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Smoothing of ultrasound images using a new selective average filter 

 

Abstract 

Ultrasound images are strongly affected by speckle noise making visual and computational analysis 

of the structures more difficult. Usually, the interference caused by this kind of noise reduces the 

efficiency of extraction and interpretation of the structural features of interest. In order to overcome 

this problem, a new method of selective smoothing based on average filtering and the radiation 

intensity of the image pixels is proposed. The main idea of this new method is to identify the pixels 

belonging to the borders of the structures of interest in the image, and then apply a reduced 

smoothing to these pixels, whilst applying more intense smoothing to the remaining pixels. 

Experimental tests were conducted using synthetic ultrasound images with speckle noisy added and 

real ultrasound images from the female pelvic cavity. The new smoothing method is able to perform 

selective smoothing in the input images, enhancing the transitions between the different structures 

presented. The results achieved are promising, as the evaluation analysis performed shows that the 

developed method is more efficient in removing speckle noise from the ultrasound images 

compared to other current methods. This improvement is because it is able to adapt the filtering 

process according to the image contents, thus avoiding the loss of any relevant structural features in 

the input images. 

 

Keywords: Image Processing; Speckle Noise Smoothing; Selective Filter; Medical imaging; Female 

Pelvic Cavity.  
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1. Introduction 

According to [Fish, 1990], a sound wave is a mechanical disturbance that crosses an environment 

resulting in the vibration of the particles presented. The frequency of this vibration is measured in 

Hertz and when it is higher than 20 KHz, it is called ultrasound which cannot be perceived by the 

human ear. Ultrasound waves, also known as beams, may be longitudinal or transverse. For 

transverse waves, the direction of disturbance is perpendicular to the propagation, whilst in 

longitudinal waves the disturbance is in the same direction as the propagation. In both cases, the 

waves are characterized by wavelength, period, amplitude and frequency, and their transmission 

velocity depends on the density of the object that receives the ultrasound waves which are produced 

and detected by a transducer. 

In medical ultrasound imaging, a transducer generates a quantity of ultrasound waves at a pre-

defined frequency that are directed onto tissues and organs. The tissues and organs reflect part of 

these waves and absorb the remaining part. The reflections may be grouped into two main 

categories according to the reflecting surface: specular reflections occur when the surface hit by the 

ultrasound waves is larger than the wavelength, and scattering occurs when the surface hit by the 

ultrasound waves has smaller dimensions than the wavelength used. In the case of scattering, the 

reflection of the same wave occurs in several directions and therefore only a small part of the wave 

emitted by the transducer will be received back. Irregular surfaces may also generate the scattering 

effect [Fish, 1990]. 

During ultrasonic imaging, a large number of ultrasound wave beams are emitted and a 

considerable quantity of scattering usually occurs. Besides generating a loss of the signal emitted by 

the transducer, the scattering of an ultrasonic beam also causes the scattering of other beams due to 

collisions with other scattered waves. These lost signals are known as echoes and some of them 

produce artifacts in the resultant image, called “speckle noise”, which degrades the spatial 

resolution and contrast in the image [de Araujo et al., 2014]. These echoes that are displayed during 
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the ultrasound examination of organs and other structures captured by the transducer are commonly 

quantified in shades of grey in which the strongest echoes are represented by higher intensities of 

grey and the faintest echoes by the lower intensities, i.e. tending to white and black, respectively. 

Moreover, interpolation and filtering techniques and logarithmic compression may be used to obtain 

bi-dimensional images, leading to the loss of some signals received by the transducer and therefore, 

to images of lower quality [Mari and Cachard, 2007]. Despite the usual low quality of the images 

generated by ultrasonic examinations, this imaging modality is widely adopted for the analysis and 

diagnosis of organ and tissue dysfunctions because it provides information about the geometry and 

behaviour of structures in real time without any side effects for the patients [Wu et al., 2010].  

As discussed in [Mateo and Fernández-Caballero, 2009], several well-known techniques have been 

used to smoothing speckle noise in medical images. Among these techniques, some are applied in 

the spatial domain of the images, and others are used in the frequency domain. The first group, to 

which the algorithm proposed here belongs, are based on well-known image filtering techniques 

such as average filtering [Zhang and Wang, 2015], median filtering [Verma et al., 2015] and 

anisotropic diffusion based filtering [Santos et al., 2013]. The study conducted in [Mateo and 

Fernández-Caballero, 2009] allows one to conclude that the smoothing algorithms depend heavily 

on the application. Thus, smoothing algorithms can be incorporated as solutions for noise removal 

taking into account the type of noise involved, which is strongly related to the image acquisition 

technique used. 

The common artifacts in ultrasound images, such as speckle noise, may give rise to false 

information of the imaged structures, and so, these artifacts must be removed to avoid any 

misinterpretations. Based on these facts, a new approach to perform the selective smoothing of 

images affected by speckle noise is proposed here. This proposal is mainly concerned with medical 

ultrasound images. The proposed algorithm uses the intensity of the radiation of the image pixels 

being smoothed in an attempt to select those that potentially belong to the borders of the structures 
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of interest allowing, therefore, the adaptive smoothing of the input image by using an average filter 

with different levels of smoothing.  

Usually, an ultrasound image is composed of dissimilar regions of interest affected by speckle noise 

of different intensities. Thus, applying different smoothing filters or the same smoothing filter but 

with different smoothing levels in each region of the input images can lead to more competent 

smoothing of the corrupted images [Thaipanich et al., 2010]. Average filtering was adopted in this 

study as the smoothing filter since it is a low-pass filter in which high frequencies are filtered and 

therefore, the relevant details in the internal regions of the imaged structures are preserved 

[Gonzalez and Woods, 2006]. 

The rest of this manuscript is organized as follows: related works are presented in the next section. 

The proposed selective smoothing algorithm is described in Section 3. The experiments and 

discussion are presented in Section 4. Finally, the conclusions and considerations for future works 

are pointed out in the last section. 

 

2. Related works 

Noise removal is a common task in digital image processing and it has been widely studied. This 

task is included in commonest image pre-processing pipelines and aims to restore the relevant 

image information corrupted by noise. Hence, an efficient smoothing algorithm is expected to 

produce an image from the noisy input image that is as similar as possible to the ideal image, i.e. the 

original image without any noise [Thaipanich et al., 2010]. 

The presence of noise is common in ultrasound images and interferes severely with, for example, 

the segmentation, interpretation and classification, i.e. the image analysis, of the anatomical 

structures [Amirmazlaghani and Amindavar, 2012, Lee et al., 2012]. The main noise in ultrasound 

images is from the overlapping and deviation of sound waves emitted and received by the 

ultrasound transducer used. Thus, the study of noise reduction techniques for attenuating the noise 
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effects is critical to implement competent computational algorithms designed to improve the quality 

of the corrupted images. This improvement is particularly crucial to ensure that the segmentation 

and analysis of the imaged structures can be successfully achieved by computational methods 

[Narayanan and Wahidabanu, 2009]. 

In recent years, different computational image processing techniques have been proposed for noise 

removal, including techniques based on Gaussian filters [Yang et al., 2011, Adams et al., 2009], 

differential equations [Barcelos et al., 2003, Aubert and Aujol, 2008, Huang et al., 2009, Ghita and 

Whelan, 2010, Ghita et al., 2012] and multi-resolution processing [Jansen, 2001, Coupé et al., 

2012]. Additive and speckle noises are the main types of noise found in ultrasound images. In 

general, removal of speckle noise is more complex and therefore, speckle noise is commonly treated 

as additive noise. Hence, several studies on speckle noise removal have used similar approaches to 

the ones adopted for smoothing images affected by additive noise: for example, Jin and Yang [Jin 

and Yang, 2011] proposed a new variational model for the removal of speckle noise in ultrasound 

images based on the model developed by Rudin et al. [Rudin et al., 1992] to remove additive noise. 

Other variational models have been adopted for the removal of this kind of noise. Aubert and Aujol 

[Aubert and Aujol, 2008] proposed a new non-convex variational model based on the classic 

Maximum A Posteriori (MAP) regularization technique to reduce the interference caused by 

speckle noise in Synthetic-Aperture Radar (SAR) images. In their approach, the speckle model 

considered that an image affected by speckle noise is a result of its ideal version multiplied by a 

noise component. Huang and co-authors [Huang et al., 2009] proposed a variational model based on 

the Total Variation method to overcome the problem of speckle noise removal. The authors 

reported results similar to those obtained by the method proposed by Aubert and Aujol [Aubert and 

Aujol, 2008]. These proposals may get good smoothing results, but the parameter that controls the 

smoothing process must be very accurately defined. However, the setting of this parameter is 

generally challenging as it strongly depends on the type of image to be smoothed and on the 

structures it contains. 
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Other studies are based on the application of the Wavelet transform for image noise removal 

[Pizurica et al., 2003, Chang et al., 2000a, Chang et al., 2000b]. In general, these smoothing 

algorithms can be summarized in three steps. For example, the algorithm proposed by Pizurica et al. 

[Pizurica et al., 2003] begins by processing the original image using the discrete Wavelet transform, 

then the desired smoothing operation is performed in the frequency domain and finally, the inverse 

Wavelet transform is applied to obtain the smoothed image. The advantage of using this kind of 

approach is that the smoothing of different layers, at different resolutions of the original image, 

allows the smoothing process to be conducted in such a way that it preserves the specific features in 

the input image. However, the accuracy and the efficiency of the smoothing depend strongly on the 

second step of the method and of the type of images to be smoothed. 

Approaches based on Gaussian filters are also commonly used in image smoothing [Yang et al., 

2011, Adams et al., 2009]. These filters can obtain good results when applied on images with 

homogeneous regions, but they can lead to excessive loss of information on the borders of 

structures presented. Such filters are usually developed using a Gaussian function as a convolution 

kernel, and by recalculating the values of the image pixels based on the convolution of an n-sized 

window. The intensity of smoothing is controlled by a constant that represents the maximum 

standard deviation adopted by the Gaussian function used. There are other approaches that also use 

the Gaussian filter but use various parameters to avoid a high smoothing effect on the borders of the 

structures in the original image, like the bilateral filter [Tomasi and Manduchi, 1998] and the 

anisotropic diffusion filter [Perona and Malik, 1990]. The bilateral filter performs a non-linear 

smoothing of the original image and has been widely used in image processing [Bennett and 

McMillan, 2005, Zhang and Allebach, 2008]. In addition to considering the neighbouring pixels 

during the convolution process, as is done by the Gaussian filter, the bilateral filter also takes into 

account the variation in the intensities of pixels within the convolution window, i.e., it considers the 

intensity of the spatially close pixels that have similar features in the calculations. So, besides the 

standard deviation, the bilateral filter has a second parameter that controls the similarity of the 
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pixels to be taken into account [Pantelic et al., 2007]. This filter has been studied and tested in 

medical images, as in [Gupta et al., 2014] where it is used jointly with the ripplet transform to 

reduce the effect of speckle noise in medical ultrasound images. This filter performs the linear 

smoothing of the input image, trying to preserve the edges, i.e. the borders, of the structures 

presented. A disadvantage of this filter is the difficulty to define the values of its parameters and of 

the number of iterations for the efficient processing of a particular class of input image. An 

excessive number of iterations, for example, may cause undue loss of image information affecting 

the quality of possible further processing results, such as segmentation and classification of the 

structures [Shao et al., 2013].  

A smoothing algorithm based on anisotropic diffusion was proposed by Perona and Malik [Perona 

and Malik, 1990]. The selective smoothing of the input image based on the heat diffusion equation 

on a surface is the primary feature of this algorithm. The primary characteristic of this algorithm is a 

delaying of the smoothing effect on the borders and transitions of the structures in the input image, 

as happens with non-linear heat diffusion on heterogeneous surfaces. Based on the solution 

proposed by Perona and Malik, other smoothing algorithms have been proposed, such as the Detail 

Preserving Anisotropic Diffusion (DPAD) algorithm [Aja-Fernandez and Alberola-Lopez, 2006]. 

Anisotropic diffusion-based filters have shown promise in smoothing medical images, but the noise 

model involved in the input images must be accurately defined, which is very difficult for 

ultrasound images due to the great variability and non-linearity of the noise involved. 

Average and median filters have been the basis of various image smoothing approaches used in 

many medical image based applications [Mateo and Fernández-Caballero, 2009]. These filters 

perform in the image spatial domain and restore the intensity of each pixel according to the intensity 

of its neighbours and have as their main advantages simplicity and low computational cost [Verma 

et al., 2015, Zhang and Wang, 2015]. However, the blurring of edges and loss of details can occur 

due to their linear and non-selective processing [Haseena and Sherikh, 2012]. 
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Image smoothing algorithms based on Frost [Frost et al., 1982] and Wiener filters have also been 

adopted in medical image applications. The first filter attempts to split the input image into 

components related to homogeneous and heterogeneous regions to perform an adaptive smoothing. 

On the other hand, smoothing algorithms based on Wiener filters define the smoothing level 

according to the local intensity variance of the input image, applying a more intense smoothing 

where the variance is smaller. These techniques preserve the image edges and high-frequency 

information, but the computational time required relative to linear filters is their main disadvantage 

[Haseena and Sherikh, 2012]. 

To assess the performance of image smoothing algorithms, image quality metrics can be used. 

Various image quality metrics have been suggested to evaluate any undesirable alterations to the 

original images, like the loss of edge details and structural and visual information. From these, the 

Edge Preservation Index (EPI), Structural Similarity Information Measurement (SSIM), Visual 

Image Fidelity (VIF), Universal Image Quality Index (IQI), Peak Signal-to-Noise Ratio (PSNR) and 

Equivalent Number of Looks (ENL) metrics can be stressed. EPI is commonly used to evaluate how 

much the edges of structures are preserved in a processed image relatively to a reference image. It 

can also be used to indicate the visual quality of an image after undergoing some processing step, 

where higher values suggest a better preservation of the edges [Sattar et al., 1997]. To complement 

the edges preservation assessment, SSIM can be used. The SSIM algorithm receives two images 

and compares them, returning a value between 0.0 and 1.0, where 0.0 indicates that the images are 

totally different, while high values indicate high similarity between the structures in the images 

under comparison [Wang et al., 2004]. 

On the other hand, there are metrics used to assess the visual quality of processed images, 

comparing them against an image taken as a reference. In this class, the VIF and IQI metrics can be 

stressed, where the former can be used to compare the distortion of a processed image, returning 

values greater than 0 (zero), with values close to 0 indicating that the image has undergone a major 

distortion. On the other hand, these metrics can identify when an image has not been distorted by 
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the processing process, leading to a value equal to 1.0 (one) and a positive feature of VIF, while 

values above 1.0 suggest that the processed image has a better visual appearance than the reference 

image [Sheikh and Bovik, 2006]. The latter metric, the IQI metric was proposed to assess the 

distortion in an image taking into account the loss of correlation between image blocks as well as 

luminance and contrast distortions. This metric performs a local analysis in each image block, 

computing the final metric value by averaging all local metric values. The values achieved by this 

metric range from -1.0 to 1.0, where the value 1.0 indicates that the images are identical and -1.0 

that they are very unalike [Wang and Bovik, 2002]. 

To analyse the error caused by an image processing algorithm, the PSNR metric can be used. This 

metric is one of the best-known image quality metrics based on error that exists in the literature. 

The PSNR attempts to assess the relationship between the highest possible strength of a signal (in 

the case of an image, its highest intensity value) and its strength affected by noise in a logarithmic 

scale on base 10 (decibel). The higher the resultant value, the more similar are the two images under 

comparison [Dash et al., 2011, de Araujo et al., 2014]. 

To complement the aforementioned image quality metrics, the ENL metric can be used to 

statistically assess whether an image region is homogeneous or not, without using another image as 

reference [Anfinsen et al., 2009]. The higher the resulting value, the more homogeneous the 

analysed region is. 

 

3. Proposed Method 

In the medical imaging field, there are two imaging modalities commonly used to produce images 

of structures in the human body: magnetic resonance imaging [Ma et al., 2010] and computed 

tomography imaging [Brankov et al., 2004]. These modalities produce images with better resolution 

than ultrasound imaging which , however, is also widely used. Ultrasound imaging has some 

specific advantages, such as non-invasive examinations, which means that it can be used on any 
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patient, even if he/she has metal implants, is pregnant or uses heart devices. Another attractive point 

of the ultrasound imaging is its low financial cost, which contributes to a larger number of 

laboratories offering this type of medical exam. In addition, through ultrasound imaging, the 

movement and/or deformation of structures can be acquired enabling, for example, functional 

studies in real-time [Narayanan and Wahidabanu, 2009]. 

On the other hand, ultrasound imaging is more affected by noise, particularly by speckle noise, 

which is a disadvantage compared to other medical imaging modalities. The interference caused by 

speckle noise corrupts the images produced and consequently, the resolution of the images is 

hampered, hindering the extraction of high-level information of the structures. Thus, an analysis of 

these images by a specialist may be compromised; also the subsequent steps of computational 

image processing and analysis may be affected. Therefore, taking into consideration the advantages 

of the ultrasound imaging modality, speckle noise deserves attention and considerable work has 

already been done. However, it is stills a problem to be effectively overcome. As emphasized in 

[Narayanan and Wahidabanu, 2009], the development of efficient algorithms for ultrasound image 

smoothing demands taking into account factors and requirements of the desired application, such as 

the noise model involved in the images, the nature of the features of interest, and possibly a priori 

knowledge about the set of images and features to be handled. In the literature, some of the 

proposed algorithms have presented advantages for specific applications and disadvantages for 

others. The literature review performed here shows that speckle noise is non linear and depends 

highly on the parameters of the signal-generating source or on the type of images and structures 

involved [Misra and Lim, 2015, Raj and Venkateswarlu, 2012]. Consequently, it becomes necessary 

to adapt existing algorithms or develop new ones to tackle the speckle noise for specific 

applications, such as reducing this type of noise in ultrasound images of the female pelvic cavity to 

facilitate and improve, for example, the segmentation of the organs present in these images by 

further computational methods. 
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A priori information that was important in the development of the smoothing method proposed in 

this study is the fact that an ultrasound image is usually composed of regions affected in different 

ways by the speckle noise [Thaipanich et al., 2010]. For example, in regions composed of low 

frequencies, the interference caused by speckle noise may be perceived more easily. However, 

because of their homogeneity, the smoothing performed in these regions may be stronger than the 

smoothing on the borders of these regions [Barcelos and Pires, 2009]. 

In medical ultrasound images, the presence and interference of speckle noise are lower in smooth 

organs that usually store a large amount of liquid, such as the bladder because organs filled with 

liquid absorb a large part of the beams, which avoids the spreading of the ultrasound beams; 

however, in regions that present harder structures, i.e. bones, the presence of noise is higher because 

hard structures reflect ultrasonic beams directly back to the transducer causing speckle noise. 

Transition regions between different structures of an image must be preserved in order not to affect 

the results of the subsequent steps of the computational processing [Barcelos and Pires, 2009]. In 

line with this, the concept of the selective filter was adopted in an attempt to smooth medical 

ultrasound images, particularly of the female pelvic cavity, in a more efficient way. Hence, the 

proposed method performs a local smoothing of the input image; in other words, it treats each pixel 

of the image by taking into account the group enclosed by its closest neighbours. As such, the main 

contribution of this work is the proposal of a new selection criterion for the selective filtering of 

medical ultrasound images. This work has been mainly based on images of the female pelvic cavity. 

This new method uses the intensity of the radiation associated to the image pixels being smoothed 

in an attempt to select the ones that potentially belong to the borders of the structures of interest, 

allowing, therefore, adaptable smoothing to be performed by an average filter with different 

smoothing intensities. The average filtering was adopted because it is a low-pass filter, in which 

high frequencies are filtered, it has an affordable computational cost and permits the intensity of the 

smoothing to be varied by modifying the size of its convolution window [Gonzalez and Woods, 

2006]. 
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3.1. Selective criteria for image smoothing 

The intensity of radiation emitted by a point is the energy flow that it emits per time unit. An 

interesting property of radiation is that it undergoes changes as it moves away from the point of 

emission [Incropera, 2006]. Assuming a barrier-free environment, the trend is that radiation reduces 

in a linear manner. Thus, radiation intensity of a pixel of a grey-scale image can be calculated as: 

,
A
PR =             (1) 

where R represents the intensity of radiation, P represents the power and A represents the area of the 

region affected by the radiation. Considering the radiation spreading along a circular area and the 

radiation power as the grey-level of the pixel i of the image I, Equation 1 can be rewritten as: 

 

,
4 2r
IR i

i π
=             (2) 

 

where r is the radius of the circular area affected by the radiation from the pixel i. The radiations Ri 

were adopted to identify which pixels of the input images should be less affected by the smoothing 

process in the proposed smoothing method.  

In order to decide the probability of a pixel to be a noisy one, the radiation intensity received by a 

pixel i  is calculated by adding up all the influences caused by its neighbouring pixels and taking 

into account the parameter Ti that is calculated for each pixel I as discussed in the next section. 

Equation 2 is rewritten as: 
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Thus, the radiation intensity Ri is calculated considering a circular radiation area with pixel i as its 

centre and with maximum radius equal to 2
w

 pixels, where w is the width of the original image. The 

radius value was defined from tests performed during this work that allowed us to conclude that a 

radius greater than  does not lead to different results. Thus, it is unnecessary to compute the 

radiation emitted from pixels that are very distant from pixel i since this radiation is so low that it 

can be disregarded. Additionally, only the radiation emitted by neighbouring pixels that belongs to 

the row, the column or the diagonals that include the pixel i are considered. Hence, the influence of 

the remainder pixels is discarded in order to not affect the pixel i in the vertical and horizontal 

directions, which also reduces the associated computational cost. 

After calculating the radiation that affects each pixel of the original image, the method attempts to 

estimate the ones that have higher probability of being noisy, so that they may undergo a stronger 

smoothing and so that details of the regions of interesting are not affected by the smoothing process, 

particularly areas representing structural borders. 

The experimental evaluation of the method developed in this work demonstrated that a pixel 

strongly influenced by the radiation of neighbouring pixels has a higher probability of being 

affected by noise or of belonging to a homogeneous region. Thus, these pixels undergo a stronger 

smoothing using an average filter with a large sized convolution window (equal to 25x25 in the 

tests performed and described in the next section), in order to restore their intensity to a level 

similar to that of their neighbours. 

 

2
w
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3.2. New selective average filter method 

The proposed smoothing method is based on a selective average filter as depicted by the flowchart 

in Figure 1. The method uses the average filter to remove the noise that is present in the original 

image, automatically defining the smoothing level of the filter, i.e. the size of the convolution 

window, in accordance with the value of the accumulated radiation that the pixel under smoothing 

receives from the neighbouring pixels. This adaptive size of the convolution window for the 

average filter is the main novelty and interesting feature of the proposed method. 

 

<Figure 1 should be inserted around here> 

 

The proposed methodology starts by smoothing the input image using an average filter with a 3x3 

convolution window. Hence, the smoothing performed in this first step is of low intensity in order 

to avoid any losses of important details of the structures. The 3x3 window was chosen because it 

corresponds to the narrowest window that can be used with the average filter employed here. To 

avoid excessive changes in the grey-level of the pixels, a parameter referred to as the moderator 

term (Ti) was included in Equation 3 to prevent any abrupt change in the pixel value relative to its 

original value. This parameter is calculated for each neighbouring pixel j of the pixel i as: 

 

,jii IIT −=             (4) 

 

where jI  is the grey-level value of the emitting pixel j, and Ii is the original grey-level value of the 

pixel i. Then, the radiation received by each pixel i of the input image is calculated using Equation 

3, calculating the probability of the pixel to be affected by noise or not. Then, the intensity of each 

pixel considered as affected by noise is computed using the average filter with a stronger smoothing 
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effect using a larger convolution window. The remaining pixels are recalculated using the average 

filter with a weaker smoothing effect using a smaller convolution window. 

 

4. Experimental Results 

To verify the accuracy and efficiency of the developed method, experimental tests were conducted 

using synthetic images, which were obtained from noise-free synthetic images with the addition of: 

(1) artificial speckle noise varying from 0.1 to 0.3 and (2) ultrasound effects simulated by the Field 

II software [Jensen, 1996, Jensen and Svendsen, 1992] adopting a linear array B-mode scanning 

option, and real medical images obtained by ultrasound imaging. The original noise-free synthetic 

images were used to allow the statistical comparison of the smoothing results. 

To compare and analyse the results obtained, the following commonly adopted smoothing methods 

were also applied to the test images: the smoothing algorithm based on the anisotropic diffusion 

approach proposed by Perona and Malik [Perona and Malik, 1990], adopting 15 iterations, 

integration constant equal to 1/7 and gradient modulus threshold equal to 30; the Detail Preserving 

Anisotropic Diffusion (DPAD) algorithm [Aja-Fernandez and Alberola-Lopez, 2006, Yu and 

Acton, 2002], with 100 iterations and the size of time step in each iteration as 0.2; a 2D bilateral 

filter, with 3 as the size of the bilateral Gaussian filter window, spatial domain standard deviation 

equal to 3 and intensity-domain standard deviation equal to 0.3 [Tomasi and Manduchi, 1998, Yang 

et al., 2015, Anantrasirichai et al., 2014]; adaptive Frost filtering [Frost et al., 1982]; average and 

median filtering [Gonzalez and Woods, 2006] using a convolution window of size equal to 3 to 

avoid excessive loss of details; and Wiener filter with a mask of 5x5 [Naimi et al., 2015]. The 

parameters adopted throughout the tests with these filters were set based on the recommended 

values found in the respective references. Moreover, these filters were chosen because they have 

been commonly used for smoothing medical images. 
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4.1. Synthetic images 

In this section, the results of smoothing the synthetic images with noise obtained from (1) adding 

artificial speckle noise and (2) using the Field II simulation software are presented and discussed. A 

set of 20 synthetic images was used to test the proposed method against the other smoothing 

methods of the literature under comparison. This set of images was composed of 7 images affected 

by artificial speckle noise with a variance of 0.1, 7 images affected by speckle noise with a variance 

of 0.3, and 6 images obtained using Field II. 

The first test was conducted using the synthetic images obtained by adding artificial speckle noise 

to the noisy-free original images. Figure 2 shows three images in the top row: original image in the 

left column, the resultant image after adding speckle noisy with variance equal to 0.3 in the centre 

and, an image composed by overlapping the original image with correspondent blocks of the 

resultant smoothed images by applying the: (A) median filter, (B) average filter, (C) Perona and 

Malik Anisotropic diffusion filter, (D) proposed selective average filter, (E) DPAD method, (F) 2D 

Bilateral filter, (G) Frost filter and (H) Wiener filter; and the completely smoothed images are 

shown in the next rows of the Figure. This Figure clearly shows the superior smoothing results 

obtained by the DPAD method (E), Wiener filter (H) and the proposed method (D). 

 

<Figure 2 should be inserted around here> 

 

The chart presented in Figure 3 statistically complements the visual analysis of the smoothed 

images presented in Figure 2. The data in the chart indicate that the new method developed here 

restored the image affected by the artificial speckle noise with the lowest error, as it had the highest 

value for the PSNR metric. At the same time, the structures and their respective edges were more 

clearly preserved by the proposed smoothing method, as is evidenced by the highest values obtained 

for the MSSIM and EPI metrics, respectively. The IQI and VIF metrics also had the highest values 

for the proposed method, indicating the superior visual quality of the smoothed image. The DPAD 
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and Wiener filters also produced smoothed images with good quality, as can be confirmed from the 

values obtained for the image quality metrics used. 

 

<Figure 3 should be inserted around here> 

 

The results obtained by the smoothing filters under comparison of a synthetic ultrasound image 

built using the Field II simulation software in a synthetic image are shown in Figure 4. The original 

synthetic image used is in the top row on the left, and in the same row in the centre is the image 

after the Field II simulation software was applied on the original image. The original image 

overlapped with the corresponding blocks of the images obtained by the smoothing methods under 

comparison is shown in the right column of the same row, and the completely smoothed images are 

shown in the next rows of the Figure (A – H). 

The bar chart in Figure 5 shows that the proposed method was able to produce a smoothed image 

with less error (highest PSNR value), with better edge preservation and higher value as to the 

structural information contained (highest EPI and MSSIM values, respectively), compared to the 

other methods under comparison. 

 

<Figures 4 and 5 should be inserted around here> 

 

The Equivalent Number of Looks (ENL) [Anfinsen et al., 2009] obtained for the images shown in 

Figures 2 and 4 are indicated in Table 1. The ENL values indicate the level of homogenization of 

the regions identified by the red rectangles drawn in the central top images of Figures 2 and 4. 

These regions were manually defined in order to include only one structure. The values in Table 1 

demonstrate that the ENL of the regions under analysis in the images smoothed by the anisotropic 

diffusion filter and the developed method are considerably higher than the remaining values. This 

shows that these two methods have a greater capacity to restore the homogeneous regions affected 
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by synthetic speckle noise than the other methods. Also, Table 1 demonstrates that the filter based 

on anisotropic diffusion obtained the highest ENL for the image in Figure 4, which can be 

explained due to the capacity of this filter for homogenization when a high number of iterations are 

performed. However, the loss of border details, as showed by the MSSIM and EPI metrics (Figures 

3 and 5), is a negative aspect of this filter.  

Analysing Figure 6, one can visually confirm that the proposed method has another interesting 

feature, which is its ability to restore the regions damaged by speckle noise, preserving the edges 

presented in the input image efficiently. This Figure shows that the region smoothed by the 

proposed method (D) is very similar to the same noisy-free region. The DPAD (E) and the Frost (G) 

filters also produced good results, but some artifacts were not completely eliminated and were still 

visible in the smoothed regions. 

  

<Figure 6 should be inserted around here> 

 

<Table 1 should be inserted around here> 

 

Therefore, the smoothing results obtained from the synthetic images show that the proposed 

smoothing method can adequately preserve the information of the structures in the original images 

affected by speckle noise, while effectively smoothing their homogeneous regions, and is more 

efficient than the other methods under comparison. 

In some cases, the proposed method did not have the same ability as the DPAD method to maintain 

the visual appearance of the homogeneous regions, but it preserved the transitions between the 

different structures presented in the image more clearly, as seen in Figure 4. Therefore, it can be 

concluded that the new smoothing method proposed here can, in general, produce good results, as is 

confirmed by the chart in Figure 7, which represents the average values of the image quality metrics 

used for all 20 synthetic test images. In fact, this chart confirms the superior performance of the 
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proposed selective average smoothing method. Finally, considering the importance of both the 

quality of the structural information of the smoothed images and the preservation of edge details, 

the proposed algorithm is shown to be both efficient and very promising for use in the pre-

processing of ultrasound images that will be further analysed visually or by computational means. 

 

<Figure 7 should be inserted around here> 

 

4.2. Real ultrasound images 

Similar to the tests conducted using synthetic images, the same smoothing methods were applied to 

4325 real ultrasound images using the same filter parameters used for the synthetic images. These 

images were extracted from three real ultrasound videos of the pelvic cavity and from one real 

ultrasound video of the carotid artery. The smoothing results obtained for one image randomly 

selected from each image sequence, which are shown in Figure 8, are presented in Figure 9. Each 

row of this Figure shows the results of the smoothing obtained for each of the real images tested by 

the: (A) median filter, (B) average filter, (C) Perona and Malik Anisotropic diffusion filter, (D) 

proposed selective average filter, (E) DPAD method, (F) 2D Bilateral filter, (G) Frost filter and (H) 

Wiener filter.  

 

<Figures 8 and 9 should be inserted around here> 

 

A visual analysis of the smoothed real images (Figure 9) demonstrates that the DPAD, and the 

proposed method are more efficient in preserving the transitions between the structures in the 

original images. In addition the values shown in Table 2 demonstrate that the ENL of the regions of 

the smoothed images (Figure 9) identified by red rectangles in the corresponding images of Figure 

8, are higher for the proposed method, indicating its superior capacity to reduce the noise 
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interference in homogeneous regions. This behaviour was also found when all images of the real 

ultrasound image sequences were taken into account; with the proposed method always achieving 

the highest average ENL value, Table 2. 

 

<Table 2 should be inserted around here> 

 

The analysis of the results obtained based on the PSNR, EPI, VIF, MSSIM, IQI and ENL image 

quality metrics for the synthetic images as well as the ENL for the real images, allows us to 

conclude that the proposed method was able to smooth the ultrasound images more efficiently than 

the current methods that it was compared against.  

The main objective of this work was to develop a computational method specifically to smooth 

ultrasound images. As shown by the experimental analysis undertaken in this work, the proposed 

method has achieved this objective successfully. To complement the statistical analysis preformed 

and to introduce the direction for a possible future research, a preliminary analysis of the positive 

effect caused by the smoothing of real ultrasound images by the proposed method is demonstrated 

in Figure 10. This Figure presents two real ultrasound images randomly selected from a bladder 

exam [Peng et al., 2006], and used to demonstrate the positive contribution of the proposed 

smoothing method in achieving segmentation results of better quality. 

 

<Figure 10 should be inserted around here> 

 

A region of the urethra was manually selected in each image of Figure 10 taking into account that it 

should include part of the anterior and posterior edges of the urethra. The resolution and contrast of 

these parts were greatly affected by speckle noise. Then, the original and smoothed region images 

were segmented using the Otsu’s thresholding method. The resultant segmented images also 

presented in Figure 10, show that the segmentations obtained from the images smoothed by the 
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proposed method are of superior quality, with more regular edges and with less over-segmented 

regions, compared to the segmentations obtained from the original images. 

 

5. Conclusion 

In this paper, a new method was proposed for smoothing ultrasound images that are commonly 

affected by speckle noise. The method uses an average filter that performs a selective smoothing of 

the original image based on the analysis of the radiation of each pixel. The experimental testing of 

the proposed method was divided into two steps. In the first one, synthetic images were used to 

verify the efficiency and accuracy of the proposed method in preserving the structural information 

and edge details. In the second step, real medical ultrasound images of the pelvic cavity and the 

carotid artery were used to analyse the efficiency of the proposed method in speckle noise 

interference reduction in these kinds of images. 

The excessive presence of speckle noise in ultrasound images may affect the analysis of the imaged 

structures, which makes their posterior analysis, such as their computational segmentation and 

classification, more difficult. The main contribution of this research was to present a new smoothing 

method suitable for ultrasound images and able to reduce the interferences caused by speckle noise. 

The proposed method preserves the transitions between the different structures in the input images 

while making the regions with small intensity variations more homogeneous. Compared to the 

current smoothing methods, the best performance found for edge preservation, structural 

information maintenance and minor error rate was the proposed method. Thus these results qualify 

it to smooth ultrasound images, particularly when the images are intended to be segmented by 

computational algorithms. 

The selective smoothing method proposed has presented relevant and promising results, as was 

showed by the analysis undertaken based on different image quality metrics, which indicated the 

better performance of the proposed method compared to other methods of the same category 
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commonly used. However, in some images it was noted that the IQI and VIF metrics indicated a 

better performance of other methods in terms of the visual quality of the smoothed images, 

particularly highlighting the DPAD and the 2D Bilateral filters. Thus, the smoothing method 

proposed in this work may not be the best option for applications where the maintenance of the 

visual appearance is the main requisite. The solution developed during this work is specially 

indicated to be used in areas where the existence of speckle noise seriously affects the performance 

of computational algorithms of image analysis, like segmentation and classification algorithms. 

Examples of these areas, are those based on different medical imaging modalities and of geo-

referencing that uses Synthetic Aperture Radar (SAR) images. 

We can also explore the possibility of using the proposed methodology with other smoothing filters 

rather than the average filter used here, like the Gaussian filter, particularly in cases where the 

images are also strongly affected by additive noise. Another future research that can be developed 

from the work presented is to apply the proposed smoothing method to the Wavelet layers of the 

original images leading, therefore, to a multi-resolution smoothing method, making it even more 

selective, since the processing of Wavelet layers will allow the smoothing of different bands of 

frequency independently.  
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FIGURE CAPTION 

 
Figure 1: Flowchart of the proposed smoothing method. 

 

Figure 2: Original synthetic image, after being corrupted by artificial speckle noise with variance 

equal to 0.3, and results of the smoothing achieved by the methods under comparison: (A) median 

filter, (B) average filter, (C) Perona and Malik Anisotropic diffusion filter, (D) proposed selective 

average filter, (E) DPAD method, (F) 2D Bilateral filter, (G) Frost filter and (H) Wiener filter. 

 

Figure 3: Values obtained for the PSNR, EPI, VIF, MSSIM and IQI metrics for the images 

corrupted with artificial speckle noise smoothed by the filters under comparison (Figure 2). 

 

Figure 4: Original synthetic image, after being submitted to the Field II ultrasound simulator 

software, and results of the smoothing achieved by the methods under comparison: (A) median 

filter, (B) average filter, (C) Perona and Malik Anisotropic diffusion filter, (D) proposed selective 

average filter, (E) DPAD method, (F) 2D Bilateral filter, (G) Frost filter and (H) Wiener filter. 

 

Figure 5: Values obtained for the PSNR, EPI, VIF, MSSIM and IQI metrics for the images 

submitted to the Field II ultrasound simulator software smoothed by the filters under comparison 

(Figure 4). 

 

Figure 6: Results of the smoothing methods under comparison from a synthetic image corrupted 

with artificial speckle noise: (A) median filter, (B) average filter, (C) Perona and Malik Anisotropic 

diffusion filter, (D) proposed selective average filter, (E) DPAD method, (F) 2D Bilateral filter, (G) 

Frost filter and (H) Wiener filter. 
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Figure 7: Average values obtained for the PSNR, EPI, VIF, MSSIM and IQI metrics for all 

synthetic images smoothed by the filters under comparison. 

 

Figure 8: From left to right, example of three ultrasound images of the pelvic cavity and one 

ultrasound image of the carotid artery used to compare the smoothing methods under comparison. 

 

Figure 9: Results of the smoothing methods under comparison from the real ultrasound images in 

Figure 8: (A) median filter, (B) average filter, (C) Perona and Malik Anisotropic diffusion filter, (D) 

proposed selective average filter, (E) DPAD method, (F) 2D Bilateral filter, (G) Frost filtering and 

(H) Wiener filter. 

 
Figure 10: Segmentation results from a region of the urethra selected from two real ultrasound 

images that were or not smoothed by the proposed method. 
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TABLE CAPTION 

 

Table 1: ENL computed from the synthetic images in Figures 2 and 4. (Bold values are the best 

values obtained, which indicate a smoothing of superior quality.) 

 

Table 2: ENL computed from the real ultrasound images in Figures 9. (Bold values are the best 

values obtained, which indicate a smoothing of superior quality.) 
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TABLES 

 

Table 1 

# Simulated 
image 

Median 
filter 

Average 
filter 

Anisotropic 
Diffusion 

filter 

DPAD 2D 
Bilateral 

filter 

Frost 
filter 

Wiener 
filter Proposed 

method 

Figure 2 5.9925 26.9146 54.1989  250.5487  59.3685  8.1167 135.7024 146.8080 251.7720 

Figure 4 24.1555 52.2514 60.2226 291.6732 137.9077 65.2842 107.6297 113.4500 173.3482 

 

Table 2 

# Simulated 
image 

Median 
filter 

Average 
filter 

Anisotropic 
Diffusion 

filter 

DPAD 2D 
Bilateral 

filter 

Frost 
filter 

Wiener 
filter Proposed 

method 

Figure 9 - 
Seq. 1 30.2769 67.3820 91.5440 133.4084 150.4175 62.2093 121.7063 92.2860 415.8840 

Average 
for seq. 1 24.5568 37.5436 42.2675 52.9957 33.6917 38.8445 48.5982 45.5038 80.9120 

Figure 9 - 
seq. 2 12.1627 21.2455 23.4751 46.5803 55.8347 27.8882 31.7100 32.8159 60.0515 

Average 
for seq. 2 16.7982 28.3208 31.0591 62.9522  19.3905 46.6149 41.4040 42.0562 85.7806 

Figure 9 -
seq. 3 27.2426 46.2159 50.4132 86.4907 147.6368 55.2607 62.8385 62.1842 397.1190 

Average 
for seq. 3 19.6943 29.7707 32.2397 50.3927 25.2270 33.6893 38.7927 38.3110 147.4259 

Figure 9 - 
seq. 4 16.2348 16.8593 17.8152 23.8995 16.4467 22.4444 20.0212 19.0357 30.8823 

Average 
for seq. 4 18.1653 18.8240 19.6801 26.5389 18.8888 23.6422 21.7645 20.4499 37.8630 
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