation data (70 / 30%), following a holdout method [2], for each 

measurement date. To determine which wavelengths predictors were more relevant to 

diagnose tomato bacterial disease caused by Xeu a Flexible Discriminant Analysis (FDA) 

was computed (using a repeated 10-fold cross-validation). Different metrics were 

retrieved to investigate model performance, namely accuracy, Confusion Matrix, Kappa 

coefficient, and F1-Score according to Reis-Pereira et al. [3]. 

Results 

 Tomato plants infected with Xeu bacteria showed the first visual typical chlorotic 

disease symptoms between 12 to 15 DAI, only evolving to the necrotic stage at 17 to 18 

DAI. Healthy leaves presented a spectral signature divergent from diseased leaves in 

raw and normalized data, even before symptom appearance. Spectral divergences were 

more evident in the ranges of approximately 425-460 nm, 520-585 nm for the raw data, 

and 425-515 nm, 640-710 nm, 710-770 nm for the normalized set. 

  

Figure 1 Biplot of PCA results of raw data at the 8th DAI (before symptom appearance).  

 The best modelling approach before symptom appearance, for Control and Xeu 

HS1 classification, was achieved by applying FDA predictive model in both spectral data 

sets at the 8th DAI, demonstrating an accuracy of 0.90, kappa of 0.79, and f1-measure 
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of 0.90. For ‘healthy’ and pre-symptomatic discrimination, the best strategy involving the 

computation of the same model presented an accuracy of 0.85, kappa of 0.71, and f1-

measure of 0.85. After the first symptoms 10 DAI appeared, the best HS1 classification 

was achieved when normalized data was used. The model registered an accuracy of 

0.96, kappa of 0.92, and f1-score of 0.96. In HS2 prediction, is possible to see a NaN 

value of f1 for the ‘symptomatic’ class due to the reduced number of symptomatic 

samples (Table 1). 

Table 1 Model evaluation metrics (accuracy - Ac, kappa score - Kp, and f1-measure - 

F1) for test sets, when raw and normalized data were used, at 6, 8, and 10 days after 

infection (DAI). 

 

Discussion and conclusions 

 In-vivo hyperspectral spectroscopy combined with applied predictive 

classification was explored to diagnose bacterial tomato leaf disease caused by Xeu 

bacteria. Even in early infection stages, spectral separability between healthy and 

diseased leaves was observed, allowing for accurate classification of the HS1 group 

(90% accuracy) and HS2 discrimination (85% accuracy). These results demonstrate the 

potential of applied predictive classification modelling using hyperspectral point data to 

early detect bacterial crop diseases on leaves. 

 Further research is suggested to better understand the host-pathogen 

interactions, and their impact on the crop's spectral signature. This can lead to the 

development of more cost-effective devices, and agricultural practices (e.g. 

phytosanitary treatments), leading to more efficient and environmentally friendly 

agricultural practices. Spectroscopic sensors can, withal, be coupled with different 

measuring platforms, allowing for spectral data studies from the leaf to the canopy scale. 
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Purpose1 Methods2

Major Findings3

Plant diseases are responsible for causing major losses in numerous crops worldwide,

affecting their yield, and their economic and nutritional value. Early disease detection,

promoted by applied predictive classification methods, allows a more immediate and

precise intervention, preventing a crop from being severely affected. A reduction in the

usage of phytosanitary products is expected, which translates into a beneficial impact

on the protection of the environment and ecosystem services, on the producer s income

and on the quality of the product that reaches the final consumer. Proximal

hyperspectral spectroscopy approaches combined with applied predictive classification

models are a helpful solution for assisting producers in early disease diagnosis in vivo

tomato plants. In this regard, spectral data must be collected and evaluated to retrieve

qualitative and quantitative information, identifying divergences between samples with

different health statuses.

                                

1) If the spectral behaviour of healthy and diseased tomato leaves presented

differences;

2) The capacity of applied predictive models to early detect bacterial tomato diseases

(diagnose in pre symptomatic stages);

3) The development of applied predictive models to classify leaves according to their

treatment group (control vs. inoculated plants), and their health status (healthy, pre 

symptomatic, and symptomatic).
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bacteria infection through

a colony PCR

Chlorosis NecrosisGreen Leaf

Tomato plants infected with Xeu bacteria showed the first visual typical chlorotic

disease symptoms between 12 to 15 DAI, only evolving to the necrotic stage at 17 to

18 DAI. Healthy leaves presented a spectral signature divergent from diseased leaves

in raw and normali ed data, even before symptom appearance . Spectral divergences

were more evident in the ranges of approximately 425 460 nm, 520 585 nm for the

raw data, and 425 515 nm, 640 710 nm, 710 770 nm for the normali ed set.

The best modelling approach before symptom appearance, for Control and Xeu HS1

classification, was achieved by applying FDA predictive model in both spectral data

sets at the 8th DAI, demonstrating an accuracy of 0.90, kappa of 0.79, and f1 measure

of 0.90. For  healthy and pre symptomatic discrimination, the best strategy involving

the computation of the same model presented an accuracy of 0.85, kappa of 0.71, and

f1 measure of 0.85. After the first symptoms 10 DAI appeared, the best HS1

classification was achieved when normali ed data was used. The model registered an

accuracy of 0.96, kappa of 0.92, and f1 score of 0.96. In HS2 prediction, is possible to

see a NaN value of f1 for the  symptomatic class due to the reduced number of

symptomatic samples.

The biplot of PCA results of raw data at the 8th DAI (before symptom appearance)

showed that healthy (Control) and Xeu diseased leaflets presented a spectral

separation gradient through PC1 and PC2.

In vivo hyperspectral spectroscopy combined with applied predictive classification

was explored to diagnose bacterial tomato leaf disease caused by Xeu bacteria. Even in

early infection stages, spectral separability between healthy and diseased leaves was

observed, allowing for accurate classification of the HS1 group (90% accuracy) and

HS2 discrimination (85% accuracy). These results demonstrate the potential of applied

predictive classification modelling using hyperspectral point data to early detect

bacterial crop diseases on leaves.

Further research is suggested to better understand the host pathogen interactions,

and their impact on the crop's spectral signature. This can lead to the development of

more cost effective devices, and agricultural practices (e.g., phytosanitary treatments),

leading to more efficient and environmentally friendly agricultural practices.

Spectroscopic sensors can, withal, be coupled with different measuring platforms,

allowing for spectral data studies from the leaf to the canopy scale.

Conclusions4
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Abstract 

 Pathogen infections are among the main factors that threaten crop production, 

being their early detection an important step to efficiently manage plant diseases. Current 

methods of disease detection often depend on the presence of visible signs of the 

infection, which often manifest themselves only in the late stages of the process, 

compromising the effectiveness of protection measures. They are classified as direct 

methods and include sensitive and accurate molecular and serological laboratory-based 

techniques. These approaches despite being extremely useful are labor-intensive, time-

consuming, and require detailed sample processing. Therefore, alternative indirect 

methods have recently been explored, introducing new perspectives in the 

phytopathology field. They assume that plant-pathogen interactions cause changes in 

the internal and biochemical structure of leaves, resulting in modifications on the optical 

properties of the host that can be detected by sensors often couple with artificial 

intelligence. This review presents some of these indirect proximal sensing (PS) 

techniques, including hyperspectral, thermal, fluorescence, and gas chromatography 

approaches. A literature search following PRISMA protocols was conducted in the Web 

of Science database for publications that investigated the suitability of PS for plant 
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disease assessment. Research shows that data obtained through PS techniques can be 

specifically analyzed to extract useful information, allowing the distinction between 

healthy and infected plants, and ultimately the identification of a specific disease. 

Therefore, PS seems an accurate, fast, and intuitive tool for crop disease diagnosis, 

although its technology readiness level (TRL) is still low and some technical difficulties 

must be surpassed, reducing errors associated with the measurement. 
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chromatography 
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Plant pathogen infections are among the main factors that affect crop quality and

productivity, resulting in economic losses and risk of environmental damages.

Therefore, its detection is an important step to successfully manage diseases in

greenhouses, orchards, and fields. Plant pathogen interactions promote changes

on a wide variety of plant chemical, biophysical, and metabolic traits.

Current methods of disease detection often depend on the presence of visible

signs of the infection, which often manifest themselves only in the late stages of the

process, compromising the effectiveness of protection measures. They are

classified as direct methods and include sensitive and accurate molecular and

serological laboratory based techniques. These approaches despite being

extremely useful are labor intensive, time consuming, and require detailed sample

processing.

Therefore, alternative indirect Proximal Sensing (PS) methods have recently been

explored, introducing new perspectives in the phytopathology field . They assume

that plant pathogen interactions cause changes in the internal and biochemical

structure of leaves of the host that can be detected by different types of sensors,

often couple with artificial intelligence .

These PS techniques allied with recent technologies, such as global positioning

system (GPS) and variable rate spray systems, allow disease mapping and the

prospect of Precision Disease Management (PDM). These aim to target

phytosanitary products where and when needed and at an appropriate dose. Such

practices, in line with the Precision Agriculture concept, make an important

contribution in assisting farmers to reduce agricultural inputs, resulting in fewer

costs, as well as less residues in crop products and on the environment .

A literature search following PRISMA protocols was conducted in the Web of Science

database for publications up to February 2021 that investigated the suitability of

Proximal Sensing techniques for plant disease assessment .

  .        

I. Identification II. Screening III. Eligibility IV. InclusionRecords

1. https   doi.org 10.1016 j.plantsci.2019.01.011

2. Adapted fromhttps   doi.org 10.3390 s21010171and

https   doi.org 10.1007 s13593 014 0246 1

3. Adaptad from https   doi.org 10.1007 978 94 017 9020 8 4

Proximal Sensing techniques must be explored and adjust to allow (i) the detection of a disease at early points in time, (ii) the differentiation among different

diseases, (iii) the separation of diseases caused by biotic and abiotic stresses, and (iv) the quantification of disease severity.

Sensor fusion approaches, as well as sensor combination with molecular and serological methods, could be a new approach which must be tested in future

research.

The interpretation of sensor data, especially spectral data, is still a limiting factor for the detection, identification and quantification of diseases in crop production.

Its implementation into robust decision support systems by transdisciplinary cooperation will improve the acceptance and reali ation of precision crop protection.

In recent years, there has been an increasing trend towards using non destructive, sensor based methods for detecting plant diseases .

These techniques can be spectroscopy or imaging based and provide reliable and accurate technical assistance for real time disease detection and monitoring.

The most applied approaches include multi hiper spectral, fluorescence, thermal, laser induced breakdown spectroscopy (LIBS), biophoton emission detection, and

volatile organic compound assessment techniques. These sensors can be coupled on different platforms to form functioning measurement systems, allowing the

reali ation of mapping, monitoring, scouting, and applying tasks. Their flexibility allows them to assess leaf, single plant, canopy, and even plot and regional scales.

Nevertheless, the minor differences between healthy and diseased plants at an early stage of the infection process can compromise the feasibility of the disease

detection and identification . Thus, early plant disease detection continues to be extremely difficult, particularly when made prior to the appearance of the first

symptoms of the infection.
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 Há razões agronómicas, ambientais, económicas e humanitárias que justificam 

o desenvolvimento de novos métodos de diagnóstico precoce de doenças das plantas, 

assim como o seu mapeamento no campo, em linha com a agricultura de precisão. 

 Atualmente, a deteção e identificação de stress e doenças das plantas é feita 

através de métodos de diagnóstico diretos, sendo os mais utilizados, a técnica de 

diagnóstico visual e os métodos moleculares e sorológicos. O primeiro método consiste 

em verificar a cultura em busca de sinais indicadores visíveis (que frequentemente se 

manifestam nos estados intermédios a tardios da infeção). Esta técnica, demorada e 

exigente, pode não ser conveniente no acompanhamento de todas as culturas, estando 

limitada pela sua área de cultivo e pela fenologia das plantas. Por sua vez, os métodos 

moleculares e sorológicos revolucionaram a deteção de doenças em plantas, pois 

permitem o processamento de uma grande quantidade de amostras, a identificação 

precisa de agentes patogénicos, a identificação de estirpes com diferente virulência e a 

caracterização da diversidade e evolução das populações de fitopatogénicos. Apesar 

da sua importância para diagnósticos de fitopatologias, estes métodos raramente se 

revelam eficazes para a deteção de patógenos em plantas assintomáticas, requerem 

recursos técnicos e humanos especializados, não são imediatos e não permitem o 

rastreamento de todas as plantas infetadas em áreas cultivadas, o que é particularmente 

importante para avaliações fitossanitárias completas.  
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 Com o objetivo de dar resposta às limitações destes métodos visuais e 

laboratoriais, têm vindo a surgir os chamados métodos de diagnóstico indiretos (proxy). 

Estes baseiam-se na ocorrência de interações entre a planta e o patógeno que a afeta, 

podendo resultar na criação de estruturas patogénicas e em mudanças na estrutura 

interna e bioquímica das suas folhas. Estas alterações fisiológicas promovem mudanças 

nas propriedades óticas das plantas hospedeiras, especificamente na sua refletância e 

emitância, que podem ser detetadas por sensores óticos de proximidade (por exemplo, 

através de sensores multi / hiperespectrais, sensores de fluorescência ou termografia). 

Surge, assim, a hipótese de acompanhar o padrão espácio-temporal de 

desenvolvimento das doenças das plantas através da sua refletância e emitância, 

permitindo um diagnóstico precoce de forma rápida, fácil, não destrutiva e específica. 

 Neste âmbito, foi concebido um projeto de doutoramento na temática da 

‘Deteção e identificação precoce de doenças das plantas provocadas por bactérias com 

base na reflectância hiperespectral numa ótica de agricultura de precisão’. Este projeto 

tem como objetivo desenvolver métodos preditivos, baseados nas propriedades 

espectrais das plantas, para a deteção e identificação precoce de bactérias 

responsáveis por doenças em culturas agrícolas. Através da combinação da ciência 

fundamental (ex. fisiologia vegetal, e bioquímica), de sensores óticos diversos e de 

técnicas de inteligência artificial, desenvolvem-se metodologias para testes confiáveis e 

rápidos. Os ensaios estão a ser realizados em condições de laboratório e de campo, 

utilizando como caso de estudo diferentes patovares do género Xanthomonas spp. e da 

espécie Pseudomonas syringae, assim como diferentes culturas agrícolas, 

nomeadamente kiwi, nogueira, tabaco e tomate. A sua validação justificará a extensão 

deste tipo de estudos a outras culturas e outros agentes patogénicos, como os fungos 

que são igualmente responsáveis por danos e perdas nas culturas agrícolas. Após a 

validação, este sistema será ainda incorporado num braço robótico para efetuar o 

mapeamento de zonas de risco das doenças ao nível da parcela. 

 Este projeto identifica a oportunidade de se efetuar uma intervenção precoce, 

graças à deteção de doenças das plantas num estado inicial. De facto, através da 

prevenção e controlo da propagação da infeção e do agente patogénico, assim como 

da modificação de práticas culturais, é possível intervir e evitar que uma cultura seja 

totalmente afetada e comprometida. Por outro lado, é ainda reconhecida a possibilidade 

de se utilizarem métodos preditivos na elaboração do mapeamento das doenças ao 

nível da parcela, permitindo uma aplicação direcionada e precisa de produtos 

fitofarmacêuticos. Desta forma, prevê-se uma redução do uso de pesticidas e 

herbicidas, o que se traduz num impacto benéfico na proteção do meio ambiente e dos 
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serviços ecossistémicos, nos proveitos do produtor e na qualidade do produto que chega 

ao consumidor final. Este projeto está, assim, alinhado com os desafios que a agricultura 

europeia enfrenta atualmente no âmbito do Green Deal, nomeadamente dos 

mecanismos de operacionalização estabelecidos no Farm to Fork de redução de 50% 

do uso de produtos fitofarmacêuticos e de fertilizantes até 2030. 

 O desenvolvimento de métodos de diagnóstico mais automatizados, objetivos e 

sensíveis é, por todas estas razões, crucial para impulsionar a deteção de doenças em 

culturas de interesse agronómico. 

 

Figure 1 Imagens capturadas com recurso a uma câmara térmica no âmbito da 

monitorização da infeção de plantas de tabaco em laboratório. A primeira coluna contém 

as imagens RGB e térmicas capturadas 1 h após a inoculação. É possível visualizar os 

locais onde foi realizada a infiltração (manchas azul-escuras). Essas manchas 

geralmente são circundadas por uma área de temperatura mais elevada (de cor 

amarela). A segunda coluna contém o mesmo tipo de imagens 24 h após o processo de 

inoculação. Na imagem térmica é possível observar áreas amarelas na folha, 

correspondentes às áreas circundantes dos locais onde a infiltração foi realizada. Na 

terceira coluna, é possível observar que 24 h depois da inoculação ocorreu a formação 

de lesões visíveis nos locais onde anteriormente já existiam áreas amarelas na imagem 

térmica. 

   

   
 

1 h 12 h 24 h 

1 h 12 h 24 h 
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Figure 2 Espectro de reflectância de plantas de tomate e de kiwi saudáveis e infetadas 

com diferentes bactérias (Xanthomonas euvesicatoria – Xeu – no Tomate e 

Pseudomonas syringae pv. actinidea – Psa – no Kiwi). O ensaio da cultura do kiwi foi 

realizado em campo e o da cultura do tomate em condições controladas (câmara walk-

in). Em ambas as culturas foi possível observar que o espectro das plantas saudáveis, 

quando comparado com o das plantas infetadas, apresenta uma maior reflectância nos 

comprimentos de onda da zona do Infravermelho próximo e do visível do espectro 

eletromagnético, nomeadamente na região do vermelho. 

 


