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Abstract: PFASs are a class of highly persistent chemicals that are slowly infiltrating soils and
waterways. Thus, there is a great need for fast, sensitive, and reliable techniques to detect PFASs.
Conventional methods, such as LC-MS/SPE, allow high sensitivities. However, such methods can
be complex and expensive. Considering this, it is not surprising that the scientific community has
turned their attention to the search for alternatives. New types of PFAS sensors have been reported
over the years, being generally part of three classes: optical, electrochemical, or hybrid sensors.
Carbon dots (CDs) are new alternative fluorescent sensors that can present great affinity towards
PFASs, while allowing for a fast response and promising sensitivity and selectivity. Furthermore, CDs
have more attractive properties than traditional fluorophores and even metal-based nanomaterials
that make them better candidates for sensing applications. Thus, CDs display great potential for
permitting a fast and accurate quantification of PFASs. This review aims to serve as a basis for the
future development and optimization of CD-based fluorescent sensors for PFASs.

Keywords: PFAS; carbon dots; nanomaterials; sensors; fluorescence

1. Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are primarily synthetic com-
pounds with hydrophobic and lipophobic properties [1,2]. PFASs are a class of aliphatic
compounds that undergo extensive fluorination, resulting in partially or fully fluorinated
carbon chains with varying lengths and functional groups. The number of PFAS molecules
registered on the global market has surpassed 4700 [3].

The C–F bond in PFASs is amongst the most robust in nature and is strengthened
further as each bonded hydrogen is replaced with a fluorine atom. As a result of their
structure, PFASs are known to be durable and resistant to heat, oil, and water, leading
to a widespread use in industrial chemicals and consumer goods. Examples of PFAS
applications are cosmetics, fire-fighting foams, electronics, surfactants, fast food packag-
ing, and non-stick cookware [4–8]. However, despite being widely used, PFASs pose a
significant health and environmental concern due to their extended biological half-lives
and propensity for bioaccumulation [9,10].

The growing awareness concerning PFASs has shed light on their toxicity towards
humans, linking them to health risks, such as cancer, infertility, liver disease, and delayed
puberty [2,11–13]. Among these, dyslipidemia is of particular importance. This disorder,
which affects lipid production, shows a robust metabolic connection to PFAS exposure [12].

Using a simple categorization system, PFASs can be grouped into three different
main families: perfluoroalkyl acids (PFAAs), PFAAs precursors, and others, which include
fluoropolymers and perfluoropolyethers (PFPEs) [3,14]. Thousands of studies have been
made regarding the different PFASs used by humans (Figure 1). The three main families
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can be divided into several sub-groups, each with several homologs and isomers. Typ-
ically, longer-chain perfluoroalkyl carboxylic acids (CnF2n+1COOH, n ≥ 7, PFCAs) and
perfluoroalkyl sulfonic acids (CnF2n+1SO3H, n ≥ 6, PFSAs), both from the PFAA family,
are more bioaccumulative than their respective short-chain analogues [1]. Thus, it is not
surprising that two members of these subgroups, namely perfluorooctanoic acid (PFOA)
and perfluorooctanesulfonic acid (PFOS), are the most heavily studied PFAS species, with
over 3500 related studies each (until Nov. 2016) [14]. Both PFOA and PFOS, among other
hazardous PFAS species, used to be manufactured at a large scale until they started to
be phased out due to ecological and health concerns, illustrating the danger they posed
to both humans and the environment. As an example, in 2006, the U. S. Environmental
Protection Agency (USEPA) worked with eight leading chemical companies to reduce
PFOA consumption by up to 95% via the PFOA stewardship program [15].
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Throughout their life cycle, PFASs are released into the environment and subsequently
transported through various media, eventually ending up being absorbed by aquatic
organisms, plants, and humans [9,10]. Once in the environment, their degradation is
impeded by the strong C–F bonds (105.4 kcal mol−1) [16]. This, allied with the fact that
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PFASs are compact, possess a stable chemical structure, and exhibit high electronegativity,
leads to them being classified as environmentally persistent substances.

As a result, in the life cycle of PFAS-containing products, landfills are often regarded
as the final stage for these products [15]. This raises concerns about the potential infiltration
of PFASs into solid wastes, leachates, landfill gas, biosolids, and groundwater, which are
more challenging to treat when compared to direct sources of exposure [12]. In fact, a
2019 study reported the global PFAS concentration in landfill leachate to range between
0.1 ng L−1 and 250 mg L−1 [15]. PFASs are also widespread in aquatic systems, with traces
of PFASs having been found in wastewater, surface water, groundwater, and drinking
water, presenting concentrations ranging from several picograms to micrograms per liter.
The average concentration was found to be several nanograms per liter [17,18]. Traces of
PFAS contamination in food can also be linked to contaminated water sources, either via
the use of water for agricultural purposes, or the presence of PFASs in animal feed and
water. PFAS occurrence was also found in drinking water in the U.S., with an estimated
200 million people receiving tap water with a PFOA/PFOS combined concentration over
1 ng L−1 [19]. Even more worryingly, 18–80 million people receive water with more than
10 ng L−1 and 0.4–1 million people receive water exceeding 70 ng L−1 [19]. As a response
to the high levels of PFASs detected in drinking water, both the USEPA and the European
Food Safety Administration (EFSA) have established health advisory levels (70 ng L−1 and
4.4 ng per kg of body weight per week, respectively) for several PFAS groups in a step
towards limiting humans’ exposure to these hazardous compounds [20,21].

Considering the extensive presence of PFASs in water systems and the potential
damage to both humans and the environment, there is a significant interest in developing
efficient methods that permit a reliable detection and quantification of PFASs in aqueous
systems in a timely manner that prevents PFAS-derived health hazards (Figure 2). However,
due to the complexity of natural aqueous systems/matrices and the relatively low absolute
concentration of PFASs when compared to other species in the system [22], the development
of such methods has been a challenge. While there are several articles that have reviewed
the detection of PFASs using current technologies [3,23–26], be it either using the sensor
category or by reviewing the generality of available methods, to the best of our knowledge,
there is none that has emphasized the topic of CD-based PFAS sensors, why they work, or
the current state of the art in terms of sensitivity and selectivity. Given the potential of CDs
for sensing applications, which have already been demonstrated for other analytes, there is
a need for an organized review of the available information that could serve as a basis for
future studies concerning the use of CDs for PFAS detection. Considering this, herein, we
reviewed the current detection methods for PFASs, with a particular focus on the use of
carbon-based nanoparticle single- and multi-component systems as optical sensors for the
fluorescence-based detection of PFASs.
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2. Current Detection Methods for PFASs

Currently, the most commonly used detection methods for PFASs are LC-MS/MS or
GC-MS, mostly due to their superior sensitivity, accuracy, and reliability [27–29]. Usually,
with this method, the PFAS compounds present in the samples are extracted using solid-
phase extraction (SPE) techniques [30,31]. Alternative methodologies, such as liquid–liquid
extraction (LLE) [32], ion-pair extraction (IPE) [33], solid-phase microextraction (SPME) [34],
and dispersive liquid–liquid microextraction (DLLME) [35], are also utilized to extract
PFASs. The prevalent SPE procedure for PFAS extraction, typically involving polystyrene
divinylbenzene cartridges, primarily entails elution of the extracted compounds with
methanol and a subsequent concentration achieved by drying using nitrogen. After this,
the pre-concentrated sample is introduced into the column for analysis via LC-MS/MS or
GC-MS [27–29].

However, achieving an accurate and reproducible analysis of organic pollutants in
aqueous matrices, particularly at ultra-low concentrations (sub ng L−1), encounters signifi-
cant challenges [36]. Different samples, which may differ in their matrix constitution and
PFAS levels, may cause interferences with the accuracy of the analysis when the protocols
are not specifically tailored to the matrix under examination. A possible solution can be
found in the work of Surma et al., who devised a dispersive solid-phase extraction (d-SPE)
method to quantify PFOA and PFOS concentrations in honey samples [37]. This approach,
incorporating micro-ultra-high-performance liquid chromatography (UHPLC)-MS/MS
analysis, achieved a recovery rate of up to 87%. Unlike SPE cartridges, the d-SPE method
employs a small quantity of dispersed sorbents within the aqueous solution. This method
offers a number of advantages, such as improved compound recoveries, minimal solvent
utilization, and optimal sorbent surface area usage, making it a particularly interesting
choice for samples in water matrices with relatively higher pollution levels [37]. In another
case, Deng et al. reported the use of bamboo charcoal as a solid-phase extraction medium
to isolate PFAAs from ultrapure water, drinking water, and surface water samples. The
bamboo-based SPE method for extraction allowed for low limit of detection (LOD) values,
with the values for different PFAs ranging from 0.01 to 1.15 ng L−1 [38].

However, despite being the gold standard for PFAS detection, there are several lim-
itations to consider when using GC-MS [29] and LC-MS [39,40]. These methods share a
common approach, involving ion-pair extraction of the target compounds, followed by
quantification through mass spectrometry. They exhibit the capability to identify concentra-
tions as low as parts per trillion (ppt, equivalent to pg L−1). However, these techniques
are not portable, often require analyses to be conducted off-site, are time consuming, are
not user friendly, and lack routine incorporation of matrix-matched calibration standards
to account for different matrices. Furthermore, when using a chromatographic system,
distinguishing between the peaks associated with several compounds, such as PFOA and
PFOS, may prove to be tricky due to interferences from other pervasive polymeric com-
pounds [41]. Finally, due to the nature of PFASs, there is a chance that these compounds
are retained inside the column, and thus affect subsequent analyses due to carry-over
contamination [41].

In order to address these limitations, researchers have been exploring a wide range of
alternative PFAS sensors that utilize diverse mechanisms, devices, and materials. These
next-generation sensors often employ uncomplicated designs to achieve an easy, on-site,
rapid, and low-cost detection of PFASs. These sensors can be categorized into three main
groups based on their underlying sensing mechanisms: optical sensors (Figure 3a–f),
electrochemical sensors (Figure 3g–i), and hybrid sensors that combine both optical and
electrochemical mechanisms (Figure 3j,k).
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Figure 3. Representations of (a–f) optical, (g–i) electrochemical, and (j,k) mixed sensors, according
to their sensing mechanisms. (a) “turn-on” fluorescent sensor using fluorescein, a quencher, and
the PFAS-capturing probe; (b) “turn-off” fluorescent sensor using nanoparticles in a metal–organic
framework (MOF) as the sensing probe for PFOS; (c) smartphone app-based portable sensor based
on the color change of dyes upon conjugation with PFOA; (d) colorimetric sensor for PFASs based on
the interaction between modified gold nanoparticle probes and PPARα activated by PFASs; (e) SPR
optical fiber biosensor using monospecific antibodies as the PFAS-capturing probe; (f) light scattering-
based PFAS sensor using cationic dyes as the probe; (g) microelectrode for voltametric detection of
PFASs; (h) MOF-based microfluidic impedance sensor for PFOS; (i) Potentiometric PFAS sensor with
fluorous anion-exchange membranes; (j) disposable photoelectrochemical sensing strip for PFASs;
(k) ECL sensor for PFOA using molecularly imprinted ultrathin graphitic carbon nitride nanosheets
as a probe. Reprinted with permission from Ref. [3]. Copyright 2021 American Chemical Society.
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Beginning with optical sensors, there are different optical phenomena that can be em-
ployed to generate meaningful signals for PFAS detection. These include fluorescence, color
variation, surface plasmon resonance (SPR), and light scattering, among others [42–52].
Out of the them all, fluorescence is the most frequently used due to its adaptability and
rapid signal change [43–47]. Typically, fluorescent sensors include at least one fluorescent
compound (referred to as a probe) that emits radiation upon its excitation. PFASs interact
with the probe, through mechanisms such as electrostatic or hydrophobic interactions,
altering their emissive properties and causing a signal change proportional to the con-
centration of PFASs. Fluorescent sensors may fall into two categories: “turn-on” [43,44]
and “turn-off” sensors [45–47], depending on the nature of the fluorescence change in
the presence of PFASs [42]. For the “turn-on” sensors, following the probe’s conjugation
with PFAS molecules, their fluorescence intensity is enhanced by a degree proportional
to the PFAS concentration increase. Similarly, “turn-off” fluorescence sensors exhibit a
reduction in their fluorescence when the probe interacts with the PFAS molecules [42]. An
example of a fluorescent-based optical sensor for PFASs has been described in the work
of Li et al., who reported the making of up-conversion nanoparticles functionalized with
covalent–organic frameworks [47]. The fluorescence response to PFASs was remarkable,
with trace concentrations of PFOS (ranging from 1.8 × 10−13 to 1.8 × 10−8 M) being able to
quench the nanoparticles’ emission at 550 nm (Figure 4). This effect, which was deemed
to be due to PFOS’ electronegativity, could be even more pronounced in the presence of a
surfactant, further increasing the sensitivity. From these results, a LOD as low as 75 pg L−1

for PFOS was obtained in a dimethylformamide matrix, which is low enough to surpass
the USEPA’s advisory level of 70 ng L−1 [47].
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Figure 4. (a) Fluorescence intensity response of the up-conversion nanoparticles (dispersed in DMF)
to different amounts of PFOS; (b) plot of F0−F vs. log [PFOS] (F0 and F are the fluorescence intensities
at 550 nm in the absence and presence of PFOS, respectively). Reprinted with permission from
Ref. [47]. Copyright 2019 American Chemical Society.

Color changes are another form of signal used in the making of optical sensors for
PFASs. The determination of PFASs via color change signals may be based either on the
absorption spectrum variation [48] or on a direct color assessment based on RGB coordi-
nates [53]. Upon the interaction of the sensor with the PFASs, color changes could arise
from reactions involving chromogenic species, aggregation of nanoparticles, or binding
with dye molecules [48,53,54]. Xia et al. developed a PFOS sensor based on gold nanopar-
ticles (AuNPs) that presented a LOD of 5 ng L−1 [55]. Their sensor was designed based
on the fact that PFOS is an agonist for the peroxisome proliferator-activated receptor α

(PPARα). The AuNPs were functionalized with peroxisome proliferator-response elements
(PPREs), which could only interact with PPARα when it was activated by ligands, in
this case PFOS. The concentration of PFOS was assessed by evaluating the change in
the absorbance intensity of the AuNPs induced by the interaction with PFOS-activated
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PPARα [55]. Other optical sensors were also made based on SPR (with a LOD range from
0.13 µg L−1 to 5 mg L−1), [50,51] resonance light scattering (2.8 µg L−1) [52], and Raman
scattering (50 µg L−1) [56].

Albeit less used than optical sensors, electrochemical PFAS sensors have also been
studied by the scientific community. This kind of sensor is increasingly gaining interest
due to their remarkable sensitivity, simplicity, cost-effectiveness, and rapid responsiveness.
Currently, electrochemical PFAS sensors utilize signals measured using techniques such as
voltammetry [57–59], impedance spectroscopy [60], or potentiometry [61].

In voltammetry-based sensors, PFASs may act as obstructive agents for electroactive
species [57], transferable ions [58], or surfactants [59]. An example of the first is the work
of Karimian et al., who applied a layer of molecularly imprinted polymer (MIP) onto a
gold electrode using PFOS as the template molecule, thus obtaining binding sites tailored
for their target analyte [57]. During the measurement, in the absence of PFOS, the elec-
troactive probe would interact with the electrode surface via those vacancies, generating
a signal. However, when PFOS was present, it occupied the vacant sites and prevented
the interaction of the electroactive probe with the electrode, causing a reduction in the
current intensity observed in the voltammograms. This sensor presented a LOD value
of 20 ng L−1 [57]. Regarding ion-transfer voltammetry, Garada et al. used a poly(vinyl
chloride) (PVC) membrane plasticized with 2-nitrophenyl octyl ether as a selective mem-
brane for PFOS sensing. By establishing a correlation between the peak current intensity in
ion-transfer voltammetry and PFOS ion concentration, they achieved a LOD value as low
as 25 ng L−1 [58]. In another work, Ranaweera et al. devised a novel approach to detect
PFASs by leveraging the surfactant properties of these compounds [59]. They observed that
PFASs, when acting as surfactants, could stabilize gas nuclei formed during the hydrogen
evolution reaction (HER) and reduce the energy barrier for bubble formation. This phe-
nomenon was used to elicit changes in electrochemical signals, which were then correlated
to the concentration of PFASs present in the medium. When integrating a pre-concentration
step using SPE, this team managed to obtain a LOD value of 40 ng L−1 for PFOS [59].

In the topic of impedance-based electrochemical PFAS sensors, Cheng et al. reported
the use of a synthesized mesoporous MOF probe for PFOS embedded within a microfluidic
channel [60]. The binding of the PFOS molecules to the MOF probe prompted an increase
in impedance of an extent correlated to the analyte concentrations found in the samples.
By combining the PFOS-specific capture probe, a specialized electrode configuration, and
a microfluidic platform, this team’s sensor achieved a LOD value of 0.5 ng L−1 [60]. The
use of MOFs for PFAS sensing has already been widely studied and reviewed, confirming
their potential for this application [23,62,63]. As for the potentiometric detection of PFASs,
Chen et al. prepared a sensor for PFOA and PFOS ions using ion-selective electrodes [61].
Their detection mechanism was based on ion exchange interactions, particularly fluoro-
phobic anion exchanges for PFOA and PFOS. The anion exchangers were incorporated
into a fluorous membrane within the electrodes. These electrodes exhibited a Nernstian
response, characterized by a decrease of 59.2 mV per 10-fold increase in PFOA and PFOS
ion concentrations, which was translated into a LOD of 70 ng L−1 for PFOA and 430 ng L−1

for PFOS [61].
Furthermore, from the combination of the previously mentioned methods, we have

made hybrid photoelectrochemical (PEC) [64] and electrochemiluminescence (ECL) sen-
sors, [65] which integrate both optical and electrochemical mechanisms to determine the
concentration of PFASs. Regarding PEC sensors, they are activated by exposure to light,
generating electrochemical signals that relay information about the analyte, whereas elec-
trochemical sensors base their response on an electrochemical reaction that leads to the
emission of luminescent signals [64,65]. The majority of PEC PFAS sensors were designed
in a manner similar to voltametric sensors. Namely, PFASs act as a blocking agent for
electroactive species. The distinction lies in the fact that the primary source of current
in these sensors is the photocurrent generated by light-excited photoactive species. The
presence of PFASs impedes the flow of current generated by the electroactive species by
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obstructing their path to the electrode, consequently reducing the total current intensity
detected [64]. An example of this type of sensor is the work of Li et al., who developed
a portable and disposable sensor by employing screen-printed electrode technology [64].
As for the ECL sensors, Chen et al. presented a sensor in which PFOA is introduced as
a quencher for a chemiluminescent system [65]. By acting as the quencher for one of the
co-reactants responsible for the luminescence of this system, PFOA alters the signal output
in correlation to its concentration. The LOD for both kinds of hybrid sensors were found to
be around 10 ng L−1 [64,65].

Finally, as another intriguing development in terms of PFAS sensors, we have the
integration of biologic components. Zhang et al. reported an electrochemical biosensor for
the detection of PFOS via monitoring the inhibitory effect of PFOS on the enzymatic biofuel
cell process [66]. A one-compartment biofuel cell, equipped with multi-walled carbon
nanohorn-modified glassy carbon electrodes, was prepared. Glutamic dehydrogenase
and bilirubin oxidase were employed as biocatalysts at the bioanode and biocathode,
respectively. In this system, the presence of PFOS exerted a detrimental influence on
the bioactivity of these biocatalysts at both the bioanode and biocathode, leading to a
reduction in the open-circuit voltage of the cell. A strong correlation was found between
the concentration of PFOS and the voltage decrease in its presence [66]. Moreover, the
biosensor displayed considerable selectivity for PFOS, even when in the presence of similar
compounds, such as PFOA, and when testing real water samples sourced from a river [66].
In another work, Cennamo et al. prepared a biosensor featuring an engineered platform
coupled with a bio-receptor [50]. This biosensor design is centered on a SPR platform
utilizing plastic optical fibers (POFs) coupled with a bio-receptor designed for the detection
of PFOA. This platform, modified with an α-lipoic acid compound via the formation of
a self-assembling monolayer, was further tailored by adding a mono-specific antibody
for PFOA [50]. In this method, PFOA molecules are covalently linked to bovine serum
albumin, a protein carrier known for its high affinity and selectivity. As the concentration
of PFOA increases, a reduction in the refractive index value within the receptor layer was
observed. The LOD for this process has been estimated to be lower than 0.21 parts per
billion (ppb), even when using a seawater matrix [50].

3. Nanoparticle-Based PFAS Sensors

Nanoparticle-based sensors have gathered significant attention from the scientific com-
munity in recent years, primarily due to their advantages in terms of portability, sensitivity,
and selectivity at the nanoscale, as well as their adaptability for various applications, includ-
ing environmental monitoring in complex mediums [67–70]. Meanwhile, gold nanoparticles
have been of particular importance when regarding PFAS sensor development; owing to
their special properties and potential for high sensitivity and selectivity [70,71], they are
not the only contenders in the world of nanoparticle-based PFAS sensing.

Other metal-based nanoparticles were also employed, something that was exemplified
by the work of Liu et al., who used Fe3O4 nanoparticles for the colorimetric detection
of PFOS [54]. In this work, the nanoparticles were covalently linked to MoS2 and pre-
sented peroxidase-like activity. This enabled them to promote the oxidation of 3,3,5,5-
tetramethylbenzidine in the presence of H2O2, resulting in a blue coloration. When PFOS
was present, the sulfonate head groups of PFOS formed bonds with the protonated hy-
droxyl groups on the surface of the Fe3O4 nanoparticles, thus inhibiting the peroxidase-like
activity of the nanoparticles. The alteration in color from blue to another shade was detected
and used to obtain a LOD of 4.3 ppb [54]. It is worth mentioning that, in addition to PFOS,
PFOA also interacts with the Fe3O4 nanoparticles, albeit to a lesser extent. This variance
in interaction can be ascribed to the distinct headgroup chemistry, with the carboxyl and
sulfate headgroups being different. This being said, Fe3O4 nanoparticles present their
potential for the detection of PFASs [54].

Quantum dots (QDs) are another class of nanoparticles that have been used for the
sensing of PFASs. QDs are semiconductor nanomaterials that emit light and offer a tunable
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emission through the modulation of their size, exhibiting a remarkable capacity for high
fluorescent yields and resistance against photo- and chemical deterioration [72]. Cadmium
sulfide QDs have already been proven to be useful for the detection of PFOA [73]. These
QDs, due to their stabilization by 3-mercaptopropionic acid, are hydrophilic and suitable
for the analysis of aqueous samples. In the presence of PFOA, the QDs aggregate due to F–F
interactions, prompting a decrease in the photoluminescence intensity that is proportional
to the concentration of PFOA. This results in a LOD as low as 124.2 ppb and a broad sensing
range from 207.03 ppb to 16.56 ppm, permitting PFOA detection in highly contaminated
areas. Once again, PFASs other than PFOA also quench the QDs’ fluorescence, albeit to a
lesser extent than PFOA [73]. However, despite being sensitive to PFASs, these QDs present
several limitations that hinder their application in aqueous samples: they have a very poor
dispersion in water, they present a small Stokes shift, and they are extremely toxic due to
encompassing heavy metals on their constitution [73].

Considering this, it is of no surprise that carbon dots (CDs), a type of carbon-based
nanoparticles, became a topic of research regarding the fluorometric detection of PFASs.
CDs present quite attractive properties, such as being highly photoluminescent, low cost,
simple to make, water soluble, (photo)stabile, and safe to use [74–77]. Furthermore, they
can present a great affinity towards PFASs. In fact, a study by Lewis et al. demonstrated
that positively charged polyethyleneimine-based CDs interact with PFOA via electrostatic
interactions [78]. Upon interaction with PFOA, the CDs’ size increased, and the surface
charge decreased, with 19F NMR spectral analysis revealing a slow–intermediate chemical
exchange between the CDs and PFOA, suggesting that there is a high-affinity interaction.
When tested for other PFASs, the CDs demonstrated affinity when tested with a mixture
of 24 PFASs, having a slight preference towards perfluoroalkyl sulfonates [78]. Their high
degree of affinity provides a good platform to build PFAS sensors.

Regarding CDs, they are carbon-based nanoparticles that were first found by Xu et al.
in 2004 [79–82]. CDs are typically sized between 1 and 10 nm and present a spherical or
quasi-spherical shape. While oxygenated functional groups can be found on their surface
(e.g., -OH, -COOH, and CHO), [74,83], the cores of CDs are mostly composed of sp2 carbon
or graphene/graphene oxide sheets connected by sp3 carbon atoms in between, organized
in a diamond-like array [84,85]. The CDs’ functionalized surface contributes towards the
CDs’ superior water solubility, while also allowing them to undergo additional steps
of functionalization by providing a binding site for other molecules [84]. This results in
nanoparticles that present a complex internal and external structure, whose constitution is
extremely dependent on the precursors and synthetic conditions [86].

Depending on the chosen method, the synthesis of CDs can be divided into two
categories: top-down and bottom-up. Synthesis via top-down methodologies is based
on breaking macroscopic carbon-based materials (e.g., graphite) into smaller nanosized
particles, the CDs. This can be achieved using methods such as arc discharge [79], laser
ablation [87], chemical [88] and electrochemical oxidation [89], and ultrasonic synthesis [90].
On the other hand, we have the bottom-up approach, which is based on the fabrication of
CDs from molecular components, such as citric acid. This can be carried out via microwave
treatment [91], thermal decomposition [92], hydrothermal treatment [93], template-based
routes [94], and plasma treatment [95]. Due to the cost-effectiveness and relative easiness
of the preparation entailed for some methods, the fabrication of CDs is possible in virtually
any environment without requiring expensive and time-consuming techniques.

As a result of their synthesis, CDs present several desirable properties, such as high
photoluminescence [74,75], broadband optical absorption and large photo-responsive re-
gion [96], high photo- and chemical stability [76], good water solubility [74,76], biocompati-
bility [87,97], and low toxicity [77]. It is also possible to fabricate CDs with up-conversion
PL (UCPL), which can convert lower-energy, higher-wavelength radiation into higher-
energy, lower-wavelength radiation, which is useful for photocatalytic nanocomposites [98].
Due to their properties, the practical applications for CDs include bioimaging [99,100], drug
delivery systems [101], sensing and biosensing [100,102,103], photodynamic therapy [104],
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light-emitting devices [105], nanothermometry [106], photovoltaic devices [107], and pho-
tocatalysis [107–109]. Given the fact that other luminescent nanoparticles, such as Fe3O4
and QDs, are already used for PFAS sensing, it is unsurprising that CDs, with their high
photoluminescence and possibility of up-conversion, present their potential for the same
purpose. Thus far, there have been several studies reporting different ways of quantifying
PFASs with CDs, with the vast majority being dependent on alterations in the nanoparticles’
photoluminescence upon combination with PFASs or combinations of PFASs with another
chemical agent [45,110–114].

3.1. PFAS Detection Using Solo CD-Only Systems

We start by discussing the detection of PFASs using CD-only sensing mechanisms.
An example of this is the work of Walekar et al., who used selenium- and nitrogen-doped
CDs as a fluorescent probe for PFOA [111]. This team observed that PFOA selectively
extinguished the emission of the CDs while concurrently reducing the fluorescence lifetime.
The quenching phenomenon was attributed to the formation of an excited state complex
between the co-doped CDs and PFOA, with the reduction in the emission intensity be-
ing a result of internal electron transfers within the complex [111]. By quantifying the
quenching extent, a LOD of 1.8 µM was achieved, with the sensor boasting detection
within a linear range from 10 to 70 µM. It is worth noting that the probe exhibited a high
degree of selectivity towards PFOA when tested in real samples, presenting virtually no
response towards common analytes, thus negating the problems of potential interfering
molecules [111]. On the other hand, a case of a “turn-on” CD-based PFAS optical sensor can
be found in the work of Lin and his team [115]. N-doped CDs were prepared from vitamin
B and triethylamine via hydrothermal treatment and then used for the detection of PFOS.
Due to electrostatic interactions between PFOS and the CDs, the latter aggregated and
yielded an enhanced fluorescent signal, which could be measured and used to determine
the concentration of PFOS [115]. This selectivity was maintained even in the presence of
other common ions and structural analogues. Using this sensor, this team managed to
achieve a LOD of 0.3 nM and a linear range for PFOS detection from 0.3 to 160 nM [115].

Similar to other kinds of nanoparticles, when it comes to PFAS sensing, CDs are
commonly used as fluorescent sensors. Thus, to better understand their properties and the
detection mechanism, we have carried out an in-depth analysis of several examples. We
start with the work of Hong et al., who prepared a new type of high QYFL, orange-emitting
CDs for the selective sensing of PFOA and PFOS in water samples [112]. Considering that
the traditional PFOS detection methods presented a number of problems, such as being
complex, high cost, and having low selectivity, this team decided to base themselves on
the work of other researchers who had already turned to the use of QDs to overcome this
problem [73]. Furthermore, Hong and his team also tried to solve the limitations associated
with QDs by turning their attention to CDs, which present the same photoluminescent
properties of QDs while being low cost and nontoxic, resulting in the formation of a
probe that was able to make a safe, rapid, sensitive, and specific detection of the target
analyte [112].

The CDs were prepared from phosphoric acid (200 µL) and 4-(diethylamino) salicy-
laldehyde (20 mg) via hydrothermal treatment (200 ◦C for 1 h) [112]. After their synthesis,
the CDs were purified via centrifugation (12,000 rpm for 5 min) and dialysis (1000 Da
MWCO) for 48 h and lyophilized. The resulting CDs presented an average size of 4.0 nm,
with a 64.7% C, 26.1% O, 4.7% N, and 5.0% P constitution, as observed via HR-TEM and
XPS, respectively. Together, FTIR and XPS illustrated the composition of the CDs’ surface,
which was covered by carboxyl, amide, and hydroxyl groups. Upon their characterization,
the CDs presented two absorption peaks at 268 and 555 nm, ascribed to the π–π* transition
of C=C and the n–π* transition of C=O and C=N bonds, respectively. Regarding its photo-
luminescence, the CDs presented an excitation-dependent emission, with their emission
peak occurring at 596 nm (for an λex of 560 nm), and an estimated QYFL of 47.1%. Finally,
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the CDs presented much lower toxicity towards human cells than QDs, even at higher
concentrations [112].

The CDs’ response to PFOS and its homologs was tested via photoluminescence assays.
It was observed that when in the presence of PFOS and PFOA concentrations ranging be-
tween 0 and 1 µM, the CDs’ emission was gradually quenched (Figure 5a,c, respectively), an
effect which was only observed for PFOS and PFOA. Other perfluorinated compounds had
little effect on the fluorescence of the CDs [112]. After optimizing the detection conditions
(CDs’ concentration of 10 µg L−1 and pH 2.21), the standard curves for PFOS and PFOA
detection were measured. A good linear correlation between fluorescence and analyte
concentration was observed in both cases (Figure 5b,d). The linear range for PFOS occurred
between 0.05 and 1 µM, whereas for PFOA it was from 0.1 to 1.5 µM. As for the LODs, they
were 5 and 10 nM, respectively, equivalent to 2.5 and 4.14 µg L−1, respectively, thus compa-
rable to those obtained with some of the other methods mentioned above [50–52,56,112].
When tested in real complex samples, PFOS and PFOA were successfully detected via the
addition method, confirming the method’s applicability in the real world. Afterwards,
further tests were carried out to elucidate the quenching mechanism. Considering that
the quenching resulting from PFOS/PFOA did not change the fluorescence lifetime of the
CDs (Figure 5e), it cannot be ascribed to a Förster resonance energy transfer process [116].
Together with the fact that there was a change in the intensity of the UV–Vis absorption
peak of the CDs, these observations indicate that the quenching is a static effect rather than
a dynamic effect [117]. After calculating the energies for the lowest unoccupied molecular
orbital (LUMO) and highest occupied molecular orbital (HOMO) for the components in the
system (Figure 5f), this team found that the electron transfer of photoexcited electrons from
the LUMO of the CDs (ELUMO = −3.93 eV) into the LUMO of PFOS/PFOA (ELUMO = −4.56
and −4.38 eV, respectively) was energetically favorable. This resulted in the transference of
the CDs’ photoexcited electrons into the analytes, thus preventing their radiative decay back
into the ground state and thus quenching the nanoparticles’ fluorescence. Thus, electron
transfer is the main driving force behind the CDs’ photoluminescence quenching. Given
that the electron transfer into PFOS is more favorable than the transfer into PFOA, this
explains the larger extent of quenching observed in the presence of PFOS when compared
to PFOA [112].

In another work, Chen et al. fabricated CDs for the sensing of PFOS via a triple-
channel optical sensing mechanism that included PFOS determination via fluorescence,
absorbance, and resonance light scattering (RLS) [45]. To this end, they synthesized o-
phenylenediamine and phosphoric acid-based CDs via hydrothermal treatment (200 ◦C
for 10 h). Afterwards, the CD solution was purified via centrifugation (12,000 rpm for
12 min) and dialysis (1000 Da MWCO for 24 h). In terms of properties, the CDs presented
an average size of 2.2 ± 0.27 nm and a surface consisting of amino- and carboxylic acid
groups [45].

The CDs’ fluorescence spectra were also recorded under excitation ranging from 320 to
600 nm. The maximum emission occurred at 620 nm, independently of the excitation
wavelength. When PFOS was present (from 0 to 12 µM), the CDs’ emission was signifi-
cantly quenched. The static quenching as attributed to the formation of a ground-state
complex between PFOS and the CDs. This was supported by a diminution of the CDs’
zeta potential (from +32.67 mV to +18.97 mV), which indicates electrostatic interactions
between the positively charged CDs and the negatively charged PFOS. At the same time,
the intensity of the UV–Vis absorption at the 618 nm peak also decreased with the gradually
increasing PFOS concentrations. Finally, the RLS spectra showed that the RLS intensities
were enhanced by the presence of PFOS. When put together, the CDs can be used as a
triple-channel optical sensor for the determination of PFOS [45]. After optimization of
the sensing conditions (T = 20 ◦C, 30 min reaction time, and pH = 5.4), the effect of PFOS
concentration on the fluorescence, absorbance, and RLS of the CDs was quantified. By
measuring the CDs’ fluorescence quenching, it was possible to obtain a LOD of 18.27 nM
and a linear range between 0.5 and 12 µM when considering the logarithmic variation of the
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fluorescence (Figure 6A). Similarly, the PFOS-induced changes in the absorption spectrum
of the CDs resulted in a LOD of 75.89 nM and linearity between 0.5 and 8 µM of PFOS
(Figure 6B). Finally, the RLS spectrum of the CDs was enhanced with the presence of PFOS
when λ was at 310 nm. This enhancement was linearly correlated with PFOS concentrations
ranging between 0.5 and 12 µM and has a LOD of 120.45 nM (Figure 6C) [45]. The fact
that PFOS determination was carried out in a three-fold manner increases reliability, as one
assay confirms the other, avoiding misleading measurements. When tested with real water
samples from a river using the addition method, this team obtained recoveries ranging
from 97.9% to 104.8% with a low standard deviation (from 1.14% to 2.09%), confirming the
reliability of the method for PFOS determination [45].
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authors of [112].

Overall, in the case of PFAS sensors only made from CDs, the sensing mechanism
remains mostly similar between the different reports. Namely, using the work of Hong et al.
as an example (Figure 7) [112], the CDs, after their preparation, interact with the target
analytes, in this case PFOA and PFOS. This interaction, which may occur due to electrostatic
interactions, resulted in the transference of photoexcited electrons from the CDs into the
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analytes, preventing their radiative decay back into the ground state and thus quenching
their fluorescence intensity. This quenching can be measured and utilized to determine the
PFAS concentration that caused the corresponding decrease in the fluorescence [112]. It
should be pointed out that there are cases, such as reported that reported by the authors
of [115], in which an enhancement of the fluorescence is observed instead of a quenching ef-
fect. However, this positive change in the fluorescence signal can also be used to determine
the concentration of PFASs.
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3.2. PFAS Detection Using CDs in Multi-Component Sensing Systems

Aside from the sensors that are only based on CDs, we also have the PFAS sensing
systems that consist of the CDs and other co-factors that contribute towards the deter-
mination of the analyte. One such example is the work of Cheng et al., who prepared
blue-emitting CDs whose photoluminescence was quenched in the presence of berberine
chloride hydrate (BH), an effect which could be reverted by the presence of PFOS, likely
due to electrostatic interactions between BH and PFOS [110]. The resulting change was
quantifiable and exploited to detect PFOS, achieving a LOD of 10.8 ppb. Interestingly, this
sensor maintained its ability to distinguish between PFOS and PFOA. This was due to
PFOS being more hydrophilic, prompting stronger interactions with BH than PFOA [110].

Chen et al. devised a novel strategy to detect PFOS using a CD-based ratiometric
nanosensor that combined both fluorescence and second-order scattering (SOS) signals
for its measurements [114]. The use of a ratiometric sensor rather than a traditional one-
signal response permits more reliable measurements, effectively nullifying the influences
of false positives and negatives resulting from interferences, such as background signals,
instrumental variations, and environmental changes [118,119]. While the use of ratiometric
sensors for the detection of PFASs is not a novelty, they currently demand sophisticated
and expensive equipment that come with an undesired selectivity [48,55]. To avoid these
shortcomings and still achieve ratiometric sensing, Chen and his team employed two
fluorescent substances (CDs and ethidium bromide (EB)) in a dual-recognition strategy. The
CDs were synthesized from Victoria Blue B, phosphoric acid, and ethanol via solvothermal
synthesis and purified via centrifugation (10,000 rpm for 30 min) and dialysis (1000 Da for
24 h). The ratiometric sensing mechanism was prepared by simply mixing CDs and EB in a
glycine buffer solution prior to the detection of PFOS [114].

After their synthesis, the CDs were characterized in terms of their structure and proper-
ties. TEM measurements revealed that the CDs presented an average size of 4.13 ± 0.17 nm.
By analyzing the XPS full survey spectrum, it was found that the CDs were composed of
80.0% C, 3.5% N, 14.4% O, and 2.1% P [114]. The deconvolution of the C 1s high-resolution
spectrum indicated the presence of sp2/sp3 carbon (284.5 eV, C=C/C-C), carbon phosphate
(185.2 eV), nitrous carbon (C-O/C-N, 286.1 eV), and carbonyl groups (C=O, 290.0 eV).
Deconvolution of the N 1s band yielded peaks at 398.4, 399.1, and 401.2 eV, corresponding
to pyridinic, pyrrolic, and graphitic N, respectively. The O 1s spectrum contained peaks
at 531.5 and 533.2 eV, corresponding to the C=O and C-O groups, respectively. Finally,
deconvolution of the P 2p spectrum revealed the presence of P=O and P-O at 133.8 and
132.9 eV, respectively. These results, conjugated with those resulting from FTIR, confirmed
that nitrogen- and phosphate-doped CDs were successfully synthesized from Victoria Blue
B [114]. In terms of optical properties, the CDs presented absorption peaks at 250, 280,
and 370 nm, which were ascribed to the aromatic sp2 domains and C=O/C=N groups. In
terms of photoluminescence, the CDs presented a QYFL of 25.4% and a bright blue–green
maximum emission centered at 472 nm when excited at 280 nm, which was consistent with
the absorption profile [114].

The effect of PFOS on the fluorescence and scattering spectra of the CDs was evaluated.
It was observed that, under excitation at 254 nm, the addition of PFOS prompts a decrease
in the fluorescence peak and an increase in the scattering signal intensity (its mechanism
is represented in Figure 8a). On the other hand, EB, when excited at its absorption peak
(280 nm), exhibits an intensive emission at 600 nm that does not change with the addition of
PFOS [114]. In the absence of PFOS, when both components, CDs and EB, are present in the
same system, we observed a SOS peak at 568 nm (ascribed to the CDs) and two emission
peaks at 472 and 600 (slight shoulder) nm, assigned to the CDs and EB, respectively. With
the addition of PFOS, while the fluorescence peak of EB remained stable, the emission
intensity of the CDs’ peak decreased, while the SOS intensity increased considerably [114].
This effect was more pronounced when using different concentrations of PFOS (0–30 µM),
with the team observing that increasing the PFOS concentration led to a gradual decrease
in the fluorescence peak at 472 nm, while the SOS peak at 568 nm increased (Figure 8b).
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The fluorescence intensity of EB, at 600 nm, remained almost unchanged throughout the
tested concentrations. In addition, the ratio between the emission intensity at 472 and
568 nm was linearly correlated to the PFOS concentration for a range between 0 and 2 µM
(Figure 8c). From the exploration of the quenching phenomenon, this team managed to
achieve a LOD of 27.8 nM [114]. It is worth nothing that, by using EB in their system, this
team added a control to ascertain whether factors other than PFOS concentration affected
their system, increasing the level of the measurement’s reliability. Tests regarding the
selectivity of the sensor and the effect of interferents revealed that there were no significant
interferences by other PFCs, and that other common interfering ions (e.g., Ca2+, F−, EDTA,
etc.) did not cause any interference at concentrations 1000 times higher than that of the
analyte. Furthermore, tests using real samples from a local river resulted in recovery rations
between 90.15% and 101.44% and relative standard deviations between 0.88% and 1.67%,
suggesting that this method is reliable for the detection of PFOS in real-life samples [114].
Finally, to better understand the mechanism behind the quenching effect, the ratiometric
system was characterized. Upon their interaction with PFOS, the particles increased in
size and their zeta potential decreased. These results reveal that the CDs have an affinity
for PFOS on their surface, possibly due to the presence of nitrogen-containing groups
that easily react with the analyte, resulting in the quenching of the fluorescence [114].
Furthermore, the fluorescence lifetime of the CDs remained unchanged after the addition
of PFOS, indicating that PFOS-induced fluorescence quenching should be a static process,
with a non-fluorescent complex being formed between the CDs and PFOS [114,120].
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Out of all publications, Jiao et al. published the work reporting the lowest PFAS
concentration detected with a CD-based sensing system, presenting a LOD as low as
0.4 pg L−1, beating even the LC-MS procedures regarded as the gold standard of PFAS
detection [121]. This was achieved using a chitosan-based MIP doped with CDs on its
surface. The CDs were prepared from citric acid and ethylenediamine via a hydrothermal
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protocol (180 ◦C for 5 h), after which they were purified via filtration and dialysis. To
prepare the doped MIP, chitosan was dissolved in acetic acid, and then PFOS was added.
After mixing for 3 h, 1 mg of CDs were added together with epichlorohydrin acetone,
promoting the covalent bonding of the CDs and MIP during the polymerization reaction.
The resulting solution was added dropwise to NaOH (0.5 M), resulting in chitosan beads
that were washed and dried until a constant weight was achieved [121]. Regarding the
CDs, they presented an excitation-dependent photoluminescence, with optimal emission
occurring at 460 nm for an excitation wavelength of 350 nm (QYFL = 55%). Characterization
of the CD-doped MIP confirmed that, after elution of the PFOS used in the MIP preparation,
the binding sites were left untouched. Furthermore, the MIP surface presented several
pores, possibly resulting from the imprinting process [121].

The detection mechanism of this sensor was based on an alteration of the CDs’ fluores-
cence intensity caused by interaction with PFOS [121]. The elution of PFOS left imprinted
sites that provided selective binding sites to the target molecule. The occupation of these
sites by the template PFOS molecules led to an enhancement in the fluorescence intensity,
possibly due to the amino groups of PFOS increasing the surface passivation degree of the
CDs. Given that pyridinic and pyrrolic nitrogen atoms can be considered defect structures
that break larger conjugated carbon structures, they can originate polyaromatic structures,
resulting in a stronger emission [122]. Furthermore, the sulfonate group of PFOS may
form complexes with the amino groups via hydrogen bonds or electrostatic interactions,
increasing the conjugation degree of amino-passivated CDs [121]. By comparing the fluores-
cence enhancement extent to several tested PFOS concentrations, under optimal conditions,
this team managed to achieve a LOD of 0.4 pg L−1 in an aqueous matrix, the lowest of
any CD-based PFAS sensors we could find. The linear range of detection was found to
be from 20 to 200 pg L−1 [121]. This system also presented selectivity towards PFOS in
comparison to its structural analogues. By presenting an imprinting factor of 2.75 when
compared to non-imprinted CD-doped polymers, the efficiency of the imprinting effect was
confirmed. Due to the binding sites left by PFOS, the MIP presented a much higher affinity
towards this molecule when compared to similar molecules such as PFOA, which, despite
also enhancing the fluorescence, did so to a much smaller extent than PFOS. Substances
commonly found in complex samples, such as common ions, sugars, and human serum
albumin, had little interference in the measurements [121]. The method’s robustness was
confirmed through tests with serum and urine samples, in which LODs of 66 pg L−1 and
85 pg L−1 were obtained, respectively, confirming its applicability in complex matrices.
Overall, the work of Jiao et al. resulted in the development of a highly sensitive PFOS
detection method that presented a very low LOD (in both aqueous and complex samples)
and good selectivity towards the target imprinting template [121].

3.3. CD-Mediated PFAS Sensing Comparison with Other Reports

Overall, there are several cases of nanoparticles, including CDs, being used for the
detection of PFASs. The use of fluorescent nanoparticles still achieves respectably low LODs
and interesting linear ranges for the determination of PFASs (Table 1). The vast majority
of these present a mechanism in which the interaction of the sensor (or a co-factor in the
system) with PFASs ultimately leads to an alteration of the nanoparticles’ fluorescence.
This change can be measured and, using techniques such as the addition method, used to
quantify the amount of PFASs present in a sample.

It is worth noting that while they generally present a higher LOD than conventional
LC-MS/SPE techniques, CDs are inexpensive, less time consuming, do not require a
complex pre-treatment, and may be performed on-site with the right equipment. This
being said, Jiao et al. still managed to report a CD/MIP sensor that presented a LOD of
0.4 pg L−1, a whole order of magnitude below those commonly found for LC-MS/SPE,
which is considered the gold standard for PFAS detection [121]. When compared to a
number of other sensing alternatives, including optical, electrochemical, and hybrid PEC
and ECL sensors, the CDs present comparable LODs and sensing ranges (usually between
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the nM and µM ranges) while maintaining a simple methodology. Furthermore, relative to
their most similar competitors (QDs), CDs are more soluble in water and present virtually
no toxicity, therefore being safe even for use in water intended for human consumption. It
is worth noting that, to the best of our knowledge, thus far, CDs have only been reported
for the detection of PFOA and PFOS, which, despite being widely used in the industry
and the most relevant species of PFASs, are only two members of a family containing
dozens of members [14]. Nearly all the studies mentioned in Table 1, including reports
concerning conventional and other alternative PFAS sensors, only concern themselves with
these two species of PFAS, disregarding the rest of the family. Given the predominance of
PFOA and PFOS in our world, this is understandable, as they are the most representative
members of PFAS compounds. Finally, the field of CD-based sensors for PFASs is still
quite limited. To the best of our knowledge, there are only seven reports concerning this
kind of sensor so far, all of them being optical sensors. It is expected that in the future,
considering the danger that PFASs pose to human health, these sensors will gain more
attention due to their inexpensiveness and easy preparation, fueling a growth in the number
of related publications.

Table 1. Parameters reported for several PFAS sensors with different mechanisms and components.
NA—not available.

Sensor Sensing Mechanism Analyte LOD Linear Range (ng L−1) Ref.

LC-MS/SPE Chromatography

PFOA 0.07 ng L−1 1–200 ng L−1

[38]PFOS 0.01 ng L−1 0.1–100 ng L−1

PFNA 1.15 ng L−1 4–1000 ng L−1

PFDA 0.88 ng L−1 10–1000 ng L−1

AuNPs Colorimetric PFOS 10 pM 100–1000 pM [55]

MIP SPR
PFOA 0.13 ppb

NA [51]PFOS 0.15 ppb

AgNPs/graphene oxide Raman PFOA 50 ppb NA [56]

MIP on a Au electrode Voltammetry PFOS 0.04 nM 0.1–4.9 nM [57]

MOF Impedance PFOS 0.5 ng L−1 NA [60]

Ion-selective electrodes Potentiometric
PFOA 0.07 ppb 10−1–10−1 M

[61]
PFOS 0.43 ppb 10−1–10−1 M

Screen-printed carbon electrode PEC PFOSF 0.01 ppb 0.05–500 ppb [64]

C3N4 nanosheets/S2O8
2− ECL PFOA 0.01 ppb 0.02–40 ppb [65]

MoS2/Fe3O4 nanoparticles Colorimetric PFOS 8.6 nM 0.1–12.5 µM [54]

CdS QDs Fluorescence PFOA 0.3 µM 0.5–40 µM [73]

CDs Fluorescence PFOA 1.8 µM 10–70 µM [111]

CDs/BH Fluorescence PFOS 21.7 nM 0.22–50 µM [110]

CDs/MIP Fluorescence PFOS 0.4 pg L−1 20–200 pg L−1 [121]

CDs Fluorescence PFOS 0.3 nM 0.3–160 nM [115]

CDs Fluorescence
PFOS 5 nM 0.05–1 µM

[112]
PFOA 10 nM 0.1–1.5 µM

CDs/EB Fluorescence PFOS 27.8 nM 0–2 µM [114]

CDs
Fluorescence PFOS 18.27 nM 0.2–12 µM

[45]Colorimetric PFOS 75.89 nM 0.5–8 µM
Light scattering PFOS 120.45 nM 0.5–12 µM
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4. Conclusions and Future Outlooks

In order to face the grand challenge of water contamination by PFASs, efficient and
effective methods for the timely detection of this pollutant are now more needed than ever.
PFASs, due to their durable and resistant nature, are becoming widespread as industrial
chemicals in household consumer goods, starting to be known as forever chemicals due to
their persistence in the environment. Given their threat to human health, it is important to
detect them in waterways and soils as early as possible to avoid over-exposition and the
dangers resulting thereof. In this review, we have pointed out the current sensing methods
available to detect PFASs, including conventional chromatography-related technologies
coupled to SPE, novel optical, electrochemical, and hybrid sensors, and, with particular
emphasis, CD-based sensing systems. We discussed the advantages and disadvantages of
the use of CDs when compared to other sensors, talk about their potential selectivity and
sensitivity, and explain the underlying mechanism used for the detection of the analyte.

When it comes to PFAS detection, conventional LC-MS or GC-MS systems yield reli-
able and high-quality quantifications with a very low LOD. While this is excellent from
an analytical standpoint, some important limitations should be noted. These techniques
require complex and expensive equipment, meaning that they cannot be performed on-site.
Additionally, they are difficult to perform, requiring training, and are time-consuming.
Finally, regarding the test itself, a different matrix calibration is required for each sample
(depending on the origin of the sample), and distinguishing the peaks associated with
compounds such as PFOA and PFOS may prove difficult due to interferences from other
pervasive polymeric compounds. Given the problems posed by conventional systems, it
is no wonder that the scientific community started developing alternative PFAS sensors.
These can be mostly divided into three main categories: optical sensors, including sensors
based on fluorescence, color variation, SPR, and light scattering, among others; electro-
chemical sensors, in which their measurements are based on voltammetry, impedance,
or potentiometry; and hybrid PEC and ECL sensors, which integrate both optical and
electrochemical mechanisms for the determination of PFASs. One of the materials that has
been used in the making of these novel sensors are CDs.

While other kinds of nanoparticles have already been employed in the making of
PFAS sensors, CDs present some unique advantages, even when compared to metal-based
nanomaterials. Namely, CDs can be highly fluorescent, have good water solubility, and
present virtually no toxicity. Moreover, they can present a high degree of affinity towards
PFASs via electrostatic interactions, facilitating the connection between the sensor and target
analyte. From these results, CDs are potential candidates for the making of PFAS sensors,
something confirmed by the publication of several reports regarding the use of CD-based
fluorescent sensors for both PFOS and PFOA. In general, the interaction of the CDs with
PFASs results in a change in the fluorescence intensity that can be measured. This change
can be either a decrease (quenching) or increase (enhancement) in the fluorescence and
can derive from factors such as the formation of ground-state complexes via electrostatic
interactions and electron transfer or aggregation of the nanoparticles. When compared to
other sensing technologies, CD-based optical PFAS sensors generally present higher LODs
than conventional LC-MS/SPE techniques, albeit being less expensive, easier to use, and
providing faster analysis. When compared to other optical sensing alternatives, the CDs
present comparable LODs and sensing ranges, meaning that they are at least as effective as
their competitors in terms of LODs, while also having some advantages in terms of their
solubility, rapidness, and easiness of preparation.

In summary, CDs appear to be an attractive alternative for the sensing of PFASs,
presenting both a good sensitivity and selectivity, while providing an easy to make and fast
method to quantify PFASs. On the downside, few reports concerning the use of CDs for
PFAS sensing are available, and the ones existing only concern PFOA and PFOS, which
are only two of the tens of members of the PFAS family, albeit the most relevant. It is our
expectation that, in the coming years, as these compounds become more ubiquitous in our
world, new sensing technologies for PFASs will become available, including CD-based
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sensors, which, due to their properties and unique advantages, should be explored as
potential sensors for PFAS detection.
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