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Abstract

The present work is focused on the study of some properties of pseudovarieties of the form DRH,
which consists of all finite semigroups whose regular R-classes lie in a certain pseudovariety of
groups H.

Let κ denote the canonical implicit signature containing two implicit operations: multiplication
and (ω−1)-power. The latter is the unary implicit operation that assigns to each element s of a finite
semigroup S the inverse of s1G(s) in the unique maximal subgroup G(s) of the subsemigroup of S
generated by s (we are using 1G(s) to denote the identity of G(s)). Given an arbitrary implicit signature
σ , we call σ -word any element of the free σ -semigroup, denoted Ωσ

AS.

We start by considering the κ-word problem over DRH, that consists in deciding whether the
natural interpretations of two given κ-words coincide in every semigroup of DRH. We show that
this problem is decidable assuming so is the analogous problem for H. We also exploit the concept
of DRH-automaton in order to define a canonical form for the elements of Ωκ

ADRH, based on the
knowledge of a canonical form for the elements of Ωκ

AH. The approach conducted consists in a
generalization of the tools used by Almeida and Zeitoun when they solved the analogous problems for
the pseudovariety R, consisting of all R-trivial finite semigroups.

Next, we study some reducibility properties of pseudovarieties of the form DRH, with respect to
certain classes of systems of equations. Informally, given an implicit signature σ , an alphabet X with
a constraint on each element, and a class C of finite sets of formal equalities between σ -words on X
(known as systems of σ -equations), we say that a pseudovariety V is σ -reducible with respect to C if
the existence of a solution modulo V of any system in C yields the existence of a solution modulo V

given by σ -words (both satisfying the given constraints). Fix an implicit signature σ that contains a
non-explicit operation. First, we prove that H being σ -reducible with respect to systems of the form
x1 = · · ·= xn implies that so is DRH. Let us include a definition before proceeding. Given a graph, we
associate to each edge x

y−→ z the equation xy = z. Systems of equations obtained in this way from a
finite graph are said to be systems of graph equations. We show that DRH is σ -reducible with respect
to systems of graph equations if and only if the same happens for H. This is inspired by some of the
results of Almeida, Costa, and Zeitoun which were established in order to derive κ-reducibility of
some joins of the form R∨W with respect to systems of graph equations. Finally, we prove that, if
we further require that a non-explicit operation with value 1 over H may be obtained from elements
of σ by composition, then H being σ -reducible with respect to systems of graph equations suffices
for DRH being σ -reducible with respect to systems of the form x1 = · · ·= xn = x2

n. Both the first and
last mentioned properties for DRH depend on a certain periodicity that may be found on the given
constraints.
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Our last result states that a pseudovariety DRH is κ-reducible with respect to any system of
κ-equations if and only if H enjoys the same property. In fact, we show something slightly more
general. However, the results known so far do not suggest any advantage in the general formulation
we present. We choose to do so for two reasons: firstly, there is no significant extra effort in doing it;
and secondly, we hope that some other results may appear in the near future. The solution relies on a
generalization of the adaptation of Makanin’s algorithm (originally used by Makanin to solve word
equations in free semigroups) carried out by Almeida, Costa, and Zeitoun in order to show that R is
κ-reducible with respect to any finite system of κ-equations.



Resumo

Neste trabalho concentramo-nos no estudo de algumas propriedades das pseudovariedades DRH, isto
é, pseudovariedades formadas por todos os semigrupos finitos cujas R-classes regulares pertencem a
uma dada pseudovariedade de grupos H.

Denotemos por κ a assinatura implícita canónica, a qual contém duas operações implícitas: a
multiplicação, e a potência (ω−1). A última, é a operaçao unária que associa a cada elemento s num
semigrupo finito S, o inverso de s1G(s) no único subgrupo maximal G(s) do subsemigrupo de S gerado
por s (estamos a denotar por 1G(s) a identidade de G(s)). Se σ for uma assinatura implícita arbitrária,
chamamos σ -palavras aos elementos do σ -semigrupo livre, denotado Ωσ

AS.

A primeira questão abordada é o problema da κ-palavra em DRH, o qual consiste em decidir
quando é que a interpretação natural de duas κ-palavras coincide em todos os semigrupos de DRH.
Mostra-se que este problema é decidível, assumindo que o problema análogo para H também é.
A definição dos chamados DRH-autómatos é aproveitada para exibir uma forma canónica para os
elementos de Ωκ

ADRH, partindo do conhecimento de uma forma canónica para os elementos de Ωκ
AH.

A abordagem que fazemos consiste numa generalização das ferramentas usadas por Almeida e Zeitoun
quando resolveram os problemas análogos para a pseudovariedade R dos semigrupos finitos cujas
R-classes são triviais.

De seguida, é estudada a redutibilidade das pseudovariedades DRH para certas classes de sistemas
de equações. Informalmente, dada uma assinatura implícita σ , um alfabeto X com certas restrições,
e uma classe C de conjuntos finitos de igualdades formais entre σ -palavras obtidas a partir de X
(ditos sistemas de σ -equações), dizemos que a pseudovariedade V é σ -redutível em relação a C se a
existência de uma solução módulo V para qualquer sistema em C garante a existência de uma solução
módulo V dada por σ -palavras (ambas respeitando as restrições dadas). Tomemos uma assinatura
implícita σ que contém pelo menos uma operação não explícita. Primeiro mostramos que se H for
σ -redutível para sistemas da forma x1 = · · · = xn, então DRH também é. Incluímos uma definição
antes de apresentar o resultado seguinte. Dado um certo grafo, associa-se a cada aresta x

y−→ z a equação
xy = z. Todo o sistema de equações obtido desta forma a partir de um grafo finito diz-se um sistema
de equações de grafos. É mostrado que a pseudovariedade DRH é σ -redutível em relação a esta classe
de sistemas se e só se H também o for. A solução apresentada é inspirada em resultados que Almeida,
Costa, e Zeitoun provaram aquando do estudo da κ-redutibilidade em relação a sistemas de equações
de grafos de algumas pseudovariedades da forma R∨W. Finalmente, são considerados sistemas da
forma x1 = · · · = xn = x2

n e supõe-se que existe uma operação não explícita com valor 1 em H que
pode ser obtida de elementos de σ por composição. Mostra-se que para DRH ser σ -redutível em
relação a este tipo de equações é suficiente que H seja redutível em relação a sistemas de equações de
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grafos. Tanto o primeiro como o último problemas abordados dependem de uma certa periodicidade
que pode ser encontrada nas restrições das variáveis dos sistemas em questão.

Este trabalho culmina com a prova de que a pseudovariedade DRH é κ-redutível em relação a
qualquer sistema de κ-equações se e só se o mesmo acontece com H. Na realidade, mostra-se algo
ligeiramente mais forte. Contudo, os resultados conhecidos até à data não evidenciam nenhuma
vantagem na formulação mais geral que apresentamos. Uma vez que não acarreta esforço extra
significativo, essa formulação é a escolhida na expectativa de que outros resultados possam aparecer
no futuro. O método usado consiste numa generalização da adaptação do Algoritmo de Makanin
(usado por Makanin para resolver equações de palavras em semigrupos livres) feita por Almeida,
Costa, e Zeitoun para mostrarem que a pseudovariedade R é κ-redutível em relação a qualquer sistema
finito de κ-equações.
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Chapter 1

Introduction

Although the notion of semigroup goes back at least to the early 1900s [36], the first remarkable
result, a description of the structure of finite simple semigroups, was obtained by Suschkewitsch [68]
in 1928. Later on, in 1940, Rees [57] improved that result by characterizing completely 0-simple
semigroups. It was Kleene [46] in 1956 who introduced for the first time what is nowadays known
as rational languages. It appeared in the wake of his study of models of biological neurons, which
was an emergent subject by then. By the same time, Green [40] introduced the relations that later
received his name. During all the fifties and sixties, the study of semigroups was essentially motivated
by its application in Theoretical Computer Science, namely, by the study of automata and rational
languages. This led to results relating the study of combinatorial properties of rational languages to the
study of algebraic properties of their syntactic semigroups. The work of Brzozowski, McNaughton,
Schützenberger, Simon and Zalcstein generated a lot of results in the sixties and seventies, revealing
many of the connections between finite automata, recognizable languages and finite semigroups (see,
for instance, [31, 33, 51, 52, 64, 66, 71]). In particular, the characterization of star-free languages
as those that are recognized by finite aperiodic monoids due to Schützenberger [64] and Simon’s
Theorem [66], stating that piecewise testable languages are precisely those recognized by a finite
J-trivial monoid, were of great relevance.

Meanwhile, in 1965, Krohn and Rhodes [47] also came up with a significant result. They proved
the so-called Krohn-Rhodes Prime Decomposition Theorem. In its original form, it states that every
finite semigroup S divides a semidirect product whose factors are either simple groups dividing S or the
monoid U3 (that is, the three element monoid containing two right-zeros and an identity). This led to
the notion of Krohn-Rhodes complexity of a finite semigroup S: it is the smallest non-negative integer
n such that S divides the wreath product An ≀Gn ≀An−1 ≀Gn−1 ≀ · · · ≀A1 ≀G1 ≀A0, where A0,A1, . . . ,An are
aperiodic semigroups and G1, . . . ,Gn are groups [48]. About 50 years later, it is still an open problem
to prove or disprove the decidability of the complexity of a semigroup. Some partial results have been
appearing since then, namely in the form of lower and upper bounds for complexity, the most recent
in [43].

It was merely in 1976 that Eilenberg and Schützenberger [39] introduced the formal definition
of pseudovariety. In Eileinberg’s treatise [37, 38], the relationship between pseudovarieties of finite
semigroups and varieties of rational languages is finally explicitly established [38, Chapter VII, The-
orem 3.4s]. And then started a revolutionary growth of the theory of finite semigroups. Following

1



2 Introduction

Eilenberg’s work, it is worth mentioning the results obtained by Tilson, with special emphasis on
the Derived Category Theorem [69], whose main purpose was to show how essential it is to study
categories as generalizations of monoids.

Another line of development came from the fact that Eilenberg considered pseudovarieties ul-
timately defined by sequences of equations [39]. In an attempt to obtain a finite analogue of the
Birkhoff Variety Theorem [30] known from Universal Algebra, in 1982, Reiterman [58] introduced
implicit operations and decribed pseudovarieties by equations of implicit operations.

An additional adversity in the study of pseudovarieties was that, unlike in Universal Algebra,
pseudovarieties have no free objects. However, they appear naturally when profinite constructions over
pseudovarieties are taken. Indeed, the structure of metric space that Reiterman defined on the space
of A-ary implicit operations in a pseudovariety V is precisely the projective limit of the A-generated
members of V [2]. The latter is nowadays known as the free A-generated pro-V semigroup and denoted
ΩAV (a notation rather similar to the one already used in [58]). The decade of 1990 was crucial to
the development of profinite semigroups as a tool for studying pseudovarieties of finite semigroups,
having been carried out mainly by Almeida [3, 6, 7].

Quite often, one of the questions arising when facing a certain class consists in determining
whether a given object belongs or not to that class, the so-called membership problem. In what
concerns pseudovarieties, Eilenberg’s correspondence justifies the interest in studying the decidability
of the membership problem in that context. That means to prove either that there exists an algorithm
deciding whether a given finite semigroup belongs to a certain pseudovariety, in which case the
pseudovariety is said to be decidable; or to prove that such an algorithm does not exist, being thus in
the presence of an undecidable pseudovariety. Since many relevant pseudovarieties are a result of
the application of some natural operators on pseudovarieties V and W, such as the join V∨W, the
semidirect product V∗W, the two-sided semidirect product V∗∗W, or the Mal’cev product V⃝m W, it
is also relevant to decide the membership problem for the resulting pseudovariety. Witnessing this
statement there is, for instance, Rhodes’ paper [59] in which he shows interest in finding out whether
some particular joins of pseudovarieties are decidable. By then, it was already known that the join
operator does not preserve decidability [1].1 Studying the decidability of pseudovarieties of the form
V ∗W seems natural in view of the Krohn-Rhodes problem. Also in this setting, the Mal’cev product
plays a role, thanks to the Fundamental Lemma of Complexity [62]. In turn, the two-sided semidirect
product shows up as a natural construction when studying the kernel category of a relational morphism.
Many other results appeared highlighting the relevance of these operators. Again, none of ∗, ⃝m and
∗∗ preserves decidability [60].

Aiming to guarantee the decidability of pseudovarieties obtained through the application of ∗
from a stronger property for the involved pseudovarieties, the notion of hyperdecidability was intro-
duced [4]. That notion seemed natural after Almeida and Weil [22, Theorem 5.3] proved that, given
pseudovarieties of semigroups V and W, a basis for a pseudovariety V ∗W could be obtained from a
basis of the pseudovariety of semigroupoids gV.2 Shortly after, the notion of (weak) reducibility [16]

1 The careful reader may realize that [59] was published in 1987 while [1] was just published in 1992. However, there
was a preprinted version of [1] dating from 1986, under the name of “Undecidability of the identity problem for finite
semigroups with applications” by Albert and Rhodes.

2 It was later realized that the referred theorem has a gap in its proof. Although it is not known so far the full generality
of the result, it remains valid if the pseudovariety of semigroupoids gV has finite vertex-rank (see also [61]).



3

emerged as a method of establishing hyperdecidability of pseudovarieties. Almeida and Steinberg [16,
Theorem 4.7] proved that every recursively enumerable pseudovariety V for which there exists a
highly computable implicit signature σ making V into a σ -recursive and σ -reducible pseudovariety is
also hyperdecidable. That may be seen as a reason for the introduction of tame pseudovarieties [17].
It turns out that tameness is a stronger, but in general easier to prove, property. Yet, we point out that
σ -recursiveness (under certain reasonable conditions) is equivalent to the decidability of the word
problem in the free σ -semigroup over V, denoted Ωσ

AV [16, Theorem 3.1] (such word problem is also
called σ -word problem over V). Therefore, solving the word problem in Ωσ

AV is not only a matter
appearing transversely when dealing with any algebraic structure, but also something really useful in
proving the decidability results already mentioned. Some other variants of these strong versions of
decidability may be found in the literature (see [6] for an overview).

It is also worth mentioning that a particular instance of hyperdecidability, known as strong
decidability, was already considered for several years under the name of computable pointlike sets.
For instance, in 1988 Henckell [41] proved that finite aperiodic semigroups have computable pointlike
sets or, in other words, that the pseudovariety A of finite aperiodic semigroups is strongly decidable.
This study was conducted to produce progress in the question of decidability of the Krohn-Rhodes
complexity for semigroups. Along the same line, Ash [28] introduced inevitable sequences in a
finite monoid (for finite groups) in order to prove the Rhodes type II conjecture [45, Conjecture 1.3].
Deciding whether a sequence (s1, . . . ,sn) from a finite monoid is inevitable in Ash’s sense translates
to hyperdecidability of the pseudovariety G of finite groups with respect to the equation x1 · · ·xn = 1.
Also, Pin and Weil [55, Theorem 4.1] described a defining set of identities for a Mal’cev product,
which in turn implies that the decidability of idempotent pointlike sets may be used as a sufficient
condition for decidability of Mal’cev products of pseudovarieties [8, Theorem 4.2]. The diversity
of motivations behind these works somehow indicates that hyperdecidability may lead the way to
a better understanding of the structure of finite semigroups. Indeed, many researchers have shown
interest in studying these properties for pseudovarieties. Just to name a few results, it follows from
Ash’s work that G is κ-tame [27]; Almeida and Zeitoun [23] proved that the pseudovariety J of all
J-trivial semigroups is hyperdecidable, and later Almeida [6] that it is completely κ-tame; although the
pseudovariety Gp of p-groups is not κ-tame [6, 29], Steinberg [67] proved that it is hyperdecidable, and
Almeida [5] that there exists an implicit signature σ that makes it σ -tame; Almeida and Trotter [18]
proved hyperdecidability and κ-reducibility of the pseudovariety OCR of orthogroups; Almeida
and Zeitoun [24] that the pseudovarieties N (nilpotent semigroups), K and D (semigroups whose
idempotents are left and right zeros, respectively), and LI (the smallest pseudovariety containing both
K and D) are κ-tame; Henckell [41] proved that A is hyperdecidable with respect to systems of the
form x1 = · · ·= xn = x2

n; complete κ-tameness of the pseudovariety Ab of Abelian groups was proved
by Almeida and Delgado [13]; and Henckell, Rhodes and Steinberg [42] proved that the pseudovariety
Gp of semigroups whose subgroups belong to Gp is strongly decidable.

On the other hand, Brzozowski and Fich [32] conjectured that Sl∗L= GLT and established the
inclusion Sl∗L⊆ GLT. Here, Sl is the pseudovariety of finite semilattices, L is the pseudovariety of
finite L-trivial semigroups, and GLT is the pseudovariety of semigroups S for which eSee ∈ Sl, for
every idempotent e ∈ S, where Se is the subsemigroup generated by the elements lying J-above e.
Motivated by this problem, Almeida and Weil [21] considered the dual of the pseudovariety L, the
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pseudovariety R of R-trivial finite semigroups, and described the structure of the free pro-R semigroup.
Later on, it was proved by Almeida and Silva [15] that the pseudovariety R is SC-hyperdecidable for
the canonical implicit signature κ , and by Almeida, Costa and Zeitoun that R is tame [9], completely
κ-reducible [10], and strongly decidable [11]. Although tameness implies strong decidability, the
improvement of [11] with respect to [9] lies in the fact that an algorithm is presented in the former.

A natural generalization of R is found in the pseudovarieties of the form DRH for a pseudovariety
of groups H. This class contains all finite semigroups whose regular R-classes are groups lying in H.
Observe that, when H is the trivial pseudovariety Jx = yK, the pseudovariety DRH is nothing but R.

Also, the pseudovarieties DRH may be seen as a specialization of the pseudovariety DS, of all finite
semigroups whose regular D-classes are subsemigroups. The interest in the latter has been pointed out
by Schützenberger in [65], where he characterizes the varieties of rational languages corresponding to
some subpseudovarieties of DS under Eilenberg’s correspondence, among which DRH.

These considerations motivated us to study the pseudovarieties of the form DRH. Our main
concern in this work is to generalize for any pseudovariety DRH some of the already known properties
of R (when imposing some reasonable conditions on H).

The thesis is organized in five chapters (besides the present Introduction) as follows.

Chapter 2 serves the purpose of standardizing most of the definitions and notation used in the rest
of the thesis. In particular, definitions of C-decidability (where C is a class of formal equalities between
elements of ΩAS), hyperdecidability, strong decidability, (complete) σ -reducibility and (complete)
σ -tameness are provided in Section 2.4, in the way they are used in the subsequent chapters. It also
includes the statement of some results involving these notions. Section 2.6 contains a summarized
exposition of the representation of the elements of ΩADRH in terms of certain decorated reduced
A-labeled ordinals found in [21]; while in Section 2.7 we state and prove some results used later that,
although they are not new, as far as we know, they are not formulated in the literature.

In Chapter 3 we solve the κ-word problem over DRH, assuming that there exists a solution for the
κ-word problem over H. We also take the opportunity to present a canonical form for the elements
of Ωκ

ADRH, based on the knowledge of a canonical form for the elements of Ωκ
AH. Here, the symbol

κ represents the canonical implicit signature, that is, the implicit signature consisting of multiplication
and (ω−1)-power. The approach followed is analogous to that which has been carried out in [25]
for the pseudovariety R. Let us describe the main steps of the solution of the referred word problem.
First, we define the class of DRH-automata as well as an equivalence relation ∼ on it. Associating
a value of ΩADRH to each such automaton it is proved the existence of a bijection π between the
∼-classes of DRH-automata and the R-classes of ΩADRH. Also, a certain language is associated to
each DRH-automaton. That language has the property of supplying a complete characterization of the
relation ∼, meaning that two DRH-automata are equivalent if and only if the associated languages
are the same. Thus, solving the word problem in Ωκ

ADRH turns into solving the word problem in
Ωκ

AH plus comparing languages associated to DRH-automata (since the pseudovariety DRH satisfies a
pseudoidentity u = v if and only if it satisfies u R v and H satisfies u = v). After proving some technical
results, we devote Section 3.4 of this chapter to prove the existence of an algorithm deciding whether
two given κ-words over DRH lie in the same R-class. We do that with the help of DRH-graphs,
which are DRH-automata constructed from a given representation of a κ-word u and corresponding
to the R-class of u modulo DRH under the above announced bijection π . Let u and v be κ-words



5

and suppose that the word problem over H of a certain finite set of factors of u and v (to be precisely
defined in the sequel) may be solved in O(p(u,v))-time. The main theorem of this chapter states
that it takes at most O((p(u,v)+m)m |A|)-time to decide whether u and v are the same modulo DRH,
where m = max{|u| , |v|}. We further explain an algorithm doing so. As an illustration of that result,
we prove that the κ-word problem for DRG may be solved in O(m3 |A|)-time.

We start the approach to some reducibility questions in Chapter 4, which contains three sections.
We study the σ -reducibility of DRH for finite systems of pointlike equations in the first, for finite
systems of graph equations in the second, and for finite systems of idempotent pointlike equations in
the last. Let σ contain some non-explicit operation. The results in Sections 4.1 and 4.3 make use of a
certain periodicity that may be found in DRH when iterating left basic factorizations of pseudowords
infinitely many times to the right. In Section 4.1 we prove that DRH is σ -reducible for finite systems
of pointlike equations if so is H, whereas in Section 4.3 we prove that, if a non-explicit operation with
value 1 over H may be obtained from elements of σ by composition, then DRH is σ -reducible for
finite systems of idempotent pointlike equations provided H is σ -reducible. Interchanging the roles of
the pseudovarieties DRH and H in the last statement we still obtain a valid result, although that is only
a simple observation. Until now, we do not know whether H being σ -reducible is also a necessary
condition for σ -reducibility of DRH with respect to finite systems of idempotent pointlike equations.
On the contrary, Section 4.2 depends deeply on [9, Lemma 5.14]. Inspired by the notion of splitting
points [9] in the setting of the pseudovariety R, we generalize them for the pseudovariety DRH and
show what is the relationship between the original notion of splitting points and the new one. By then,
we have all the tools to transform any finite system of graph equations into a more treatable one. We
prove that DRH is σ -reducible if and only if so is H. Some examples of applications are given.

Finally, in Chapter 5 we extend for pseudovarieties of the form DRH the techniques that Almeida,
Costa and Zeitoun [10] used for proving that the pseudovariety R is completely κ-reducible. Firstly,
the problem is reduced to the study of a “special” single word equation plus some extra conditions.3

Intuitively, we turn our attention to the “special” word equation and look at the propagation of
the factorizations present in each member. This may be seen as an analogue of propagation of
splitting points. To deal with its possible infinite propagation, we generalize the adaptation of the
Makanin’s algorithm [50] made in [10]. More precisely, we prove that DRH is a completely κ-
reducible pseudovariety if and only if the pseudovariety of groups H is completely κ-reducible as
well. Of course, the latter condition holds for every locally finite pseudovariety H. However, so far,
the unique known instance of a completely κ-reducible non-locally finite pseudovariety of groups
is Ab, the pseudovariety of Abelian groups [13]. Hence, the pseudovariety DRAb is completely
κ-reducible. On the contrary, since neither the pseudovarieties G and Gp (respectively, of all finite
groups, and of all p-groups, for a prime p) nor proper non-locally finite subpseudovarieties of Ab are
completely κ-reducible [29, 34, 35], we obtain a family of pseudovarieties of the form DRH that are
not completely κ-reducible.

To conclude this thesis, we discuss in Chapter 6 some open problems that naturally appear
following our work.

3 “Special” means that the equation admits a solution δ modulo DRH such that, for each product of variables xy
occurring as a factor of the product of the members of the equation, the product δ (x) ·δ (y) is reduced.





Chapter 2

Preliminaries

For the basic concepts and results on pseudovarieties and (pro)finite semigroups the reader is referred
to [3, 7]. Some knowledge of automata theory may be useful, although no use of deep results is made.
For this topic, we refer to [63]. The required topological tools may be found in [70].

2.1 Semigroups

Let S be a semigroup. We denote by SI the monoid whose underlying set is S⊎{I}, where S is a
subsemigroup and I plays the role of a neutral element. If S is a monoid, then we usually represent
by 1 its identity (except in the case where the neutral element I is added). Given n elements s1, . . . ,sn

of S, we use the notation ∏
n
i=1 si for the product s1s2 · · ·sn. Given a sequence (sn)n≥1 in S we call

infinite product the sequence (∏n
i=1 si)n≥1. An element s ∈ S is said to be regular if there is t ∈ S such

that the equality sts = s holds. A subset of S is regular if all its elements are regular. We let R, ≤R, L,
H, and D denote some of Green’s relations on a semigroup. A straightforward computation shows
the next result, which we use without further mention.

Proposition 2.1 ([54, Chapter 3, Proposition 1.1]). The relations ≤R and R are left compatible with
multiplication.

The free semigroup on the set A is denoted A+, while the free monoid is denoted A∗. Since
elements of A∗ are often seen as words, we call empty word the identity of A∗ and denote it by ε . We
use FGA to denote the free group on A, that is, the quotient (A∪A−1)∗/∼, where A−1 = {a−1 : a ∈ A}
is disjoint from A and aa−1 ∼ ε ∼ a−1a (a ∈ A). Abusing the notation, the ∼-class of ε in FGA is also
denoted ε .

For u ∈ A∗, we write |u|= n if u = a1 · · ·an, and |u|= 0 if u = ε . We denote by 2A the set of all
subsets of A.

2.2 Automata

A deterministic automaton over a finite alphabet ∆ is a tuple A= ⟨V,δ ,q,F⟩, where

• V is a set (not necessarily finite) whose elements are called states;

7



8 Preliminaries

• δ : V ×∆→V is a partial map, which is called the transition function;

• q ∈V is the initial state;

• F ⊆V is the set of final states.

The transition function δ naturally extends to a partial map δ : V ×∆∗→ V by letting δ (v,ε) = v

and δ (v,s1 · · ·sn) = δ (δ (v,s1 · · ·sn−1),sn), where v is a state of V and s1, . . . ,sn ∈ ∆. The function δ

is also denoted δ . We usually write δ (v,s) = v.s, for s ∈ ∆∗. Also, if v1.s = v2, then we may write
v1

s−→ v2. We say that the automaton A is trim if for every v ∈ V there exist s1,s2 ∈ ∆∗ such that
q.s1 = v and v.s2 ∈ F . The language accepted by A is the set {s ∈ ∆∗ : q.s ∈ F}.

Given a state v ∈V , we denote by Av the sub-automaton of A rooted at v, that is, the deterministic
automaton Av = ⟨v.∆∗,δ |v.∆∗×∆,v,F ∩ (v.∆∗)⟩.

2.3 Pseudovarieties and profinite semigroups

Unless otherwise stated, V and W stand for arbitrary pseudovarieties of semigroups. We list below
some of the pseudovarieties mentioned in this work.

S consists of all finite semigroups;

Sl consists of all finite semilattices;

G consists of all finite groups;

Ab consists of all finite Abelian groups;

Gp consists of all finite p-groups (for a prime number p);

Gsol consists of all finite solvable groups.

We denote arbitrary subpseudovarieties of G by H. The class of finite semigroups whose subgroups
belong to H is also a pseudovariety, denoted H. Our main focus are the pseudovarieties of the form
DRH, that is, the class of all finite semigroups whose regular R-classes are groups lying in H, and
hence, are also H-classes. Clearly, we have DRH = DRG∩H. If H is the trivial pseudovariety of
groups I= Jx = yK, then DRH= DRI is the pseudovariety R of all finite R-trivial semigroups. Each
pseudovariety DRH is contained in the pseudovariety DS of finite semigroups whose regular D-classes
are subsemigroups, and it contains the pseudovariety R.

We recall that a profinite semigroup is a compact residually finite topological semigroup. A pro-V
semigroup S is a profinite semigroup that is residually V, meaning that given two distinct elements
s, t ∈ S, there exists a continuous homomorphism ψ : S→ T into a finite semigroup T ∈ V such
that ψ(s) ̸= ψ(t). The free A-generated pro-V semigroup ΩAV is characterized in the following
proposition:

Proposition 2.2 ([7, Proposition 3.4]). The profinite semigroup ΩAV is the A-generated topological
semigroup with the following universal property: the generating function ι : A→ΩAV is such that,
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for every mapping ψ : A→ S into a pro-V semigroup there exists a unique continuous homomorphism
ψ̂ : ΩAV→ S such that the following diagram commutes:

A ι //

ψ

&&

ΩAV

ψ̂

��
S .

The subsemigroup ι(A)+ is denoted ΩAV. Since ΩAV is an A-generated topological semigroup,
we have ΩAV = ΩAV. If the pseudovariety V contains at least one non-trivial semigroup, then it
is easily checked that the generating mapping ι : A→ΩAV is injective. So, we often identify the
elements of A with their images under ι . In particular, we sometimes call empty pseudoword/word
the identity element I ∈ (ΩAV)

I . Also, if B ⊆ A, then the inclusion mapping induces an injective
continuous homomorphism ΩBV→ΩAV. Hence, we look at ΩBV as a subset of ΩAV. From now on,
A denotes a finite set, also called an alphabet.

For a given u ∈ΩAV and a pro-V semigroup S, we denote by uS : SA→ S the natural interpretation
of u in S, that is, the mapping sending each element ψ ∈ SA (seen as a function from A to S) to the
element ψ̂(u), where ψ̂ stands for the unique continuous homomorphism given by Proposition 2.2. It
may be proved that (uS)S∈V defines an A-ary implicit operation on V [7, Proposition 4.1]. Furthermore,
the mapping assigning to each such u the A-ary implicit operation (uS)S∈V is a bijection onto the class
of all A-ary implicit operations on V [7, Theorem 4.2]. The implicit operations corresponding to
the elements of A+ are called explicit operations. On the other hand, if W is another pseudovariety
contained in V then, by Proposition 2.2, there is a unique (onto) continuous homomorphism ρV,W :
ΩAV→ΩAW such that ρV,W(a) = a, for every a ∈ A (see also [7, Proposition 4.4]). We call natural
projection of ΩAV onto ΩAW the map ρV,W. We shall write ρW when V is clear from the context.
Whenever the pseudovariety Sl is contained in V, we denote the projection (ρSl = ρV,Sl) by c and call
it the content function.

The most natural example of an implicit operation is the multiplication _ ·_, which is a binary
operation. In the pro-V semigroup Ω{x1,x2}V it corresponds to the element x1 · x2. If V = G, then it is
also natural to consider the unary implicit operation _−1 sending each element to its inverse in the
group. This operation can be generalized for any pseudovariety of semigroups as follows. Let S ∈ V.
Since S is finite, given any s ∈ S, the subsemigroup of S generated by s contains a unique maximal
subgroup Gs with identity 1Gs . Hence, there is a power of s that belongs to Gs, say sk, and satisfies
ssk = 1Gs = sks. This power sk is precisely the limit of the sequence (sn!−1)n≥1, which becomes
constant for n large enough. Thus, the sequence (xn!−1

1 )n≥1 converges in Ω{x1}V. We denote its limit
by xω−1

1 . More generally, we use the notation xω+k
1 for limn≥1 xn!+k

1 , where k ∈ Z.

An implicit signature, usually denoted σ , is a set of implicit operations on S containing the multi-
plication. Of course, every implicit signature σ endows ΩAV with a structure of σ -algebra. We denote
by Ωσ

AV the σ -subalgebra of ΩAV generated by A (more precisely, by ι(A)). The implicit signature
κ = {_ ·_,_ω−1} is the canonical implicit signature. Elements of ΩAV are called pseudowords over V
(or simply pseudowords if V = S), while elements of Ωσ

AV are σ -words over V (or simply σ -words if
V= S). We let ⟨σ⟩ denote the implicit signature obtained from σ through composition of its elements
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(see [7, Proposition 4.7]). For instance, we have _ω ∈ ⟨κ⟩, since uω = uω−1 ·u for every pseudoword u.
Finally, we define σ -terms over an alphabet A inductively as follows:

• the empty word I and each letter a ∈ A are σ -terms;

• if u1, . . . ,un are σ -terms and η ∈ σ is an n-ary implicit operation, then η(u1, . . . ,un) is a σ -term.

Of course, each σ -term may naturally be seen as representing an element of Ωσ
AS and, on the other

hand, for each element of Ωσ
AS there is a (usually non-unique) σ -term representing it. Further, note

that σ -words are ⟨σ⟩-words and conversely, but a ⟨σ⟩-term may not be a σ -term.
By a pseudoidentity (respectively, σ -identity) we mean a formal equality u = v, for u,v ∈ ΩAS

(respectively, for u,v ∈ Ωσ
AS). We say that a profinite semigroup S satisfies the pseudoidentity

(respectively, σ -identity) u = v if the interpretations of u and v coincide on S. Expressions like
“V satisfies u = v”, “u = v holds modulo V”, and “u = v holds in V” mean that every semigroup
S ∈ V satisfies u = v. If that is the case, then we may write u =V v. Note that u =V v if and only if
ρV(u) = ρV(v). If S is a set of pseudoidentities, then we denote by JSK the class of all finite semigroups
that satisfy every pseudoidentity of S. By Reiterman’s Theorem [58], a class of finite semigroups is a
pseudovariety if and only if it is of the form JSK. We say that V is σ -equational if there exists a set of
σ -identities S such that V = JSK.

2.4 Decidability

The membership problem for a pseudovariety V amounts to determining whether a given finite
semigroup belongs to V. If there exists an algorithm to solve this problem, then the pseudovariety V is
said to be decidable. Otherwise, it is called undecidable. As we already referred in the Introduction,
other stronger notions of decidability have been set up over the years. They are related with so called
systems of pseudoequations.

Let X be a finite set of variables and P a finite set of parameters, disjoint from X . A pseudoequation
is a formal expression u = v with u,v ∈ ΩX∪PS, together with an evaluation of the parameters
ev : P→ΩAS. If u,v ∈ Ωσ

X∪PS and ev(P) ⊆ Ωσ
AS, then u = v is said to be a σ -equation. If u,v ∈

(X ∪P)+ and ev(P) ⊆ A+, then it is called a word equation. A finite system of pseudoequations
(respectively, σ -equations, word equations) is a finite set

{ui = vi : i = 1, . . . ,n}, (2.1)

where ui = vi is a pseudoequation (respectively, σ -equation, word equation), for i = 1, . . . ,n. For each
variable x ∈ X , we consider a constraint given by a clopen subset Kx of ΩAS. A solution modulo V of
the system (2.1) satisfying the given constraints and subject to the evaluation of the parameters ev is
a continuous homomorphism δ : ΩX∪PS→ΩAS such that the following conditions are satisfied:

(S.1) δ (u) =V δ (v);

(S.2) δ (p) = ev(p), for every parameter p ∈ P;

(S.3) δ (x) ∈ Kx, for every variable x ∈ X .
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If δ (X ∪P)⊆Ωσ
AS, then we say that δ is a solution modulo V of (2.1) in σ -words.

Remark 2.3. It follows from Hunter’s Lemma that, for each clopen set Kx, there exists a finite
semigroup Sx and a continuous homomorphism ϕx : ΩAS→ Sx such that Kx is the preimage of ϕx(Kx)

under ϕx (see [7, Proposition 3.5], for instance). It is sometimes more convenient to think of the
constraints of the variables in terms of a fixed pair (ϕ,ν), where ϕ : ΩAS→ S is a continuous
homomorphism into a finite semigroup S and ν : X → S is a map. In that way, the requirement (S.3)
becomes a finite union of requirements of the form “ϕ(δ (x)) = ν j(x), for every variable x ∈ X”, for a
certain finite family (ν j : X → S) j of mappings. We may also assume, without loss of generality that
S has a content function (see [19, Proposition 2.1]), that is, that the homomorphism c : ΩAS→ΩASl

factors through ϕ . Moreover, we occasionally wish to allow δ to take its values in (ΩAS)
I . For that

purpose, we naturally extend the function ϕ to a continuous homomorphism ϕ I : (ΩAS)
I → SI by

letting ϕ I(I) = I. It is worth noticing that this assumption does not lead to trivial solutions since
the constraints must be satisfied. We allow ourselves some flexibility in these points, adopting each
approach according to which is the most suitable. In the case where we consider the homomorphism
ϕ I , we abuse notation and also denote it by ϕ .

Given a class C of finite systems of pseudoequations, we may pose the following problem:

determine whether a given system from C (together with an evaluation of the parameters
and constraints on variables) has a solution modulo V.

The pseudovariety V is C-decidable if the above decision problem is decidable.
An important instance of a class of systems of equations arises from finite graphs. Let Γ =V ⊎E

be a directed graph, where V and E are finite sets, respectively, of vertices and edges. We consider
Γ equipped with two maps α : E→V and ω : E→V , such that an edge e ∈ E goes from the vertex
v1 ∈V to the vertex v2 ∈V if and only if α(e) = v1 and ω(e) = v2. We may associate to each edge
e ∈ E the equation α(e)e = ω(e). We denote by S(Γ) the finite system of equations obtained in
this way from Γ. Whenever S is a finite system of that form, we call S a system of graph equations.
We notice that any system of graph equations is of the form {xiyi = zi}N

i=1, where yi ̸= y j for i ̸= j
and yi /∈ {x j,z j}, for all i, j. If C is the class of all systems of graph equations arising from a graph
with n vertices at most, then C-decidability deserves the name of n-hyperdecidability in [4]. The
pseudovariety V is hyperdecidable if it is n-hyperdecidable for all n≥ 1.

When the constraints on the variables e ∈ E are all given by the clopen subset Ke = {I}, the
system S(Γ) is called a system of pointlike equations. Observe that any system of pointlike equations
may be seen as a system of the form {xi,1 = · · ·= xi,ni}N

i=1. We say that V is strongly decidable if it is
decidable for the class of all systems of pointlike equations.

Here are some remarkable results involving these notions.

Proposition 2.4 ([4, Corollary 4]). Every strongly decidable pseudovariety is also decidable.

Theorem 2.5 ([4, Theorem 14]). Let n be a natural number, V a decidable pseudovariety of rank n
containing the Brandt semigroup B2,1 and W a (n+1)-hyperdecidable pseudovariety. Then, V ∗W is
decidable.

1 The Brandt semigroup B2 is the multiplicative semigroup of 2×2 real matrices generated by
(

0 1
0 0
)

and by
(

0 0
1 0
)
.
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Recall that a pseudovariety W is said to be order-computable if it is decidable and there exists a
computable function f : N→ N such that f (n)≥

∣∣ΩnW
∣∣, for all n ∈ N.

Proposition 2.6 ([14, Corollary 5]). If V is strongly decidable and W is order-computable, then V∗W
is strongly decidable.

Theorem 2.7 ([4, Theorem 15]). Let V be a hyperdecidable (respectively, strongly decidable) pseu-
dovariety and let W be an order-computable pseudovariety. Then, V∨W is hyperdecidable (respec-
tively, strongly decidable).

Theorem 2.8 ([55, Theorem 4.1; 8, Theorem 4.2]). If V is decidable and W is C-decidable for C

consisting of systems of the form x1 = · · ·= xn = x2
n, then V⃝m W is decidable.

We call systems of equations of the form exhibited in Theorem 2.8 systems of idempotent pointlike
equations.

Since the semigroups ΩAV are very often uncountable, it is in general hard to say whether a
pseudovariety V is C-decidable, for a given class of systems C. That was the motivation for the
emergence of the next few concepts.

Given a class C of finite systems of σ -equations, we say that a pseudovariety V is σ -reducible with
respect to C (or simply, σ -reducible for C) provided a solution modulo V of a system of C guarantees
the existence of a solution modulo V of that system given by σ -words. The pseudovariety V is said to
be σ -reducible if it is σ -reducible for the class of finite systems of graph equations and it is completely
σ -reducible if it is σ -reducible for the class of all finite systems of σ -equations. The following result
involves the notion of reducibility.

Proposition 2.9 ([6, Proposition 10.2]). If V is σ -reducible with respect to the equation x = y, then V

is σ -equational.

Since we are aiming to achieve decidability results for V, it is reasonable to require that V is
recursively enumerable and that σ is highly computable, meaning that it is a recursively enumerable
set and that all of its elements are computable operations. Henceforth, we make this assumption
without further mention. Also, we should be able to decide whether two given σ -words have the same
value over V, the so-called σ -word problem. Based on [16, Theorem 3.1], we say, for short, that the
pseudovariety V is σ -recursive (with V recursively enumerable and σ highly computable) if the word
problem is decidable in Ωσ

AV, for every alphabet A. We say that V is σ -tame with respect to C, for a
highly computable implicit signature σ , if it is both σ -recursive, and σ -reducible with respect to C.
We say that V is σ -tame (respectively, completely σ -tame) when it is σ -tame with respect to the class
of finite systems of graph equations (respectively, to the class of all finite systems of σ -equations).

Theorem 2.10 ([6, Theorem 10.3]). Let C be a recursively enumerable class of finite systems of
σ -equations, without parameters. If V is a pseudovariety which is σ -tame with respect to C, then V is
C-decidable.

Despite being a stronger requirement, it is sometimes easier to prove that a given pseudovariety is
tame with respect to C, rather than its C-decidability.

We end this section with a list of decidability results concerning some pseudovarieties of groups,
to which we refer later.
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Theorem 2.11. We have the following:

• the pseudovariety Ab is completely κ-tame ([13]);

• the pseudovariety G is κ-tame ([27] and [16]), but it is not completely κ-reducible ([34]);

• for every extension closed pseudovariety of groups H, there exists an implicit signature σ(H)⊇ κ

such that H is σ(H)-reducible ([5]);

• no proper subpseudovariety of G containing a pseudovariety Gp (for a certain prime p) is
κ-reducible for the equation x = y (Proposition 2.9 and [29]);

• no proper non locally finite subpseudovariety of Ab is κ-reducible ([35]).

2.5 Some structural aspects of free pro-DRH semigroups

This section mostly follows [21].
Before describing how to represent pseudowords over DRH conveniently, we need to introduce a

few concepts and results. We start by a well known result on factorization of pseudowords.

Proposition 2.12 ([25, Proposition 2.1]). Let x,y,z, t ∈ ΩAS and a,b ∈ A be such that xay = zbt.
Suppose that a /∈ c(x) and b /∈ c(z). If either c(x) = c(z) or c(xa) = c(zb), then x = z, a = b, and y = t.

This motivates the definition of left basic factorization of a pseudoword u ∈ΩAS: it is the unique
triple lbf(u) = (uℓ,a,ur) of (ΩAS)

I×A× (ΩAS)
I such that u = uℓaur, a /∈ c(uℓ), and c(uℓa) = c(u).

This kind of factorization is also well defined over each pseudovariety DRH.

Proposition 2.13 ([21, Proposition 2.3.1]). Every element u ∈ΩADRH admits a unique factorization
of the form u = uℓaur such that a /∈ c(uℓ) and c(uℓa) = c(u).

Notice that, for a pseudoword u∈ΩAS, the factorization of ρDRH(u) mentioned in Proposition 2.13
may be obtained from the left basic factorization of u, by projecting onto ΩADRH. For that reason,
we may also refer to the triple (uℓ,a,ur) in Proposition 2.13 as the left basic factorization of u, with
no possible ambiguity. Applying inductively Propositions 2.12 and 2.13 to the leftmost factor of the
left basic factorization of a pseudoword, we obtain the following result.

Corollary 2.14. Let u be a pseudoword.

(a) There exists a unique factorization u = a1u1a2u2 · · ·anun such that ai /∈ c(a1u1 · · ·ai−1ui−1), for
i = 2, . . . ,n, and c(u) = {a1, . . . ,an}.

(b) Using the notation in (a), suppose that the pseudovariety DRH satisfies the pseudoidentity

a1u1a2u2 · · ·anun = b1v1b2v2 · · ·bmvm,

where bi /∈ c(b1v1 · · ·bi−1vi−1), for i = 2, . . . ,m, and c(u) = {b1, . . . ,bm}. Then, m = n, ai = bi

for i = 1, . . . ,m and DRH satisfies ui = vi, for i = 1, . . . ,m.
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In view of Corollary 2.14, we refer to both the factorizations in (a) and in (b) as the first-
occurrences factorization whenever u ∈ΩAS or u ∈ΩADRH.

For a pseudoword u, we may also iterate the left basic factorization of u to the right as follows.
Set u′0 = u. For each k≥ 1, whenever u′k−1 ̸= I, we let lbf(u′k−1) = (uk,ak,u′k). Then, for every such k,
the equality u = u1a1 · u2a2 · · ·ukak · u′k holds. Moreover, the content of each factor ukak decreases
as k increases: c(u1a1) ⊇ c(u2a2) ⊇ ·· · . Since the alphabet A is finite, this sequence of contents
either is finite or stabilizes. The cumulative content of u, denoted c⃗(u), is the empty set in the former
case, and is the ultimate value of the sequence otherwise. In particular, Proposition 2.13 yields that
the cumulative content of a pseudoword is completely determined by its projection onto ΩAR, so
that we may also refer to the cumulative content of an element of ΩADRH. We further define the
irregular and regular parts of u, respectively denoted irr(u) and reg(u): if c⃗(u) = /0, then irr(u) = u
and reg(u) = I; if c⃗(u) = c(u′k) and k is minimal for this equality, then irr(u) = lbf1(u) · · · lbfk(u) and
reg(u) = u′k. Similarly, for a given u ∈ΩADRH and v ∈ ρ

−1
DRH(u), we may refer to ρDRH(irr(v)) and

to ρDRH(reg(v)) as the irregular and regular parts of u, respectively. Note that this does not depend
on the choice of v. This terminology is justified by the following result, which characterizes regular
elements of ΩADRH in terms of the relationship between its content and its cumulative content.

Proposition 2.15 ([21, Corollary 6.1.5]). Let u∈ΩADRH. Then, u is regular if and only if c(u) = c⃗(u)
(and, hence, reg(u) = u) and it is idempotent if and only if it is regular and its projection onto ΩAH

is 1.

If c⃗(u) = /0, then we set ⌈u⌉ = k if u′k = I. Otherwise, we set ⌈u⌉ = ∞. We also write lbf∞(u)
for the sequence (u1a1, . . . ,u⌈u⌉a⌈u⌉, I, I, . . .) if c⃗(u) = /0, and for the sequence (ukak)k≥1 otherwise.
We denote the k-th element of lbf∞(u) by lbfk(u) and we say that a certain pseudovariety V satisfies
lbf∞(u) = lbf∞(v) for pseudowords u and v if it satisfies lbfk(u) = lbfk(v) for all k ≥ 1.

Remark 2.16. Let u and u0 be pseudowords such that DRH satisfies u = uu0. Then, by uniqueness of
left basic factorization in ΩADRH, the equality lbf∞(u) = lbf∞(uu0) holds modulo DRH. Therefore,
using the above notation, u0 is a suffix of each factor u′k and so, c(u0)⊆ c⃗(u). Conversely, by definition
of left basic factorization and of cumulative content it is easy to check that if c(u0)⊆ c⃗(u), then the
equality lbf∞(u) = lbf∞(uu0) holds.

Suppose that the iteration of the left basic factorization of u ∈ΩAS to the right runs forever. Since
ΩAS is a compact monoid, the infinite sequence (lbf1(u) · · · lbfk(u))k≥1 has, at least, one accumulation
point. Plus, any two accumulation points are R-equivalent [21, Lemma 2.1.1]. If, in addition, ρDRH(u)
is regular, then the projection onto DRH of the R-class containing the accumulation points of the
mentioned sequence is regular.

Proposition 2.17 ([21, Proposition 2.1.4]). Let V be a pseudovariety such that R⊆ V ⊆ DS and let
(s1 · · ·sn)n≥1 be an infinite product in ΩAV. If every letter occurring in any sn occurs in an infinite
number of them, then the unique R-class containing the accumulation points of (s1 · · ·sn)n≥1 is regular.

Since the regular R-classes of ΩADRH are groups, given an infinite product (s1 · · ·sn)n≥1 in
ΩADRH satisfying the hypothesis of Proposition 2.17, we may define the idempotent designated by it
as the identity of the group to which its accumulation points belong. It also happens that each regular
R-class of ΩADRH is homeomorphic to a free pro-H semigroup. This claim consists of a particular
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case of the following proposition, which is the key ingredient for proving in [21] the results on the
representation of elements of ΩADRH, some of which we state later.

Proposition 2.18 ([21, Proposition 5.1.2]). Let V be a pseudovariety such that H ⊆ V ⊆ DO∩H.
Then, the regular H-classes of ΩAV are free pro-H groups on their content. More precisely, if e is
an idempotent of ΩAV and if He is its H-class, then letting ψe(a) = eae for each a ∈ c(e) defines a
unique homeomorphism ψe : Ωc(e)H→ He whose inverse is the restriction of ρH to He.

Remark 2.19. We are denoting by DO the pseudovariety of semigroups in which regular D-classes
are orthodox subsemigroups. It is clear that H⊆ DRH⊆ H. Indeed, if H is a group of H, then H is
its unique (regular) R-class and if S ∈ DRH, then any subgroup H ≤ S is a subgroup of the regular
R-class of its identity, which in turn is a group of H. On the other hand, the inclusion DRH ⊆ DO

also holds, since any regular D-class of a semigroup S ∈ DRH is both a subsemigroup and an L-class.
Hence, Proposition 2.18 applies to the pseudovariety DRH.

Let v and w be pseudowords. We say that the product vw is reduced if w is nonempty and the first
letter of w does not belong to c⃗(v). The following is an important consequence of Proposition 2.18,
which we use later on.

Corollary 2.20. Let u be a pseudoword and v,w ∈ (ΩAS)
I be such that c(v)∪ c(w) ⊆ c⃗(u) and H

satisfies v = w. Then, the pseudovariety DRH satisfies uv = uw.

Proof. Suppose that c(u) ̸= c⃗(u). Then, by definition of cumulative content, considering the iterations
of the left basic factorizations of u to the right, we may write u as a reduced product u1 · u2 such
that c(u2) = c⃗(u2) = c⃗(u). If we prove that DRH satisfies u2v = u2w, then it is immediate that it also
satisfies the desired pseudoidentity uv = uv. So, we assume without loss of generality that c(u) = c⃗(u).
Let e ∈ΩADRH be the idempotent designated by the infinite product (lbf1(u) · · · lbfk(u))k≥1 and ψe

the homeomorphism described in Proposition 2.18. Since v and w represent the same element over H,
it follows that ψe(ρH(v)) = ψe(ρH(w)), which in turn implies

ρDRH(u)ψe(ρH(v)) = ρDRH(u)ψe(ρH(w)). (2.2)

Since ρDRH(u) ∈ He, the H-class of the images of ψe, the equality (2.2) holds inside He. Moreover,
by Proposition 2.18, the inverse of the homeomorphism ψe is precisely the restriction of ρH to He

so that we may deduce from (2.2) that ρDRH(u)ρDRH(v) = ρDRH(u)ρDRH(w) which, in other words,
means that DRH satisfies uv = uw, as required.

We now have all the necessary ingredients to describe the elements of ΩADRH by means of
the so-called “decorated reduced A-labeled ordinals”, which we do along the next section. The
construction is based on [21].

2.6 Decorated reduced A-labeled ordinals

A decorated reduced A-labeled ordinal is a triple (α, ℓ,g) where

• α is an ordinal.2

2 For some facts about ordinal numbers see Appendix A.
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• ℓ : α → A is a function. For a limit ordinal β ≤ α , we let the cumulative content of β with
respect to ℓ be given by

c⃗(β , ℓ) = {a ∈ A : ∃(βn)n≥1 | ∪n≥1βn = β , βn < β and ℓ(βn) = a}.

In Remark 2.22 below, we observe that the relationship between the cumulative content of an
ordinal and the cumulative content of a pseudoword makes this terminology adequate. We
further require for ℓ the following property:

for every limit ordinal β < α , the letter ℓ(β ) does not belong to the set c⃗(β , ℓ).

• g : {β ≤ α : β is a limit ordinal}→ΩAH is a function such that g(β ) ∈Ωc⃗(β ,ℓ)H.

We denote the set of all decorated reduced A-labeled ordinals by rLOH(A).
For a pseudoword v and a letter a, let us say that the product va is end-marked if a /∈ c⃗(v).
To each pseudoword u, we assign an element of rLOH(A) as follows.

Proposition 2.21 ([10, Proposition 4.8]). The set of all end-marked pseudowords over a finite alphabet
constitutes a well-founded forest under the partial order ≤R.

Then, αu is the unique ordinal such that there exists an isomorphism (also unique)

θu : αu→{end-marked prefixes of u} (2.3)

such that θu(β ) >R θu(γ) whenever β < γ . We let ℓu : αu → A be the function assigning to each
ordinal β ≤ α the letter a if θu(β ) = va.

Remark 2.22. Let u be a pseudoword. Then, the equality c⃗(αu, ℓu) = c⃗(u) holds. In fact, given
a ∈ c⃗(u), by definition of cumulative content, the letter a appears in all factors of u of the form lbfk(u).
By Corollary 2.14, the first occurrence of each letter in a pseudoword is well defined, so that, for
each k ≥ 1, there exists a factorization lbfk(u) = ukawk, with a /∈ c(uk). Therefore, each product
(lbf1(u) · · · lbfm−1(u)um−1) ·a is an end-marked prefix of u. Hence, to conclude that a ∈ c⃗(αu, ℓu) it
is enough to prove that αu =

⋃
m≥1 θ−1

u (lbf1(u) · · · lbfm(u)). Write vm = lbf1(u) · · · lbfm(u) and let vb
be an end-marked prefix of u. By Proposition 2.21, we know that, for each m, either vb <R vm or
vb≥R vm. Should the former occur for all m, then c⃗(vb) would be equal to c⃗(u) ̸= /0, a contradiction
with the assumption of vb being an end-marked pseudoword. Thus, each end-marked prefix of u is a
prefix of some vm, resulting that αu =

⋃
m≥1 θ−1

u (vm). Conversely, for every a ∈ c⃗(αu, ℓu) there exists
an infinite increasing sequence (βn)n≥1 such that βn < αu, αu =

⋃
n≥1 βn and ℓu(βn) = a. This implies

that for every factorization u = vbw, with vb an end-marked prefix, the letter a belongs to c(w). In
particular, since the sequence (c(lbfk(u)))k≥1 is ultimately constant, it follows that a ∈ c(lbfk(u)),
for every k. Consequently, we have a ∈ c⃗(u). More generally, for a limit ordinal β ≤ α such that
Θu(β ) = va, the equality c⃗(v) = c⃗(β , ℓu) holds.

It remains to define gu. We first observe that the isomorphism (2.3) yields that we may iterate
infinitely many times the left basic factorization of v to the right, whenever β is a limit ordinal
and θu(β ) = va. Indeed, if v = v1a1 · · ·vkak were the result of the k-th iteration of the left basic
factorization of v to the right, then we would have θu(θ

−1
u (v)+1) = va = θu(β ) and β would not be a
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limit ordinal. The function gu sends the limit ordinal β ≤ α to the projection onto ΩAH of the regular
part of v, where Θu(β ) = va. We notice that, by Remark 2.22, the sets c⃗(v) and c⃗(β , ℓu) coincide.
Thus, the projection of the regular part of v belongs to Ωc⃗(β ,ℓu)H. We thus defined a function

F : ΩAS→ rLOH(A)

u 7→ (αu, ℓu,gu)

Although formulated differently, this is essentially the construction performed in [21]. In fact, the
results stated in [21, Theorem 5.2.3] and [21, Proposition 5.3.2] together imply that two decorated
reduced A-labeled ordinals F(u) and F(v) coincide if and only if the projections of u and of v onto
ΩADRH represent the same element. Hence, we have a well defined bijection

F̂ : ΩADRH→ rLOH(A)

u 7→ (αu′ , ℓu′ ,gu′) for a pseudoword u′ ∈ ρ
−1
DRH(u)

Abusively, we write F̂(u) = (αu, ℓu,gu).

Example 2.23. Let u = xyz(xy)ωy and v = ytyω . Then, αu = ω = αv and the functions ℓu, gu, ℓv and
gv are given by:

ℓu(0) = x ℓv(0) = y

ℓu(1) = y ℓv(1) = t

ℓu(2) = z ℓv(k) = y, for all k ≥ 2

ℓu(2k+1) = x, for all k ≥ 1

ℓu(2k) = y, for all k ≥ 2

gu(ω) = (xy)ωy = y gv(ω) = yω = 1

Consider also the product uv = xyz(xy)ωyytyω . Then, we have αuv = ω ·2 and the functions ℓuv and
guv are given by

ℓuv(0) = x guv(ω) = (xy)ωy2 = y2

ℓuv(1) = y guv(ω ·2) = yω = 1

ℓuv(2) = z

ℓuv(2k+1) = x, for all k ≥ 1

ℓuv(2k) = y, for all k ≥ 2

ℓuv(ω) = t

ℓuv(ω + k) = y, for all k ≥ 1

The product of two decorated reduced A-labeled ordinals (α, ℓ,g) and (α ′, ℓ′,g′) is defined as
being the triple (α +α ′2, p,h) where:
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• the ordinal α ′ can be written as α ′ = α ′1 +α ′2, with α ′1 = 0 if α is not a limit ordinal; α ′1 = α ′

if α is a limit ordinal and ℓ′(α ′) ⊆ c⃗(α, ℓ); and α ′1 is the least ordinal such that α ′1 < α ′ and
ℓ′(α ′1) /∈ c⃗(α, ℓ) otherwise;

• the function p is given by

p(γ) = ℓ(γ), if γ < α;

p(α + γ) = ℓ′(α ′1 + γ), if γ < α
′
2;

• for each limit ordinal γ < α , we set h(γ) = g′(γ) while, for a limit ordinal γ ≤ α ′2, we take
h(α + γ) = g′(α ′1 + γ). If α is also a limit ordinal, then we define

h(α) = g(α)ρH(F̂−1(α ′1, ℓ
′|α ′1 ,g

′|{γ≤α ′1 : γ is a limit ordinal})).

The following theorem is a consequence of [21, Theorem 6.1.1].

Theorem 2.24. Using the notation above, the map F̂ : ΩADRH→ rLO(A) is an isomorphism and so,
the map F : ΩAS→ rLO(A) is a homomorphism.

Notation 2.25. Let u ∈ΩAS and take ordinals β ≤ γ ≤ αu. Let θu(β ) = va and θu(γ) = wb. If β < γ ,
then va is a prefix of w. From Theorem 2.24 and taking into account the definition of the product in
rLOH(A), it follows the existence of a unique z ∈ ΩAS such that w = vaz. We write u[β ,γ[ = az. If
β = γ , then we let u[β ,γ[ = I. It is worth noticing that this notation is well defined when we consider
the projections onto ΩADRH, meaning that if u =DRH v, then u[β ,γ[ =DRH v[β ,γ[.

If u is a κ-word, then the factors of u of the form u[β ,γ[ are κ-words as well. This fact arises as a
consequence of the following lemma when we iterate it inductively.

Lemma 2.26 ([25, Lemma 2.2]). Let u ∈Ωκ
AS and let (uℓ,a,ur) be its left basic factorization. Then,

uℓ and ur are κ-words.

The property of the implicit signature κ stated in this lemma becomes crucial if we intend to
generalize part of the reducibility results of Chapter 5 for a larger implicit signature σ . It is then worth
to explicitly formulate it:

for every σ -word z = z1z2, if the product z1 · z2 is reduced, then the pseudowords z1

and z2 are also σ -words.
(sig)

Of course, this holds for σ = κ .

2.7 More on the structure of free pro-DRH semigroups

We proceed with the statement of some structural results to handle pseudowords modulo DRH. They
seem to be already used in the literature, however, since we could not find the exact statement that fits
our purpose, we include the proofs for the sake of completeness.

We start with a characterization of the R-classes of ΩADRH by means of iteration of left basic
factorizations to the right.
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Lemma 2.27. Let u,v be pseudowords. Then, ρDRH(u) and ρDRH(v) lie in the same R-class if and
only if the pseudovariety DRH satisfies lbf∞(u) = lbf∞(v).

Proof. Suppose that u R v modulo DRH and let u0 and v0 be possibly empty pseudowords such that
DRH satisfies uu0 = v and u = vv0. This implies that DRH also satisfies u = uu0v0, which in turn,
by Remark 2.16, yields that c(u0)⊆ c⃗(u). Hence, lbf∞(u) = lbf∞(uu0) =DRH lbf∞(v), where the last
equality follows from Proposition 2.13.

Conversely, suppose that lbf∞(u) =DRH lbf∞(v). Then, we may choose accumulation points of
(lbf1(u) · · · lbfk(u))k≥1 and of (lbf1(v) · · · lbfk(v))k≥1, say u′ and v′, respectively, having the same
value in DRH. Since the accumulation points of these sequences are R-above u and v, respectively,
there exist possibly empty pseudowords u0 and v0 such that u = u′u0 and v = v′v0. Clearly, we
have lbf∞(v) = lbf∞(v′) and so, again by Remark 2.16, it follows that c(v0)⊆ c⃗(v′). Therefore, the
following equalities hold modulo DRH

u = u′u0 = v′u0
Corollary 2.20

= v′(v0vω−1
0 )u0 = v(vω−1

0 u0).

Hence, u is R-below v modulo DRH. By symmetry, we also get that DRH satisfies v≤R u.

Corollary 2.28. Let u,v ∈ΩAS. Then, the pseudovariety DRH satisfies the relation u R v if and only
if αu = αv, ℓu = ℓv and gu|{β<αu : β is a limit ordinal} = gv|{β<αv : β is a limit ordinal}.

Proof. It is enough to observe that the end-marked prefixes of a pseudoword u suffice to completely
characterize F̂(u), except the element gu(αu) when αu is a limit ordinal. Indeed, since for every
end-marked prefix of u, say wa, there exists a big enough index k such that wa is a prefix of
lbf1(u) · · · lbfk(u), the result follows from Lemma 2.27.

Notation 2.29. In what follows, given a pseudoword u, we denote by F−(u) the triple

(αu, ℓu,gu|{β<αu : β is a limit ordinal}).

From the previous corollary, it follows that F−(u) = F−(v) if and only if u R v modulo DRH. Also, if
αu is a successor ordinal, then F(u) = F−(u).

Corollary 2.30. Let u and v be pseudowords that are R-equivalent modulo DRH. Suppose that they
admit factorizations u = u1au2 and v = v1bv2 such that u1a and v1b are end-marked. If αu1 = αv1 ,
then a = b and DRH satisfies u1 = v1 and u2 R v2. If, in addition, u and v are the same element over
DRH, then DRH also satisfies u2 = v2.

Proof. Since u1a and v1b are end-marked pseudowords, the ordinals αu1a and αv1b, which by hypoth-
esis are the same, are necessarily successors. Then, Theorem 2.24 and Corollary 2.28 together imply
that F(u1a)F−(u2) = F−(u) = F−(v) = F(v1b)F−(v2). By definition of the product of decorated
reduced A-labeled ordinals, it follows that F(u1) = F(v1), a = b and F−(u2) = F−(v2). That means
that in DRH we have u1 = v1 and u2 R v2. Moreover, if u = v modulo DRH, then F(u) = F(v). A
similar argument yields that u2 = v2 modulo DRH.

The following result is just a gathering of the observations made in Notation 2.25 and of Corol-
lary 2.30 that we state for later reference.
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Corollary 2.31. Let u,v ∈ ΩAS be such that DRH satisfies u R v. Let β < γ < αu = αv. Then,
the pseudovariety DRH also satisfies u[β ,γ[ = v[β ,γ[ and u[γ,αu[ R v[γ,αv[. Moreover, if u = v
modulo DRH, then u[γ,αu[ = v[γ,αv[ modulo DRH.

The next observation can be thought as the key ingredient when proving our main result. It
becomes trivial when DRH= R.

Lemma 2.32. Let u,v ∈ΩAS and u0,v0 ∈ (ΩAS)
I be such that c(u0)⊆ c⃗(u) and c(v0)⊆ c⃗(v). Then,

the pseudovariety DRH satisfies uu0 = vv0 if and only if it satisfies u R v and if, in addition, the
pseudovariety H satisfies uu0 = vv0. In particular, by taking u0 = I = v0, we get that u =DRH v if and
only if u R v modulo DRH and u =H v.

Proof. Suppose that uu0 = vv0 modulo DRH. Since c(u0) ⊆ c⃗(u), it follows from Corollary 2.20
that DRH satisfies u = u(u0uω−1

0 ) = vv0uω−1
0 and so, the pseudoword v is R-above u in ΩADRH. By

symmetry, we also get that DRH satisfies v≤R u.
Conversely, suppose that u and v are in the same R-class modulo DRH and that H satisfies

uu0 = vv0. From the fact that u R v modulo DRH it follows the existence of a possibly empty
pseudoword v′0 such that DRH satisfies u = vv′0 R v. Thus, Remark 2.16 and Lemma 2.27 together
yield the inclusion c(v′0)⊆ c⃗(v). On the other hand, since the pseudoidentities {u = vv′0,uu0 = vv0}
are valid in H, it follows that H satisfies v′0u0 = v0. Therefore, Corollary 2.20 may be used to conclude
that DRH satisfies uu0 = v(v′0u0) = vv0 as desired.



Chapter 3

The κ-word problem over DRH

The aim of this chapter is to solve the word problem in the semigroup Ωκ
ADRH, based on the knowledge

of a solution of the word problem in Ωκ
AH. We borrow the main idea from [25]. Supplementing this

chapter, we present in Appendix B the computation in Python of the solution of the word problem
in Ωκ

ADRG.
Throughout this chapter, generic (finite) alphabets are denoted A, while Σ = {0,1} is a fixed

two-element alphabet. We also use Z for the set of integer numbers {. . . ,−2,−1,0,1,2, . . .} and N
for the set of natural numbers {0,1,2, . . .}.

3.1 DRH-automata

We start by introducing the notion of a DRH-automaton.

Definition 3.1. An A-labeled DRH-automaton is a tuple A= ⟨V,→,q,F,λH,λ ⟩, where ⟨V,→,q,F⟩
is a nonempty deterministic trim automaton over Σ and λH : V → (ΩAH)

I and λ : V → A⊎{ε} are
functions. We further require that A satisfies the following conditions (A.1)–(A.6).

(A.1) the set of final states is F = λ−1(ε) and λH(F) = {I};

(A.2) there is no outgoing transition from F;

(A.3) for every v ∈V \F, both v.0 and v.1 are defined;

(A.4) for every v ∈V \F, the following equality holds:

λ (v.Σ∗) = λ (v.0Σ
∗)⊎{λ (v)}.

We observe that if conditions (A.1)–(A.4) hold for A, then the reduct AR = ⟨V,→,q,F,λ ⟩ is an
A-labeled R-automaton (see [25, Definition 3.11]). Since the cumulative content of a pseudoword
over DRH depends only on its projection onto ΩAR, and hence, also its regularity, we may use the
known results for the word problem in R (namely, [25, Theorem 3.21]) as intuition for defining the
length ∥A∥, the regularity index r.ind(A) and the cumulative content c⃗(A) of a DRH-automaton A

21
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from the knowledge of its reduct AR. We set:

∥A∥= sup{k ≥ 0: q.1k is defined};

r.ind(A) =

∞, if ∥A∥< ∞;

min{m≥ 0: ∀k ≥ m λ (q.1kΣ∗) = λ (q.1mΣ∗)}, otherwise;

c⃗(A) =

 /0, if ∥A∥< ∞;

λ (q.1r.ind(A)Σ∗), otherwise.

We are now able to state the further required properties for A:

(A.5) if v ∈V \F, then λH(v) = I if and only if ∥Av.0∥< ∞;

(A.6) if v ∈V \F and ∥Av.0∥= ∞, then λH(v) ∈Ωc⃗(Av.0)H.

We say that A is a DRH-tree if it is a DRH-automaton such that for every v ∈V there exists a unique
α ∈ Σ∗ such that q.α = v.

Example 3.2. Here is an example of a DRH-automaton, call it A. The first label in each state
corresponds to its image under λH and the second to its image under λ .

I,c

bω−1,a

I,b

I,b a,b

I,a

I,ε

aω+1,b

I,a I,a

I,ε

0 1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Fig. 3.1 A DRH-automaton.

Let q be the initial state. We may check that ∥A∥= ∞ = ∥Aq.α∥, for all α ∈ Σ∗ \{0,10} such that
q.α is defined, and ∥Aq.0∥ = 1 = ∥Aq.10∥. This means that the only non trivial sub-automata with
infinity regularity index, and hence, with empty cumulative content, are Aq.0 an d Aq.10. Also, the
regularity index is 0 for all the sub-automata Aq.α , where α ∈ Σ+ \{0,10} is such that q.α is defined.
The regularity index of the automaton itself is r.ind(A) = 1. On the other hand, we have for instance,
that c⃗(A) = {a,b}, while c⃗(Aq.110) = {a} and c⃗(Aq.00) = {b}.

Definition 3.3. We say that two DRH-automata Ai = ⟨Vi,→i,qi,Fi,λi,H,λi⟩, i = 1,2, are isomorphic
if there exists a bijection f : V1→V2 such that

(J.1) f (q1) = q2;
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(J.2) for every v ∈V1 and α ∈ Σ, f (v) ·α = f (v ·α);

(J.3) for every v ∈V1, the equalities λ1,H(v) = λ2,H( f (v)) and λ1(v) = λ2( f (v)) hold.

Isomorphic DRH-automata are essentially the same, up to the name of the states. Therefore, we
consider DRH-automata only up to isomorphism.

We denote the trivial DRH-automaton by 1 and the set of all A-labeled DRH-automata by AA.

Definition 3.4. Let Ai = ⟨Vi,→i,qi,Fi,λi,H,λi⟩, i = 1,2, be two DRH-automata. We say that A1 and
A2 are equivalent if

∀α ∈ Σ
∗, λ1(q1.α) = λ2(q2.α) and λ1,H(q1.α) = λ2,H(q2.α). (3.1)

We agree that (3.1) means that either both equalities hold or both q1.α and q2.α are undefined. We
write A1 ∼A2, when A1 and A2 are equivalent.

Example 3.5. An example of a DRH-automaton equivalent to the one in Example 3.2 is represented in
Figure 3.2.
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Fig. 3.2 A DRH-automaton equivalent to the automaton in Figure 3.1.

We observe that equivalent DRH-trees are necessarily isomorphic. Indeed, for i = 1,2, let
Ti = ⟨Vi,→i,qi,Fi,λi,H,λi⟩ be two equivalent DRH-trees. Then, the mapping f : V1→V2 that sends
each state v ∈ V1 to the state q2.α , where α ∈ Σ∗ is the unique element such that q1.α = v, is a
bijection satisfying (J.1)–(J.3).

The following lemma is useful when defining a bijective correspondence between the equivalence
classes of AA and the R-classes of ΩADRH.

Lemma 3.6 (cf. [25, Lemma 3.16]). Every DRH-automaton has a unique equivalent DRH-tree.

Proof. Consider a DRH-automaton A= ⟨V,→,q,F,λH,λ ⟩ and let T = ⟨V ′,→′,q′,F ′,λ ′H,λ ′⟩ be the
DRH-tree defined as follows. We set V ′ = {α ∈ Σ∗ : q.α is defined} and put q′ = ε . The labels of
each state α ∈V ′ are given by λ ′H(α) = λH(q.α) and by λ ′(α) = λ (q.α). We also take F ′ = λ ′−1(ε).
Finally, the transitions in T are given by α.0 = α0 and by α.1 = α1, whenever λ ′(α) ̸= ε . We claim
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that T is a DRH-tree equivalent to A. We first prove that T is a DRH-tree. Properties (A.1)–(A.3)
follow from construction. For Property (A.4) we use the same property for A: taking α ∈V ′ \F ′ we
may compute

λ
′(α.Σ∗) = λ (q.αΣ

∗) = λ (q.α0Σ
∗)⊎{λ (q.α)}= λ

′(α0Σ
∗)⊎{λ ′(α)}= λ

′(α.0Σ
∗)⊎{λ ′(α)}.

At last, let α ∈V ′ \F ′ . Then, since λ ′H(α) = λH(q.α), we have λ ′H(α) = I if and only if ∥Aq.α0∥< ∞,
which in turn means that ∥Tα.0∥< ∞ by definition of→′, thereby proving (A.5). In the same way,
Property (A.6) for T is inherited from Property (A.6) for A. This proves that T is a DRH-automaton.
Further, it is a tree by construction. The definition of λ ′H, λ ′ and→′ guarantees that it is equivalent
to A′. On the other hand, as we already observed above, equivalent DRH-trees are necessarily
isomorphic. Thus, up to isomorphism, a DRH-tree equivalent to A is unique.

Example 3.7. We represent in Figure 3.3 the unique DRH-tree equivalent to the DRH-automaton in
Figure 3.1.
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Fig. 3.3 The DRH-tree equivalent to the DRH-automaton in Figure 3.1.

Given a DRH-automaton A, we denote by A⃗ = ⟨⃗V ,→,⃗q, F⃗ ,⃗λH ,⃗λ ⟩ the unique DRH-tree which
is equivalent to A. Denoting both transition functions of A and of A⃗ by→ is an abuse of notation
justified by the construction made in the proof of Lemma 3.6. Given 0≤ i≤ ∥A∥−1, we denote by
A[i] the DRH-subtree rooted at q⃗.1i0 as illustrated in Figure 3.4.

Notation 3.8. Let u ∈ ΩADRH and v ∈ ΩBH be such that B ⊆ c⃗(u). By Corollary 2.20, the set
uρ
−1
DRH,H(v) is a singleton. It is convenient to denote by uv the unique element of uρ

−1
DRH,H(v). In this

case, the notation ρH(uv) refers to the element ρH(uv) = ρH(u) v of ΩAH.

Definition 3.9. Let A= ⟨V,→,q,F,λH,λ ⟩ be an A-labeled DRH-automaton. The value π(A) of A
in (ΩADRH)

I is inductively defined as follows:

• if A= 1, then π(A) = I;
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q0
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A[2] · · ·
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Fig. 3.4 Representation of the DRH-trees of the form A[i].

• otherwise, we consider two different cases according to whether or not ∥A∥< ∞.

– If ∥A∥< ∞, then we set

π(A) =
∥A∥−1

∏
i=0

π(A[i])λH(q.1i)λ (q.1i).

– If ∥A∥=∞, then we first define the idempotent associated to A, id(A)∈ΩADRH. Noticing
that, for k ≥ r.ind(A), all the elements π(A[k])λH(q.1k)λ (q.1k) have the same content,
we let id(A) be the idempotent designated by the infinite product

(π(A[r.ind(A)])λH(q.1r.ind(A))λ (q.1r.ind(A)) · · ·π(A[k])λH(q.1k)λ (q.1k))k≥r.ind(A). (3.2)

Then, we take

π(A) =

(
r.ind(A)−1

∏
i=0

π(A[i])λH(q.1i)λ (q.1i)

)
· id(A).

We also define the value of the irregular part of A:

πirr(A) =
min{∥A∥,r.ind(A)}−1

∏
i=0

π(A[i])λH(q.1i)λ (q.1i).

If ∥A∥< ∞, then we set id(A) = I. Using this notation, we have the equality

π(A) = πirr(A) · id(A). (3.3)

The next result is a simple observation that we state for later reference.
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Lemma 3.10. Given a DRH-automaton A= ⟨V,→,q,F,λH,λ ⟩, the following equalities hold:

lbf i+1(π(A)) = π(A[i])λH(q.1i)λ (q.1i), for 0≤ i≤ ∥A∥−1;

lbf i+1(π(A)) = I, for i≥ ∥A∥;
irr(π(A)) = πirr(A);

c⃗(A) = c⃗(π(A)).

In particular, for a certain u ∈ ΩADRH, the elements π(A) and u are R-equivalent if and only if
πirr(A) = irr(u) and id(A) R reg(u).

Proof. It follows from Properties (A.4), (A.5) and (A.6) that λ (q.1i) does not belong to the set
c(π(A[i])λH(q.1i)), and c(π(A[i])λH(q.1i)λ (q.1i)) contains c(π(A[i+1])λH(q.1i+1)λ (q.1i+1)), for ev-
ery i such that the expressions are defined. Therefore, the uniqueness of left basic factorizations in
ΩADRH implies that

lbf i+1(π(A)) = π(A[i])λH(q.1i)λ (q.1i), for 0≤ i≤ ∥A∥−1;

lbf i+1(π(A)) = I, for i≥ ∥A∥.

In particular, we obtain that πirr(A) = irr(π(A)). Furthermore, if ∥A∥< ∞, then both c⃗(π(A)) and
c⃗(A) are the empty set, while if ∥A∥= ∞, then the following equalities hold

c⃗(π(A)) = c(π(A[r.ind(A)])λH(q.1r.ind(A))λ (q.1r.ind(A)))

= λ (q.1r.ind(A)0Σ
∗)∪{λ (q.1r.ind(A))}

= λ (q.1r.ind(A)
Σ
∗) = c⃗(A).

Finally, for any u ∈ ΩADRH, Lemma 2.27 yields that π(A) and u are R-equivalent if and only if
lbf∞(u) = lbf∞(π(A)), which in turn holds if and only if irr(u) = irr(π(A)) and reg(u) R reg(π(A)).
We already justified that irr(π(A)) = πirr(A) and it is clear that reg(π(A)) = id(A).

Example 3.11. Consider again the DRH-automaton sketched in Example 3.2. In order to com-
pute its value π(A), we start by computing the value of Aq.1. As we already observed, we have
∥Aq.1∥= ∞. Hence, in order to calculate π(Aq.1), we first need to know the values of the sub-
automaton (Aq.1)[i] =Aq.1i+10, for each i ≥ 0. For i = 0, we have that ∥A∥q.10 = 1, and so, by
definition,

π(Aq.10) = π(Aq.100)λH(q.10)λ (q.10) = a.

Analyzing Figure 3.1, we easily conclude that, for all i≥ 1, the value of Aq.1i+10 is always the same.
Since

∥∥Aq.1i+10
∥∥= ∞, we need to compute all the elements π(Aq.1i+101k0), for k ≥ 0. Again, they are

all equal, namely, I. Since the regularity index of Aq.1i+10 is 0, we have π(Aq.1i+10) = id(Aq.1i+10),
which in turn is the idempotent designated by the infinite product

(π(Aq.1i+100)λH(q.1i+10)λ (q.1i+10) · · ·π(A1i+101k0)λH(q.1i+101k)λ (q.1i+101k))k≥0 = (ak)k≥1.



3.1 DRH-automata 27

Clearly, the idempotent designated by this sequence is aω . Hence, the value of each (Aq.1)[i] is aω .
The same kind of reasoning allows us to conclude that the value of Aq.1 is (ab(aω+1b)ω)ω . Similarly,
we may compute π(A[0]) = bω−1a, deriving that π(A) = bω−1ac(ab(aω+1b)ω)ω .

Since the value of a DRH-automaton A depends only on the unique DRH-tree A⃗ lying in the
∼-class of A, there is a well defined map π : AA/∼→ (ΩADRH)

I/R which sends a class A/∼ to the
R-class of the value of A⃗. This map is, in effect, a bijection.

Theorem 3.12. The map

π : AA/∼→ (ΩADRH)
I/R

A/∼ 7→ [π(A⃗)]R

is bijective.

Proof. To prove that π is injective, we consider two DRH-automata

A= ⟨V,→,q,F,λH,λ ⟩
A′ = ⟨V ′,→′,q′,F ′,λ ′H,λ ′⟩,

such that π(A)R π(A′) and we argue by induction on |c(π(A))|= |c(π(A′))|. If |c(π(A))|= 0, then
A= 1 =A′ and there is nothing to prove. Suppose that |c(π(A))|> 0. We claim that A[i] =A′[i] for
all 0≤ i≤ ∥A∥−1. Indeed, by Lemma 2.27, the values π(A) and π(A′) lie in the same R-class if
and only if lbf∞(π(A)) = lbf∞(π(A

′)). Hence, by Lemma 3.10, we get the following equalities:

∥A∥=
∥∥A′∥∥ ,

π(A[i])λH(q.1i) = π(A′[i])λ
′
H(q

′.1i), for 0≤ i≤ ∥A∥−1, (3.4)

λ (q.1i) = λ
′(q′.1i), for 0≤ i≤ ∥A∥−1.

Since, by (A.6), the inclusions c(λH(q.1i))⊆ c⃗(π(A[i])) and c(λ ′H(q
′.1i))⊆ c⃗(π(A′[i])) hold, we also

have π(A[i]) R π(A′[i]). By induction hypothesis, that implies A[i] =A′[i] (recall that A[i] and A′[i] are
both DRH-trees, and each equivalence class has a unique DRH-tree).

To conclude that π is injective, it remains to show that, for 0≤ i≤ ∥A∥−1, the labels λH(q.1i)

and λ ′H(q
′.1i) coincide. If c⃗(A[i]) = /0 = c⃗(A′[i]), then Property (A.6) yields λH(q.1i) = I = λ ′H(q

′.1i).
Otherwise, we have

πirr(A[i])id(A[i])λH(q.1i) = π(A[i])λH(q.1i)
(3.4)
= π(A′[i])λ

′
H(q

′.1i) = πirr(A
′
[i])id(A

′
[i])λ

′
H(q

′.1i),

which in turn implies
id(A[i])λH(q.1i) = id(A′[i])λ

′
H(q

′.1i).

Since ρH(id(A[i])) and ρH(id(A
′
[i])) are both the identity of ΩAH, we obtain the equality

λH(q.1i) = λ
′
H(q

′.1i).
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Let us prove that π is surjective. We proceed again by induction, this time on |c(w)|, for
w ∈ (ΩADRH)

I . If c(w) is the empty set, then we have [w]R = {I}= {π(1)}= π(1/∼). Otherwise,
if w ̸= I, then we let w = w0a0 · · ·wkakw′k be the k-th iteration of the left basic factorization of w
(whenever it is defined). For each 0 ≤ i ≤ ⌈w⌉− 1, we have c(wi) $ c(w) and so, by induction
hypothesis, there exists a DRH-tree Ai = ⟨Vi,→i,qi,Fi,λi,H,λi⟩ such that π(Ai) R wi. In particular,
the equality πirr(Ai) = irr(wi) holds and consequently, H satisfies

π(Ai) · reg(wi) = πirr(Ai) · id(Ai) · reg(wi) = irr(wi) ·1 · reg(wi) = wi. (3.5)

On the other hand, since
c(reg(wi)) = c(id(Ai)) = c⃗(id(Ai)),

we deduce that id(Ai) · reg(wi) is R-equivalent to id(Ai). Therefore, wi and π(Ai) · reg(wi) are
R-equivalent as well. This relation together with (3.5) imply, by Lemma 2.32, that the equality
π(Ai) · reg(wi) = wi holds.

Now, we construct a DRH-tree A= ⟨V,→,q,F,λH,λ ⟩ as follows:

• V =

{v ∈Vi : i≥ 0}⊎{vi : i≥ 0}, if ⌈w⌉= ∞;

{v ∈Vi : i = 0, . . . ,⌈w⌉−1}⊎{vi : i = 0, . . . ,⌈w⌉−1}⊎{vε}, if ⌈w⌉< ∞;

• q= v0;

• F =

{v ∈ Fi : i≥ 0}, if ⌈w⌉= ∞;

{v ∈ Fi : i = 0, . . . ,⌈w⌉−1}⊎{vε}, if ⌈w⌉< ∞;

• λH(vi) = ρH(reg(wi)) and λ (vi) = ai for i = 0, . . . ,⌈w⌉−1;

• λ (vε) = ε , if ⌈w⌉ is finite;

• vi.0 = qi and vi.1 =

vi+1, if i < ⌈w⌉−1;

vε , if i = ⌈w⌉−1;

• transitions and labelings on Vi are given by those of Ai.

Then, it is easy to check that A is a DRH-tree and that, for all 0≤ i < ⌈w⌉, the equality

π(A[i])λH(q.1i)λ (q.1i) = wiai

holds. Hence, the ∼-class of A is sent to the R-class of w by π .

Given an element w of (ΩAS)
I , the DRH-tree representing the ∼-class π

−1([ρDRH(w)]R) is
denoted T(w). With a little abuse of notation, when w∈ (ΩADRH)

I , we use T(w) to denote the unique
DRH-tree in the ∼-class π

−1([w]R). Later, we shall see that, for every κ-word w, there exists a finite
DRH-automaton A in the ∼-class of T(w) (Corollary 3.24).

Suppose that we are given two DRH-automata Ai = ⟨Vi,→i,qi,Fi,λi,H,λi⟩, i = 0,1, a letter a ∈ A
such that λ1(V1) ⊆ λ0(V0)⊎{a} and a pseudoword u such that c(u) ⊆ c⃗(A0). Then, we denote by
(A0,u | a,A1) the DRH-automaton A= ⟨V,→,q,F,λH,λ ⟩, where
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• V =V0⊎V1⊎{q};

• q.0 = q0 and q.1 = q1;

• F = F0⊎F1;

• λH(q) = ρH(u) and λ (q) = a;

• all the other transitions and labels are given by those of A0 and A1.

Lemma 3.13. Let w be a pseudoword and write lbf(w) = (wℓ,a,wr). Then, we have the equality

T(w) = (T(wℓ), reg(wℓ) | a,T(wr)).

Proof. Write

T = (T(wℓ), reg(wℓ) | a,T(wr)) = ⟨V,→,q,F,λH,λ ⟩;
T(wℓ) = ⟨V0,→0,q0,F0,λ0,H,λ0⟩;
T(wr) = ⟨V1,→1,q1,F1,λ1,H,λ1⟩.

The claim amounts to proving that π(T) R w modulo DRH. By definition of T, we have ∥T∥ < ∞

if and only if ∥T(wr)∥ < ∞. We start by proving that π(T) and π(T(wℓ))ρH(reg(wℓ))a ·π(T(wr))

belong to the same R-class. It is worth noticing that, for every 1≤ i≤ ∥T∥, we have the following
equality:

T[i] = Tq.1i0 = T(wr)q1.1i−10 = T(wr)[i−1]. (3.6)

First, assume that ∥T∥< ∞. Then, we have ∥T∥= ∥T(wr)∥+1. Following Definition 3.9 and the
construction of T, we may compute

π(T) =
∥T(wr)∥

∏
i=0

π(T[i])λH(q.1i)λ (q.1i)

= π(Tq.0)λH(q)λ (q) ·
∥T(wr)∥−1

∏
i=0

π(T[i+1])λH(q.1i+1)λ (q.1i+1)

(3.6)
= π(T(wℓ))ρH(reg(wℓ))a ·π(T(wr)). (3.7)

Now, we suppose that ∥T∥= ∞. In that case, r.ind(T) is either r.ind(T(wr)) or r.ind(T(wr))+1
according to whether ρDRH(w) is regular (in which case, it is 0) or not, respectively. Suppose that
ρDRH(w) is not regular. We compute

π(T) =
r.ind(T(wr))

∏
i=0

π(T[i])λH(q.1i)λ (q.1i) · id(T)

= π(Tq.0)λH(q)λ (q) ·

(
r.ind(T(wr))−1

∏
i=0

π(T[i+1])λH(q.1i+1)λ (q.1i+1)

)
· id(T)

(3.6)
= π(T(wℓ))ρH(reg(wℓ))a ·πirr(T(wr)) · id(T). (3.8)
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Now, id(T) is the idempotent designated by the infinite product

(π(T[r.ind(T)])λH(q.1r.ind(T))λ (q.1r.ind(T)) · · ·π(T[k])λH(q.1k)λ (q.1k))k≥r.ind(T),

which in turn, by (3.6), is the infinite product

(π(T(wr)[r.ind(T(wr))])λH(q.1r.ind(T(wr)))λ (q.1r.ind(T(wr))) · · ·π(Tk)λH(q.1k)λ (q.1k))k≥r.ind(T(wr))+1.

Hence, we have id(T) = id(T(wr)), and so, the equality (3.8) yields

π(T) = π(T(wℓ))ρH(reg(wℓ))a ·π(T(wr)). (3.9)

If ρDRH(w) is regular, then π(T) = id(T). In this case, id(T) is the idempotent designated by the
infinite product

(π(T[0])λH(q.10)λ (q.10) ·π(T[1])λH(q.11)λ (q.11) · · ·π(T[k])λH(q.1k)λ (q.1k))k≥0.

Again, (3.6) together with the construction of T give that this infinite product is precisely the product

(π(T(wℓ))ρH(reg(wℓ))a ·π(T(wr)[0])λH(q.10)λ (q.10) · · ·π(T[k])λH(q.1k)λ (q.1k))k≥0.

Therefore, we may conclude that

π(T) = id(T) R π(T(wℓ))ρH(reg(wℓ))a · id(T(wr)) = π(T(wℓ))ρH(reg(wℓ))a ·π(T(wr)). (3.10)

Finally, we need to establish the equality wℓ = π(T(wℓ))ρH(reg(wℓ)). But, using Lemma 2.32,
that is immediate, since wℓ R π(T(wℓ)) R π(T(wℓ))reg(wℓ) modulo DRH and H satisfies

π(T(wℓ))ρH(reg(wℓ)) = πirr(T(wℓ)) · id(T(wℓ))reg(wℓ)

Lemma 3.10
= irr(wℓ) ·1 · reg(wℓ) = wℓ.

Hence, it follows from (3.7), (3.9), and (3.10) that w = wℓ ·a ·wr R π(T), as intended.

The value of a path q0
α0−→ q1

α1−→ ·· · αn−→ qn+1 of a DRH-automaton A is given by

n

∏
i=0

(αi,λH,αi(qi),λ (qi)) ∈
(
Σ× (ΩAH)

I×A
)+

, where λH,αi(qi) =

λH(qi), if αi = 0;

I, otherwise.

Given a state v of A, the language associated to v, L(v)⊆
(
Σ× (ΩAH)

I×A
)+, is the set of all values

of successful paths of Av. The language associated to A, denoted L(A), is the language associated to
its root. Finally, the language associated to the pseudoword w is L(w) = L(T(w)).

The reader may wish to compare the next two results with [25, Lemma 3.23] and [25, Proposi-
tion 3.24], respectively.
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Lemma 3.14. Let A1, A2 be DRH-automata. Then, the languages L(A1) and L(A2) coincide if and
only if the DRH-trees A⃗1 and A⃗2 are the same.

Proof. Recall that, by Lemma 3.6, if A⃗1 = A⃗2, then A1 and A2 are equivalent DRH-automata.
Hence, Definition 3.4 makes clear the reverse implication. Conversely, consider two DRH-automata
Ai = ⟨Vi,→i,qi,0,Fi,λi,H,λi⟩ (i = 1,2) such that L(A1) = L(A2). We first observe that, for i = 1,2
and α ∈ Σ∗, the state qi,0.α is defined if and only if there is an element in L(Ai) of the form (αβ ,_,_),
for a certain β ∈ Σ∗ (we are using the fact that DRH-automata are trim). Hence, the state q1,0.α is
defined if and only if so is the state q2,0.α . Choose an element α = α0α1 · · ·αn ∈ Σ∗, with each αi ∈ Σ,
and such that q1,0.α is defined. If q1,0.α ∈ F1, then we have a successful path

q1,0
α0−→ q1,1

α1−→ ·· · αn−→ q1,n+1,

so that, the element ∏
n
i=0(αi,λ1,H,αi(q1,i),λ1(q1,i)) belongs to L(A1) and hence, to L(A2). But that

implies that, in A2, there is a successful path

q2,0
α0−→ q2,1

α1−→ ·· · αn−→ q2,n+1,

which in turn yields that both q1,0.α and q2,0.α are terminal states. In particular the equalities in (3.1)
hold. On the other hand, if q1,0.α is not a terminal state, then Property (A.3) implies that q1,0.α0 is
defined. Let β = αn+2 · · ·αm ∈ Σ∗ be such that

q1,0
α0−→ q1,1

α1−→ ·· · αn−→ q1,n+1
0−→ q1,n+2

αn+2−−→ ·· · αm−→ q1,m+1 (3.11)

is a successful path in A1. Again, since L(A1) = L(A2), this determines a successful path in A2

given by
q2,0

α0−→ q2,1
α1−→ ·· · αn−→ q2,n+1

0−→ q2,n+2
αn+2−−→ ·· · αm−→ q2,m+1,

with the same value as the path (3.11). In particular, the (n+ 2)-nd letter (which belongs to the
alphabet Σ× (ΩAH)

I×A) of that value is

(0,λ1,H,0(q1,n+1),λ1(q1,n+1)) = (0,λ2,H,0(q2,n+1),λ2(q2,n+1)).

But that means precisely that the desired equalities in (3.1) hold. Therefore, A1 and A2 are equivalent
and so, A⃗1 = A⃗2.

Proposition 3.15. Let u,v ∈ ΩAS. Then, the equality ρDRH(u) = ρDRH(v) holds if and only if
L(u) = L(v) and H satisfies u = v.

Proof. Let u and v be two equal pseudowords modulo DRH. In particular, the R-classes [ρDRH(u)]R
and [ρDRH(v)]R coincide and so, the DRH-trees T(u) and T(v) are the same, by Theorem 3.12.
Therefore, we have

L(u) = L(T(u)) = L(T(v)) = L(v).

As H is a subpseudovariety of DRH, we also have u =H v. Conversely, suppose that L(u) = L(v)
and u =H v. By Lemma 3.14, it follows that T(u) = T(v). Thus, by Theorem 3.12, the pseudovariety
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DRH satisfies u R v. As, in addition, the pseudowords u and v are equal modulo H, we conclude by
Lemma 2.32 that DRH satisfies u = v.

3.2 A canonical form for κ-words over DRH

Throughout this section, we reserve the letter H to denote a pseudovariety of groups such that there
exists a computable canonical form for the elements of Ωκ

AH. We denote by cfH(w) the canonical
form of w ∈Ωκ

AH and set cfH(I) = I. Our aim is to prove that this assumption on H is enough to
define a canonical form for the elements of Ωκ

ADRH.
Given a finite DRH-automaton A= ⟨V,→ q,F,λH,λ ⟩ such that λH(V )⊆ (Ωκ

AH)
I , let us define

the expression πcf(A) inductively on the number |V | of states as follows.

• If |V |= 1, then A= 1 and we take πcf(A) = I.

• If |V |> 1 and ∥A∥< ∞, then we put

πcf(A) =
∥A∥−1

∏
i=0

πcf(Aq.1i0)cfH(λH(q.1i))λ (q.1i).

• Finally, we suppose that |V |> 1 and ∥A∥= ∞. Since A is a finite automaton, we necessarily
have a cycle of the form q.1ℓ 1−→ q.1ℓ+1 1−→ ·· · 1−→ q.1ℓ+n 1−→ q.1ℓ, where ℓ is a certain integer
greater than or equal to r.ind(A). Choose ℓ to be the least possible. Then, we make πcf(A) be
given by

r.ind(A)−1

∏
i=0

πcf(Aq.1i0)cfH(λH(q.1i))λ (q.1i)

·

(
ℓ−1

∏
i=r.ind(A)

πcf(Aq.1i0)cfH(λH(q.1i))λ (q.1i)

(
n

∏
i=0

πcf(Aq.1ℓ+i0)cfH(λH(q.1ℓ+i))λ (q.1ℓ+i)

)ω)ω

.

We point out that, by definition, the value of the κ-word over DRH naturally induced by πcf(A) is
precisely π(A). On the other hand, it is easy to check that, for every w ∈ΩADRH, if w R π(A), then
the identity w = π(A)reg(w) holds. Thus, in view of Theorem 3.12, we wish to standardize a choice
of a finite DRH-automaton, say A(w), equivalent to T(w), for each w ∈Ωκ

ADRH. After that, we may
let the canonical form of w be given by πcf(A(w))cfH(reg(w)).

Example 3.16. Let A1 =A and A2 be the equivalent DRH-automata in Figures 3.1 and 3.2, respec-
tively, and let qi be the root of Ai (i = 1,2). Then, we may compute

πcf((A1)q1.1) = (abaωcfH(a)b(aωcfH(aω+1)b)ω)ω ;

πcf((A2)q2.1) = (ab((aaω)ωcfH(a)b)ω)ω .

Fix a DRH-automaton A= ⟨V,→,q,F,λH,λ ⟩. We say that two states v1,v2 ∈V are equivalent
if π(Av1) and π(Av2) lie in the same R-class. Clearly, this defines an equivalence relation on V ,
say ∼ (it should be clear from the context when we are referring to this equivalence relation or to
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the equivalence relation on AA introduced in Definition 3.4). We write [v] for the equivalence class
of v ∈V .

Lemma 3.17. Let A = ⟨V,→,q,F,λH,λ ⟩ be a DRH-automaton and consider the equivalent class
on V defined above. Then, for every v1,v2 ∈V \F, we have

[v1] = [v2] =⇒

[v1.0] = [v2.0] and [v1.1] = [v2.1];

λH(v1) = λH(v2) and λ (v1) = λ (v2).

Proof. Let v1,v2 ∈V \F be non-terminal states. By definition, the classes [v1] and [v2] coincide if
and only if π(Av1) R π(Av2). Moreover, by Lemma 3.10, we have

lbf(π(Av1)) = (π(Av1.0)λH(v1),λ (v1),w1,r),

where w1,r is R-equivalent to π(Av1.1). Similarly, there exists w2,r R π(Av2.1) such that

lbf(π(Av2)) = (π(Av2.0)λH(v2),λ (v2),w2,r).

In particular, since we are assuming that π(Av1) R π(Av2), the relations π(Av1.0) R π(Av2.0) and
π(Av1.1) R π(Av2.1) hold. But, that means that [v1.0] = [v2.0] and [v1.1] = [v2.1]. Also, the mid
components of lbf(π(Av1)) and lbf(π(Av2)) should coincide, that is, λ (v1) = λ (v2). Finally, we may
derive the equality λH(v1) = λH(v2) as follows:

π(Av1.0)λH(v1) = π(Av2.0)λH(v2) because π(Av1) R π(Av2)

⇐⇒ πirr(Av1.0)id(Av1.0)λH(v1) = πirr(Av2.0)id(Av2.0)λH(v2) by (3.3)

=⇒ id(Av1.0)λH(v1) = id(Av2.0)λH(v2) by Lemma 3.10 and Corollary 2.30

=⇒ λH(v1) = λH(v2) because ρH ◦ id(A) is always the identity of ΩAH.

We define the wrapping of a DRH-automaton A= ⟨V,→,q,F,λH,λ ⟩ to be the DRH-automaton
[A] = ⟨V/∼,→, [q],F/∼,λH,λ ⟩, where

• [v].0 = [v.0] and [v].1 = [v.1], for v ∈V \F ;

• λH([v]) = λH(v) and λ ([v]) = λ (v), for v ∈V .

By Lemma 3.17, this automaton is well defined. Furthermore, its definition ensures that A∼ [A]. The
wrapped DRH-automaton of w ∈ΩADRH is A(w) = [T(w)]. Observe that, by Lemmas 2.26 and 3.13,
the label λH of T(w) takes values in Ωκ

AH when w is a κ-word. Our next goal is to prove that A(w) is
finite, provided w is a κ-word.

Example 3.18. Let A2 be the same as in Example 3.16. Then, we have the following identities:

π((A2)q2.1) = (ab(aω+1b)ω)ω ;

π((A2)q2.10) = a;

π((A2)q2.11) = (aω+1b)ω ;
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π((A2)q2.110) = aω ;

π((A2)q2.1101) = aω .

Hence, the wrapping of the DRH-automaton (A2)q2.1 is obtained by merging the states q2.1101
and q2.110. The result is drawn in Figure 3.5.

I,b

1,bI,a

I,ε I,a

0 1

0

1

0 1

0

1

Fig. 3.5 The DRH-automaton [(A2)q2.1].

Let us associate to a pseudoword w ∈ (ΩADRH)
I a certain set of its factors. For α ∈ Σ∗, we define

fα(w) inductively on |α|:

fε(w) = w;

( fα0(w),a, fα1(w)) = lbf( fα(w)), for a certain a ∈ A, whenever fα(w) ̸= I.

Then, the set of DRH-factors of w is given by

F(w) = { fα(w) : α ∈ Σ
∗ and fα(w) is defined}.

Example 3.19. Consider the κ-word w = ab(aω+1b)ω . Then, the computation of fα(w) is schematized
in Figure 3.6. Thus, in this case, we have that the set of factors of w is given by

F(w) = {ab(aω+1b)ω ,a, I}∪{(aω+1b)ω−k,aω+1−k}k≥0.

We further observe that there are only finitely many distinct R-classes in F(w). As we shall prove,
this happens in general, provided w is a κ-word (Proposition 3.23).

The relevance of the definition of the set F(w) is explained by the following result.

Lemma 3.20. Let w ∈ ΩADRH and T(w) = ⟨V,→,q,F,λH,λ ⟩. Then, for every α ∈ Σ∗ such that
fα(w) is defined, the relation fα(w) R π(T(w)q.α) holds.

Proof. We prove the statement by induction on |α|. When α = ε , the result follows from Theorem 3.12.
Let α ∈ Σ∗ and invoke the induction hypothesis to assume that fα(w) and π(T(w)q.α) are R-equivalent.
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fε (w) = ab(aω+1b)ω

f0(w) = a

f00(w) = I f01(w) = I

f1(w) = (aω+1b)ω

f10(w) = aω+1

f100(w) = I f101(w) = aω

f1010(w) = I · · ·

f11(w) = (aω+1b)ω−1

f110(w) = aω+1

f1100(w) = I · · ·

· · ·

Fig. 3.6 Representation of F(ab(aω+1b)ω).

Writing lbf(π(T(w)q.α)) = (wℓ,a,wr), Lemma 3.10 yields the following relations:

wℓ R π(T(w)q.α0),

wr R π(T(w)q.α1).

On the other hand, since lbf( fα(w))= ( fα0(w),b, fα1(w)), using Lemma 2.27 we deduce the equalities
fα0(w) = wℓ and a = b, and the relation fα1(w) R wr, leading to the desired conclusion.

Hence, in order to prove that A(w) is finite for every κ-word w, it suffices to prove that so
is F(w)/R. The next two lemmas are useful to achieve that target.

Lemma 3.21. Let w be a regular κ-word over DRH. Then, there exist κ-words x, y and z over DRH
such that

(a) w = xyω−1z;

(b) c(y) = c(w);

(c) c⃗(x)$ c(w);

(d) y is not regular.

Proof. By definition of κ-word, we may write w = w1 · · ·wn, where each wi is either a letter in A
or an (ω − 1)-power of another κ-word. Since any letter of the cumulative content of w occurs
in lbf∞(w) infinitely many times, there must be an (ω−1)-power under which they all appear. Hence,
since w is regular (and so, c(w) = c⃗(w)), there exists an index i ∈ {1, . . . ,n} such that wi = vω−1

and c(v) = c(w). Let j be the minimum such i. We have w = u0vω−1
0 z0, where u0 = w1 · · ·w j−1,

vω−1
0 = w j, and z0 = w j+1 · · ·wn. Also, minimality of j yields that c⃗(u0)$ c⃗(w) = c(w). So, if v0 is

not regular, then we just take x = u0, y = v0, and z = z0. Suppose that v0 is regular. Using the same
reasoning, we may write v0 = u1vω−1

1 z1, with c⃗(u1)$ c(w) and c(v1) = c(v0) = c(w). Again, if v1 is
not regular, then we may choose x = u0u1, y = v1 and z = z1vω−2

0 z0. Otherwise, we repeat the process
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with v1. Since w is a κ-word, there is only a finite number of occurrences of (ω−1)-powers, so that,
this iteration cannot run forever. Therefore, we eventually get κ-words x, y and z satisfying the desired
properties (a)–(d).

Lemma 3.22. Let w ∈ Ωκ
ADRH be regular. For each m ≥ 1, let w′m be the unique κ-word over

DRH satisfying the equality w = lbf1(w) · · · lbfm(w)w′m. Then, both sets {lbfm(w) : m ≥ 1} and
{[w′m]R : m≥ 1} are finite.

Proof. Write lbfm(w) = wmam, for every m≥ 1, and w = xyω−1z, with x, y and z satisfying conditions
(a)–(d) of Lemma 3.21. We define a sequence of pairs of possibly empty κ-words {(ui,vi)}i≥0 and
a strictly increasing sequence of non-negative integers {ki}i≥0 inductively as follows. We start with
(u0,v0) = (I,x) and we let k0 be the maximum index such that lbf1(w) · · · lbfk0(w) is a prefix of x. If x
has no prefix of this form, then we set k0 = 0. We also write v0 = v′0v′′0 , with v′0 = lbf1(w) · · · lbfk0(w)
(by Proposition 2.13, given v′0 there is only one possible value for v′′0). For each i ≥ 0, we let ui+1

be such that wki+1 = v′′i ui+1 and vi+1 is such that y = ui+1aki+1vi+1. Observe that, by uniqueness of
first-occurrences factorizations, there is only one pair (ui+1,vi+1) satisfying these conditions. The
integer ki+1 is the maximum such that lbfki+2(w) · · · lbfki+1(w) is a prefix of vi+1 (or ki+1 = ki +1 if
there is no such prefix) and we factorize vi+1 = v′i+1v′′i+1, with v′i+1 = lbfki+2(w) · · · lbfki+1(w). By
construction, for all i ≥ 0, the pseudoidentity w′ki+1 = vi+1yω−(i+2)z holds. In particular, for every
m≥ 1, there exist i≥ 0 and ℓ ∈ {2, . . . ,ki+1− ki} such that

w′m = lbfki+ℓ(w)lbfki+ℓ+1(w) · · · lbfki+1(w)v
′′
i+1yω−(i+2)z. (3.12)

On the other hand, for all i≥ 0, the factorization y = ui+1aki+1vi+1 is such that aki+1 /∈ c(ui+1) (re-
call that aki+1 /∈ c(wki+1) and ui+1 is a factor of wki+1). By uniqueness of first-occurrences factorization
over DRH, it follows that the set {(ui,vi)}i≥0 is finite. Consequently, the set

{lbfki+ℓ(w)lbfki+ℓ+1(w) · · · lbfki+1(w)v
′′
i+1 : i≥ 0, ℓ ∈ {2, . . . ,ki+1− ki}}

is also finite. In particular, there is only a finite number of κ-words lbfm(w). Finally, taking into
account that c(z)⊆ c(y) and (3.12) we may conclude that there are only finitely many R-classes of
the form [w′m]R (m≥ 1).

Now, we are able to prove that F(w)/R is finite for every κ-word w over DRH.

Proposition 3.23. Let w be a possibly empty κ-word over DRH. Then, the quotient F(w)/R is finite.

Proof. We prove the result by induction on |c(w)|. If |c(w)| = 0, then it is trivial. Suppose that
|c(w)| ≥ 1. We distinguish two possible scenarios.

Case 1. The κ-word w is not regular, that is, c⃗(w)$ c(w).

Then, there exists k ≥ 1 such that w = w1a1 · · ·wmamw′m, with lbfk(w) = wkak, for k = 1, . . . ,m
and c(w′m)$ c(w). By definition of fα(w), we have the following identities:

f1k−10(w) = wk, for k = 1, . . . ,m;

f1m(w) = w′m.
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Hence, we may deduce that F(w) is the union of the sets F(wk) (for k = 1, . . . ,m) together with
F(w′m). Using the induction hypothesis on each one of the intervening sets, we conclude that
F(w)/R is finite.

Case 2. The κ-word w is regular.

Again, write lbfk(w) = wkak and w = lbf1(w) · · · lbfk(w)w′k, for k ≥ 1. Since f1k−10(w) = wk

and f1k(w) = w′k, for every k ≥ 1, by Lemma 3.22, we know that the sets { f1k−10(w)}k≥1

and {[ f1k(w)]R}k≥1 are both finite. Applying the induction hypothesis to each factor wk, we
derive that {[ f1k−10α(w)]R : α ∈ Σ∗}k≥1 is also a finite set. Therefore, since any element of
F(w)/R is of one of the forms [ f1k−10α(w)]R and [ f1k(w)]R, we conclude that F(w)/R is finite
as well.

As an immediate consequence (recall Lemma 3.20), we obtain:

Corollary 3.24. Let w be a possibly empty κ-word. Then, the wrapped DRH-automaton A(w) is
finite.

Unlike the aperiodic case R, the converse of Corollary 3.24 does not hold in general. For instance,
taking H= G, it is not hard to see that A(apω

b) (with p a prime number) is finite, although apω

b is
not a κ-word over DRG. A converse is achieved when we further require that the labels λH are valued
by κ-words over H and that ρH(reg(w)) is itself a κ-word.

For a given w ∈ (Ωκ
ADRH)

I , we say that cf(w) = πcf(A(w))cfH(ρH(reg(w))) is the canonical
form of w. We write cf(u)≡ cf(v) (with u,v ∈ (Ωκ

ADRH)
I) when both sides coincide. We have just

proved that cf(_) is well-defined for κ-words and thus, it determines a canonical form for the elements
of Ωκ

ADRH.

Theorem 3.25. Let H be a pseudovariety of groups such that there exists a computable canonical
form for the elements of Ωκ

AH, say cfH(_). Then, for all κ-words u and v over DRH, the equality u = v
holds if and only if cf(u)≡ cf(v).

3.3 ⟨κ⟩-terms seen as well-parenthesized words

In Section 3.1, we characterized R-classes over DRH by means of certain equivalence classes of
automata. In order to solve the κ-word problem over DRH, the next goal is to find an algorithm to
construct such automata. This section serves the purpose of preparing that construction.

3.3.1 General definitions

Let B be a possibly infinite alphabet and consider the associated alphabet B[ ] = B⊎{[q, ]q : q ∈ Z}.
We say that a word in B∗[ ] is well-parenthesized over B if it does not contain [q ]q as a factor and if it
can be reduced to the empty word ε by applying the rewriting rules [q ]q→ ε and a→ ε , for q ∈ Z
and a ∈ B. We denote the set of all well-parenthesized words over B by Dyck(B). The content of a
well-parenthesized word x is the set of letters in B that occur in x and it is denoted c(x).
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To each ⟨κ⟩-term we may associate a well-parenthesized word over A inductively as follows:

word(I) = ε

word(a) = a, if a ∈ A;

word(u · v) = word(u)word(v), if u and v are ⟨κ⟩-terms;

word(uω+q) = [qword(u)]q, if u is a ⟨κ⟩-terms.

Conversely, we associate a κ-word to each well-parenthesized word over A as follows:

om(ε) = I

om(a) = a, if a ∈ A;

om(xy) = om(x) ·om(y), if x,y ∈ Dyck(A);

om([qx]q) = om(x)ω+q, if x ∈ Dyck(A).

Note that, due to the associative property in both Dyck(A) and Ωκ
AS, om(_) is well-defined. With the

aim of distinguishing the occurrences of each letter in A in a well-parenthesized word x over A, we
assign to each x ∈ Dyck(A) a well-parenthesized word xN over A×N containing all the information
about the position of the letters. With that in mind we define recursively the following family of
functions {pk : Dyck(A)→ Dyck(A×N)}k≥0:

pk(a) = (a,k+1), if a ∈ A;

pk([
q) = [q, if q ∈ Z;

pk(]
q) = ]q, if q ∈ Z;

pk(ay) = pk(a)pk+1(y), if a ∈ A[ ] and y ∈ A∗[ ].

We set xN = p0(x). For instance, if x = a[qb[rca]r]qb, then xN = (a,1)[q(b,2)[r(c,3)(a,4)]r]q(b,5).
It is often convenient to denote the pair (a, i) by ai. Let x ∈ Dyck(A×N). Then, we may associate
to x two well-parenthesized words πA(x) and πN(x) corresponding to the projection of x onto A∗[ ]
and onto N∗[ ], respectively. We denote cA(x) = c(πA(x)) and cN(x) = c(πN(x)). Given a ⟨κ⟩-term w,
we denote by w the well-parenthesized word 00word(w#)N over the alphabet (A⊎{0,#})×N. The
map η : Dyck(A×N)→Ωκ

AS assigns to each well-parenthesized word x ∈ Dyck(A×N) the κ-word
η(x) = om(πA(x)).

Example 3.26. Consider the ⟨κ⟩-term w = (bω−1 · (a · c)) · ((a ·b) · (aω+1 ·b)ω)ω . Then, we have

word(w) = word(bω−1 · (a · c))word(((a ·b) · (aω+1 ·b)ω)ω)

= word(bω−1)word(a · c)[0word((a ·b) · (aω+1 ·b)ω)]0.

= [−1b]−1ac[0ab[0[1a]1b]0]0.

Conversely, if x = a[qb[rca]r]qb as above, then we may compute

om(x) = om(a)om([qb[rca]r]q)om(b) = a(om(b[rca]r))ω+qb
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= a(om(b)om([rca]r))ω+qb = a(b(ca)ω+r)ω+qb.

Let x be a well-parenthesized word over A×N. We define its tail ti(x) from position i ∈ N
inductively as follows

ti(ε) = ε;

ti(yz) = ti(z), if y,z ∈ Dyck(A×N) and i /∈ cN(y);

ti(aiy) = y, if y ∈ Dyck(A×N);

ti([
qy]qz) = ti(y)[q−1y]q−1z, if y,z ∈ Dyck(A×N) and i ∈ cN(y).

The prefix of x ∈ Dyck(A×N) until a ∈ A is defined by

pa(ε) = ε;

pa(yz) = ypa(z), if y,z ∈ Dyck(A×N) and a /∈ cA(y);

pa(aiy) = ε, if y ∈ Dyck(A×N);

pa([
qy]qz) = pa(y), if y,z ∈ Dyck(A×N) and a ∈ cA(y).

The factor of a well-parenthesized word x ∈ Dyck(A×N) from i ∈ N until a ∈ A is given by

x(i,a) = pa( ti(x)).

If instead, we are given a ⟨κ⟩-term w, then we write w(i,a) to mean the κ-word η(w(i,a)). If a is
a letter occurring in πA(x), for a well-parenthesized word x over A×N, then it is possible to write
x = yaiz with y and z possibly empty not necessarily well-parenthesized words over A×N such that
a /∈ cA(y). In this case we say that ai is a marker of x. If ai is the last first occurrence of a letter, that is,
if the inclusion cA(z)⊆ cA(yai) holds, then we say that ai is the principal marker of x.

Example 3.27. Set again w = (((bω−1) · (a · c)) · (((a ·b) · (((aω+1) ·b)ω))ω)). From Example 3.26
we may easily conclude that

w = 00[
−1b1]

−1a2c3[
0a4b5[

0[1a6]
1b7]

0]0#8.

Then, 00, b1, a2, c3 and #8 are the markers of w, since they are the first occurrences of each letter
in w. The last first occurrence #8 is the principal marker of w. Let us compute w(0,#). Following the
definitions, we have

w(0,#) = p#( t0(00[
−1b1]

−1a2c3[
0a4b5[

0[1a6]
1b7]

0]0#8))

= p#([
−1b1]

−1a2c3[
0a4b5[

0[1a6]
1b7]

0]0#8)

= [−1b1]
−1a2c3[

0a4b5[
0[1a6]

1b7]
0]0.

Hence, w(0,#) is the κ-word represented by w and the principal marker of w(0,#) is c3. For a less
trivial example, we compute w(5,b).

w(5,b) = pb( t5(00[
−1b1]

−1a2c3[
0a4b5[

0[1a6]
1b7]

0]0#8))
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= pb( t5([
0a4b5[

0[1a6]
1b7]

0]0#8))

= pb( t5(a4b5[
0[1a6]

1b7]
0)[−1a4b5[

0[1a6]
1b7]

0]−1#8)

= pb([
0[1a6]

1b7]
0[−1a4b5[

0[1a6]
1b7]

0]−1#8)

= pb([
1a6]

1b7)

= [1a6]
1.

Thus, we get w(5,b) = aω+1.

3.3.2 Properties of tails and prefixes of well-parenthesized words

The next results state some properties concerning tails and prefixes of well-parenthesized words.

Lemma 3.28 (cf. [25, Lemma 5.3]). Let x ∈ Dyck(A×N) and let a,b ∈ A. Then

b ∈ cA(pa(x)) =⇒ pb(pa(x)) = pb(x).

Proof. We argue by induction on |x|. If |x| = 0, then the claim holds trivially. Let us suppose that
|x| ≥ 1 and b ∈ cA(pa(x)). We consider the following different situations.

• If x = yz, with y,z ∈ Dyck(A×N) and a,b /∈ cA(y), then

pb(pa(x)) = pb(ypa(z)) = ypb(pa(z)).

Since b ∈ cA(pa(z)) and z is a well-parenthesized word, it follows, by induction hypothesis, that

pb(pa(x)) = ypb(pa(z)) = ypb(z) = pb(yz) = pb(x).

• Suppose that the first letter of πA(x) is either a or b. If it is a, then x = aiy, which implies that
pa(x) = ε and so b /∈ cA(pa(x)). If it is b ̸= a, then we may write x = biy. Thus, we have

pb(pa(x)) = pb(bi pa(y)) = ε = pb(x).

• Finally, suppose that x = [qy]qz, with y,z ∈ Dyck(A×N) and y ̸= ε . The situation that remains
to be considered occurs when at least one of a and b belongs to cA(y). If a ∈ cA(y), then the
equality pa(x) = pa(y) holds and so, b ∈ cA(pa(y))⊆ cA(y). Applying the induction hypothesis
to y, we get

pb(pa(x)) = pb(pa(y)) = pb(y) = pb(x).

On the other hand, if a /∈ cA(y) and b ∈ cA(y), then the equalities

pb(pa(x)) = pb([
qy]q pa(z)) = pb(y) = pb(x)

hold.

Lemma 3.29 (cf. [25, Lemma 5.4]). Let x ∈ Dyck(A×N) be such that a ∈ cA(x). If k ∈ cN(pa(x)),
then a ∈ cA( tk(x)).
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Proof. We argue by induction on |x|. If |x|= 0, then there is nothing to prove. Suppose that |x| ≥ 1.
We distinguish the three following cases.

• If x = aiy, then pa(x) = ε and the result is trivial again.

• If x = yz, with a /∈ cA(y), y,z ∈ Dyck(A×N) and |y| ≥ 1, then a ∈ cA(z) and thus, we have
pa(x) = ypa(z). On the other hand, tk(x) is either tk(y)z or tk(z) according to whether k ∈ cN(y)
or k /∈ cN(y), respectively. If the former situation happens, then the result is clear. Otherwise,
we have k ∈ cN(pa(z)) and, since |z|< |x|, we may apply the induction hypothesis to z to obtain
a ∈ cA( tk(z)) = cA( tk(x)).

• Finally, it remains to consider the case where x = [qy]q with a ∈ cA(y). In this situation, we
have pa(x) = pa(y). It follows that k ∈ cN(y) and therefore, tk(x) = tk(y)[q−1y]q−1. Thus, we
get a ∈ cA(y)⊆ cA( tk(x)).

Lemma 3.30 (cf. [25, Lemma 5.5]). Let x ∈ Dyck(A×N), a ∈ A, and k ∈ N. Then, we have

k ∈ cN(pa(x)) =⇒ tk(pa(x)) = pa( tk(x)). (3.13)

Proof. If a /∈ cA(x), then the result holds, since tk( pa(x)) = tk(x) = pa( tk(x)). We suppose that
a ∈ cA(x) and argue by induction on |x|. If x = ai, then pa(x) = ε and so, k /∈ cN(pa(x)). Suppose
that |x|> 1 and k ∈ cN(pa(x)). Let x = yz be the product of two nonempty well-parenthesized words.
If a /∈ cA(y), then pa(x) = ypa(z) and, consequently, k belongs to at least one of the sets cN(y) and
cN(pa(z))⊆ cN(z). It follows that

tk(pa(x)) = tk(y · pa(z)) =

 tk(y) · pa(z), if k ∈ cN(y);

tk(pa(z)), otherwise;

=

pa( tk(y) · z), if k ∈ cN(y); (since a /∈ cA(y)⊇ cA( tk(y)))

pa( tk(z)), otherwise; (applying the induction hypothesis to z)

=

pa( tk(yz)), if k ∈ cN(y);

pa( tk(yz)), otherwise;

= pa( tk(x)).

On the other hand, if a ∈ cA(y), then we have pa(x) = pa(y) and so, tk(pa(x)) = tk(pa(y)). Since k
belongs to the set cN(pa(x)) = cN(pa(y)), applying the induction hypothesis to y, we get

tk(pa(x)) = tk(pa(y)) = pa( tk(y)).

Moreover, as k ∈ cN( pa(y)), by Lemma 3.29, we have a ∈ cA( tk(y)). Therefore, it follows that
pa( tk(y)) = pa( tk(y) · z) = pa( tk(yz)) = pa( tk(x)). It remains to consider the case where x is of the
form [qy]q for a well-parenthesized word y such that a ∈ cA(y). As k ∈ cN(pa(x)) = cN(pa(y)), we
may apply the induction hypothesis to y to obtain that tk(pa(x)) = tk(pa(y)) = pa( tk(y)). Also, by
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Lemma 3.29, we have a ∈ cA( tk(x)). Hence, the equalities

pa( tk(x)) = pa( tk(y) · [q−1y]q−1) = pa( tk(y))

are valid. So, we conclude the desired equality: tk(pa(x)) = pa( tk(x)).

Lemma 3.31. Let x⃗ = (x j) j≥0 and y⃗ = (y j) j≥0 be two sequences of possibly empty well-parenthesized
words over A×N such that x0y0 ̸= ε , and for every i, j≥ 0, the index i occurs in πN(x0y0x1y1 · · ·x jy j) at
most once. Let q⃗ = (q j) j≥0 be a sequence of integers. For each n≥ 0, we define the well-parenthesized
words µn(⃗x, y⃗, q⃗) and ξn(⃗x, y⃗, q⃗) as follows:

µ0(⃗x, y⃗, q⃗) = x0y0

µn+1(⃗x, y⃗, q⃗) = xn+1[
qn µn(⃗x, y⃗, q⃗)]qnyn+1, if n≥ 0

ξn(⃗x, y⃗, q⃗) = [qn−1
µn(⃗x, y⃗, q⃗)]qn−1yn+1, if n≥ 0.

Let i be a natural number and suppose that i ∈ cN(xℓyℓ) for a certain ℓ≥ 0. Then, for every n≥ ℓ, the
following equality holds:

ti(µn(⃗x, y⃗, q⃗)) = ti(µℓ(⃗x, y⃗, q⃗)) ·ξℓ(⃗x, y⃗, q⃗) ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗). (3.14)

Proof. We argue by induction on n. If n = ℓ, then the result holds clearly, since the factor ξℓ(⃗x, y⃗, q⃗) ·
ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗) vanishes in (3.14). Suppose that n > ℓ and that the result holds for any
smaller n. We may compute

ti(µn(⃗x, y⃗, q⃗)) = ti(xn[
qn−1 µn−1(⃗x, y⃗, q⃗)]qn−1yn)

= ti(µn−1(⃗x, y⃗, q⃗)) · [qn−1−1
µn−1(⃗x, y⃗, q⃗)]qn−1−1yn since i /∈ cN(xn)

and i ∈ cN(µn−1(⃗x, y⃗, q⃗))

= ti(µn−1(⃗x, y⃗, q⃗)) ·ξn−1(⃗x, y⃗, q⃗)

= ti(µℓ(⃗x, y⃗, q⃗)) ·ξℓ(⃗x, y⃗, q⃗) · · ·ξn−2(⃗x, y⃗, q⃗) ·ξn−1(⃗x, y⃗, q⃗) by induction hypothesis

obtaining the desired equality (3.14).

By successively applying Lemma 3.31, we obtain the next two results.

Corollary 3.32. Using the same notation and assuming the same hypothesis as in the previous lemma,
suppose that k ∈ cN(y0) and that i ∈ cN(xℓ) for a certain ℓ≥ 0. Then, for every n≥ ℓ the following
equality holds:

tk( ti(µn(⃗x, y⃗, q⃗))) = tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξn−2(⃗x, y⃗, q⃗) ·ξn−1(⃗x, y⃗, q⃗).

Proof. From Lemma 3.31 it follows that

ti(µn(⃗x, y⃗, q⃗)) = ti(µℓ(⃗x, y⃗, q⃗)) ·ξℓ(⃗x, y⃗, q⃗) ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗).
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Since i ∈ cN(xℓ), we may compute ti(µℓ(⃗x, y⃗, q⃗)) as follows

ti(µℓ(⃗x, y⃗, q⃗)) = ti(xℓ[qℓ−1 µℓ−1(⃗x, y⃗, q⃗)]qℓ−1yℓ) = ti(xℓ)[qℓ−1 µℓ−1(⃗x, y⃗, q⃗)]qℓ−1yℓ.

As k ∈ cN(y0), using again Lemma 3.31, we obtain

tk( ti(µn(⃗x, y⃗, q⃗))) = tk( ti(xℓ)[qℓ−1 µℓ−1(⃗x, y⃗, q⃗)]qℓ−1yℓ ·ξℓ(⃗x, y⃗, q⃗) ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗))

= tk(µℓ−1(⃗x, y⃗, q⃗))

· [qℓ−1−1
µℓ−1(⃗x, y⃗, q⃗)]qℓ−1−1yℓ ·ξℓ(⃗x, y⃗, q⃗) ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)

= tk(µ0(⃗x, y⃗, q⃗))ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−2(⃗x, y⃗,⃗z)

· [qℓ−1−1
µℓ−1(⃗x, y⃗, q⃗)]qℓ−1−1yℓ ·ξℓ(⃗x, y⃗, q⃗) ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)

= tk(y0)ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗),

as we required.

Corollary 3.33. Using again the notation and assuming the hypothesis of Lemma 3.31, suppose
that k ∈ cN(y0) and that i ∈ cN(yℓ) for a certain ℓ ≥ 0. Then, for every n ≥ ℓ, if either ℓ = 0 and
k /∈ cN( ti(y0)) or ℓ≥ 1, the following equality holds:

tk( ti(µn(⃗x, y⃗, q⃗))) = tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗)

· [qℓ−2
µℓ(⃗x, y⃗, q⃗)]qℓ−2yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗).

Proof. Lemma 3.31 yields that

ti(µn(⃗x, y⃗, q⃗)) = ti(µℓ(⃗x, y⃗, q⃗)) ·ξℓ(⃗x, y⃗, q⃗) ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗).

Computing ti(µℓ(⃗x, y⃗, q⃗)), we obtain

ti(µℓ(⃗x, y⃗, q⃗)) = ti(xℓ[qℓ−1 µℓ−1(⃗x, y⃗, q⃗)]qℓ−1yℓ) = ti(yℓ).

Therefore, we have

tk( ti(µn(⃗x, y⃗, q⃗))) = tk( ti(yℓ) ·ξℓ(⃗x, y⃗, q⃗) ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗))

= tk([
qℓ−1

µℓ(⃗x, y⃗, q⃗)]qℓ−1yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗))

= tk(µℓ(⃗x, y⃗, q⃗)) · [qℓ−2
µℓ(⃗x, y⃗, q⃗)]qℓ−2yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗). (3.15)

Finally, since k ∈ cN(y0), by Lemma 3.31 we have

tk(µℓ(⃗x, y⃗, q⃗)) = tk(µ0(⃗x, y⃗, q⃗)) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗)

= tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗),

which in turn, substituting in (3.15), yields the desired equality.

The reader may wish to compare the next result with [25, Lemma 5.8].



44 The κ-word problem over DRH

Lemma 3.34. Let w be a ⟨κ⟩-term, i≥ 0, and a ∈ c(w)⊎{#}. Assume that bk is the principal marker
of w(i,a). Then, the following properties hold:

(a) pb(w(i,a)) = w(i,b);

(b) DRH satisfies η( tk(w(i,a))) R w(k,a).

Moreover, if the projection of w(i,a) onto ΩADRH is not regular, then the relation in (b) becomes an
equality in ΩAS.

Proof. By definition, we have w(i,a) = pa( ti(w)). Since b∈ cA(w(i,a)), it follows from Lemma 3.28
that pb(w(i,a)) = pb(pa( ti(w))) = pb( ti(w)) = w(i,b).

Let us prove the second assertion. By definition of w, we know that bk appears exactly once in w
and the same happens with the index i. Let w = x ·bk · y. We distinguish the cases where x and y are
both well-parenthesized words and where neither of x nor y is a well-parenthesized word. In the first
case, since bk ∈ c(w(i,a))⊆ c( ti(w)), the index i must belong to cN(x). So, we get

tk(w(i,a)) = tk(pa( ti(w))) = tk(pa( ti(x)bky)).

Should a occur in ti(x)bk, then bk would not appear in w(i,a). So, it follows that

tk(pa( ti(x)bky)) = tk( ti(x)bk pa(y)) = pa(y). (3.16)

On the other hand, we have the equalities

w(k,a) = pa( tk(w)) = pa(y)
(3.16)
= tk(w(i,a)),

and so the desired relation (b) follows.
Now, we suppose that x = xn[

qn−1xn−1 · · · [q1x1[
q0x0 and bky = y0]

q0y1]
q1 · · ·yn−1]

qn−1yn, where all
the x j’s and y j’s are possibly empty well-parenthesized words, for j = 0, . . . ,n. We note that, since
k ∈ cN(w(i,a)) = cN(pa( ti(w))), Lemma 3.30 yields the equalities

tk(w(i,a)) = tk(pa( ti(w))) = pa( tk( ti(w))). (3.17)

With that in mind, we start by computing the elements tk(w) and tk( ti(w)). Let

x⃗ = (x0,x1, . . . ,xn,ε,ε, . . .);

y⃗ = (y0,y1, . . . ,yn,ε,ε, . . .);

q⃗ = (q0,q1, . . . ,qn−1,0,0, . . .)

and let ℓ ∈ {0,1, . . . ,n} be such that i ∈ cN(xℓyℓ). Noticing that w = µn(⃗x, y⃗, q⃗), k belongs to cN(y0),
and using Lemma 3.31 we obtain

tk(w) = tk(µ0(⃗x, y⃗, q⃗)) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)

= tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗) (3.18)
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Now, we have two possible situations.

(i) i ∈ cN(xℓ), for a certain ℓ ∈ {0, . . . ,n};

(ii) i ∈ cN(yℓ), for a certain ℓ ∈ {n, . . . ,0}.

If we are in Case (i), then we may use Corollary 3.32 and get

tk( ti(w)) = tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξn−2(⃗x, y⃗, q⃗) ·ξn−1(⃗x, y⃗, q⃗).

Hence, we have an equality between tk(w(i,a)) = pa( tk( ti(w))) and w(k,a) = pa( tk(w)), thereby
proving (b).

On the other hand, when the situation occurring is (ii), Corollary 3.33 yields

tk( ti(w)) = tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗)

· [qℓ−2
µℓ(⃗x, y⃗, q⃗)]qℓ−2yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗).

If the first occurrence of a in tk(ti(w)) is in tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗) or in µℓ(⃗x, y⃗, q⃗),
then the first occurrence of a in tk(w) is also in one of these factors and we easily conclude that

pa( tk( ti(w))) = pa( tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗) ·µℓ(⃗x, y⃗, q⃗)) = pa( tk(w)),

thereby proving again an equality in (b).

Otherwise, the first occurrence of a in tk( ti(w)) is in yℓ+1 · ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗). Ana-
lyzing the equality (3.18), we deduce that a occurs for the first time in tk(w) also in the factor
yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗). Then, we may compute

pa( tk( ti(w))) = tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗) · [qℓ−2
µℓ(⃗x, y⃗, q⃗)]qℓ−2

· pa(yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)) (3.19)

pa( tk(w)) = tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗) · [qℓ−1
µℓ(⃗x, y⃗, q⃗)]qℓ−1

· pa(yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)). (3.20)

Moreover, using again Lemma 3.31, we obtain

w(i,a) = pa( ti(w)) = pa( ti(µn(⃗x, y⃗, q⃗)))

= pa( ti(µℓ(⃗x, y⃗, q⃗)) ·ξℓ(⃗x, y⃗, q⃗) ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗))

= pa( ti(yℓ) ·ξℓ(⃗x, y⃗, q⃗) ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗))

= ti(yℓ)[qℓ−1
µℓ(⃗x, y⃗, q⃗)]qℓ−1

· pa(yℓ+1ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)) since a /∈ cA(µℓ(⃗x, y⃗, q⃗))

= ti(yℓ)[qℓ−1xℓ[qℓ−1xℓ−1[
qℓ−2 · · · [q0x0y0]

q0 · · · ]qℓ−2yℓ−1]
qℓ−1yℓ]qℓ−1

· pa(yℓ+1ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)) (3.21)
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Since bk is the principal marker of w(i,a), we know that the following inclusion holds:

cA(y0y1 · · ·yℓ · pa(yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)))⊆ cA( ti(yℓ)xℓ · · ·x0bk).

Also, by definition of µℓ(⃗x, y⃗, q⃗), we have an inclusion

cA( ti(yℓ)xℓ · · ·x0bk)⊆ cA(µℓ(⃗x, y⃗, q⃗)).

Consequently, we obtain

cA(pa(yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)))⊆ cA(µℓ(⃗x, y⃗, q⃗)).

Observing that

c⃗(η([qℓ−2
µℓ(⃗x, y⃗, q⃗)]qℓ−2)) = c⃗(η([qℓ−1

µℓ(⃗x, y⃗, q⃗)]qℓ−1)) = cA(µℓ(⃗x, y⃗, q⃗))

⊇ cA(pa(yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)))

= c(η(pa(yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)))), (3.22)

we end up with the desired relations, which are valid in DRH:

η( tk(w(i,a)))
(3.17),(3.19)

= η( tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗))

·η([qℓ−2
µℓ(⃗x, y⃗, q⃗)]qℓ−2) ·η(pa(yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)))

= η( tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗))

·η(µℓ(⃗x, y⃗, q⃗))ω+qℓ−2 ·η(pa(yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)))
(3.22)
R η( tk(y0) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξℓ−1(⃗x, y⃗, q⃗))

·η(µℓ(⃗x, y⃗, q⃗))ω+qℓ−1 ·η(pa(yℓ+1 ·ξℓ+1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗)))
(3.20)
= η(w(k,a)) = w(k,a).

We finally observe that we actually proved an equality in ΩAS rather than a relation modulo DRH,
except in the last situation. But that scenario only occurs when w(i,a) is regular modulo DRH. Indeed,
since bk ∈ c(y0) is the principal marker of w(i,a), from the equality (3.21), we may deduce that

c⃗(w(i,a)) = c(w(i,a)),

which by Proposition 2.15 implies that ρDRH(w(i,a)) is regular.

For a well-parenthesized word x over A×N, we consider the following property:

∀a,b ∈ A, ∀i ∈ N, ai,bi ∈ c(x) =⇒ a = b (H(x))
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Lemma 3.35 (cf. [25, Lemma 5.9]). Let x ∈ Dyck(A×N)\{ε} satisfy (H(x)) and suppose that ai is
a marker of x. Then, the following equality holds:

η(x) = η(pa(x) ·ai · ti(x)). (3.23)

Proof. We proceed by induction on |x|. If |x| = 1, then we have x = ai and so, pa(x) = ε = ti(x),
yielding the result. If |x|> 1, then we may write x = yaiz, with a /∈ cA(y). Since Property (H(x)) holds,
we also know that i /∈ cN(y). If y and z are both well-parenthesized words, then we have pa(x) = y
and ti(x) = z and we trivially get (3.23). Otherwise, none of y and z is well-parenthesized and we
may write y = y1 [

qy0 and z = z0]
qz1, with y1,z1 possibly empty well-parenthesized words and y0aiz0

a well-parenthesized word. Letting w = y0aiz0, noticing that ai being a marker of x implies that ai is
also a marker of w, and applying the induction hypothesis to w, we get

η(w) = η(pa(w) ·ai · ti(w)). (3.24)

On the other hand, we also have

pa(x) = y1 · pa(w) (3.25)

ti(x) = ti(w) · [q−1w]q−1 · z1. (3.26)

Thus, we obtain

η(x) = η(y1[
qw]qz1) = η(y1) ·η(w)ω+q ·η(z1)

(3.24)
= η(y1) ·η(pa(w) ·ai · ti(w)) ·η(w)ω+q−1 ·η(z1)

= η(y1 · pa(w)) ·a ·η( ti(w)) ·η(w)ω+q−1 ·η(z1)

(3.25)
= η(pa(x)) ·a ·η( ti(w) · [q−1w]q−1z1)

(3.26)
= η(pa(x) ·ai · ti(x)),

as desired.

Corollary 3.36 (cf. [25, Corollary 5.11]). Let w be a ⟨κ⟩-term. Let i ∈ N and a ∈ A⊎{#}, and let
bk be the principal marker of w(i,a). Suppose that lbf(w(i,a)) = (wℓ,m,wr). Then, m = b and DRH

satisfies wℓ = w(i,b), and wr R w(k,a). Moreover, if ρDRH(w(i,a)) is not regular, then we have an
equality lbf(w(i,a)) = (w(i,b),b,w(k,a)).

Proof. As bk is the principal marker of w(i,a), we can write w(i,a) = xbky, where cA(y)⊆ cA(xbk)

and b /∈ cA(x). Since (H(w(i,a))) holds, Lemma 3.35 yields

η(w(i,a)) = η(pb(w(i,a)) ·bk · tk(w(i,a))) = η(pb(w(i,a))) ·b ·η( tk(w(i,a))).

Furthermore, since b /∈ cA(x), we also have cA(pb(w(i,a))) = cA(x) and consequently, the left basic
factorization of w(i,a) is precisely (η(pb(w(i,a))),b,η( tk(w(i,a)))). In particular, we have m = b
and, by Lemma 3.34, the pseudovariety DRH satisfies wℓ = w(i,b) and wr R w(k,a), with an equality
in S in the latter relation when w(i,a) is not regular modulo DRH.
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Example 3.37. Consider w = (bω−1 · (a · c)) · ((a ·b) · (aω+1 ·b)ω)ω . In Example 3.27, we observed
that w = 00[

−1b1]
−1a2c3[

0a4b5[
0[1a6]

1b7]
0]0#8. We also calculated w(5,b) = [1a6]

1, which has a6

as a principal marker. Moreover, we have w(5,a) = ε and w(6,b) = [0a6]
0. Although w(5,b) is

regular over DRH, we still have an equality lbf(w(5,b)) = (w(5,a),a,w(6,b)). Let us now repeat
this process. The principal marker of w(6,b) is again a6. But now, lbf(w(6,b)) = (I,a,aω−1), while
(w(6,a),a,w(6,b)) = (I,a,aω).

3.3.3 Computing tails and prefixes of well-parenthesized words

In this subsection we show how one may effectively compute the elements w(i,a), that is, how to
represent them by a well-parenthesized word.

Recall that, by definition, w(i,a) = pa( ti(w)). We exhibit two algorithms: given a nonempty
well-parenthesized word x, Algorithm 3.1 computes the tail ti(x) (i ∈ cN(x)), and Algorithm 3.2
computes the prefix pa(x) (a ∈ cA(x)). Combining both, we may then compute w(i,a).

Although the projections πN(x) and πA(x) are only defined for x ∈ Dyck(A×N), we agree that
πN([

q) = q = πN(]
q), πA([

q) = [, and πA(]
q) = ].

Lemma 3.38. Algorithms 3.1 and 3.2 are correct and both run in O(|x|)-time. In particular, for every
x ∈ Dyck(A×N), i ∈ cN(x), and a ∈ cA(x), the well-parenthesized word x(i,a) may be calculated in
linear time.

Proof. Let x = x1 · · ·xn be a well-parenthesized word over A×N, i ∈ cN(x), and a ∈ cA(x).

We start by analyzing Algorithm 3.1. The first step is to scan the word until we find, for a certain
b ∈ A, the character bi (cycle while in lines 2–9), say that xk = bi. Meanwhile, we save in list L the
positions of the parentheses that were open but not closed, in the order they appear. After that, we
initialize the word y, that is intended to contain the final result ti(x) (line 10). Then, we continue
scanning the word, from the point where we found bi. Whenever the current position x j is not a
parentheses matching one of the parentheses recorded in L, we add the character x j to y (lines 14, 17,
and 20). Simultaneously, we update the counter m in order to control the number of pending open
brackets we read from xk (lines 15 and 18). In this way, we know that a certain parenthesis ]q closes
a parenthesis referenced in L if and only if m = 0. If that is the case, say that the current position is
x j = ]q and the last entry of L is ℓ (meaning that xℓ = [q is the parenthesis matching x j) then, according
to the rules to compute ti(x), we should add to y the word [q−1xℓ+1 · · ·x j−1]

q−1 (line 23).

To compute pa(x), in Algorithm 3.2, we just need to copy the original word until we get to a
letter a (line 3). The unique issue is that, we may end up with opened parenthesis that were not yet
closed. For this reason, we keep a register of the parentheses we find in the way (lines 4–8). At the
end, we erase the pending open brackets from our answer (line 11).

Finally, the linear time complexity comes from the fact that both algorithms only involve cycles
while and for, whose number of iterations is bounded above by the size n of the input x.
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Algorithm 3.1
Input: x = x1 · · ·xn ∈ Dyck(A×N) and i ∈ cN(x)
Output: ti(x)

1: k← 1, L← [ ]
2: while πN(xk) ̸= i or πA(xm) ∈ {[, ]} do
3: if πA(xk) = [ then
4: add k to the end of L
5: else if πA(xk) = ] then
6: delete the last entry of L
7: end if
8: k← k+1
9: end while

10: y← ε

11: m← 0
12: for j = k+1, . . . ,n do
13: if πA(x j) = [ then
14: y← yx j

15: m← m+1
16: else if πA(x j) = ] and m > 0 then
17: y← yx j

18: m← m−1
19: else if πA(x j) ̸= ] then
20: y← yx j

21: else
22: ℓ← last entry of L
23: y← y[q−1xℓ+1 · · ·x j−1]

q−1, where q = πN(xℓ)
24: delete the last entry of L
25: end if
26: end for
27: return y

Algorithm 3.2
Input: x = x1 · · ·xn ∈ Dyck(A×N) and a ∈ cA(x)
Output: pa(x)

1: k← 1, L← [ ], y← ε

2: while πA(xk) ̸= a do
3: y← yxk
4: if πA(xk) = [ then
5: add k to the end of L
6: else if πA(xk) = ] then
7: remove the last entry of L
8: end if
9: k← k+1

10: end while
11: y← word obtained when the m-letter is erased for each m ∈ L
12: return y
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3.4 DRH-graphs and their computation

We begin this section with the definition of a DRH-graph. Through these structures, we are able to
characterize when two pseudowords are R-equivalent over DRH. If we further assume that the word
problem is decidable in Ωκ

AH, then the word problem is decidable in Ωκ
ADRH as well.

Definition 3.39. Let w be a ⟨κ⟩-term. The DRH-graph of w is the finite DRH-automaton

G(w) = ⟨V (w),→,q(0,#),{ε},λH,λ ⟩,

defined as follows. The set of states is V (w) = {q(i,a) : 0≤ i < |w| , a ∈ cA(w) and w(i,a) ̸= I}⊎{ε}.
Given a state q(i,a) ∈ V (w) \ {ε}, let bk be the principal marker of w(i,a). The transitions of
q(i,a) are q(i,a).0 = q(i,b) and q(i,a).1 = q(k,a). The labels are λH(q(i,a)) = ρH(reg(w(i,b)))
and λ (q(i,a)) = b. If a state q(i,a) is not reached from the root q(0,#), then we discard it from V (w).

Remark 3.40. We point out that the DRH-graph G(w) rather than depending on the ⟨κ⟩-term w, it
depends on the well-parenthesized word w that w defines.

Example 3.41. Recall that w = 00[
−1b1]

−1a2c3[
0a4b5[

0[1a6]
1b7]

0]0#8, for the same w of Example 3.26.
The DRH-graph of w is drawn in Figure 3.7. The labels of the states are written in the second line

q(0,#)

(I,c)

q(0,c)

(bω−1,a)

q(0,a)

(I,b)

q(3,#)

(I,b)

q(5,#)

(a,b)

q(3,b)

(I,a)

ε

(I,ε)

q(1,a)

(I,b)

q(5,b)

(I,a)

q(6,b)

(I,a)

q(7,#)

(a,b)

q(7,b)

(I,a)

0

1

0

1

0
1

0

1

0

1

0 1

0
1

1

0 1
0

1

0

1
0

Fig. 3.7 DRH-graph of w = (bω−1 · (a · c)) · ((a ·b) · (aω+1 ·b)ω)ω .

of each state as a pair (λH(_),λ (_)). The reader may wish to compare this DRH-graph with the
equivalent DRH-automata in Figures 3.1 and 3.2.

The following result suggests that the construction of G(w) might be a starting point to solve the
κ-word problem over DRH algorithmically.

Proposition 3.42. For every ⟨κ⟩-term w, G(w) is a DRH-automaton equivalent to T(w(0,#)).
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Proof. Let T(w(0,#)) = ⟨V,→T,q,F,λT,H,λT⟩ and G(w) = ⟨V (w),→G,q(0,#),{ε},λG,H,λG⟩. We
first claim that, for every α ∈ Σ∗, we have

q(0,#).α = q(i,a) =⇒ T(w(0,#))q.α = T(w(i,a)). (3.27)

To prove this, we argue by induction on |α|. If |α| = 0, then the result holds trivially. Let α ∈ Σ∗

be such that |α| ≥ 1 and suppose that the result holds for every other shorter word α . We can write
α = βγ , with γ ∈ {0,1}. Let q(0,#).β = q(i,a). By induction hypothesis, it follows the equality
T(w(0,#))q.β = T(w(i,a)). Let bk be the principal marker of w(i,a). By definition of G(w), we have

q(0,#).β0 = q(i,b)

q(0,#).β1 = q(k,a).

On the other hand, Lemma 3.13 gives that if lbf(w(i,a)) = (wℓ,b,wr), then

T(w(i,a)) = (T(wℓ), reg(wℓ) | b,T(wr)),

which in turn, by Corollary 3.36, is equivalent to

T(w(i,a)) = (T(w(i,b)), reg(w(i,b)) | b,T(w(k,a))). (3.28)

In particular, we conclude that

T(w(0,#))q.β0 = T(w(i,b)) and T(w)q.β1 = T(w(k,a)).

It is now enough to notice that, for each pair (i,a) ∈ [0, |w| [× cA(w), the labels of the node q(i,a) of
G(w) and the labels of the root of T(w(i,a)) coincide. In fact, if bk is the principal marker of w(i,a),
then the construction of G(w) yields the equalities

λG(q(i,a)) = b

λG,H(q(i,a)) = ρH(reg(w(i,b)))

which, by (3.28), are precisely the labels of the root of T(w(i,a)).

Imagine we are given a κ-word and let w = aω+q be one of its representations as a ⟨κ⟩-term,
with q “very big”. Then, we have w = 00[

qa1]
q#2 and so, |w| = 3. Conceptually speaking, such a

κ-word involves a “large” number of implicit operations of κ but the length of its representation w
in Dyck(A×N) is just 3. Therefore, allowing any representation of κ-words, we would not be able
to get meaningful results for the efficiency of the forthcoming algorithms. Thus, it is reasonable to
require that all κ-words are presented as κ-terms. We make that assumption from now on.

Consider a κ-term w. We may assume that w is given by a tree. For instance, if

w = ((bω−1 ·a) · c) · ((a ·b) ·aω−1)ω−1,

then the tree representing w is depicted in Figure 3.8. Since from such a tree representation we
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•

•

•

•

b

a

c

•

•

•

a b

•

a

Fig. 3.8 The tree representing w = ((bω−1 ·a) · c) · ((a ·b) ·aω−1)ω−1.

may compute w in linear time, we assume that we are already given w. If the tree representing
w has n nodes then, following [25], we say that the length of w is |w| = n+ 1. It is clear that
O(|w|) = O(|w|). To actually compute the DRH-graph G(w) we essentially need to compute the
principal marker of the words w(i,a) as well as the regular parts of w(i,a). Almeida and Zeitoun [25]
exhibited an algorithm to compute the first occurrences of each letter of a well-parenthesized word x.
Given a word x, first(x) consists of a list of the first occurrences of each letter in x. For instance,
first([−1b1]

−1a2c3[
−1a4b5[

−1a6]
−1]−1) = [b1,a2,c3]. In particular, this computes the principal marker

of x: it is the last entry of the outputted list. Moreover, if bk is the principal marker of x, then the
penultimate entry of the list is the principal marker of pb(x), and so on. Hence, this is enough to
almost compute G(w). More precisely, the knowledge of first(w(i,a)), for every pair (i,a), allows us
to compute the reduct GR(w) = ⟨V (w),→,q(0,#),{ε},λ ⟩ in time O(|w| |c(w)|).

Lemma 3.43 ([25, Lemma 5.15]). Let w be a ⟨κ⟩-term. Then, one may compute in time O(|w| |c(w)|)
a table giving, for each i such there exists ai ∈ c(w)∩A×N, the word first(w(i,#)).

It remains to find the labels of the states under λH. For that purpose, we observe that the regular
part of a pseudoword u depends deeply on the content of the factors of the form lbfk(u), which we may
compute using Lemma 3.35; and of the cumulative content of u. Also, it follows from Lemma 3.10 and
from Proposition 3.42 that the cumulative content of any pseudoword of the form w(i,a) is completely
determined by the reduct GR(w). Thus, we may start by computing the cumulative content of w(i,a)
and then compare it with the content of lbfk(w(i,a)), for increasing values of k. When we achieve an
equality, we know what is the regular part of w(i,a). Algorithm 3.3 does that job. We assume that
we already have the table described in Lemma 3.43, so that, computing c(w(i,a)) and the principal
marker of w(i,a) takes O(1)-time. Further, we may assume that we are given GR(w), since we already
explained how to get it from the table of Lemma 3.43 in O(|w| |c(w)|)-time.

Lemma 3.44. Algorithm 3.3 returns I if and only if c⃗(w(i,a)) = /0. Otherwise, the value k outputted
is such that reg(w(i,a)) = w(k,a). Moreover, the algorithm runs in linear time, provided we have the
knowledge of first(w(i,a)).

Proof. By Property (A.3) of a DRH-automaton, and since there is only a finite number of possible
states in GR(w)q(i,a), either there exists k ≥ 0 such that q(i,a).1k = ε , or there exist n > k ≥ 0 such
that q(i,a).1k = q(i,a).1n. Therefore, the cycle while in line 2 does not run forever. If the occurring
situation is the former, then c⃗(G(w)q(i,a)) = /0. On the other hand, by Proposition 3.42, we have
G(w)q(i,a) ∼ T(w(i,a)) which in turn, by Theorem 3.12, implies π(G(w)q(i,a)) R w(i,a) modulo DRH.
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Algorithm 3.3
Input: A ⟨κ⟩-term w and (i,a) ∈ [0, |w| [× cA(w) (with w(i,a) ̸= ε)
Output: reg(w(i,a)) = I, if c⃗(w(i,a)) = /0 or k such that reg(w(i,a)) = w(k,a), otherwise

1: L←{}, j← i
2: while j /∈ L and w( j,a) ̸= ε do
3: j← πN(principal marker of w( j,a)) ◃ So that, if q( j,a).1 ̸= ε , then q( j,a)← q( j,a).1
4: L← L∪{ j}
5: end while
6: if w( j,a) = ε then
7: return I
8: else
9: C← c(w( j,a)) ◃ The set C is the cumulative content of w(i,a)

10: k← i
11: while cA(w(k,a)) ̸=C do
12: k← πN(principal marker of w(k,a))
13: end while
14: return k
15: end if

Also, Lemma 3.10 yields c⃗(w(i,a)) = c⃗(G(w)q(i,a)) = /0, and therefore, reg(w(i,a)) = I. This is the
case where the symbol I is returned in line 7.

Now, suppose that n > k ≥ 0 are such that q(i,a).1k = q(i,a).1n. Then, the cycle while is exited
because an index j is repeated. By Property (A.4), we have the following chain of inclusions:

λ (G(w)q(i,a).1k)⊇ λ (G(w)q(i,a).1k+1)⊇ ·· · ⊇ λ (G(w)q(i,a).1n).

As q(i,a).1k = q(i,a).1n, these inclusions are actually equalities, implying that k is greater than or
equal to r.ind(G(w)q(i,a)). Combining again Proposition 3.42, Theorem 3.12 and Lemma 3.10, we
may deduce that

c⃗(w(i,a)) = c⃗(G(w)q(i,a)) = λ (G(w)q(i,a).1k),

where the last member is precisely c(w( j,a)) provided that q(i,a).1k = q( j,a). Therefore, in line 9
we assign to C the cumulative content of w(i,a). Until now, since we are assuming that we are given
all the information about GR(w), we only spend time O(|w|), because that is the number of possible
values of j that may appear in line 2.

Let us prove that, if we get to line 9, then the value k outputted in line 14 is such that

reg(w(i,a)) = w(k,a).

We write
w(i,a) = lbf1(w(i,a)) · · · lbfm(w(i,a))w′m,

for every m ≥ 1 (notice that lbfm(w(i,a)) is defined for all m ≥ 1 because we are assuming that
c⃗(w(i,a)) ̸= /0). Then, the regular part of w(i,a) is given by w′ℓ, where

ℓ= min{m : c(w′m) = c⃗(w(i,a))}.
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In particular, the projection of w′m onto ΩADRH is not regular, for every m < ℓ. Set (c0,k0) = (a, i)
and, for m≥ 0, let (cm+1,km+1) be the principal marker of w(km,a). By Corollary 3.36, if w(km,a) is
not regular modulo DRH, then we have lbf(w(km,a)) = (w(km,cm+1),cm+1,w(km+1,a)). Therefore,
the equality w′m = w(km,a) holds, for every m≤ ℓ. Thus, the value k returned in line 14 is precisely
kℓ, implying that reg(w(i,a)) = w(k,a) as intended.

Since there are only O(|w|) possible values for k and we are assuming that we already know
first(w(i,#)) for all i ∈ [0, |w| [, it follows that lines 8–15 run in time O(|w|).

Therefore, the overall time complexity of Algorithm 3.3 is O(|w|).

So far, we possess all the needed information for computing G(w). However, it is not reasonable to
assume that, given a certain state v ∈V (w), to know that λH(v) = ρH(w(i,a)) is the same as actually
knowing a representation of λH(v). A much more reasonable way of describing the label λH of G(w)
is by means of well-parenthesized words. Algorithms 3.1 and 3.2 together do that job time linearly
on |w|.

Theorem 3.45. Given a κ-term w, it is possible to compute the DRH-graph of w in time O(|w|2 |c(w)|).

Proof. We already observed that GR(w) may be computed in O(|w| |c(w)|)-time. In fact, this is a
consequence of [25, Theorem 5.16]. In order to completely determine G(w), it remains to compute the
labels of the form λH(_). Since each one of these labels is of the form ρH(reg(w(i,a))), for a certain
pair (i,a) computed in constant time, by Lemmas 3.38 and 3.44, that computation may be done taking
O(|w|) operations for each state. Therefore, the overall complexity is O(|w|2 |c(w)|).

The next question we should answer is how can we decide whether two DRH-graphs G(u) and G(v)
represent the same R-class of ΩADRH, that is, whether G(u)∼ G(v). A possible strategy consists in
visiting states in both DRH-graphs, comparing their labels (in a certain order). When we find a pair
of mismatching labels, we stop, concluding that G(u) and G(v) are not equivalent. Otherwise, we
conclude that they are equivalent after visiting all the states. More precisely, starting in the roots of
G(u) and G(v), we mark the current states, say qu ∈V (u) and qv ∈V (v), as visited, and then repeat
the process relatively to the pairs of DRH-automata (G(u)qu.0,G(v)qv.0) and (G(u)qu.1,G(v)qv.1). For a
better understanding of the procedure, we sketch it in Algorithm 3.4.

Lemma 3.46. Algorithm 3.4 returns the logical value of “G1 ∼ G2” for two input DRH-graphs G1

and G2. Moreover, it runs in time O(pmax{|V1| , |V2|}), where p is such that the word problem modulo
H for any pair of labels λ1,H(v1) and λ2,H(v2) (with v1 ∈V1 and v2 ∈V2) may be solved in time O(p).

Proof. The correctness follows straightforwardly from the definition of the relation ∼. On the other
hand, it runs in time O(pmax{|V1| , |V2|}), since each call of the algorithm takes time O(p) (line 5)
and each pair of states of the form (q1.α , q2.α) is visited exactly once.

Given ⟨κ⟩-terms u and v, we use p(u,v) to denote a function depending on some parameters
associated with u and v (that may be, for instance, |u|, |v| or c(u), c(v)) and such that, the time for
solving the word problem over H for any pair of factors of the form u(i,a) and v( j,b) is in O(p(u,v)).
Observe that such a function is not unique, but the results we state are valid for any such function.
Then, summing up the time complexities of all the intermediate steps considered above, we have just
proved the following result.
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Algorithm 3.4
Input: two DRH-graphs G1 = ⟨V1,→1,q1,λ1,H,λ1⟩ and G2 = ⟨V2,→2,q2,λ2,H,λ2⟩
Output: logical value of “G1 ∼ G2”

1: if q1 = ε then
2: return logical value of “q2 = ε”
3: else if q1 or q2 is unvisited then
4: mark q1 and q2 as visited
5: if λ1,H(q1) = λ2,H(q2) and λ1(q1) = λ2(q2) then
6: return logical value of “(G1)q1.0 ∼ (G2)q2.0 and (G1)q1.1 ∼ (G2)q2.1”
7: else
8: return False
9: end if

10: else
11: return logical value of “(λ1,H(q1),λ1(q1)) = (λ2,H(q2),λ2(q2))”
12: end if

Theorem 3.47. Let H be a κ-recursive pseudovariety of groups and let u and v be κ-terms. Then, the
equality of the pseudowords represented by u and v over DRH can be tested in O((p(u,v)+m)m |A|)-
time, where m = max{|u| , |v|}.

Observe that, in general, the complexity of an algorithm for solving the κ-word problem modulo H

should depend on the length of the intervening ⟨κ⟩-terms. It is not hard to see that the length of
the factors w(i,a) grows quadratically on |w| (we prove it below in Corollary 3.52). Hence, it is
expected that, at least in most of the cases, m belongs to O(p(u,v)). Consequently, the overall time
complexity stated in Theorem 3.47 becomes O(p(u,v)m |A|). Since we are doing the same approach
as in [25], this result is somehow the expected one. Roughly speaking, this may be interpreted as the
time complexity of solving the word problem in R, together with a word problem in H for each state,
that is, for each DRH-factor of the involved pseudowords (recall Lemmas 2.32 and 3.20).

Just as a complement, we mention that another possible approach would be to transform the
DRH-graph G(w) in an automaton in the classical sense, say G′(w), recognizing the language L(w)
(recall Proposition 3.15). That is easily done (time linear on the number of states), by moving the
labels of a state to the arrows leaving it. More precisely, the automaton G′(w) shares the set of states
with G(w) and each non terminal state q(i,a) has two transitions:

q(i,a).(0,λH(q(i,a)),λ (q(i,a))) = q(i,1).0,

q(i,a).(1, I,λ (q(i,a))) = q(i,a).1.

Then, we could use the results in the literature in order to minimize the automaton, obtaining a unique
automaton representing each R-class of (ΩADRH)

I . The unique issue in that approach is that the
algorithms are usually prepared to deal with alphabets whose members may be compared in constant
time. Hence, we should previously prepare the input automaton by renaming the subset of the alphabet
Σ× (ΩAH)

I×A, in which the labels of transitions are being considered. Let p(u,v) and m have the
same meaning has in Theorem 3.47. Since, a priori, we do not possess any information about the
possible values for λH, that would take O(p(u,v)(m |A|)2)-time (each time we rename an element of
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(ΩAH)
I we should first verify whether we already encountered another element with the same value

over H). Thereafter, we could use the linear time algorithm presented in [26], which works for this
kind of automaton.1 Thus, a rough upper bound for the complexity of this method is O(p(u,v)m2 |A|2),
which although a bit worse, is still polynomial.

In particular, Theorem 3.47 establishes that a pseudovariety of groups H being κ-recursive suffices
for DRH to have the same property. Then, it is natural to ask whether the converse holds. It is not
hard to see that if DRH is κ-recursive, then so is H. In fact, that is a result of any pair of κ-terms u
and v being equal over H if and only if the κ-terms (uv)ωu and (uv)ωv coincide over DRH (recall
Corollary 2.20).

Proposition 3.48. Let H be a pseudovariety of groups. If the pseudovariety DRH is κ-recursive, then
so is H.

The following result gives us a family of pseudovarieties of the form DRH that are κ-recursive.

Corollary 3.49. Let p be a prime number. If H ⊇ Gp is a pseudovariety of groups, then DRH is
κ-recursive.

Proof. Since the free group is residually in Gp [29], it follows that it is also residually in any
pseudovariety of groups containing Gp. Consequently, FGA = Ωκ

AH and so, H is κ-recursive. The
final conclusion is a consequence of Theorem 3.47.

3.5 An application: solving the word problem over DRG

Let us illustrate the previous results by considering the particular case of the pseudovariety DRG. By
Theorem 3.47, the time complexity of our procedure for testing identities of κ-words modulo DRG

depends on a certain parameter p(_,_). In order to discover that parameter, we should first analyze the
(length of the) projection onto Ωκ

AG= FGA of the elements of the form w(i,a), where w is an κ-term.
Consider the alphabets B1 = (A×N)⊎{[−1, ]−1} and B2 = (A×N)⊎{[−1, [−2, ]−1, ]−2}. Let x

be a well-parenthesized word over B2. The expansion of x is the well-parenthesized word exp(x)
obtained by successively applying the rewriting rule [−2y]−2→ [−1y]−1[−1y]−1, whenever y is a well-
parenthesized word. It is clear that om(x) and om(exp(x)) represent the same κ-word and that x is a
well-parenthesized word over B1. Further, we have the following.

Lemma 3.50. Let x be a nonempty well-parenthesized word over B1 and i ∈ cN(x). Then, ti(x) is a
well-parenthesized word over B2 and |exp( ti(x))| ≤ 1

2(|x|
2 +2 |x|−3). Moreover, this upper bound is

tight for all odd values of |x|.

Proof. The fact that ti(x) is a well-parenthesized word over B2 follows immediately from the definition
of ti. To prove the inequality, we proceed by induction on |x|. If x = ai, then ti(x) is the empty
word and so, the result holds. Let x be a well-parenthesized word over B1 such that |x| > 1. The
inequality holds clearly, unless x is of the form x = [−1y]−1z, with y and z well-parenthesized words

1 The referred algorithm applies to disjoint cycle automata. This is our case, since all transitions of a cycle in a
DRH-automaton must be 1.
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over B1, y nonempty and i ∈ cN(y). In that case, we have ti(x) = ti(y)[−2y]−2z. Therefore, we have
the following (in)equalities:

|exp( ti(x))|=
∣∣∣exp( ti(y)[−2y]−2z)

∣∣∣
= |exp( ti(y))|+

∣∣∣[−1y]−1[−1y]−1z
∣∣∣

= |exp( ti(y))|+2(|y|+2)+ |z|

≤ 1
2
(|y|2 +2 |y|−3)+2(|y|+2)+ |z| by induction hypothesis on y

=
1
2
(|y|2 +2 |y|−3)+ |y|+2+ |x| because |x|= |y|+ |z|+2

=
1
2
((|y|+2)2−7)+2+ |x|

≤ 1
2
((|x|−2+2)2−7)+2+ |x| because the quadratic function (|y|+2)2 is strictly

increasing for |y| ≥ 1 and |y| is, at most, |x|−2

=
1
2
(|x|2 +2 |x|−3).

Finally, let x⃗ = (a1,ε,ε, . . .), y⃗ = (ε,ε, . . .), q⃗ = (−1,−1, . . .) and u2n+1 = µn(⃗x, y⃗, q⃗) (recall the
notation used in Lemma 3.31). Then, u2n+1 is a well-parenthesized word over B1 of length 2n+1.
Moreover, using Lemma 3.31, we may compute

|exp( t1(u2n+1))|= |exp( t1(µ0(⃗x, y⃗, q⃗)) ·ξ0(⃗x, y⃗, q⃗) ·ξ1(⃗x, y⃗, q⃗) · · ·ξn−1(⃗x, y⃗, q⃗))|
=
∣∣exp([−2

µ0(⃗x, y⃗, q⃗)]−2 · [−2
µ1(⃗x, y⃗, q⃗)]−2 · · · [−2

µn−1(⃗x, y⃗, q⃗)]−2)∣∣
=

n−1

∑
k=0

2(|µk(⃗x, y⃗, q⃗)|+2)

= 2n2 +4n because |µk(⃗x, y⃗, q⃗)|= 2k+1

=
1
2
(|u2n+1|2 +2 |u2n+1|−3) substituting n by

1
2
(|u2n+1|−1)

and the result follows.

Also, as a straightforward consequence of the definition of pa, the following holds.

Lemma 3.51. Let x be a nonempty well-parenthesized word over B1 and a ∈ A. Then, pa(x) is also a
well-parenthesized word over B1 and |exp(pa(x))|= |pa(x)| ≤ |x|.

Given a well-parenthesized word x over B2, we define the linearization over A of x to be the word
lin(x) over the alphabet A⊎A−1 obtained by applying the rewriting rules [−1ai]

−1→ a−1, [−1yz]−1→
[−1z]−1[−1y]−1 and [−2y]−2→ [−1y]−1[−1y]−1 to x (with ai ∈ c(x) and y, z well-parenthesized words).
It is easy to see that lin(x) = lin(exp(x)) and that if x is a well-parenthesized word over B1, then
O(|lin(x)|) = O(|x|). Consequently, we have the next result.

Corollary 3.52. Let w be an κ-term and (i,a) ∈ [0, |w| [× cA(w). Then, |lin(w(i,a))| belongs to
O(|w|2).
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Proof. First, we note that, since the representation of w only makes use of multiplications and
(ω−1)-powers, w is a well-parenthesized word over B1. Using Lemmas 3.50 and 3.51, it follows that
|exp(w(i,a))| ∈ O(|w|2). On the other hand, we already observed that lin(w(i,a)) = lin(exp(w(i,a)))
and O(|lin(exp(w(i,a))|) = O(|exp(w(i,a)|), resulting that |lin(w(i,a))| ∈ O(|w|2) as desired.

Now, we wish to compute lin(x), for a given well-parenthesized word over B2. Recall the tree
representation of κ-terms exemplified in Figure 3.8. We may recover, in linear time, such a tree
representation for om(x), for a well-parenthesized word x over B1. Furthermore, if we are given
a well-parenthesized word over B2, we may compute, also in linear time, a tree representation for
om(exp(x)). That amounts to, whenever we have a factor of the form [−2y]−2 in x, to include twice a
subtree representing [−1y]−1.

Example 3.53. Let z = ((bω−2 ·a) · c) · ((a ·b) ·aω−1)ω−2 be the ⟨κ⟩-term obtained by substituting in
the κ-term w represented in Figure 3.8 some of the (ω−1)-powers by an (ω−2)-power. Then, the
tree representation of z is drawn in Figure 3.9.
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Fig. 3.9 Tree representation of z = ((bω−2 ·a) · c) · ((a ·b) ·aω−1)ω−2.

On the other hand, since solving the word problem in FGA (for words written over the alphabet
A∪A−1) is a linear issue in the size of the input, by Corollary 3.52, we may take the parameter
p(u,v) = max{|u|2 , |v|2}. Thus, we have proved the following.

Proposition 3.54. The κ-word problem over DRG is decidable in O(m3 |A|)-time, where m is the
maximum length of the inputs.



Chapter 4

Reducibility of DRH with respect to
certain classes of systems of equations

Since the pseudovariety DRH depends deeply on the pseudovariety of groups H, it is a natural question
to ask how that dependency translates in terms of reducibility properties. More formally, let ∆ and Ξ

be two classes of finite systems of equations and σ an implicit signature. We would like to answer the
following:

Question 1. Does H being σ -reducible for ∆ implies that DRH is σ -reducible for Ξ?

Question 2. Does DRH being σ -reducible for ∆ implies that H is σ -reducible for Ξ?

As some results are known about reducibility of pseudovarieties of groups, answers to Questions 1
and 2 allow us to deduce information about pseudovarieties DRH. Of course, ideally, the class ∆

should not include “too many” systems while we aim the class Ξ to be as “big” as possible.
From now on, we fix a continuous homomorphism ϕ : (ΩAS)

I → SI into a finite semigroup SI

with a content function such that ϕ−1(I) = {I}, a finite set of variables X and a map ν : X → S. We
further fix an implicit signature σ .

4.1 Pointlike equations

Throughout this section, we shall assume that σ contains a non-explicit operation. In other words,
that means that ⟨σ⟩ ̸= ⟨{_ ·_}⟩. Clearly, that is the case of the canonical implicit signature κ .

Propositions 2.4 and 2.9 motivate us to take for Ξ the class of all finite systems of pointlike
equations. To guarantee that DRH is σ -reducible for Ξ, it suffices to suppose that H is σ -reducible
for ∆ = Ξ as well.

Theorem 4.1. Let σ be an implicit signature containing a non-explicit operation, and assume that H
is a pseudovariety of groups that is σ -reducible for finite systems of pointlike equations. Then, the
pseudovariety DRH is also σ -reducible for finite systems of pointlike equations.

Proof. Let S= {xk,1 = · · ·= xk,nk}N
k=1 be a finite system of pointlike equations in the set of variables X

with constraints given by the pair (ϕ,ν). Without loss of generality, we may assume that, for all

59
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k, ℓ ∈ {1, . . . ,N}, with k ̸= ℓ, the subsets of variables {xk,1, . . . ,xk,nk} and {xℓ,1, . . . ,xℓ,nℓ} do not
intersect. Further, with this assumption, we may also take N = 1. The general case is obtained by
treating each system of equations xk,1 = · · ·= xk,nk separately. Write S= {x1 = · · ·= xn} and suppose
that the continuous homomorphism δ : ΩXS→ (ΩAS)

I is a solution modulo DRH of S. To prove that
S also has a solution in σ -words we argue by induction on m = |c(δ (x1))|.

If m = 0, then δ (xi) = I for every i = 1, . . . ,n and δ is already a solution in σ -words.

Suppose that m > 0 and that the statement holds for every system of pointlike equations with a
smaller value of the parameter. Whenever the p-th iteration of the left basic factorization of δ (xi) is
nonempty, we write lbf p(δ (xi)) = δ (xi)pai,p and we let δ (xi)

′
p be such that

δ (xi) = lbf1(δ (xi)) · · · lbf p(δ (xi))δ (xi)
′
p.

Notice that the uniqueness of left basic factorizations in ΩADRH entails the following properties

a1,p = · · ·= an,p;

δ (x1)p =DRH · · ·=DRH δ (xn)p;

δ (x1)
′
p =DRH · · ·=DRH δ (xn)

′
p.

(4.1)

If c⃗(δ (x1)) ̸= c(δ (x1)), then we set k = ℓ= min{p≥ 1: c(δ (x1)
′
p)$ c(δ (x1))}. Otherwise, since S

is finite, there exist indices k < ℓ such that, for all i = 1, . . . ,n, we have

ϕ(lbf1(δ (xi)) · · · lbfk(δ (xi))) = ϕ(lbf1(δ (xi)) · · · lbfℓ(δ (xi))). (4.2)

Let η ∈ ⟨σ⟩ be a non-explicit operation. Without loss of generality, we may assume that η is a unary
operation. In particular, since S is finite, there is an integer M such that η(s) = sM for every s ∈ S.
Then, equality (4.2) yields

ϕ(δ (xi)) = ϕ(lbf1(δ (xi)) · · · lbfk(δ (xi)) ·η(lbfk+1(δ (xi)) · · · lbfℓ(δ (xi)))δ (xi)
′
k). (4.3)

Now, consider a new set of variables X ′ = {xi,p,x′i : i = 1, . . . ,n; p = 1, . . . , ℓ} and a new system of
pointlike equations

S′ =

{x1,p = · · ·= xn,p}ℓp=1∪{x′1 = · · ·= x′n}, if c⃗(δ (x1)) ̸= c(δ (x1))

{x1,p = · · ·= xn,p}ℓp=1, if c⃗(δ (x1)) = c(δ (x1))
(4.4)

By (4.1), the continuous homomorphism δ ′ : ΩX ′S→ (ΩAS)
I assigning δ (xi)p to each variable xi,p

and δ (xi)
′
ℓ to each variable x′i is a solution modulo DRH of S′, with constraints given by (ϕ,ν ′), where

ν ′(xi,p) = ϕ(δ (xi)p), and ν ′(x′i) = ϕ(δ (xi)
′
k) (i = 1, . . . ,n and p = 1, . . . , ℓ). Moreover, whatever is the

system S′ considered in (4.4), we decreased the induction parameter. By induction hypothesis, there
exists a solution modulo DRH of S′ in σ -words, say ε ′, keeping the values of the variables under ϕ .
We distinguish between the case where c⃗(δ (x1)) ̸= c(δ (x1)) and the case where c⃗(δ (x1)) = c(δ (x1)).
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In the former, it is easy to check that the continuous homomorphism

ε : ΩXS→ (ΩAS)
I

xi 7→ ε
′(xi,1)ai,1 · · ·ε ′(xi,ℓ)ai,ℓε

′(x′i)

is a solution modulo DRH of S. In the latter case, we consider the system of pointlike equations

S0 = {x′1 = · · ·= x′n}.

From (4.1), it follows that δ ′ is a solution modulo H of S0. As we are taking for H a pseudovariety
that is σ -reducible for systems of pointlike equations, there exists a solution modulo H of S0, say ε ′′,
keeping the values of the variables under ϕ . Let ε : ΩXS→ (ΩAS)

I be given by

ε(xi) = ε
′(xi,1)ai,1 · · ·ε ′(xi,k)ai,k ·η(ε ′(xi,k+1)ai,k+1 · · ·ε ′(xi,ℓ)ai,ℓ)ε

′′(x′i).

Since ε ′ is a solution modulo DRH of S′, η is non-explicit, and we are assuming that the semigroup S
has a content function, it follows that, for all i, j ∈ {1, . . . ,n}, the pseudowords ε(xi) and ε(x j) are
R-equivalent modulo DRH. On the other hand, for all i, j ∈ {1, . . . ,n}, the following equalities are
valid in H:

ε(xi) = ε
′(xi,1)ai,1 · · ·ε ′(xi,k)ai,k ·η(ε ′(xi,k+1)ai,k+1 · · ·ε ′(xi,ℓ)ai,ℓ)ε

′′(x′i)

= ε
′(x j,1)a j,1 · · ·ε ′(x j,k)a j,k ·η(ε ′(x j,k+1)a j,k+1 · · ·ε ′(x j,ℓ)a j,ℓ)ε

′′(x′j)

= ε(x j).

The second equality holds because ε ′ and ε ′′ are solutions modulo H of S′ and S0, respectively.
Therefore, Lemma 2.32 yields that DRH satisfies ε(xi) = ε(x j). It remains to verify that the given
constraints are still satisfied. But that is straightforwardly implied by (4.3).

Remark 4.2. We observe that the construction performed in the proof of the previous theorem not
only gives a solution modulo DRH in σ -terms of the original pointlike system of equations, but it also
provides a solution keeping the cumulative content of each variable.

As a consequence of Proposition 2.9 and Theorem 4.1, we have the following.

Corollary 4.3. If a pseudovariety of groups H is σ -reducible with respect to the equation x = y, then
the pseudovariety DRH is σ -equational.

As far as we are aware, all known examples of pseudovarieties of groups that are σ -reducible
with respect to systems of pointlike equations are also σ -reducible. For that reason, for now, we skip
such examples, since they illustrate stronger results in the next section. We just point out the case
of the pseudovariety Ab (recall Theorem 2.11). It is interesting to observe that, although Ab is not
κ-equational [20, Theorem 3.1], by Corollary 4.3 the pseudovariety DRAb= DRG∩Ab is.

On the other hand, taking into account the results of the previous chapter, we also have the
following.
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Corollary 4.4. If H is a pseudovariety of groups that is κ-tame with respect to finite systems of
pointlike equations, then so is DRH.

Proof. Let H be a pseudovariety of groups κ-tame with respect to systems of pointlike equations.
Then, Theorem 3.47 yields that DRH is κ-recursive and Theorem 4.1 yields that DRH is κ-reducible
with respect to systems of pointlike equations. Hence, the pseudovariety DRH is κ-tame for systems
of pointlike equations.

Since, by Theorem 2.10, κ-tame pseudovarieties are hyperdecidable (with respect to a certain
class C), another application comes from Proposition 2.6 and Theorem 2.7.

Corollary 4.5. Let H be a pseudovariety of groups that is κ-tame with respect to systems of pointlike
equations. Then,

• DRH∗V is strongly decidable for every order-computable pseudovariety V;

• DRH∨V is strongly decidable for every order-computable pseudovariety V.

Still, we were not able to answer Question 2 for an arbitrary “nice” ∆. Nevertheless, we may
prove that if we take for ∆ the class of all finite systems of graph equations, then the answer becomes
positive. We do not include that result here, since it appears as a particular case of a result in the next
section, namely Proposition 4.15.

4.2 Graph equations

With the aim of proving tameness, we now let Ξ be the class of all systems of graph equations. Results
on tameness of DRH also allow us to know more about pseudovarieties of the form V ∗DRH and
DRH∨V for certain pseudovarieties V (recall Theorems 2.5 and 2.7). We prove that, for an implicit
signature σ containing a non-explicit operation, if H is a σ -reducible pseudovariety of groups, then
so is DRH. To this end, we drew inspiration from [9]. Moreover, we assert the converse statement,
which holds for every σ , thus answering Question 2.

Henceforth, we fix a finite graph Γ =V ⊎E and a solution δ : ΩΓS→ (ΩAS)
I modulo DRH of

S(Γ) such that, for every x ∈ Γ the pseudoword δ (x) belongs to the clopen subset Kx of (ΩAS)
I .

Let y be an edge of Γ, and let x = α(y) and z = ω(y). If c(δ (y))* c⃗(δ (x)) then, by Corollary 2.14,
we have unique factorizations δ (y) = uyavy and δ (z) = uzavz such that c(uy)⊆ c⃗(δ (x)), a /∈ c⃗(δ (x))
and the pseudovariety DRH satisfies both δ (x)uy = uz and vy = vz. We refer to these factorizations as
direct DRH-splittings associated with the edge y and we say that a is the corresponding marker. We
call direct DRH-splitting points the triples (uy,a,vy) and (uz,a,vz).

The first remark spells out the relationship between the notion of a DRH-splitting factorization
defined above and the notion of a splitting factorization in the context of [9] (in [9], a splitting
factorization is defined as being an R-splitting factorization). It is a consequence of Corollary 2.14(b)
applied to the pseudovariety DRH and to the pseudovariety R.

Remark 4.6. Let y ∈ E be such that c(δ (y)) * c⃗(δ (α(y))). Consider factorizations δ (y) = uyavy

and δ (ω(y)) = uzavz, with c(uy) ⊆ c⃗(δ (α(y))) and a /∈ c⃗(δ (α(y))), such that δ (α(y))uy =DRH uz,
as above. Then, these factorizations are direct R-splittings (note that δ is also a solution modulo
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R of S(Γ) and so, it makes sense to refer to R-splitting factorizations) if and only if they are direct
DRH-splittings.

We also define the indirect DRH-splitting points as follows. Let t ∈ Γ and suppose that we have a
factorization δ (t) = utavt , with a /∈ c⃗(ut). Then, one of the following three situations may occur.

• If there is an edge y ∈ E such that α(y) = t and ω(y) = z, then there is also a factorization
δ (z) = uzavz with DRH satisfying ut = uz and vtδ (y) = vz. In fact, this is a consequence of the
pseudoidentity δ (t)δ (y) = δ (z) modulo DRH, which holds for every edge t

y−→ z in Γ.

• Similarly, if there is an edge y ∈ E such that α(y) = x and ω(y) = t (and so, DRH satisfies
δ (x)δ (y) = δ (t)), then the factorization of δ (t) yields either a factorization δ (x) = uxavx such
that DRH satisfies ux = ut and vxδ (y) = vt , or a factorization δ (y) = uyavy such that DRH
satisfies δ (x)uy = ut and vy = vt .

• On the other hand, if t is itself an edge, say α(t) = x and ω(t) = z, and if δ (x)uta is an end-
marked pseudoword, then the factorization of δ (t) determines a factorization δ (z) = uzavz,
such that DRH satisfies δ (x)ut = uz and vt = vz.

These considerations make clear the possible propagation of the DRH-direct splitting points. If
the mentioned factorization of δ (t) comes from a DRH-(in)direct splitting factorization obtained
through the successive factorization of the values of edges and vertices under δ in the way described
above, then we say that each of the triples (ux,a,xx), (uy,a,vy) and (uz,a,vz) is an indirect DRH-
splitting point induced by the (in)direct DRH-splitting point (ut ,a,vt). In Figure 4.1 we schematize a
propagation of splitting points arising from the direct DRH-splitting point associated with the edge y1.
We represent pseudowords by boxes, markers of splitting points by dashed lines and factors with the
same value modulo DRH with the same filling pattern.

δ (x1) =

δ (y1) =

δ (x2) = δ (x3) =

δ (y2) =

δ (x4) =

δ (y3) =

Fig. 4.1 Example of propagation of a direct splitting point.

Yet again, we obtain a nice relationship between the indirect DRH-splitting points just defined and
the indirect splitting points introduced in [9] (which are the indirect R-splitting points). The reason is
precisely the same as in Remark 4.6, together with the definition of indirect splitting points.

Remark 4.7. Let t0 ∈ Γ and δ (t0) = u0av0 be a direct R-splitting factorization and consider a subset
{(ui,a,vi)}n

i=1 ⊆ (ΩAS)
I×A× (ΩAS)

I . Then, the following are equivalent:

(a) (ui,a,vi) is an indirect R-splitting point induced by (ui−1,a,vi−1), for every i = 1, . . . ,n;

(b) (ui,a,vi) is an indirect DRH-splitting point induced by (ui−1,a,vi−1), for every i = 1, . . . ,n.



64 Reducibility of DRH with respect to certain classes of systems of equations

The following lemma ensures that a direct R-splitting point does not propagate infinitely many
times.

Lemma 4.8 ([9, Lemma 5.14]). Given a solution δ over R of a system of graph equations, there is
only a finite number of splitting points in the values of variables under δ .

As an immediate consequence of Lemma 4.8 and of the relationship between (in)direct R-splitting
points and (in)direct DRH-splitting points made explicit in Remarks 4.6 and 4.7 we have the following:

Corollary 4.9. Given a solution δ over DRH of a system of graph equations, there is only a finite
number of splitting points in the values of variables under δ .

Taking into account Remarks 4.6 and 4.7, from now on we say (in)direct splitting point (respec-
tively, factorization) instead of (in)direct DRH-splitting point (respectively, factorization).

Let Γ be a finite graph and consider the system of equations S(Γ). For each variable x ∈ Γ, let
{(ux,i,ax,i,vx,i)}mx

i=1 be the (finite) set of splitting points of δ (x). By definition, each pseudoword ux,iax,i

is an end-marked prefix of δ (x). By Proposition 2.21, we may assume, without loss of generality, the
following relations:

ux,1 >R ux,2 >R · · ·>R ux,mx .

Hence, we have a reduced factorization (because the first letter of δ (x)[αux,k ,αux,k+1 [ is ax,k)

δ (x) = δ (x)[0,αux,1 [ ·δ (x)[αux,1 ,αux,2 [ · · ·δ (x)[αux,mx−1 ,αux,mx
[ ·δ (x)[αux,mx

,αδ (x)[ (4.5)

induced by the splitting points of δ (x). For each variable x ∈V , we write the reduced factorization
in (4.5) as δ (x) = wx,1 ·wx,2 · · ·wx,nx and, for each variable y ∈ E, we write that factorization as
δ (y) = wy,0wy,1 · · ·wy,ny . Observe that, for x ∈V , we have the equality nx = mx +1, while for y ∈ E,
we have ny = my. Although this notation may not seem coherent, it is justified by property (c) of
Lemma 4.10.

Lemma 4.10. Let xy = z be an equation of S(Γ). Using the above notation, the following holds:

(a) nx +ny = nz;

(b) DRH satisfies


wx,k = wz,k, for k = 1, . . . ,nx−1;

wx,nxwy,0 = wz,nx ;

wy,k = wz,nx+k, for k = 1, . . . ,ny;

(c) c(wy,0)⊆ c⃗(wx,nx);

(d) each of the following products is reduced:

wx,k ·wx,k+1 (k = 1, . . . ,nx−1);

(wx,nxwy,0) ·wy,1;

wz,k ·wz,k+1 (k = 1, . . . ,nz−1).
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Proof. As we already observed, the number of splitting points of δ (z) is mz = nz−1. We distinguish
between two situations.

• If c(δ (y))* c⃗(δ (x)), then there are two direct splitting factorizations given by δ (y) = uyavy

and δ (z) = uzavz. So, by definition, the inclusion c(uy) ⊆ c⃗(δ (x)) holds. We notice that any
other splitting point of δ (y), say (u′y,b,v

′
y), is necessarily induced by a splitting point of δ (z),

say (u′z,b,v
′
z). Moreover, since the product (δ (x)u′y) · bv′y is reduced (because so is u′z · (bv′z)

and DRH satisfies δ (x)u′y = u′z), the pseudoword uy is a prefix of u′y. On the other hand, the set
of all splitting points of δ (z) induces a factorization of the pseudoword δ (x)δ (y), namely,

δ (x)δ (y) = (δ (x)δ (y))[0,αwz,1 [ · (δ (x)δ (y))[αwz,1 ,αwz,1wz,2 [ · · ·
· (δ (x)δ (y))[αwz,1···wz,nz−1

,αwz,1···wz,nz
[

= w′1 ·w′2 · · ·w′nz
,

(4.6)

with DRH satisfying the pseudoidentity

wz,k = (δ (x)δ (y))[αwz,1···wz,k−1 ,αwz,1···wz,k [ = w′k,

for k = 1, . . . ,nz. Of course, for each k = 1, . . . ,nx−1, the prefix w′1 · · ·w′k of δ (x)δ (y) corre-
sponds to the first component of one of the splitting points of δ (x) (which is either induced
by one of the splitting points of δ (z) or it induces a splitting point in δ (z)). More specifically,
the pseudoidentity wz,k = w′k = wx,k is valid in DRH. From the observation above, we also
know that the first components of the indirect splitting points of δ (y) have uy as a prefix.
Therefore, we have uy = wy,0, the factor w′nx

= wz,nx coincides with wx,nxwy,0 modulo DRH, and
c(wy,0) = c(uy)⊆ c⃗(δ (x)) = c⃗(wx,nx). It also follows that w′nx+k = wz,nx+k = wy,k modulo DRH,
for k = 1, . . . ,ny. We just proved (b), (c) and (d). Finally, part (a) results from counting the
involved factors in both sides of (4.6).

• If c(δ (y)) ⊆ c⃗(δ (x)), then δ (y) has no direct splitting points. As y is an edge, an indirect
splitting point of δ (y) must be induced by some splitting point of δ (z). Suppose that (uz,a,vz)

is a splitting point of δ (z) that induces a splitting point in δ (y), say (uy,a,vy). Then, we would
have a reduced product (δ (x)uy) · (avy), which contradicts the assumption c(δ (y))⊆ c⃗(δ (x)).
Therefore, the pseudoword δ (y) has no splitting points at all. With the same kind of argument
as the one above, we may derive the claims (a)–(d).

Now, write S(Γ) = {xiyi = zi}N
i=1. Note that y j /∈ {xi,zi} for all i, j. We let S1 be the system of

equations containing, for each i = 1, . . . ,N, the following set of equations:

(xi)k = (zi)k, for k = 1, . . . ,nxi−1;

(xi)nxi
yi,0 = (zi)nxi

;

yi,k = (zi)nxi+k, for k = 1, . . . ,nyi .

(4.7)

In the system S1, we are assuming that (xi)k and (x j)k (respectively, and (z j)k) represent the same
variable whenever so do xi and x j (respectively, and z j). By Lemma 4.10, it is clear that each solution
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modulo DRH of S1 yields a solution modulo DRH of S(Γ) and conversely. We next prove that, for
a σ -reducible pseudovariety of groups H, if S1 has a solution modulo DRH, then it has a solution
modulo DRH given by σ -words, thus concluding that the same happens with S(Γ). Before that, we
establish the following.

Proposition 4.11. Let σ be an implicit signature that contains a non-explicit operation. Let H be a
σ -reducible pseudovariety of groups and let Γ =V ⊎E be a finite graph. Suppose that there exists a
solution δ : ΩΓS→ (ΩAS)

I modulo DRH of S(Γ) such that:

(a) c⃗(δ (x)) ̸= /0, for every vertex x ∈V

(b) c(δ (y))⊆ c⃗(δ (α(y))), for every edge y ∈ E.

Then, S(Γ) has a solution modulo DRH in σ -words, say ε , such that ϕ(ε(x)) = ϕ(δ (x)), for all x ∈ Γ.

Proof. Without loss of generality, we may assume that Γ has only one connected component (when
disregarding the directions of the arrows). Otherwise, we may treat each component separately.
Because of the hypothesis (b), the pseudowords δ (α(y)) and δ (ω(y)) are R-equivalent modulo
DRH for every edge y ∈ E. Since we are assuming that all vertices of Γ are in the same connected
component, it follows that for all x,z ∈V , the pseudowords δ (x) and δ (z) are R-equivalent modulo
DRH. Fix a variable x0 ∈V and let u0 be an accumulation point of (lbf1(δ (x0)) · · · lbfm(δ (x0)))m≥1

in ΩAS. Since, in DRH, the pseudowords u0 and δ (x0) are R-equivalent, for each x ∈ V there is a
factorization δ (x) = uxvx (with vx possibly empty) such that c(vx)⊆ c⃗(ux) and ux =DRH u0.

Consider the set V̂ = {x̂ : x ∈ V} with |V | distinct variables, disjoint from Γ, the system of
equations S0 = {x̂ = ẑ : x,z ∈V} with variables in V̂ , and let

δ0 : ΩV̂⊎Γ
S→ (ΩAS)

I

x̂ 7→ ux, if x̂ ∈ V̂ ;

x 7→ vx, if x ∈V ;

y 7→ δ (y), otherwise.

By construction, the homomorphism δ0 is a solution modulo DRH of S0 which is also a solution
modulo H of S(Γ). Hence, on the one hand, Theorem 4.1 together with Remark 4.2 yield a solution
ε0 : ΩV̂S→ΩAS modulo DRH in σ -words of S0 such that

ϕ(ε0(x̂)) = ϕ(δ0(x̂)) = ϕ(ux),

c⃗(ε0(x̂)) = c⃗(δ0(x̂)),

for every x̂ ∈ V̂ . On the other hand, the fact that H is σ -reducible implies that there is a solution
ε ′ : ΩΓS→ (ΩAS)

I modulo H of S(Γ) given by σ -words satisfying

ϕ(ε ′(x)) = ϕ(δ0(x)),

for every x ∈ Γ. Thus, we take ε : ΩΓS→ (ΩAS)
I to be the continuous homomorphism defined by

ε(x) = ε0(x̂)ε ′(x) if x ∈ V , and ε(y) = ε ′(y) otherwise. Taking into account that S has a content
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function, we may use Lemma 2.32 to deduce that ε is a solution modulo DRH of S(Γ) in σ -words.
Additionally, the initial constraints for the variables of Γ are satisfied:

ϕ(ε(x)) =

ϕ(ε0(x̂)ε ′(x)), if x ∈V

ϕ(ε ′(x)), if x ∈ E

=

ϕ(δ0(x̂))ϕ(δ0(x)), if x ∈V

ϕ(δ0(x)), if x ∈ E

=

ϕ(ux)ϕ(vx), if x ∈V

ϕ(δ (x)), if x ∈ E

= ϕ(δ (x)).

This proves the result.

Lemma 4.12. Let S1 be the system of equations (4.7) with variables in X1 and let δ1 : ΩX1S→ (ΩAS)
I

be its solution modulo DRH. Suppose that the implicit signature σ contains a non-explicit operation.
If the pseudovariety H is σ -reducible, then S1 has a solution modulo DRH in σ -words.

Proof. Analyzing the equations in (4.7), we easily conclude that there are no variables occurring
simultaneously in two of the rows. Therefore, the system S1 can be thought as a system of pointlike
equations S2 together with a system of graph equations S3 such that the conditions (a) and (b) of
Proposition 4.11 hold and none of the variables occurring in S2 occurs in S3. Note that we are also
including in S2 the equations in the second row of (4.7) such that the cumulative content of δ1(xi)nxi

is
empty.

By Theorem 4.1 the system S2 has a solution modulo DRH in σ -words, while by Proposition 4.11
the system S3 has a solution modulo DRH in σ -words. Therefore, the intended solution for S1 also
exists.

We just proved the announced result.

Theorem 4.13. When σ is an implicit signature containing a non-explicit operation, the pseudovariety
DRH is σ -reducible if so is H.

We recall that, by Theorem 2.11, for every nontrivial extension closed pseudovariety of groups H,
there is an implicit signature σ(H) ⊇ κ that turns H into a σ(H)-reducible pseudovariety. For
instance, Gp and Gsol are both extension closed. Thus, DRGp and DRGsol are both σ -reducible for
suitable signatures σ .

Yet again, using Theorem 4.13, some decidability properties may be deduced from the knowledge
of κ-tameness of a pseudovariety of groups H.

Corollary 4.14. Let H be a κ-tame pseudovariety of groups. Then,

• DRH is κ-tame;

• V ∗DRH is decidable for every decidable pseudovariety V with finite rank, that contains the
Brandt semigroup B2;
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• V∨DRH is hyperdecidable for every order-computable pseudovariety V.

Proof. The first item follows immediately from Theorems 3.47 and 4.13. The last two assertions
result from the first and from Theorem 2.10, together with Theorem 2.5 (for the second item) and
with Theorem 2.7 (for the last).

We further prove that the converse of Theorem 4.13 also holds.

Proposition 4.15. Let H be a pseudovariety of groups such that the pseudovariety DRH is σ -reducible.
Then, the pseudovariety H is also σ -reducible.

Proof. Let Γ =V ⊎E be a graph such that S(Γ) admits δ : ΩΓS→ (ΩAS)
I as a solution modulo H.

We consider a new graph Γ̂ = V̂ ⊎ Ê, where V̂ = {v̂ : v ∈ V}⊎{v0} and Ê = V ⊎E. The functions
α̂ and ω̂ of Γ̂ are given by α̂(v) = v0 and ω̂(v) = v̂, for all v ∈ V and by α̂(e) = v̂1 and ω̂(e) = v̂2

whenever e ∈ E and (α(e),ω(e)) = (v1,v2). The relationship between the graphs Γ and Γ̂ is depicted
in Figure 4.2. Let u ∈ ΩAS be a regular pseudoword modulo DRH such that c(δ (x)) ⊆ c⃗(u) for

v1

e
++ v2 v̂1

e
++ v̂2

v0

v1

``

v2

>>

Fig. 4.2 On the left, an edge of Γ; on the right, the corresponding edges of Γ̂.

all x ∈ Γ. We take δ ′ : Ω
Γ̂
S→ (ΩAS)

I to be the continuous homomorphism defined by δ ′(e) = δ (e),
if e ∈ E; δ ′(v) = δ (v) and δ ′(v̂) = uδ (v), if v ∈ V ; and δ ′(v0) = u. Then, Lemma 2.32 combined
with the fact that δ is a solution modulo H of S(Γ) imply that δ ′ is a solution modulo DRH of S(Γ̂).
Thus, since DRH is σ -reducible, there exists a solution in σ -words ε : Ω

Γ̂
S→ (ΩAS)

I modulo DRH

of S(Γ̂). In particular, for each edge e ∈ E such that α(e) = v1 and ω(e) = v2, we have that v0v1 = v̂1,
v̂1e = v̂2, and v0v2 = v̂2 are equations of S(Γ̂). Therefore, the equalities

ε(v0v1e) = ε(v̂1e) = ε(v̂2) = ε(v0v2)

hold in DRH. Hence, H satisfies ε(v1e) = ε(v2) and so, we may conclude that the restriction of ε to
ΩΓS is a solution in σ -words modulo H of S(Γ).

Combined with Proposition 4.15, the results in the literature supply a family of pseudovari-
eties DRH that are not κ-reducible. Namely, DRGp and DRH for every proper non locally finite
subpseudovariety H of Ab (recall Theorem 2.11).

4.3 Idempotent pointlike equations

Theorem 2.8 provides a sufficient criterion for decidability of pseudovarieties of the form V⃝m DRH,
whenever V is a decidable pseudovariety. With that fact in mind, we take for Ξ the class of all systems
of idempotent pointlike equations. Although we have been unable to answer positively Question 1
for any ∆⊆ Ξ, we prove that such an answer is achieved by taking for ∆ a still “satisfactory” class of
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systems, namely the class of all systems of graph equations. More precisely, we prove that, for an
implicit signature σ satisfying certain conditions, if H is a σ -reducible pseudovariety of groups, then
DRH is σ -reducible with respect to systems of idempotent pointlike equations.

In order to make the expression “reducible for systems of graph equations” more embracing, we
first introduce a definition.

Definition 4.16. Let V be a pseudovariety and S a finite system of equations in the set of variables X
with certain constraints. We say that S is V-equivalent to a system of graph equations if there exists a
graph Γ such that X ⊆ Γ and such that every solution modulo V of S can be extended to a solution
modulo V of S(Γ) (the constraints for the variables of X ⊆ Γ are those given by the system S).
Moreover, whenever δ is a solution modulo V of S(Γ), the restriction δ |

ΩXS
is a solution modulo V

of S. Each graph Γ with that property is said to be an S-graph and we say that S is V-equivalent to
S(Γ) for every S-graph Γ.

It is immediate from the definition that any σ -reducible pseudovariety V is σ -reducible for systems
of equations that are V-equivalent to a system of graph equations. In the next few results we exhibit
some systems of equations that are H-equivalent to a system of graph equations (for a pseudovariety
of groups H).

Lemma 4.17. Consider the system consisting of a single equation S= {x1w1 · · ·xnwnxn+1 = 1}, where
xi is a variable with xi ̸= x j whenever i ̸= j, {wi}n

i=1 ⊆ A∗, and the constraint of the variable xi is
given by the clopen subset Ki ⊆ (ΩAS)

I . Then, for every pseudovariety of groups H, the system S is
H-equivalent to a system of graph equations.

Proof. We consider the finite graph Γ =V ⊎E, where the set of vertices and edges are, respectively,
given by

V = {yi,zi : i = 1, . . . ,n+1},
E = {x0}⊎{xi : i = 1, . . . ,n+1}⊎{wi : i = 1, . . . ,n}.

To define the mappings α and ω , we take

(α(x0),ω(x0)) = (y1,zn+1);

(α(xi),ω(xi)) = (yi,zi), for i = 1, . . . ,n+1;

(α(wi),ω(wi)) = (zi,yi+1), for i = 1, . . . ,n ;

as shown in Figure 4.3.

y1

x1 ))

x0

33z1

w1 )) y2

x2 )) z2

w2
&& ··· zn

wn ++
yn+1

xn+1 ++
zn+1

Fig. 4.3 The graph Γ.

Let us now set the constraints, which are given by a clopen subset Kx ⊆ (ΩAS)
I for each x ∈ Γ.

The constraint of each variable xi should be the same as for the system S, namely Ki. For each wi, we
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set Kwi = {wi}, which is a clopen subset of (ΩAS)
I since wi is a word. Finally, we take Kx0 = {I}, and

Kyi = (ΩAS)
I = Kzi for i = 1, . . . ,n+1.

If δ is a solution modulo H of S, then we extend δ to ΩΓS by taking δ (x0) = I, δ (wi) = wi,
δ (y1) = 1 = δ (zn+1), δ (zi) = δ (yi)δ (xi), and δ (yi+1) = δ (zi)wi, for i = 1, . . . ,n. The fact that the
new homomorphism δ is a solution modulo H of S(Γ) follows immediately from construction.
Conversely, suppose that δ ′ is a solution modulo H of S(Γ). Then, taking into account that Kwi = {wi}
implies δ ′(wi) = wi, we deduce that the following equalities are valid in H:

δ
′(y1x1w1x2w2 · · ·xnwnxn+1) = δ

′(z1w1x2w2 · · ·xnwnxn+1) since y1x1 = z1 ∈ S(Γ)

= δ
′(y2x2w2 · · ·xnwnxn+1) since z1w1 = y2 ∈ S(Γ)

= δ
′(z2w2 · · ·xnwnxn+1) = · · ·

= δ
′(znwnxn+1) = δ

′(yn+1xn+1) = δ
′(zn+1).

Besides, as Kx0 = {I} and the equation y1x0 = zn+1 belongs to S(Γ), the pseudovariety H also satisfies
δ ′(y1) = δ ′(zn+1). Further, we are assuming that members of H are groups and so, it follows that H
satisfies

δ
′(x1w1x2w2 · · ·xnwnxn+1) = 1.

Thus, the restriction of δ ′ to ΩXS is a solution modulo H of S.

Lemma 4.18. Let H be a pseudovariety of groups. If S is H-equivalent to a system of graph equations,
x is a variable occurring in S, and S0 = {x = x1 = · · ·= xn}, where x1, . . . ,xn are new variables, then
S∪S0 is also H-equivalent to a system of graph equations.

Proof. Let Γ =V ⊎E be an S-graph. Since x occurs in S, either x ∈V or x ∈ E. If x is a vertex, then
we define Γ′ =V ′⊎E ′, where V ′ =V ⊎{x0} and E ′ = E ⊎{xi}n

i=1. The maps α and ω for E ′ are kept
unchanged in the subset E ⊆ E ′, and are given by (α(xi),ω(xi)) = (x0,x), for i = 1, . . . ,n. We also
set Kx0 = {I} (the constraints for the other variables are already determined by S and S0). Figure 4.4
illustrates Γ′. It is a routine matter to verify that the system S∪S0 is H-equivalent to S(Γ′).

x0

x1

%%

xn

==
... x

Fig. 4.4 The piece of the graph Γ′ where it differs from Γ, when x ∈V .

Otherwise, if x is an edge, say with α(x) = y and ω(x) = z, then we define Γ = V ⊎E ′, where
E ′ is obtained from E by adding n edges x1, . . . ,xn and setting (α(xi),ω(xi)) = (y,z), for i = 1, . . . ,n
(see Figure 4.5). It is clear that any solution modulo H of S∪ S0 may be extended to a solution
modulo H of S(Γ′). Conversely, let δ be a solution modulo H of S(Γ′). Then, since Γ⊆ Γ′ and Γ is an
S-graph, the restriction of δ to the variables occurring in S is a solution modulo H of S. Moreover,
the pseudovariety H satisfies δ (yx) = δ (yx1) = · · · = δ (yxn) = δ (z). The fact that ΩAH is a group
yields that H also satisfies δ (x) = δ (x1) = · · ·= δ (xn). Thus, the homomorphism δ induces a solution
modulo H of S∪S0 by restriction.
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��x1
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Fig. 4.5 The piece of the graph Γ′ where it differs from Γ, when x ∈ E.

Lemma 4.19. Let H be a pseudovariety of groups, S be a system of equations with variables in X
that is H-equivalent to a system of graph equations, and S0 = {x = x1w1 · · ·xnwnxn+1}, where x ∈ X,
x1, . . . ,xn are new variables, xn+1 is either the empty word or a new variable, and {wi}n

i=1 ⊆ A∗. Then,
S∪S0 is also H-equivalent to a system of graph equations.

Proof. We start by observing that it really does not matter whether xn+1 is the empty word or a new
variable. Indeed, if it is the empty word, then we just need to set a constraint Kxn+1 = {I} for xn+1 and
we may treat it as a variable.

Let Γ =V ⊎E be an S-graph. We construct a new graph Γ′ =V ′⊎E ′ depending on whether x is a
vertex or an edge.

If x is a vertex, then we add to Γ a new path going from a new vertex y1 to x, whose edges are
labeled by x1,w1, . . . ,xn,wn,xn+1 in this order, as depicted in Figure 4.6. Formally, this corresponds

y1

x1 )) z1

w1 )) y2

x2 )) z2

w2
&& ··· zn

wn ++
yn+1

xn+1
(( x

Fig. 4.6 The new path in Γ if x is a vertex.

to setting

V ′ =V ⊎{yi}n+1
i=1 ⊎{zi}n

i=1;

E ′ = E ⊎{xi}n+1
i=1 ⊎{wi}n

i=1;

(α(xi),ω(xi)) = (yi,zi), for i = 1, . . . ,n;

(α(xn+1),ω(xn+1)) = (yn+1,x);

(α(wi),ω(wi)) = (zi,yi+1), for i = 1, . . . ,n.

We further take Ky1 = {I}, Kyi+1 = (ΩAS)
I = Kzi , and Kwi = {wi} as the clopen sets defining the

constraints for the new variables yi+1, zi, and wi, respectively (i = 1, . . . ,n). The constraints to be
imposed to any other variable are those borrowed from the definition of S and S0. Let us check that Γ′

is an (S∪S0)-graph. Given a solution δ modulo H of S∪S0, since Γ is an S-graph, we may extend
δ |

ΩXS
to a solution δ0 modulo H of S(Γ). Set

δ
′ : ΩΓ′S→ (ΩAS)

I

x 7→ δ0(x), if x ∈ Γ;

xi 7→ δ (xi), for i = 1, . . . ,n+1;

wi 7→ wi, for i = 1, . . . ,n;
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y1 7→ I;

zi,yi+1 7→ δ
′(yi)δ (xi),δ

′(zi)wi (respectively), for i = 1, . . . ,n.

Then, all the equations in S(Γ′) but yn+1xn+1 = x are trivially satisfied by δ ′. The satisfaction of the
remaining equation may be deduced as follows:

δ
′(x) = δ (x) by definition of δ

′

=H δ (x1)w1δ (x2)w2 · · ·δ (xn)wnδ (xn+1) because δ is a solution modulo H of S0

= δ
′(y1)δ (x1)w1δ (x2)w2 · · ·δ (xn)wnδ (xn+1) because δ

′(y1) = I

= δ
′(z1)w1δ (x2)w2 · · ·δ (xn)wnδ (xn+1) by definition of δ

′

= δ
′(y2)δ (x2)w2 · · ·δ (xn)wnδ (xn+1) = · · · by definition of δ

′

= δ
′(yn+1)δ

′(xn+1).

Conversely, take a solution δ modulo H of S(Γ′). Since Γ is a subgraph of Γ′ and an S-graph, the
restriction of δ to ΩXS is a solution modulo H of S. Furthermore, the path represented in Figure 4.6
translates in the equation x1w1 · · ·xnwnxn+1 = x (taking into account that Ky1 = {I}). Hence, the
restriction of δ to Ω{x1,...,xn}S is also a solution modulo H of S0.

On the other hand, when x is an edge, say from v1 to v2, we simply obtain Γ′ by adding a path in Γ

from v1 to v2 with edges labeled by x1,w1, . . . ,xn,wn,xn+1 (see Figure 4.7). A standard computation

v1

x1

::

x

++

w1

;; ···

xn

;;

wn

;;

xn+1

88 v2

Fig. 4.7 The added path to Γ if x is an edge.

shows that any solution modulo H of S∪S0 yields a solution modulo H of S(Γ′). Also, the fact that
H is a pseudovariety of groups ensures that any solution modulo H of S(Γ′) satisfies the equation
x = x1w1 · · ·xnwnxn+1 modulo H.

Corollary 4.20. Let H be a pseudovariety of groups and let S be a system of equations H-equivalent
to a system of graph equations and suppose that x1, . . . ,xN are variables occurring in S. Also, suppose
that, for each i = 1, . . . ,N, the variables yi,1, . . . ,yi,ki and zi,1, . . . ,zi,ni are all distinct and do not occur
in S, and let {wi,p : i = 1, . . . ,N; p = 1, . . . ,ki} ⊆ A∗. We make each ti be either the empty word or
another different variable. Then, the system of equations

S′ = S∪{xi = yi,1wi,1 · · ·yi,kiwi,kiti}N
i=1

∪{ti = zi,1 = · · ·= zi,ni : i = 1, . . . ,N and ti is not the empty word}

is also H-equivalent to a system of graph equations.

Proof. The result follows immediately by successively applying Lemmas 4.18 and 4.19.
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The next statement consists of a general scenario that is instrumental for establishing the claimed
answer to Question 1 mentioned in the beginning of this section.

Proposition 4.21. Let H be a σ -reducible pseudovariety of groups, where σ is an implicit signature
such that ⟨σ⟩ contains a non-explicit operation η such that η = 1 in H. Let S1 and S2 be finite
systems of equations, such that S1 contains only pointlike equations, and both S1 ∪S2 and S2 are
H-equivalent to systems of graph equations. Further assume that, if X is the set of variables occurring
in S1∪S2, then the constraint on each variable x ∈ X is given by a clopen subset Kx ⊆ (ΩAS)

I . Then,
the existence of a continuous homomorphism that is simultaneously a solution modulo DRH of S1 and
a solution modulo H of S2 entails the existence of a continuous homomorphism in σ -words with the
same property.

Proof. Without loss of generality, we assume that η is a unary implicit operation. Let S1 = {xi,1 =

· · ·= xi,ni}N
i=1, with xi,p ̸= x j,q, for all i ̸= j. We consider a continuous homomorphism ϕ : (ΩAS)

I→ SI

such that each clopen set Kx is the preimage of a finite subset of SI under ϕ (recall Remark 2.3). We
proceed by induction on the parameter

M = max{|c(δ (xi,p))| : i = 1, . . . ,N, p = 1, . . . ,ni}.

If M = 0, then δ (xi,p) = I for all i = 1, . . . ,N and p = 1, . . . ,ni and therefore, every solution ε

modulo H of S2 such that ε(xi,p) = I (for i = 1, . . . ,N, and p = 1, . . . ,ni) is trivially a solution modulo
DRH of S1. Since we are assuming that S2 is H-equivalent to a system of graph equations and we are
taking for H a σ -reducible pseudovariety, there exists such an ε given by σ -words.

Suppose that M > 0 and that the result holds for any smaller parameter. If δ (xi,p) has empty
cumulative content, then we let ki be the maximum integer such that lbfki(δ (xi,p)) is nonempty and
we write lbfm(δ (xi,p)) = δ (xi,p)mai,m, for m = 1, . . . ,ki. Otherwise, for each m≥ 1, we consider the
m-th iteration of the left basic factorization to the right of δ (xi,p), say

δ (xi,p) = δ (xi,p)1ai,1 · · ·δ (xi,p)mai,mδ (xi,p)
′
m.

Since S and A are both finite, there are integers 1≤ k < ℓ such that, for all i, p satisfying c⃗(δ (xi,p)) ̸= /0,
we have

c⃗(δ (xi,p)) = c(δ (xi,p)k+1ai,k+1);

ϕ(δ (xi,p)1ai,1 · · ·δ (xi,p)kai,k) = ϕ(δ (xi,p)1ai,1 · · ·δ (xi,p)ℓai,ℓ),

which in turn implies

ϕ(δ (xi,p)) = ϕ(δ (xi,p)1ai,1 · · ·δ (xi,p)kai,k ·η(δ (xi,p)k+1ai,k+1 · · ·δ (xi,p)ℓai,ℓ)δ (xi,p)
′
k).

Now, consider a new set of variables X ′ given by

X ′ = X ⊎{xi,p;m,ai,m : i = 1, . . . ,N; p = 1, . . . ,ni; c⃗(δ (xi,p)) = /0; and m = 1, . . . ,ki}
⊎{xi,p;m,ai,m,x′i,p : i = 1, . . . ,N; p = 1, . . . ,ni; c⃗(δ (xi,p)) ̸= /0; and m = 1, . . . , ℓ},
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where all the introduced variables are distinct. In order to simplify the notation, we set ℓi = 0
if c⃗(δ (xi,p)) = /0, and ki = k and ℓi = ℓ, otherwise. We further take the constraints on X ′ to be
given by Kx if x ∈ X , and by the clopen sets Kxi,p;m = ϕ−1(ϕ(δ (xi,p)m)), Kai,m = {ai,m}, and Kx′i,p =

ϕ−1(ϕ(δ (xi,p)
′
k)) for the remaining cases.

Consider the system

S′1 = {xi,1;m = · · ·= xi,ni;m : i = 1, . . . ,N; m = 1, . . . ,max{ki, ℓi}}.

A new system S′2 is obtained from the system S1∪S2 (which is H-equivalent to a system of graph
equations, by hypothesis) by adding two sets of equations:

• for each i = 1, . . . ,N, if there exists an index p such that xi,p is a variable occurring in S2, then
we choose such an index, say pi. Then, we add the equation

xi,pi = xi,pi;1ai,1 · · ·xi,pi;kiai,kizi,pi ,

where zi,pi stands for the empty word if ℓi = 0, and for x′i,pi
otherwise;

• and we add the set of equations

{x′i,1 = · · ·= x′i,ni
: i = 1, . . . ,N, ℓi ̸= 0}.

By Corollary 4.20, the new system S′2 is still H-equivalent to a system of graph equations. Moreover,
if we denote by X ′j the set of variables occurring in S′j ( j = 1,2), then the following equality holds:

X ′1∩X ′2 = {xi,pi;m : i = 1, . . . ,N; pi is defined; and m = 1, . . . ,max{ki, ℓi}}.

Thus, Lemma 4.18 yields that the system S′1∪S′2 is H-equivalent to a system of graph equations as
well. Let δ ′ : ΩX ′S→ (ΩAS)

I be the continuous homomorphism defined by

δ
′(xi,p;m) = δ (xi,p)m, if i = 1, . . . ,N; p = 1, . . . ,ni; and m = 1, . . . ,max{ki, ℓi};
δ
′(x′i,p) = δ (xi,p)

′
k, if i = 1, . . . ,N; and p = 1, . . . ,ni;

δ
′(x) = δ (x), otherwise.

It follows from its definition that δ ′ is a solution modulo DRH of S′1 which is also a solution modulo H

of S′2. Since the induction parameter corresponding to the triple (S′1,S
′
2,δ
′) is smaller than the one

corresponding to the triple (S1,S2,δ ), we may use the induction hypothesis to deduce the existence of
a continuous homomorphism ε ′ : ΩX ′S→ (ΩAS)

I in σ -words that is both a solution modulo DRH of
S′1 and a solution modulo H of S′2.

Finally, we define ε as follows:

ε : ΩXS→ (ΩAS)
I

xi,p 7→ ε
′(xi,p;1)ai,1 · · ·ε ′(xi,p;ki)ai,ki , if ℓi = 0;

xi,p 7→ ε
′(xi,p;1)ai,1 · · ·ε ′(xi,p;k)ai,k
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·η(ε ′(xi,p;k+1)ai,k+1 · · ·ε ′(xi,p;ℓ)ai,ℓ) · ε ′(x′i,p), if ℓi ̸= 0;

x 7→ ε
′(x), otherwise.

Then, a straightforward computation shows that ε plays the desired role.

We finally state and prove the result claimed at the beginning of the section.

Theorem 4.22. Let σ be an implicit operation such that there exists η ∈ ⟨σ⟩ non-explicit, with η = 1
in H. If H is a σ -reducible pseudovariety of groups, then DRH is σ -reducible for idempotent pointlike
systems of equations.

Proof. Let S= {x1 = · · ·= xn = x2
n} be an idempotent pointlike system of equations with constraints

on the variables given by the pair (ϕ,ν), and let δ : Ω{x1,...,xn}S→ΩAS be a solution modulo DRH of
S. Suppose that δ (xi) = ui. Then, by Proposition 2.15, DRH satisfies

u1 = · · ·= un = u2
n

if and only if the following conditions hold:

c(un) = c⃗(un);

u1 =DRH · · ·=DRH un; (4.8)

un =H 1.

For each i ∈ {1, . . . ,n} and m≥ 1, let ui = lbf1(ui) · · · lbfm(ui)u′i,m and lbfm(ui) = ui,mam. Since S is
finite, there are positive integers k < ℓ such that for all i = 1, . . . ,n the equality

ϕ(lbf1(ui) · · · lbfk(ui)) = ϕ(lbf1(ui) · · · lbfℓ(ui))

holds. Take the set of variables

X = {xi,p : i = 1, . . . ,n; p = 1, . . . , ℓ}⊎{x′i : i = 1, . . . ,n}

with constraints given by (ϕ,ν ′), where ν ′(x) = ϕ(ui,p) if x = xi,p, and ν ′(x) = ϕ(u′i,k) if x = x′i. We
consider the systems of equations

S1 = {x1,p = · · ·= xn,p}ℓp=1

S2 = {xn,1a1 · · ·xn,kakx′n = 1, x′1 = · · ·= x′n}.

Then, the homomorphism

δ
′ : ΩXS→ (ΩAS)

I

xi,p 7→ ui,p, for i = 1, . . . ,n; p = 1, . . . , ℓ;

x′i 7→ u′i,k, for i = 1, . . . ,n;
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is a solution modulo DRH of S1 that is also a solution modulo H of S2. Besides that, since by
Lemma 4.17 the system {xn,1a1 · · ·xn,kakx′n = 1} is H-equivalent to a system of graph equations,
Lemma 4.18 yields that so is S2. In turn, again Lemma 4.18 implies that S1 ∪S2 is H-equivalent
to a system of graph equations. Thus, we may invoke Proposition 4.21 to derive the existence of a
continuous homomorphism ε ′ : ΩXS→ (ΩAS)

I in σ -words that is a solution modulo DRH of S1, and
a solution modulo H of S2.

Now, assuming that η is unary, we let ε : Ω{x1,...,xn}S→ΩAS be given by

ε(xi) = ε
′(xi,1)a1 · · ·ε ′(xi,k)ak ·η(ε ′(xi,k+1)ak+1 · · ·ε ′(xi,ℓ)aℓ)ε ′(x′i).

It is easily checked that

ε(x1) =DRH · · ·=DRH ε(xn);

ε(xn) =H 1.

Furthermore, by the choice of k and ℓ, we also know that ϕ(ε(xi)) = ϕ(δ (xi)) and, as we are assuming
that η is non-explicit and S has a content function, the equality c⃗(ε(xi)) = c(ε(xi)) holds. So, by (4.8),
we may conclude that ε is a solution modulo DRH of S in σ -words that keeps the values under ϕ .

We observe that, whenever the ω-power belongs to ⟨σ⟩, the hypothesis of Theorem 4.22 concern-
ing the implicit signature σ is satisfied. That is the case of the canonical implicit signature κ . Hence,
we have the following.

Corollary 4.23. Let H be a κ-tame pseudovariety of groups. Then,

• DRH is κ-tame with respect to finite systems of idempotent pointlike equations (similar to
Corollary 4.4);

• V⃝m DRH is decidable whenever V is a decidable pseudovariety (Theorems 2.8 and 2.10).

In particular, the pseudovarieties DRG and DRAb are both κ-tame with respect to finite systems
of idempotent pointlike equations and DRGp and DRGsol are σ -reducible with respect to the same
class, for suitable implicit signatures σ (recall Theorem 2.11).

Unfortunately, Question 2 is again harder to answer. The best we are able to prove is that the
result obtained by changing the places of the pseudovarieties H and DRH in Theorem 4.22 also holds.
But that is just a consequence of Proposition 4.15, as systems of idempotent pointlike equations
are H-equivalent to systems of graph equations. More precisely, the system x1 = · · · = xn = x2

n is
H-equivalent to the system of graph equations induced by the graph in Figure 4.8.

· · ·
y

x1

��
x2

pp
xn

00

Fig. 4.8 A graph defining a system of equations H-equivalent to the system x1 = · · ·= xn = x2
n.



Chapter 5

Complete κ-reducibility of DRH

The aim of this chapter is to identify conditions on a pseudovariety of groups H in order that the
pseudovariety DRH be completely κ-reducible. However, we consider a scenario a little bit more
general and we prove that, if H is a pseudovariety of groups that is σ -reducible for finite systems of
κ-equations, then the pseudovariety DRH is σ -reducible for finite systems of κ-equations as well,
whenever an implicit signature σ satisfies the condition (sig) and is such that κ ⊆ ⟨σ⟩.

Let us fix a finite alphabet A. Unless otherwise stated, we use H for an arbitrary pseudovariety
of groups.

5.1 General simplifications

We carry on with some general simplifications on testing whether a pseudovariety is σ -reducible
for finite systems of τ-equations, for some τ ⊆ ⟨σ⟩. These first two results are merely a slight
generalization of [10, Proposition 3.1] and [10, Proposition 3.2], respectively. Although their proofs
are analogous, we include them for the sake of completeness.

Proposition 5.1 (cf. [10, Proposition 3.1]). Let V be an arbitrary pseudovariety and σ , τ two implicit
signatures such that τ ⊆ ⟨σ⟩. If V is σ -reducible for finite systems of τ-equations without parameters,
then V is σ -reducible for finite systems of τ-equations. In particular, by taking τ = σ , we obtain
that V is completely σ -reducible if and only if it is σ -reducible for finite systems of σ -equations
without parameters.

Proof. Let S = {ui = vi}n
i=1 be a finite system of τ-equations where ui,vi ∈ Ωτ

X∪PS, P is the set of
parameters evaluated by ev : P→ Ωτ

AS, and X is the set of variables whose constraints are given
by a clopen subset Kx ⊆ ΩAS, for each x ∈ X . Let Y = X ⊎A be a new set of variables and let
ψ : ΩX∪P→ΩYS be the unique continuous homomorphism sending each variable x ∈ X to itself and
each parameter p∈ P to its evaluation ev(p). Finally, consider the system ψ(S) = {ψ(ui) = ψ(vi)}n

i=1

with constraints given by

Ky =

Ky, if y ∈ X

{y}, if y ∈ A
(5.1)

for each y ∈ Y . The set ψ(S) is a finite system of τ-equations with empty set of parameters. Sup-
pose that δ : ΩX∪PS→ ΩAS is a solution modulo V of S. It is easy to check that the continuous

77
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homomorphism δ ′ : ΩYS→ ΩAS defined by δ ′(x) = δ (x), for x ∈ X , and by δ ′(a) = a, for a ∈ A,
is a solution modulo V of ψ(S) satisfying the constraints given by (5.1). Moreover, by hypothesis,
the pseudovariety V is σ -reducible for systems of τ-equations without parameters. Hence, there is a
solution ε ′ : ΩYS→ΩAS modulo V of ψ(S) such that ε ′(Y )⊆Ωσ

AS. Now, let ε : ΩX∪PS→ΩAS be
the continuous homomorphism ε ′ ◦ψ . Clearly, we have ε(X ∪P)⊆Ωσ

AS. Also, we may check that
ε is a solution modulo V of the initial system S. Indeed, for each i = 1, . . . ,n, since ε ′ is a solution
modulo V of ψ(ui) = ψ(vi), the pseudovariety V satisfies ε(ui) = ε ′(ψ(ui)) = ε ′(ψ(vi)) = ε(vi)

and so (S.1) holds. Given a parameter p ∈ P, the condition (S.2) is satisfied because ψ sends a
parameter p to its evaluation ev(p) ∈Ωτ

AS and, on the other hand, the constraint Ka = {a} for every
variable a ∈ A ⊆ Y guarantees that ε ′(a) = a. Finally, the constraints for x ∈ X are also satisfied,
since ε(x) = ε ′(ψ(x)) = ε ′(x) ∈ Kx, getting (S.3). Thus, the pseudovariety V is σ -reducible for finite
systems of τ-equations.

We say that a pseudovariety V is weakly cancellable if whenever V satisfies the pseudoidentity
u1au2 = v1av2 for some u1,u2,v1,v2 ∈ ΩA\{a}S, it also satisfies the pseudoidentities u1 = v1 and
u2 = v2. When V is a weakly cancellable pseudovariety, we may restrict our study to systems
consisting of one single σ -equation without parameters.

Proposition 5.2 (cf. [10, Propoposition 3.2]). Let V be a weakly cancellable pseudovariety and σ , τ

implicit signatures such that τ ⊆ ⟨σ⟩. If V is σ -reducible for systems consisting of a single τ-equation
without parameters, then V is σ -reducible for finite systems of τ-equations. In particular, when τ = σ ,
we get that V is completely σ -reducible if and only if it is σ -reducible for systems consisting of a
single σ -equation.

Proof. By Proposition 5.1 it is enough to prove that V is σ -reducible for finite systems of τ-equations
without parameters. Let S= {ui = vi}n

i=1 be such a system, with variables in X , and constraints given
by some clopen subsets Kx ⊆ΩAS. Let δ : ΩXS→ΩAS be a solution modulo DRH of S. Consider a
new set of variables Y = X ⊎{#i}n−1

i=1 , and let {ai}n−1
i=1 be letters that do not belong to the alphabet A.

Then, the continuous homomorphism δ ′ : ΩYS→ΩA⊎{ai}n−1
i=1

S whose restriction to ΩXS is given by δ ,
and that maps each #i to ai is a solution modulo DRH of the τ-equation

u1#1u2#2 · · ·#n−1un = v1#1v2#2 · · ·#n−1vn, (5.2)

with the same constraints for the variables of X , and with constraint K#i = {ai}, for i = 1, . . . ,n−1.
Since we are assuming that V is σ -reducible for a single τ-equation without parameters, there exists
a solution in σ -words ε : ΩYS→ ΩA⊎{ai}n−1

i=1
S modulo V of (5.2). Furthermore, since V is weakly

σ -reducible, it follows that the restriction of ε to ΩXS is a solution (in σ -words) modulo V of S.
Hence, V is σ -reducible for finite systems of τ-equations.

Of course, the pseudovariety DRH is weakly cancellable. Indeed, weak cancellability is a particular
instance of uniqueness of the first-occurrences factorization (recall Corollary 2.14(b)).
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5.2 Simplifications for the pseudovariety DRH

In this section, we proceed with further simplifications for testing complete κ-reducibility of a
pseudovariety of the form DRH. Similarly to the particular case of R (see [10, Lemmas 6.1 and 6.2]),
in order to achieve complete κ-reducibility, it is enough to consider systems of word equations
(without parameters).

Lemma 5.3. Let u,v ∈ ΩAS. Then, DRH satisfies the pseudoidentity u = vω−1 if and only if the
equality c(u) = c(v) holds, and the pseudoidentities uvu = u and uv = vu are valid in DRH.

Proof. Suppose that DRH satisfies u = vω−1. Since the semigroup ΩADRH has a content function,
we have c(u) = c(vω−1) = c(v). In order to verify that the pseudoidentities uvu = u and uv = vu are
valid in DRH, we may perform the following computations:

u =DRH vω−1 = vω−1 (vvω−1) =DRH uvu,

uv =DRH vω−1v = vvω−1 =DRH vu.

Conversely, suppose that DRH satisfies both uvu = u and uv = vu, and the equality c(u) = c(v) holds.
Then, the following pseudoidentities are valid in DRH:

vω−1 = vω−1uω by Corollary 2.20

= vω−1uω−1u = (uv)ω−1u because uv =DRH vu

= (uv)u because uvu =DRH u implies (uv)ω−1 =DRH uv

= u.

This concludes the proof.

Lemma 5.3 allows us to transform each κ-equation into a finite system of word equations.

Proposition 5.4 (cf. [10, Proposition 6.2]). Let σ be an implicit signature such that κ ⊆ ⟨σ⟩. The
pseudovariety DRH is σ -reducible for finite systems of κ-equations if and only if it is σ -reducible for
a single word equation without parameters.

Proof. Since DRH is a weakly cancellable pseudovariety, in view of Proposition 5.2 it is enough to
prove that, given a κ-equation without parameters, it is possible to construct a finite system of word
equations such that every solution modulo DRH of that system leads to a solution modulo DRH of the
original equation and conversely. So, let u= v be a κ-equation without parameters and δ : ΩXS→ΩAS

its solution modulo DRH. We set S0 = {u = v} and we modify this system inductively. Let i≥ 1 and
choose a subword of a member of an equation in Si−1 of the form zω−1

i . We add to X a new variable xi,
with constraint given by the clopen subset Kxi ⊆ΩAS that contains all the pseudowords whose content
is c(δ (zi)) (note that, as c = ρSl is a continuous homomorphism, Kxi is indeed a clopen subset). We
obtain Si by adding to Si−1 the equations xizixi = xi and xizi = zixi and by substituting the subword
zω−1

i by the variable xi. Since the number of (ω−1)-powers in the original equation u = v is finite,
this process eventually ends. Furthermore, if we extend δ by letting δ (xi) = zω−1

i , then δ is a solution
modulo DRH of the new system Si.
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Conversely, if ε is a solution modulo DRH of Si then, taking into account that ε satisfies the
equality c(ε(xi)) = c(δ (zi)), that {xizixi = xi, xizi = zixi} is contained in Si, and applying Lemma 5.3,
we conclude that ε is also a solution modulo DRH of Si−1.

Example 5.5. Consider the κ-equation (yz)ω−1t = t(ztω−1)ω−1. We start with

S0 = {(yz)ω−1t = t(ztω−1)ω−1}.

The subwords in S0 that are (ω − 1)-powers are (yz)ω−1, (ztω−1)ω−1, and tω−1. We choose, for
instance, the factor (yz)ω−1. Then, we introduce a new variable x1 with constraint given by the clopen
set Kx1 = c−1(c(δ (yz))), and we take

S1 = {x1t = t(ztω−1)ω−1,x1yzx1 = x1,x1yz = yzx1}.

For the second step, we may choose the factor (ztω−1)ω−1 in S1. Then, we add a new variable x2 with
associated constraint Kx2 = c−1(c(δ (ztω−1))) and S2 is given by

S2 = {x1t = tx2,x1yzx1 = x1,x1yz = yzx1,x2ztω−1x2 = x2,x2ztω−1 = ztω−1x2}.

Finally, it remains to take care of the subword tω−1. We add a new variable x3, set Kx3 = c−1(c(δ (t))),
and get

S3 = {x1t = tx2,x1yzx1 = x1,x1yz = yzx1,x2zx3x2 = x2,x2zx3 = zx3x2,x3tx3 = x3,x3t = tx3}.

Combining Propositions 5.2 and 5.4 and considering σ = κ , we obtain the following.

Corollary 5.6. The pseudovariety DRH is completely κ-reducible if and only if it is κ-reducible for
systems of one word equation without parameters.

Suppose that there exists an implicit signature σ such that, for every n-ary implicit operation
η ∈ σ , there exists a finite system S(η) of word equations in the set of variables {x1, . . . ,xn,xn+1}
such that for all pseudowords u1, . . . ,un,un+1 we have η(u1, . . . ,un) =DRH un+1 if and only if the
continuous homomorphism δ : Ω{x1,...,xn,xn+1}S→ΩAS sending each xi to ui is a solution modulo DRH

of S(η). Then, the same kind of argument used in Proposition 5.4 allows us to prove a similar result,
replacing κ by σ in the statement. The hope of finding such an implicit signature for which a certain
pseudovariety of groups may be completely σ -reducible motivates the upcoming results for a generic
implicit signature σ .

Let u,v ∈ X+ and δ : ΩXS→ΩAS be a solution modulo DRH of u = v, subject to the constraints
given by the pair (ϕ : ΩAS→ S,ν : X → S). We say that δ is reduced with respect to the equation
u = v if whenever xy is a product of variables that is a factor of uv, the product δ (x) ·δ (y) is reduced.
The last simplification consists in transforming the word equation u = v into a more convenient system
of equations, namely, into a system that we denote by Su=v and that is the union of systems {u′ = v′},
S1 and S2 with variables in X ′. We construct Su=v inductively as follows.

We use an auxiliary system S0 and start with S0 = S1 = S2 = /0, X ′ = X , u′ = u#, and v′ = v#,
where # /∈ A is a parameter evaluated to itself. Since DRH is a weakly cancellable pseudovariety, the
word equation u = v is equivalent to the equation u′ = v′.
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If δ is not reduced with respect to u′ = v′, then we pick a factor xy such that δ (x)δ (y) is not a
reduced product and we distinguish between two situations:

• If c(δ (y))⊆ c⃗(δ (x)), then we add a new variable z to X ′ and we put the equation xy = z in S1.
We also redefine u′ and v′ by substituting each occurrence of the product xy in the expression
u′v′ by the variable z.

• If c(δ (y))* c⃗(δ (x)), then we add three new variables y1, y2, and z to X ′ and we put the equations
y = y1y2 and z = xy1 in S0 and S1, respectively. We also redefine u′ and v′ by substituting the
product xy in the expression u′v′ by the product of variables zy2.

In both situations, we can factorize δ (y) = δ (y)1δ (y)2, with δ (y)2 possibly an empty word, such
that c(δ (y)1) ⊆ c⃗(δ (x)) and the product (δ (x)δ (y)1) · δ (y)2 is reduced if δ (y)2 ̸= I. We extend
δ to ΩX ′S by letting δ (z) = δ (x)δ (y)1 and, whenever we are in the second situation, by letting
δ (yi) = δ (y)i (i = 1,2). Of course, δ is a solution modulo DRH of the new system of equations
{u′ = v′}∪S0∪S1.

We repeat the described process until the extended solution δ is reduced with respect to the
equation u′ = v′. Since u and v are both words, we have for granted that this iteration eventually
ends. Yet, the extension of δ to ΩX ′S (which is a solution modulo DRH of {u′ = v′}∪ S0 ∪ S1)
has the property of being reduced with respect to the equation u′ = v′. We further observe that the
resulting system S1 may be written as S1 = {x(i)y(i) = z(i)}N

i=1 and its extended solution δ satisfies
the inclusion c(δ (y(i))) ⊆ c⃗(δ (x(i))). For each variable x ∈ X ′, we set Ax = c⃗(δ (x)) and define
S2 = {xaω = x : a ∈ Ax}x∈X ′ . The homomorphism δ is a solution modulo DRH of S2. Finally, since
DRH is weakly cancellable and all the products δ (y1) ·δ (y2) are reduced, we may assume that the
satisfaction of the equations in S0 by δ is a consequence of the satisfaction of the equation u′ = v′

by δ , without losing the reducibility of δ with respect to u′ = v′. More specifically, if y = y1y2 is
an equation of S0, then we take for u′ the word u′#y and for v′ the word v′#y1y2, where # is a new
symbol, working as a parameter evaluated to itself. In the same fashion, we may also assume that all
the variables of X ′ occur in u′ = v′. Although at the moment it may not be clear to the reader why we
wish that all the variables in X ′ occur in the equation u′ = v′, that becomes useful later, when dealing
with certain systems of equations modulo H that intervene in the so-called “systems of boundary
relations”. The resulting system {u′ = v′}∪S1∪S2 is the one that we denote by Su=v and it also has
a solution modulo DRH. The constraints for the variables in X ′ are those defined by the described
extension of δ to ΩX ′S, namely, we put ν(x) = ϕ(δ (x)) for each x ∈ X ′.

Conversely, suppose that Su=v has a solution modulo DRH in σ -words, say ε . Then, it is
easily checked that, by construction, the restriction of ε to ΩXS is a solution modulo DRH of the
original equation u = v. Moreover, by definition of S2, this solution is such that c⃗(ε(x)) = c⃗(δ (x)),
for all x ∈ X ′. As, in addition, S has a content function, the satisfaction of the constraints yields
that c(ε(y(i))) = c(δ (y(i))) and, in particular, the inclusion c(ε(y(i))) ⊆ c⃗(ε(x(i))) holds for all the
equations x(i)y(i) = z(i) in S1.

Taking into account Proposition 5.4, we have just proved the following result in which we use the
above notation.
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Proposition 5.7. Let σ be an implicit signature such that κ ⊆ ⟨σ⟩ and suppose that the pseudovariety
DRH is σ -reducible for systems of equations of the form

Su=v = {u′ = v′}∪S1∪S2, (5.3)

where u′ = v′ is a word equation, S1 = {x(i)y(i) = z(i)}N
i=1, and S2 = {xaω = x : a ∈ Ax}x∈X , which

have a solution δ modulo DRH that is reduced with respect to the equation u′ = v′ and satisfies
c(δ (y(i)))⊆ c⃗(δ (x(i))), for i = 1, . . . ,N. Then, the pseudovariety DRH is σ -reducible with respect to
finite systems of κ-equations.

Example 5.8. Consider, for instance, the word equation given by xyzyz = w with solution modulo DRH

given by

δ : ΩXS→ΩAS

x 7→ (ab)ω−1

y 7→ aω−1

z 7→ abc

w 7→ (ab)ω−1bcaωbc

We set S0 = S1 = S2 = /0. The products in the equation that are not reduced under δ are xy and yz.
Depending on the product we choose first, the obtained result may be different. If we start by choosing
the product δ (x)δ (y) then, since c(δ (y))⊆ c⃗(δ (x)), we put in S1 the equation txy = xy, where txy is a
new variable, and replace the original equation by the equation txyzyz = w. We extend the solution δ

by letting δ (txy) = (ab)ω−1aω−1. Again, we have two factors to consider, namely, txyz and yz. Since
the product δ (txyz) ·δ (yz) is reduced, it really does not matter which we consider first now, since they
do not interact between them. Thus, we do the corresponding modifications of the system at the same
time. This corresponds to factorizing δ (z) = ab · c, relatively to the factor txyz; and to factorizing
δ (z) = a ·bc, relatively to the factor yz. Then, we add to S0 the equations z = z1z2 and z = z′1z′2 and
to S1 the equations ttxyz1 = txyz1 and tyz′1

= yz′1, where z1,z2,z′1,z
′
2, ttxyz1 , tyz′1

are new variables. The
equation txyzyz = w is replaced by the equation ttxyz1z2tyz′1

z′2 = w. The solution δ extends by letting
δ (z1) = ab, δ (z2) = c, δ (z′1) = a, δ (z′2) = bc, δ (ttxyz1) = (ab)ω−1aω−1ab, and δ (tyz′1

) = aω−1a. At
the end, we have S0 = {z = z1z2,z = z′1z′2} and S1 = {txy = xy, ttxyz1 = txyz1, tyz′1

= yz′1} and the new
equation is ttxyz1z2tyz′1

z′2 = w. We also “include” S0 in the equation ttxyz1z2tyz′1
z′2 = w, as well as all the

variables that appear in S1, obtaining the equation

ttxyz1z2tyz′1
z′2#1z#2z#3x#4y#5txy# = w#1z1z2#2z′1z′2#3x#4y#5txy#,

where #1, #2, #3, #4 and #5 represent new parameters evaluated to themselves. Considering the
cumulative content of the evaluation of each variable under δ , we conclude that the system S2 is given
by

S2 = {taω = t : t ∈ {x,y, txy, tyz′1
, ttxyz1}}∪{tbω = t : t ∈ {x, txy, ttxyz1}}.
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On the other hand, if we choose first the factor yz, then the factorization of δ (z) we should
consider is δ (z) = a · bc. Then, we put in S0 the equation z = z1z2, in S1 the equation tyz1 = yz1,
and we transform the initial equation in xtyz1z2tyz1z2 = w, where z1,z2, tyz1 are new variables. We
set δ (z1) = a, δ (z2) = bc and δ (tyz1) = aω−1a. It remains to consider one factor, namely, xtyz1 . As
c(δ (tyz1))⊆ c⃗(δ (x)), we add to S1 the equation txtyz1

= xtyz1 , where txtyz1
is a new variable, and the initial

equation turns into txtyz1
z2tyz1z2 = w. The extended solution δ sends txtyz1

to (ab)ω−1aω−1a. By now,
the systems S0 and S1 are given by S0 = {z = z1z2} and S1 = {tyz1 = yz1, txtyz1

= xtyz1}. The system
S0 and the variables appearing in the system S1 may be included in the equation txtyz1

z2tyz1z2 = w, by
transforming it in the equation

txtyz1
z2tyz1z2#1z#2x#3y# = w#1z1z2#2x#3y#,

where #1, #2 and #3 are new parameters evaluated to themselves. Finally, in this case, the system S2 is
given by

S2 = {taω = t : t ∈ {x,y, tyz1 , txtyz1
}}∪{tbω = t : t ∈ {x, txtyz1

}}.

We end this section with a result regarding reducibility of pseudovarieties of groups that is later
used to derive reducibility properties of DRH.

Lemma 5.9. Let σ be an implicit signature such that κ ⊆ ⟨σ⟩, H a pseudovariety of groups that
is σ -reducible for finite systems of κ-equations, and S a finite system of κ-equations that admits
the continuous homomorphism δ : ΩXS→ (ΩAS)

I as a solution modulo H. Then, S has a solution
modulo H in σ -words, say ε , such that c⃗(ε(x)) = c⃗(δ (x)), for all x ∈ X.

Proof. Let x be a variable of X . Given i ≤ ⌈δ (x)⌉, we denote lbf i(δ (x)) by δ (x)iax,i and write
δ (x) = lbf1(δ (x)) · · · lbf i(δ (x))δ (x)′i. If c⃗(δ (x)) is the empty set, then we have

ϕ(δ (x)) = ϕ(lbf1(δ (x)) · · · lbf⌈δ (x)⌉(δ (x))). (5.4)

For the remaining variables, since X , A, and S are finite, there are integers 1 < k < ℓ such that

c⃗(δ (x)) = c(lbfk+1(δ (x)));

ϕ(lbf1(δ (x)) · · · lbfk(δ (x))) = ϕ(lbf1(δ (x)) · · · lbfℓ(δ (x))),

for all x ∈ X with c⃗(δ (x)) ̸= /0. In particular, from the second equality we deduce

ϕ(δ (x)) = ϕ(lbf1(δ (x)) · · · lbfk(δ (x)))ϕ(lbfk+1(δ (x)) · · · lbfℓ(δ (x)))ω
ϕ(δ (x)′k). (5.5)

We consider a new set of variables X ′ given by

X ′ = {yx,1,bx,1, . . . ,yx,⌈δ (x)⌉,bx,⌈δ (x)⌉ : x ∈ X and c⃗(δ (x)) = /0}
⊎{yx,1,bx,1, . . . ,yx,ℓ,bx,ℓ,y′x : x ∈ X and c⃗(δ (x)) ̸= /0}
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and a new system of equations S′ with variables in X ′ obtained from S by substituting each variable x
by the product

Px = yx,1bx,1 · · ·yx,⌈δ (x)⌉bx,⌈δ (x)⌉, (5.6)

whenever c⃗(δ (x)) = /0, and by the product

Px = yx,1bx,1 · · ·yx,kbx,k(yx,k+1bx,k+1 · · ·yx,ℓbx,ℓ)
ωy′x, (5.7)

otherwise. The constraints for the variables in X ′ are given by the clopen sets Kyx,i = ϕ−1(ϕ(δ (x)i)),
Ky′x = ϕ−1(ϕ(δ (x)′k)), and Kbx,i = {ax,i}. Finally, we let δ ′ : ΩX ′S→ ΩAS be the homomorphism
defined by δ ′(yx,i) = δ (x)i, δ ′(y′x) = δ (x)′k, and δ ′(bx,i) = ax,i. Since H satisfies δ ′(Px) = δ (x), for
every variable x ∈ X (check (5.6) and (5.7)), the homomorphism δ ′ is a solution modulo H of S′.
Therefore, as we are assuming that the pseudovariety H is σ -reducible for finite systems of κ-equations,
there is a solution ε ′ : ΩX ′S→ΩAS modulo H of S′ such that ε ′(X ′)⊆Ωσ

AS. On the other hand, this
homomorphism ε ′ defines a solution in σ -words modulo H of the original system S, namely, by letting
ε(x) = ε ′(Px) for each x ∈ X . Moreover, since Kbx,i = {ax,i} we necessarily have ε ′(bx,i) = ax,i and the
fact that S has a content function entails that c(ε ′(yx,i)) = c(δ ′(yx,i)) = c(δ (x)i) and, similarly, that
c(ε ′(y′x)) = c(δ ′(y′x)) = c(δ (x)′k). In particular, ax,i does not belong to c(δ (x)i). So, the iteration of left
factorization to the right of ε(x) is the one induced by the product Px, implying that c⃗(ε(x)) = c⃗(δ (x))
as intended. Finally, we verify that the constraints on X are satisfied by ε:

ϕ(ε(x)) = ϕ(ε ′(Px)) =

ϕ(ε ′(yx,1bx,1 · · ·yx,⌈δ (x)⌉bx,⌈δ (x)⌉)), if c⃗(δ (x)) = /0

ϕ(ε ′(yx,1bx,1 · · ·yx,kbx,k(yx,k+1bx,k+1 · · ·yx,ℓbx,ℓ)
ωy′x)), otherwise

=


ϕ(δ (x)1ax,1) · · ·ϕ(δ (x)⌈δ (x)⌉ax,⌈δ (x)⌉), if c⃗(δ (x)) = /0

ϕ(δ (x)1ax,1) · · ·ϕ(δ (x)kax,k)

·(ϕ(δ (x)k+1ax,k+1) · · ·ϕ(δ (x)ℓax,ℓ))
ωϕ(δ (x)′k), otherwise

=


ϕ(lbf1(δ (x)) · · · lbf⌈δ (x)⌉(δ (x))), if c⃗(δ (x)) = /0

ϕ(lbf1(δ (x)) · · · lbfk(δ (x)))

·ϕ(lbfk+1(δ (x)) · · · lbfℓ(δ (x)))ωϕ(δ (x)′k), otherwise
(5.4), (5.5)

= ϕ(δ (x)).

Hence, the homomorphism ε plays the desired role.

5.3 Periodicity modulo DRH

We proceed with the statement and proof of two results concerning a certain periodicity of members
of ΩADRH. We first need a few auxiliary lemmas.

Lemma 5.10 (cf. [10, Lemma 5.1]). Let u,v be pseudowords such that uvω R vω modulo DRH. If the
inclusion c(u)$ c(v) holds, then the pseudovariety DRH satisfies uv = v.
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Proof. Let a be a letter in c(v)\c(u). We may factorize v= v1av2 with a /∈ c(v1) (recall Corollary 2.14).
Since DRH satisfies uvω = vω , it follows that it also satisfies uv1av2vω−1 = v1av2vω−1. Since a does
not belong to c(uv1), again Corollary 2.14 implies that DRH satisfies uv1 = v1, resulting in turn that it
satisfies uv = v.

Lemma 5.11 (cf. [10, Lemma 5.2]). If u,v ∈ ΩAS are such that DRH satisfies the pseudoidentity
uv2 = v2, then it also satisfies vu = u.

Proof. The fact that DRH satisfies uv2 = v2 implies that it also satisfies uvω = vω . Therefore, in
the case where c(u)$ c(v) we may use Lemma 5.10 to conclude that DRH satisfies uv = v. Let us
suppose that c(u) = c(v). Then, the pseudoidentity uv2 =DRH v2 yields uωv2 = v2 modulo DRH. Since
we are assuming the equality c(u) = c(v), it follows that, c⃗(v) = c(u) = c(v). Hence, the following
holds modulo DRH:

uv R uv2 = v2 R v.

As, in addition H satisfies uv = v (because H⊇ DRH and, consequently, uv2 =H v2), by Lemma 2.32,
the pseudovariety DRH satisfies uv = v.

Now, we are ready to prove the announced results on the periodicity in ΩADRH.

Lemma 5.12 (cf. [10, Lemma 5.4]). Let x and y be pseudowords such that xω = yω modulo DRH. If
the products x · x and y · y are reduced, then there are pseudowords u ∈ΩAS and v,w ∈ (ΩAS)

I , and
positive integers k, ℓ such that the following pseudoidentities hold in DRH

x = ukv,

y = uℓw,

u = vu = wu,

and all the products u ·u, u ·v, u ·w, v ·u, and w ·u are reduced, whenever the second factor is nonempty.

Proof. We argue by transfinite induction on α = max{αx,αy}.
If αx = αy, since the products x · x and y · y are reduced, we then have x = y in DRH, by Corol-

lary 2.31. So, we may choose u = x, v = w = I, and k = ℓ= 1.
From now on, we assume that the pseudovariety DRH does not satisfy x = y. Suppose, without

loss of generality, that αx < αy = α . Again, by Corollary 2.31, DRH satisfies

y = yω [0,αy[ = xω [0,αy[ = xω [0,αx[ xω [αx,αy[ = xxω [αx,αy[

and so, x is a prefix of y modulo DRH. Thus, the set

P = {m≥ 1: ∃y1, . . . ,ym ∈ΩAS such that y≤R y1 · · ·ym and yi =DRH x, for i = 1, · · ·m}

is nonempty. If it were unbounded then, since x ·x is a reduced product and by definition of cumulative
content, every letter of c(x) = c(yi) would be in the cumulative content of y, so that c⃗(y) = c(x) = c(y),
a contradiction with the hypothesis that y · y is a reduced product. We take m = max(P) and let
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y = y1 · · ·ymy′, with yi =DRH x, for i = 1, . . . ,m. Since xω =DRH yω , we deduce that DRH satisfies

xω = yω = y1 · · ·ymy′yω−1 = xmy′yω−1

which in turn, since the involved products are reduced, implies that DRH also satisfies

xω−m = y′yω−1.

In particular, as yω = xω in DRH (and so, c(x) = c(y)), we may conclude that DRH satisfies

xω = y′yω−1xm = y′xωyω−1xm R y′xω . (5.8)

We now distinguish two cases.

• If c(y′)$ c(x) then, by Lemma 5.10, the pseudovariety DRH satisfies x = y′x, so that we may
choose u = x, v = I, k = 1, w = y′, and ℓ= m.

• If c(y′) = c(x) then, successively multiplying by y′ on the left the leftmost and rightmost sides
of (5.8), we get that the relation xω R y′ωxω = y′ω holds in DRH. As xω and y′ω are both
the identity in the same regular R-class, hence in the same group, the mentioned relation is
actually an equality: xω =DRH y′ω . Furthermore, the product y′ · y′ is reduced because so is
y · y. Indeed, c⃗(y′) = c⃗(y), the first letters of y′ and x coincide and, in turn, the first letter of x is
the first letter of y. Consequently, y′ and x verify the conditions of applicability of the lemma
and have associated a smaller induction parameter. In fact, maximality of m guarantees that
αy′ ≤ αx < αy = α . By induction hypothesis, there exist u ∈ΩAS, v,w ∈ (ΩAS)

I , and k, ℓ > 0
such that the identities

x = ukv,

y′ = uℓw,

u = vu = wu

(5.9)

are valid in DRH, and where all products, including u ·u are reduced. The computation

y = xmy′ = (ukv)muℓw = ukm+ℓw

modulo DRH justifies that, except for the value of ℓ, which now is km+ ℓ, the choice in (5.9)
also fits the original pair x,y.

Proposition 5.13 (cf. [10, Proposition 5.5]). Let x0,x1, . . . ,xn ∈ΩAS be such that xω
0 = xω

1 = · · ·= xω
n

modulo DRH and suppose that, for i = 0,1, . . . ,n, the product xi · xi is reduced. Then, there exist
pseudowords u ∈ ΩAS, v0,v1, . . . ,vn ∈ (ΩAS)

I , and positive integers p0, p1, . . . , pn such that the
pseudovariety DRH satisfies

xi = upivi, for i = 0,1, . . . ,n,

u = viu, for i = 0,1, . . . ,n,

and all the products u ·u, u · vi, and vi ·u are reduced, whenever the second factor is nonempty.
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Proof. We argue by induction on n. When n = 1, the claim amounts to the result of the preceding
lemma. Suppose that n > 1. Applying Lemma 5.12 to each pair (x0,xi), for i = 1, . . . ,n, we obtain
pseudowords wi ∈ΩAS, ri,si ∈ (ΩAS)

I , and positive integers ki, ℓi such that DRH satisfies

x0 = wki
i ri, (5.10)

xi = wℓi
i si, (5.11)

wi = riwi = siwi, (5.12)

and all the products of nonempty pseudowords are reduced. Hence, for i = 1, . . . ,n, xω
0 = (wki

i ri)
ω =

wω
i ri modulo DRH. Also, as DRH⊇ H satisfies wi = riwi, the pseudovariety H satisfies ri = 1. By

Corollary 2.20, we deduce that xω
0 = wω

1 = · · ·= wω
n in DRH. Applying the induction hypothesis to

w1, . . . ,wn we get, in turn, the existence of pseudowords y ∈ΩAS, z1, . . . ,zn ∈ (ΩAS)
I , and of positive

integers m1, . . . ,mn such that

wi = ymizi (5.13)

y = ziy (5.14)

are equalities valid in DRH, and all the products of nonempty pseudowords are reduced. Now, we
compute

x0
(5.10)
= wki

i ri
(5.13)
= (ymizi)

kiri
(5.14)
= ymikiziri,

xi
(5.11)
= wℓi

i si
(5.13)
= (ymizi)

ℓisi
(5.14)
= ymiℓizisi

modulo DRH, for i = 1, . . . ,n. On the other hand, we also have the following modulo DRH:

ymizi
(5.13)
= wi

(5.12)
= riwi

(5.13)
= ri(ymizi) =⇒ ymiziy2mi−mi = riymiziy2mi−mi

(5.14)⇐⇒ y2mi
= riy2mi

Lemma 5.11
=⇒ y = riy

=⇒ ziy = ziriy
(5.14)⇐⇒ y = ziriy.

Similarly, we may deduce that DRH satisfies y = zisiy.

We just proved that it is enough to take

u = y,

v0 = z1r1, and vi = zisi, for i = 1, . . . ,n,

p0 = m1k1, and pi = miℓi, for i = 1, . . . ,n,

in order to obtain the desired pseudoidentities.



88 Complete κ-reducibility of DRH

5.4 Systems of boundary relations and their models

In this section, we define some tools that turn out to be useful when proving that DRH is completely
κ-reducible. The original notion of a boundary equation was given by Makanin [50] and it was later
adapted by Almeida, Costa and Zeitoun [10] to deal with the problem of complete κ-reducibility of
the pseudovariety R. Here, we extend the definitions used in [10] to the context of the pseudovariety
DRH, for any pseudovariety of groups H, and use them to prove that, under certain conditions, the
pseudovariety DRH is σ -reducible for finite systems of κ-equations.

From hereon, we fix a word equation u = v and a solution δ : ΩXS→ΩAS modulo DRH of Su=v

(recall (5.3)) that satisfies the conditions stated in Proposition 5.7, and subject to the constraints given
by the pair (ϕ : ΩAS→ S,ν : X → S). We write Kx = ϕ−1(ν(x)). The implicit signature σ is assumed
to satisfy the condition (sig) and be such that κ ⊆ ⟨σ⟩.

By a system of boundary relations we mean a tuple S= (X,J,ζ ,M,χ, right,B,BH) where

• X is a finite set equipped with an involution without fixed points x 7→ x, whose elements are
called variables;

• J is a finite set equipped with a total order ≤, whose elements are called indices. If i and j are
two consecutive indices, then we write i≺ j and we denote i by j−;

• ζ : {(i, j) ∈ J× J : i≺ j}→ 2S×SI
is a function that is useful to deal with the constraints;

• M : {(i, j, s⃗) ∈ J× J× (S×SI) : i≺ j, s⃗ ∈ ζ (i, j)}→ ω \{0} is a function that determines the
number of different factorizations in ΩAS modulo DRH that we assign to suitable segments of
the solution;

• χ : {(i, j) ∈ J× J : i≺ j}→ 2A is a function whose aim is to control the cumulative content of
suitable segments of the solution;

• right : X→ J is a function that helps in defining the relations we need to attain our goal;

• B is a subset of J×X×J×X, whose elements are of the form (i,x, j,x). Moreover, if (i,x, j,x)
is an element of B, then so is ( j,x, i,x). The elements of B are called boundary relations and
the boundary relation ( j,x, i,x) is said to be the dual boundary relation of (i,x, j,x). The pairs
(i,x) and ( j,x) are boxes of B. Together with the right function, the set B encodes the relations
we want to be satisfied in DRH;

• finally, for each pair of indices i, j such that i≺ j, we consider a symbol (i | j) and, for each
pair (⃗s,µ) ∈ ζ (i, j), we consider another symbol {i | j}⃗s,µ . These symbols are understood as
variables and we denote by X(J,ζ ,M) the set of those variables:

X(J,ζ ,M) = {(i | j) : i, j ∈ J, i≺ j}∪{{i | j}⃗s,µ : (i, j, s⃗) ∈ Dom(M) and µ ∈M(i, j, s⃗)}
(5.15)

Then, BH is a finite set of κ-equations with variables in X(J,ζ ,M) whose solutions are meant to
be taken over H. If i0 ≺ ·· · ≺ in is a chain of indices in J, then we denote by (i0 | in) the product
of variables ∏

n
k=1(ik−1 | ik).
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Given a variable x ∈ X, the left of x is left(x) = min{i ∈ I : there exists a box (i,x) in B}, when it is
defined.

We let prod : ΩAS× (ΩAS)
I →ΩAS be the function sending each pair of pseudowords (u,v) to its

product uv.
A model of the system of boundary relations S is a triple M= (w, ι ,Θ), where

• w is a possibly empty pseudoword;

• ι : J→ αw + 1 is an injective function that preserves the order and such that, if J is not the
empty set then ι sends min(J) to 0 and max(J) to αw;

• for each triple (i, j, s⃗) in Dom(M) and each µ in M(i, j, s⃗), the element Θ(i, j, s⃗,µ) is a pair
(Φ(i, j, s⃗,µ),Ψ(i, j, s⃗,µ)) of ΩAS× (ΩAS)

I such that c(Ψ(i, j, s⃗,µ))⊆ c⃗(Φ(i, j, s⃗,µ)).

Notation 5.14. When there exists a map ι : J→ αw + 1 as above, we may write w(i, j) instead of
w[ι(i), ι( j)[ (recall Notation 2.25).

Moreover, the following properties are required for M:

(M.1) if (i, j, s⃗) ∈ Dom(M) and µ ∈M(i, j, s⃗), then DRH satisfies prod◦Θ(i, j, s⃗,µ) = w(i, j);

(M.2) if (i, j, s⃗) ∈ Dom(M), s⃗ = (s1,s2), and µ ∈M(i, j, s⃗), then

ϕ(Φ(i, j, s⃗,µ)) = s1 and ϕ(Ψ(i, j, s⃗,µ)) = s2;

(M.3) if i≺ j, then c⃗(w(i, j)) = χ(i, j);

(M.4) if (i,x, j,x) ∈B, then DRH satisfies w(i, right(x)) R w( j, right(x));

(M.5) let C := (J, ι ,M,Θ) and δw,C : ΩX(J,ζ ,M)
S→ ΩAS be the unique continuous homomorphism

defined by
δw,C(i | j) = w(i, j);

δw,C({i | j}⃗s,µ) = Ψ(i, j, s⃗,µ).
(5.16)

Then, δw,C is a solution modulo H of BH.

We say that M is a model of S in σ -words if w ∈ (Ωσ
AS)

I and the coordinates of Θ are given by
σ -words.

By Proposition 5.7, to prove that DRH is completely κ-reducible, it is enough to prove that DRH
is κ-reducible for certain systems of equations of the form Su=v. With that in mind, we associate to
such a system Su=v a system of boundary relations, denoted Su=v. Then, we construct a model of
Su=v and prove that the existence of a model in κ-words entails the existence of a solution of the
original system Su=v also in κ-words (Proposition 5.16). Although we are mainly interested in the
case where the implicit signature is κ , we formulate the results more generally for an arbitrary implicit
signature σ , such that κ ⊆ ⟨σ⟩. Even though some of the results may still hold in general, since the
condition (sig) is crucial for the validity of Theorem 5.26, we further require that σ satisfies it.

Let δ : ΩXS→ ΩAS be a solution modulo DRH of Su=v = {u′ = v′}∪ S1 ∪ S2 such that δ is
reduced with respect to u′ = v′ and for every equation xy = z of S1 we have c(δ (y))⊆ c⃗(δ (x)) (recall
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Proposition 5.7). Suppose that u′ = x1 · · ·xr and v′ = xr+1 · · ·xt , and write S1 = {x(i)y(i) = z(i)}N
i=1

and S2 = {xaω = x : a ∈ Ax}x∈X . Let G be an undirected graph whose vertices are given by the set
{1, . . . , t} and that has an edge connecting the vertices p and q if and only if p ̸= q and either xp = xq

or {xp,xq}= {x(i),z(i)} for a certain i. Let Ĝ be a spanning forest for G. We define

Su=v = (X,J,ζ ,M,χ, right,B,BH) (5.17)

as follows:

• the set of variables is X= {(p,q) : there is an edge in Ĝ connecting p and q}⊎{l}⊎{r}. The
involution in X is given by (p,q) = (q, p) and by l= r;

• the set of indices is J = {i0, . . . , it} with i0 ≺ ·· · ≺ it ;

• the function ζ is defined by ζ (ip−1, ip) = {(ν(xp), I)} for every p = 1, . . . , t;

• we set M(ip−1, ip,(ν(xp), I)) = 1 for every p = 1, . . . , t;

• the function χ sends each pair (ip−1, ip) to the set Axp ;

• the right function is given by right(p,q) = ip, right(l) = ir, and right(r) = it ;

• the set of boundary relations B contains the boundary relations (i0, l, ir, r), and (ir, r, i0, l) plus
all the boundary relations of the form (ip−1,(p,q), iq−1,(q, p)), where (p,q) ∈ X;

• we put in BH the equation (i0 | ir) = (ir | it) and, for each (p,q) ∈ X \ {l, r}, the equation
(ip−1 | ip) = (iq−1 | iq) if xp = xq, or the equation (ip−1 | ip)(im−1 | im) = (iq−1 | iq) if xpxm = xq

belongs to S1.

Example 5.15. Let X = {x,y,z}, u = xyx, v = x2z, and let δ : ΩXS→ ΩAS be defined by δ (x) = a,
δ (y) = (ab)pω

, and δ (z) = (ba)pω

. Clearly, the homomorphism δ is a solution modulo DRH of u = v
and the system Su=v = {u′ = v′}∪S1∪S2 is given by u′ = xtyx#1y#, v′ = x2z#1y#, S1 = {tyx = yx},
and S2 = {yaω = y,ybω = y,zaω = z,zbω = z, tyxaω = tyx, tyxbω = tyx}. The extended solution δ is
obtained by letting δ (tyx) = (ab)pω

a. Then, the set of indices is J = {i0, i1, . . . , i11}. In order to
determine B, we first construct the graph G, by identifying the variables that are either repeated in the
equation u′ = v′ or that are the first variable of both members of an equation in S1 (see Figure 5.1).

Considering Ĝ as illustrated in Figure 5.1, we obtain that the set of variables in the system of
boundary relations Su=v is the following

{(1,6),(6,1),(6,7),(7,6),(2,4),(4,2),(4,10),(10,4),(3,9),(9,3),(5,11),(11,5), l, r}

and we schematize the set of boundary relations B in Figure 5.2.
Finally, the set BH contains the following equations:

• (i0 | i1) = (i5 | i6) = (i6 | i7),

• (i3 | i4) = (i9 | i10),

• (i2 | i3) = (i8 | i9),
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Fig. 5.1 The auxiliary graph G (above) and a possible choice for Ĝ (below).
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Fig. 5.2 The set of boundary relations B.

• (i4 | i5) = (i10 | i11),

• (i0 | i5) = (i5 | i11),

• (i1 | i2) = (i3 | i4)(i0 | i1).

A candidate to be a model of Su=v is Mu=v = (w, ι ,Θ), where w = δ (u′v′), the mapping ι is given
by ι(i0) = 0, and ι(ip) = αδ (x1···xp), for each p = 1, . . . , t, and Θ(ip−1, ip,(ν(xp), I),0) = (δ (xp), I),
for p = 1, . . . , t.

Proposition 5.16. The tuple Su=v in (5.17) is a system of boundary relations which has Mu=v as a
model. Moreover, if Su=v admits a model in σ -words, then the system of equations Su=v has a solution
modulo DRH in σ -words.

Proof. For the first part, we notice that the Properties (M.1), (M.2) and (M.3) of the requirements for
being a model are given for free from the construction. Let (i,x, j,x) be a boundary relation. Since
each equation x(k)y(k) = z(k) of S1 is such that the inclusion c(δ (y(k)))⊆ c⃗(δ (x(k))) holds, whenever
an edge in the graph Ĝ links two indices p and q, the elements δ (xp) = Φ(ip−1, ip,(ν(xp), I),0) and
δ (xq) = Φ(iq−1, iq,(ν(xq), I),0) are R-equivalent modulo DRH. Therefore, unless (i,x, j,x) is one of
the relations (i0, l, ir, r) or (ir, r, i0, l), the Property (M.4) is trivially satisfied. For those relations, we
just need to observe that w(i0, right(l)) = δ (u′) and w(ir, right(r)) = δ (v′). The last Property (M.5)
translates into the verification of pseudoidentities modulo H that are satisfied by the pseudovariety
DRH by construction. This proves that Mu=v is a model of Su=v.
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For the second assertion, take M′ = (w′, ι ′,Θ′) a model of Su=v in σ -words and let ε : ΩXS→ΩAS

be the continuous homomorphism that sends the variable x to prod◦Θ(ip−1, ip,(ν(xp), I),0), where p
is such that xp = x. Such an xp exists for every variable since we are assuming that all the variables
occur in u′ = v′. It is worth to mention that the value modulo DRH that we assign to ε(x) when x = xp

for some p does not depend on the chosen p. By Property (M.2), all the constraints imposed by Su=v

are satisfied by ε . The following computation shows that DRH satisfies ε(u′) = ε(v′):

ε(u′) = ε(x1 · · ·xr) = ε(x1) · · ·ε(xr)

= prod◦Θ
′(i0, i1,(ν(x1), I),0) · · ·prod◦Θ

′(ir−1, ir,(ν(xr), I),0)
(M.1)
= w′(i0, i1) · · ·w′(ir−1, ir) = w′(i0, ir)
(∗)
= w′(ir, it) = w′(ir, ir+1) · · ·w′(it−1, it)

(M.1)
= prod◦Θ

′(ir, ir+1,(ν(xr+1), I),0) · · ·prod◦Θ
′(it−1, it ,(ν(xt), I),0)

= ε(xr+1) · · ·ε(xt) = ε(xr+1 · · ·xt) = ε(v′).

The reason for (∗) is the fact that the relation (i0, l, ir, r) belongs to B and the equation (i0 | ir) = (ir | it)
to BH, together with Properties (M.4) and (M.5), and with Lemma 2.32. For the system S2, we point
out that its only aim is to fix the cumulative content of the variables and Property (M.3) ensures
that. Finally, let xpxm = xq be an equation of S1. Since for such an equation, we have a relation
(ip−1,(p,q), iq−1,(q, p)) in B and an equation (ip−1 | ip)(im−1 | im) = (iq−1 | iq) in BH, from (M.4)
we deduce that ε(xp) and ε(xq) are R-equivalent in DRH and from (M.5) that ε(xp)ε(xm) = ε(xq) is
a valid pseudoidentity in H. In addition, the assumption that S has a content function together with
Property (M.2) yield that c(δ (x)) = c(ε(x)). In turn, we already observed that c⃗(δ (x)) = c⃗(ε(x)).
Therefore, as by construction of Su=v we know that c(δ (xm))⊆ c⃗(δ (xp)), we have ε(xp)ε(xm)R ε(xq)

modulo DRH, and from Lemma 2.32 we obtain that DRH satisfies ε(xp)ε(xm) = ε(xq).

The following criterion for having that a pseudovariety DRH is σ -reducible with respect to finite
systems of κ-equations follows from Proposition 5.7 together with Proposition 5.16.

Corollary 5.17. Let σ be an implicit signature such that κ ⊆ ⟨σ⟩. If every system of boundary
relations which has a model also has a model in σ -words, then DRH is σ -reducible for finite systems
of κ-equations.

In particular, a pseudovariety DRH is completely κ-reducible provided every system of boundary
relations which has a model also has a model in κ-words.

5.5 Factorization schemes

A factorization scheme for a pseudoword w is a tuple C= (J, ι ,M,Θ), where:

• J is a totally ordered finite set;

• ι : J→ αw +1 is an injective function that preserves the order;

• M : {(i, j, s⃗) ∈ J× J× (S×SI) : i≺ j}→ ω \{0} is a partial function;
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• Θ : {(i, j, s⃗,µ) : (i, j, s⃗)∈Dom(M), µ ∈M(i, j, s⃗)}→ΩAS×(ΩAS)
I is a function that sends the

tuple (i, j, s⃗,µ) to a pair (Φ(i, j, s⃗,µ),Ψ(i, j, s⃗,µ)) satisfying c(Ψ(i, j, s⃗,µ))⊆ c⃗(Φ(i, j, s⃗,µ)).

Moreover, if (i, j, s⃗) ∈ Dom(M) and µ ∈M(i, j, s⃗), then the following properties should be satisfied:

(FS.1) DRH satisfies prod◦Θ(i, j, s⃗,µ) = w[ι(i), ι( j)[;

(FS.2) if s⃗ = (s1,s2), then ϕ(Φ(i, j, s⃗,µ)) = s1 and ϕ(Ψ(i, j, s⃗,µ)) = s2.

We say that C is a factorization scheme in σ -words if the coordinates of Θ take σ -words as values.
It is easy to check that, given a system of boundary relations S and a model M for S, the pair
(S,M) determines a factorization scheme for w, namely (J, ι ,M,Θ), which we denote by C(S,M).
Furthermore, a factorization scheme C for a pseudoword w induces functions ζw,C and χw,C as follows

ζw,C : {(i, j) ∈ J× J : i≺ j}→ 2S×SI

(i, j) 7→ {⃗s : (i, j, s⃗) ∈ Dom(M)},
(5.18)

and
χw,C : {(i, j) ∈ J× J : i≺ j}→ 2A

(i, j) 7→ c⃗(w[ι(i), ι( j)[).
(5.19)

The reason for using this notation becomes clear with the following lemma:

Lemma 5.18. Let S= (X,J,ζ ,M,χ, right,B,BH) be a system of boundary relations, w a pseudoword,
and C= (J, ι ,M,Θ) a factorization scheme for w. We define M= (w, ι ,Θ) as a candidate for a model
of S. If ζ = ζw,C and χ = χw,C, then the Properties (M.1)–(M.3) are satisfied.

Proof. We first notice that (5.18) guarantees that it is coherent to consider the same function M in
both S and C. Properties (M.1) and (M.2) are an immediate consequence of the Properties (FS.1)
and (FS.2), respectively. Property (M.3) follows from the following computation:

c⃗(w(i, j)) def.
= c⃗(w[ι(i), ι( j)[)

(5.19)
= χw,C(i, j).

For k = 1,2, let Ck = (Jk, ιk,Mk,Θk) be a factorization scheme for w. We say that C1 is a refinement
of C2 if the following properties are satisfied:

(R.1) Im(ι2)⊆ Im(ι1);

(R.2) there exists a function

Λ : {(i, j, s⃗,µ) : (i, j, s⃗) ∈ Dom(M2), µ ∈M2(i, j, s⃗)}→
⋃
k≥1

(S×SI)k×ω

such that, if Λ(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tn),µ ′), then the following holds:

(R.2.1) there are elements i0, . . . , in in J1 such that i0 ≺ ·· · ≺ in, and the equalities ι2(i) = ι1(i0)
and ι2( j) = ι1(in) hold;

(R.2.2) (im−1, im ,⃗ tm) ∈ Dom(M1), for m = 1, . . . ,n;
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(R.2.3) writing s⃗ = (s1,s2) and t⃗m = (tm,1, tm,2) for m = 1, . . . ,n, the following equalities hold:

s1 = t1,1t1,2 · · · tn−1,1tn−1,2 · tn,1,
s2 = tn,2;

(R.2.4) µ ′ ∈M1(in−1, in ,⃗ tn) and Ψ2(i, j, s⃗,µ) = Ψ1(in−1, in ,⃗ tn,µ ′) modulo H.

We call the function Λ in (R.2) a refining function from C2 to C1.

Proposition 5.19 (cf. [10, Proposition 8.1]). Let w be a pseudoword and let Ck = (Jk, ιk,Mk,Θk) be a
factorization scheme for w (k = 1,2). Then, there is a factorization scheme C3 = (J3, ι3,M3,Θ3) for w
which is a common refinement of C1 and C2. Moreover, for every implicit signature σ satisfying the
condition (sig), if C1 and C2 are both factorization schemes in σ -words, then we may choose C3 with
the same property.

Proof. Let J3 = ι1(J1)∪ ι2(J2) and ι3 : J3 ↪→ αw + 1 be the inclusion of ordinals. Starting with Θ3

defined nowhere, we extend it inductively as follows. Fix k, ℓ ∈ {1,2} with k ̸= ℓ, and let i≺ j in Jk.
Let p1, . . . , pm ∈ Jℓ be the indices that are sent by ιℓ to an ordinal between ιk(i) and ιk( j) and suppose
that {β0,β1, . . . ,βn} = ιk({i, j})∪ ιℓ({p1, . . . , pm}) with β0 < · · ·< βn. Then, for r = 1, . . . ,n, the

Jk

Jℓ

i j

p1 p2 pm· · ·

J3
β0 β1 β2 βn

· · · x
ιk

y
ιℓ

Fig. 5.3 The indices i, j, p1, . . . , pm and the ordinals β0,β1, . . . ,βn.

relation βr−1 ≺ βr holds in J3. We fix s⃗ ∈ ζw,Ck(i, j), with s⃗ = (s1,s2). For each r < n, let

t⃗r = (ϕ(prod◦Θk(i, j, s⃗,0)[βr−1,βr[), I),

µr = {µ : Θ3(βr−1,βr ,⃗ tr,µ) is defined}+1.

We set
Θ3(βr−1,βr ,⃗ tr,µr) = (prod◦Θk(i, j, s⃗,0)[βr−1,βr[, I).

For r = n, we take
t⃗n = (ϕ(Φk(i, j, s⃗,µ))[βn−1,βn[,s2).
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Then, for each µ ∈Mk(i, j, s⃗), we set

Θ3(βn−1,βn ,⃗ tn,µ ′) = (Φk(i, j, s⃗,µ)[βn−1,βn[,Ψk(i, j, s⃗,µ)),

Λk(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tn),µ ′),

where
µ
′ = {µ : Θ3(βn−1,βn ,⃗ tn,µ) is defined}+1.

We repeat this process for all possible choices of k, ℓ, i, j, and s⃗. Finally, we set

M3(β ,γ ,⃗ t) = {µ : Θ3(β ,γ ,⃗ t,µ) is defined}

whenever Θ3(β ,γ ,⃗ t,0) is defined.
The way the construction was performed guarantees that C3 is actually a factorization scheme

for w. Moreover, it follows from the fact that σ satisfies the condition (sig) that, if C1 and C2 are both
factorization schemes in σ -words, then so is C3.

Of course, Properties (R.1), (R.2.1) and (R.2.2) hold for each pair (Ck,C3). It remains to check
Properties (R.2.3) and (R.2.4). For the former, given a pair (⃗s,µ) of Dom(Mk)×M(i, j, s⃗) such that
Λk(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tn),µ ′) (with t⃗m = (tm,1, tm,2)), and ιk(i) = β0 ≺ β1 ≺ ·· · ≺ βn = ιk( j) in J3,
we may compute

n−1

∏
m=1

tm,1tm,2 · tn,1 =
n−1

∏
m=1

ϕ(prod◦Θ3(βm−1,βm ,⃗ tm,µm)) ·ϕ(Φ3(βn−1,βn ,⃗ tn,µ ′))

=
n−1

∏
m=1

ϕ(Φk(i, j, s⃗,0)[βm−1,βm[) ·ϕ(Φk(i, j, s⃗,µ)[βn−1,βn[)

= ϕ(Φk(i, j, s⃗,µ))

= s1 by (FS.2) applied to Ck,

tn,2 = s2, by construction.

The latter property is assured by the construction, since we defined Ψ3(βn−1,βn ,⃗ tn,µ ′) = Ψk(i, j, s⃗,µ).

If C1 = (J1, ι1,M1,Θ1) is a factorization scheme for w, then it induces a set of factorizations
for w. However, it might be useful to consider the set of factorizations that we obtain by multiplying
some of the adjacent factors. To this end, we define what is a candidate for a refining function to C1

with respect to J2: given a totally ordered finite set J2 and an order preserving injective function
ι2 : J2→ αw +1 such that Im(ι2)⊆ Im(ι1), it consists of a partial function

Λ : {(i, j, s⃗,µ) ∈ J2× J2× (S×SI)×ω : i≺ j}→
⋃
k≥1

(S×SI)k×ω

such that

(C.1) Dom(Λ) is finite;
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(C.2) if (i, j, s⃗,µ) ∈ Dom(Λ) and µ ′ ∈ µ , then (i, j, s⃗,µ ′) ∈ Dom(Λ);

(C.3) If (i, j, s⃗,µ) ∈ Dom(Λ) and Λ(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tn),µ ′), then

(C.3.1) there exist n+1 elements in J1, say i0, . . . , in, such that i0 ≺ ·· · ≺ in, and the equalities
ι2(i) = ι1(i0) and ι2( j) = ι1(in) hold;

(C.3.2) writing s⃗ = (s1,s2) and t⃗m = (tm,1, tm,2) for m = 1, . . . ,n, the following equalities hold:

s1 = t1,1t1,2 · · · tn−1,1tn−1,2 · tn,1,
s2 = tn,2;

(C.3.3) for m = 1, . . . ,n, (im−1, im ,⃗ tm) ∈ Dom(M1) and µ ′ ∈M1(in−1, in ,⃗ tn).

Given a candidate Λ for a refining function to C1 with respect to J2, we define a tuple (J2, ι2,M2,Θ2)

as follows:

• we let Dom(M2) = {(i, j, s⃗) : ∃µ ∈ ω | (i, j, s⃗,µ) ∈ Dom(Λ)};

• if (i, j, s⃗) ∈ Dom(M2), then we let M2(i, j, s⃗) = {µ : (i, j, s⃗,µ) ∈ Dom(Λ)};

• let (i, j, s⃗) ∈Dom(M2) and µ ∈M2(i, j, s⃗). If Λ(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tn),µ ′) and i0 ≺ ·· · ≺ in in
J1 are such that ι2(i) = ι1(i0) and ι2( j) = ι1(in), then we define

Φ2(i, j, s⃗,µ) =

(
n−1

∏
m=1

prod◦Θ1(im−1, im ,⃗ tm,0)

)
·Φ1(in−1, in ,⃗ tn,µ ′);

Ψ2(i, j, s⃗,µ) = Ψ1(in−1, in ,⃗ tn,µ ′).

We put Θ2(i, j, s⃗,µ) = (Φ2(i, j, s⃗,µ),Ψ2(i, j, s⃗,µ)).

We say that C2 = (J2, ι2,M2,Θ2) is the restriction of C1 to J2 with respect to Λ. The following result
justifies this terminology.

Proposition 5.20. Let C1, C2 and Λ be as above. Then,

(a) C2 is a factorization scheme for w;

(b) C1 is a refinement of C2;

(c) Λ is a refining function from C2 to C1.

Moreover, if C1 is a factorization scheme in σ -words, then so is C2.

Proof. Once (a) is proved, the items (b) and (c) as well as the last assertion come all for free
from the construction. Let (i, j, s⃗) ∈ Dom(M2), µ ∈M2(i, j, s⃗) and Λ(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tn),µ ′). To
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prove (FS.1), we observe that the following pseudoidentities are valid in DRH:

prod◦Θ2(i, j, s⃗,µ) = Φ2(i, j, s⃗,µ)Ψ2(i, j, s⃗,µ)

=

(
n−1

∏
m=1

prod◦Θ1(im−1, im ,⃗ tm,0)

)
·Φ1(in−1, in ,⃗ tn,µ ′) ·Ψ1(in−1, in ,⃗ tn,µ ′)

(FS.1) for C1=

(
n

∏
m=1

w[ι1(im−1), ι1(im)[

)
= w[ι(i), ι( j)[.

For the Property (FS.2), we may compute:

ϕ(Φ2(i, j, s⃗,µ)) = ϕ

((
n−1

∏
m=1

prod◦Θ1(im−1, im ,⃗ tm,0)

)
·Φ1(in−1, in ,⃗ tn,µ ′)

)
(FS.2) for C1= t1,1t1,2 · t2,1t2,2 · · · tn−1,1tn−1,2 · tn,1

(C.3.2)
= s1

ϕ(Ψ2(i, j, s⃗,µ)) = ϕ(Ψ1(in−1, in ,⃗ tn,µ ′))
(FS.2) for C1= tn,2

(C.3.2)
= s2.

This completes the proof.

We proceed with a few notes describing general situations that appear repeatedly later.

Remark 5.21. Let w be a pseudoword and C= (J, ι ,M,Θ) a factorization scheme for w. Suppose that
C1 = (J1, ι1,M1,Θ1) is a refinement of the factorization scheme C and let Λ be a refining function from
C to C1. Finally, suppose that C′1 = (J1, ι

′
1,M1,Θ

′
1) is a factorization scheme for another pseudoword w′.

The function Λ is clearly a candidate for a refining function to C′1 with respect to J. Moreover, if
C′ = (J, ι ′,M′,Θ′) is the restriction of C′1 with respect to Λ, then M′ = M.

Notation 5.22. Suppose that S= (X,J,ζ ,M,χ, right,B,BH) is a system of boundary relations that
has M= (w, ι ,Θ) as a model. Let C1 = (J1, ι1,M1,Θ1) be a refinement of C(S,M) and let Λ be
a refining function from C(S,M) to C1. Define ξ = ι

−1
1 ◦ ι . We denote by ξΛ(BH) the system of

κ-equations with variables in X(J1,ζw,C1 ,M1) (recall (5.15) and (5.18)) obtained from BH by substituting
each variable (i | j) by (ξ (i) | ξ ( j)) and each variable {i | j}⃗s,µ by {ξ ( j)− | ξ ( j)}⃗tn,µ ′ , where
Λ(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tn),µ ′).

Remark 5.23. Using the notation above, the homomorphism δw,C1 (recall (5.16)) is a solution modulo H

of the system ξΛ(BH).

Remark 5.24. Keeping again the notation, suppose that we are given a pseudoword w′1 and a fac-
torization scheme C′1 = (J1, ι

′
1,M1,Θ

′
1) for w′1, such that δw′1,C

′
1

is a solution modulo H of ξΛ(BH).
Further assume that there exists a factorization scheme of the form C′ = (J, ι ′,M,Θ′) for another
pseudoword w′ such that ζw′,C′ = ζ and the following pseudoidentities are valid in H, for every
(i | j),{i | j}⃗s,µ ∈ X(J,ζ ,M):

w′(i, j) = w′1(ξ (i),ξ ( j));

Ψ
′(i, j, s⃗,µ) = Ψ

′
1(ξ ( j)−,ξ ( j),⃗ tn,µ ′).
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Then, the homomorphism δw′,C′ is a solution modulo H of BH.

5.6 Proof of the main theorem

Suppose that DRH is a pseudovariety that is σ -reducible with respect to finite systems of κ-equations,
and consider such a system S = {ui = vi}n

i=1 with variables in X and constraints given by the pair
(ϕ : ΩAS→ S,ν : X → S). Let δ : ΩXS→ ΩAS be a solution modulo H of S. For a new variable
x0 /∈ X , we consider a new finite system of κ-equations given by S′ = {x0ui = x0vi}n

i=1 and, writing
A = {a1, . . . ,ak}, we set the constraints on X ∪{x0} to be given by the pair (ϕ,ν ′), where ν ′|X = ν

and ν ′(x0) = ϕ((a1 · · ·ak)
ω). By Corollary 2.20, the continuous homomorphism δ ′ defined by

δ
′ : ΩX⊎{x0}S→ΩAS

x 7→ δ (x), if x ∈ X

x0 7→ (a1 · · ·ak)
ω

is a solution modulo DRH of S′. Since we are assuming that DRH is σ -reducible for systems of
κ-equations, there exists a solution in σ -words modulo DRH of S′. Of course, any solution modulo
DRH of S′ provides a solution modulo H of S, by restriction to ΩXS. Hence, we proved the following.

Proposition 5.25. If DRH is a pseudovariety σ -reducible for finite systems of κ-equations, then H is
σ -reducible for finite systems of κ-equations as well.

Our next goal is to prove that H being σ -reducible for finite systems of κ-equations also suffices
for so being DRH. With that in mind, throughout this section we fix a pseudovariety of groups H
that is σ -reducible for finite systems of κ-equations. In view of Corollary 5.17, we should prove the
following.

Theorem 5.26. Suppose that σ is an implicit signature that satisfies the condition (sig) and such that
κ ⊆ ⟨σ⟩. Let S be a system of boundary relations that has a model. Then, S has a model in σ -words.

We fix the pair (S,M), where

S= (X,J,ζ ,M,χ, right,B,BH) is a system of boundary relations,

M= (w, ι ,Θ) is a model of S,
(5.20)

and we define the parameter
[S,M] = (α,n), (5.21)

where α is the largest ordinal of the form ι(c) such that there exists a box (i,x) with right(x) = c if
B ̸= /0, and is 0 otherwise, and n is the number of boxes (i,x) such that ι(right(x)) = α . We denote
by r the index ι−1(α). In order to prove Theorem 5.26, we argue by transfinite induction on the
parameter [S,M], where the pairs (α,n) are ordered lexicographically. The induction step amounts to
associating to each pair (S,M) a new pair (S1,M1) such that the following properties are satisfied:

(P.1) [S1,M1]< [S,M];
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(P.2) if S1 has a model in σ -words, then S also has a model in σ -words.

Depending on the set of boundary relations B, we consider the following cases:

Case 1. There is a box (i,x) in B such that i = r = right(x).

Case 2. There is a boundary relation (i,x, i,x) such that right(x) = r = right(x).

Case 3. There is a boundary relation (i,x, j,x) such that i < j, c(w(i, j))$ c(w(i, right(x))), and
right(x) = r = right(x).

Case 4. There is a boundary relation (i,x, j,x) such that right(x)< right(x) = r.

Case 5. There is a boundary relation (i,x, j,x) such that i < j, c(w(i, j)) = c(w(i, right(x))), and
right(x) = r = right(x).

In each case, we assume that all the preceding cases do not apply. In [10, Section 9], where the
analogous result for the pseudovariety R is proved, the cases that are considered are similar. However,
the difference in definition of the induction parameter (5.21) justifies the fact of needing to deal with
one less case in the present work.

5.6.1 Induction basis

If the induction parameter [S,M] is (0,0), then B= /0 and so, Property (M.4) for a model of S becomes
trivial. Hence, having a model in σ -words amounts to having, for each (i, j, s⃗) ∈ Dom(M) and each
µ ∈ M(i, j, s⃗), a pair of σ -words (Φ(i, j, s⃗,µ),Ψ(i, j, s⃗,µ)) such that the Properties (M.1)– (M.3)
and (M.5) are satisfied. Note that the Property (M.1) means that we should have

Φ(i, j, s⃗1,µ1)Ψ(i, j, s⃗1,µ1) =DRH Φ(i, j, s⃗2,µ2)Ψ(i, j, s⃗2,µ2)

for all (i, j, s⃗k) ∈Dom(M) and µk ∈M(i, j, s⃗k), k = 1,2. The following result entails the formalization
of the induction basis step.

Proposition 5.27. Let H be a pseudovariety that is σ -reducible for systems of κ-equations for a
certain implicit signature σ satisfying κ ⊆ ⟨σ⟩. Let S1 = {xi,1yi,1 = · · ·= xi,niyi,ni}N

i=1 and let S2 be a
finite system of κ-equations (possibly with parameters in P). Let X be the set of variables occurring
in S1 and S2 and suppose that the constraints for the variables are given by the pair (ϕ,ν). Let
δ : ΩX∪PS→ (ΩAS)

I be a solution modulo DRH of S1 which is also a solution modulo H of S2 and
such that, for i = 1, . . . ,N and p = 1, . . . ,ni, c(δ (yi,p))⊆ c⃗(δ (xi,p)). Then, there exists a continuous
homomorphism ε : ΩX∪PS→ (ΩAS)

I such that

(a) ε(X)⊆ (Ωσ
AS)

I;

(b) ε is a solution modulo DRH of S1;

(c) ε is a solution modulo H of S2;

(d) c⃗(ε(x)) = c⃗(δ (x)), for all the variables x ∈ X.
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Proof. We argue by induction on m = max{|c(δ (xi,p))| : i = 1, . . . ,N; p = 1, . . . ,ni}. Note that, if
δ (xi,1) = I, then we may discard the equations xi,1yi,1 = · · ·= xi,niyi,ni . Hence, when m = 0, the result
amounts to proving the existence of ε satisfying (a), (c) and (d). But that comes for free from the
fact that H is completely κ-reducible, together with Lemma 5.9.

Now, assume that m≥ 1 and suppose that δ (xi,p) ̸= I, for all i, p. For each variable x and each
k ≥ 1 such that lbfk(δ (x)) is nonempty we write

lbfk(δ (x)) = δ (x)kax,k,

δ (x) = lbf1(δ (x)) · · · lbfk(δ (x))δ (x)′k.

Since X , A and S are finite, there exist 1≤ k < ℓ such that, for all x∈ X with c⃗(δ (x)) ̸= /0, the following
equalities hold:

c⃗(δ (x)) = c(lbfk+1(δ (x)));

ϕ(lbf1(δ (x)) · · · lbfk(δ (x))) = ϕ(lbf1(δ (x)) · · · lbfℓ(δ (x))).

In particular, the latter equality yields

ϕ(δ (x)) = ϕ(lbf1(δ (x)) · · · lbfk(δ (x)))ϕ(lbfk+1(δ (x)) · · · lbfℓ(δ (x)))ω
ϕ(δ (x)′k). (5.22)

For i = 1, . . . ,N, set

ℓi =

ℓ, if c⃗(δ (xi,1)) ̸= /0,

⌈δ (xi,1)⌉ , otherwise.

We consider a new set of variables X ′ given by

X ′ = X ⊎{xi,p; j : i = 1, . . . ,N; p = 1, . . . ,ni; j = 1, . . . , ℓi}
⊎{x′i,p : i = 1, . . . ,N; p = 1, . . . ,ni; c⃗(δ (xi,p)) ̸= /0},

where the variables xi1,p; j and xi2,q; j, and the variables x′i1,p and x′i2,p (if defined) are the same, whenever
the variables xi1,p and xi2,q are also the same. We also consider the following systems of equations
with variables in X ′:

• S′1 = {xi,1; j = · · ·= xi,ni; j : i = 1, . . . ,N; j = 1, . . . , ℓi};

• S′2 is the system of equations obtained from S2 by substituting each one of the variables xi,p by
the product Pi,p given by

Pi,p =

xi,p;1axi,p,1 · · ·xi,p;kaxi,p,kx′i,p, if c⃗(δ (xi,p)) ̸= /0,

xi,p;1axi,p,1 · · ·xi,p;ℓiaxi,p,ℓi , otherwise;
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• S′′2 = {x′i,1zi,1 = · · ·= x′i,ni
zi,ni : i = 1, . . . ,N; c⃗(δ (xi,1)) ̸= /0}, where we take

zi,p =

Pj,q, if yi,p = x j,q for some j = 1, . . . ,N; q = 1, . . . ,n j,

yi,p, otherwise.

In the systems S′2 and S′′2 the letters in A work as parameters evaluated to themselves, so that the
system of equations S′2∪S′′2 has parameters in P′ = P∪A. We let the constrains for the variables be
given by the pair (ϕ,ν ′), where the map ν ′ is given by

ν
′ : X ′→ S

x 7→ ν(x), if x ∈ X ;

xi,p; j 7→ ϕ(δ (xi,p) j), if xi,p; j ∈ X ′ \X ;

x′i,p 7→ ϕ(δ (xi,p)
′
k), if x′i,p ∈ X ′ \X ;

(5.23)

Let δ ′ : ΩX ′∪P′S→ΩAS be the continuous homomorphism defined by

δ
′(y) = δ (y), if y ∈ X ∪P;

δ
′(xi,p; j) = δ (xi,p) j, if i = 1, . . . ,N; p = 1, . . . ,ni; j = 1, . . . , ℓi;

δ
′(x′i,p) = δ (xi,p)

′
k, if i = 1, . . . ,N; p = 1, . . . ,ni; c⃗(δ (xi,p)) ̸= /0 ;

δ
′(a) = a, if a ∈ A.

Then, δ ′ is a solution modulo DRH of S′1 which is also a solution modulo H of S′2∪S′′2 . Since we
decreased the induction parameter and the pair (S′1,S

′
2∪S′′2) satisfies the hypothesis of the proposition,

we may invoke the induction hypothesis to derive the existence of a solution in σ -words modulo DRH

of S′1, and modulo H of S′2∪S′′2 , satisfying condition (d).

Now, we define the continuous homomorphism ε : ΩX∪PS→ΩAS by:

ε(xi,p) =


ε ′(xi,p;1axi,p,1 · · ·xi,p;kaxi,p,k)

·ε ′(xi,p;k+1axi,p,k+1 · · ·xi,p;ℓaxi,p,ℓ)
ωε ′(x′i,p), if c⃗(δ (xi,p)) ̸= /0;

ε ′(Pi,p), if c⃗(δ (xi,p)) = /0;

ε(x) = ε
′(x), otherwise.

Clearly, ε(X)⊆Ωσ
AS. Moreover, since we are assuming that S has a content function, it follows from

ϕ ◦ ε ′ = ϕ ◦δ ′ that c⃗(ε(xi,p)) = c⃗(δ (xi,p)), for all i, p. For the other variables x ∈ X , the condition (d)
for ε follows from the same condition for ε ′.

Let us verify that ε is a solution modulo DRH of S1 and a solution modulo H of S2. Since ε ′ is a
solution modulo DRH of S′1, for every pair of variables xi,p,xi,q, DRH satisfies ε ′(xi,p; j) = ε ′(xi,q; j),
for j = 1, . . . , ℓi. Further, since δ is a solution modulo DRH of S1 we also have axi,p; j = axi,q; j . Thus,
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we get

ε(xi,p) =


ε ′(xi,p;1axi,p,1 · · ·xi,p;kaxi,p,k)

·ε ′(xi,p;k+1axi,p,k+1 · · ·xi,p;ℓaxi,p,ℓ)
ωε ′(x′i,p), if c⃗(δ (xi,p)) ̸= /0;

ε ′(xi,p;1axi,p,1 · · ·xi,p;ℓiaxi,p,ℓi), if c⃗(δ (xi,p)) = /0;

=


ε ′(xi,q;1axi,q,1 · · ·xi,q;kaxi,q,k)

·ε ′(xi,q;k+1axi,q,k+1 · · ·xi,q;ℓaxi,q,ℓ)
ωε ′(x′i,p), if c⃗(δ (xi,p)) ̸= /0;

ε ′(xi,q;1axi,q,1 · · ·xi,q;ℓiaxi,q,ℓi), if c⃗(δ (xi,p)) = /0.

In the second situation, when c⃗(δ (xi,p)) = /0, this means that DRH satisfies

ε(xi,pyi,p) = ε(xi,p) = ε(xi,q) = ε(xi,qyi,q)

(notice that the former and latter equalities are justified by the assumption c(δ (y j,r)) ⊆ c⃗(δ (x j,r))

for all j = 1, . . . ,N and r = 1, . . . ,n j ). Otherwise, if c⃗(δ (xi,p)) ̸= /0, the above equalities imply the
relation ε(xi,pyi,p) R ε(xi,qyi,q) modulo DRH. Also, since ε ′ is a solution modulo H of S′′2 , we may
use Lemma 2.32 to conclude that DRH satisfies ε(xi,pyi,p) = ε(xi,qyi,q). Thus, the homomorphism ε

is a solution modulo DRH of S1. On the other hand, the pseudovariety H satisfies ε(Pi,p) = ε(xi,p).
By definition of S′2 it follows that ε is a solution modulo H of S2. Finally, it remains to verify that
the constraints are satisfied. Since ε ′ satisfies the constraints, by (5.23), all the constraints but the
ones for the variables of form xi,p with c⃗(δ (xi,p)) ̸= /0 are trivially satisfied. For a variable xi,p with
c⃗(δ (xi,p)) ̸= /0, we may use (5.22) and (5.23) to obtain ϕ(ε(xi,p)) = ϕ(δ (xi,p)). Hence, ε is the
required homomorphism.

5.6.2 Factorization of a pair (S,M)

Instead of repeating the same argument several times, we use this subsection to describe a general
construction that is performed later in some of the considered cases.

Let E be a subset of B such that, if (i,x, j,x) ∈ E, then ( j,x, i,x) /∈ E. Suppose that we are given a
set of pairs of ordinals ∆ = {(βe,γe)}e∈E such that, for each boundary relation e = (ie,xe, je,xe) ∈ E,
the following properties are satisfied:

(F.1) ι(ie)< βe < ι(right(xe)) and ι( je)< γe < ι(right(xe));

(F.2) DRH satisfies w[ι(ie),βe[ = w[ι( je),γe[.

We say that the factorization of (S,M) with respect to (E,∆) is the pair (S0,M0), where

S0 = (X0,J0,ζ0,M0,χ0, right0,B0,B0,H) and M0 = (w0, ι0,Θ0),

are defined as follows:

• the set of variables X0 contains all the variables from X and a pair of new variables ye, ye for
each relation e ∈ E;



5.6 Proof of the main theorem 103

• we take w0 = w;

• we let J0, ι0, M0 and Θ0 be determined by the factorization scheme C0 = (J0, ι0,M0,Θ0), which
is chosen to be a common refinement of the factorization schemes for w

C(S,M) and ({βe,γe}e∈E,{βe,γe}e∈E ↪→ αw +1, /0, /0).

We denote by ℓe and ke the indices ι
−1
0 (βe) and ι

−1
0 (γe) in J0, respectively, by ξ the composite

function ι
−1
0 ◦ ι , and we let

Λ : {(i, j, s⃗,µ) : (i, j, s⃗) ∈ Dom(M), µ ∈M(i, j, s⃗)}→
⋃
k≥0

(S×SI)k×ω \{0}

be a refining function from C(S,M) to C0;

• the maps ζ0 and χ0 are, respectively, ζw0,C0 and χw0,C0 (recall (5.18) and (5.19));

• the right0 function assigns ξ (right(x)) to each variable x ∈ X and, for each e ∈ E, we let
right0(ye) = ℓe and right0(ye) = ke;

• the set of boundary relations B0 is obtained by putting the boundary relation (ξ (i),x,ξ ( j),x)
whenever (i,x, j,x) neither belongs to E nor is the dual of a boundary relation of E, and the
boundary relations (ξ (ie),ye,ξ ( je),ye), (ℓe,xe,ke,xe) and their duals for each e ∈ E;

• the set B0,H contains ξΛ(BH) as well as the equation (ξ (ie) | ℓe) = (ξ ( je) | ke), for each e ∈ E.

The way we construct B0 is illustrated in Figure 5.4.

ξ (ie) xe ξ ( je) xe

ξ (i f ) x f ξ ( j f ) x f

βe γeβ f γ f

ye ℓe ye ke

y f ℓ f y f k f

Fig. 5.4 Factorization of (S,M), when E= {e, f}.

Proposition 5.28. The triple M0 is a model of S0 such that [S0,M0] = [S,M] and the Property (P.2)
is satisfied.

Proof. To check that M0 is a model of S0, it is enough to verify that the Properties (M.4) and (M.5)
are satisfied, since the others are guaranteed by Lemma 5.18. All relations of B0 other than the
ones of the form (ξ (ie),ye,ξ ( je),ye) or (ℓe,xe,ke,xe) and their duals, are those of B with renamed
indices in the set J0. Therefore, as M is a model of S, Property (M.4) is satisfied by them. Let
e ∈ E. The relation (ξ (ie),ye,ξ ( je),ye) also satisfies (M.4) because it amounts to having the relation
w[ι(ie),βe[ R w[ι( je),γe[ given by (F.2). In fact, this relation is actually an equality modulo DRH,
which also proves (M.5) for the equation (ξ (ie) | ℓe) = (ξ ( je) | ke). For the boundary relation
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(ℓe,xe,ke,xe), taking into account that DRH satisfies w(ie, right(xe)) R w( je, right(xe)), we may use
Corollary 2.28 to assert that βe− ι(ie) = γe− ι( je) and then apply Corollary 2.31 to conclude that
DRH satisfies w0(ℓe, right0(xe)) R w0(ke, right0(xe)). At last, Remark 5.23 yields that δw0,C0 is a
solution modulo H of the equations in ξΛ(BH). This proves that M0 is a model of S0.

Relatively to the induction parameter it is clear that it keeps its value under the transformation
(S,M) 7→ (S0,M0), since we do not change the number of boxes ending at r.

For Property (P.2), we suppose that M′0 = (w′0, ι
′
0,Θ

′
0) is a model of S0 in σ -words and we

take M′ = (w′, ι ′,Θ′), where w′ = w′0, ι ′ = ι ′0 ◦ ξ , and Θ′ is given by the factorization scheme
C′ = (J, ι ′,M,Θ′) corresponding to the restriction of C(S0,M0) with respect to Λ (cf. Remark 5.21).
We claim that M′ is a model of S (in σ -words by Proposition 5.20). Properties (M.1) and (M.2) are a
consequence of C′ being a factorization scheme for w′. For Property (M.3), let i≺ j in J. We compute

c⃗(w′(i, j)) = c⃗(w′0[ι
′
0 ◦ξ (i), ι ′0 ◦ξ ( j)[) = χ0(ξ (i),ξ ( j)) = c⃗(w[ι(i), ι( j)[) = χ(i, j).

Property (M.4) is straightforward for all boundary relations except for the relations (ie,xe, je,xe) and
their duals. In this case, since (ξ (ie),ye,ξ ( je),ye) belongs to B0, (ξ (ie) | ℓe) = (ξ ( je) | ke) belongs
to B0,H, and M′0 is a model of S0, we have

w′0(ξ (ie), ℓe) R w′0(ξ ( je),ke) modulo DRH,

w′0(ξ (ie), ℓe) =H w′0(ξ ( je),ke),

and we invoke Lemma 2.32 to conclude that DRH satisfies w′0(ξ (ie), ℓe) = w′e(ξ ( je),ke). On the other
hand, the relation (ℓe,xe,ke,xe) also belongs to B0, so that w′0(ℓe, right0(xe)) R w′0(ke, right0(xe))

modulo DRH. Thus, we obtain the following in DRH:

w′(ie, right(xe)) = w′0(ξ (ie), ℓe)w′0(ℓe, right0(xe))

= w′0(ξ ( je),ke)w′0(ℓe, right0(xe))

R w′0(ξ ( je),ke)w′0(ke, right0(xe))

= w′0(ξ ( je), right0(xe))

= w′( je, right(xe)).

Finally, since ξΛ(BH) ⊆ B0,H, we may use Remark 5.24 to conclude that in order to prove Prop-
erty (M.5) it is enough to show that the following identities hold in H:

w′(i, j) = w′0(ξ (i),ξ ( j)), for all i≺ j in J;

Ψ
′(i, j, s⃗,µ) = Ψ

′
0(ξ ( j)−,ξ ( j),⃗ t,µ ′), for all (i, j, s⃗,µ) ∈ Dom(M)×M(i, j, s⃗)

and ((. . . ,⃗ t),µ ′) = Λ(i, j, s⃗).

The first one follows from the definition of w′0 and ι ′, while the second is implied by the fact that C′ is
the restriction of C′0 with respect to Λ.
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5.6.3 Case 1

When we are in Case 1, we have at least one empty box (r,x). Since for every pseudoword w we have
w(r, right(x)) = w(r,r) = I, we may delete the boundary relations involving empty boxes. In this way
we obtain a new system of boundary relations S1 which has exactly the same models as S and so,
Property (P.2) is satisfied. Moreover, the parameter associated to (S1,M) is smaller than the parameter
associated to (S,M) since we removed some boxes ending at r. Therefore, Property (P.1) also holds.

5.6.4 Case 2

In this case, there exists a boundary relation of the form (i,x, i,x) with right(x) = r = right(x). Since
such a boundary relation yields a trivial relation in (M.4), we may argue as in the previous case and
simply delete (i,x, i,x) and its dual from S obtaining thus a new pair (S1,M) satisfying (P.1) and (P.2).

5.6.5 Case 3

This is the case where we assume the existence of a boundary relation (i0,x0, j0,x0) such that i0 < j0,
right(x0) = r = right(x0) and c(w(i0, j0))$ c(w(i0, right(x0))).

Let a ∈ c(w(i0,r)) \ c(w(i0, j0)). Since i0 < j0, the letter a also belongs to w( j0,r). Therefore,
by Corollary 2.14, there are unique factorizations w(i0,r) = ui a vi and w( j0,r) = u j a v j such that
a belongs to neither of c(ui) nor c(u j), and DRH satisfies the pseudoidentity ui = u j and the rela-
tion vi R v j. Thus, the decreasing of the induction parameter in this case is achieved by discarding the
segment [ι(i0)+αui , ι(r)[ in the boundary relation (i0,x0, j0,x0) as it is outlined in Figure 5.5 below.

i0 x0
j0 x0

ι(i0)+αui

a vi
a v j

ui
u j

i0 y
j0 y

ι(i0)+αui

a vi
a v j

ui
u j

Fig. 5.5 Discarding the segment [ι(i0)+αui , ι(r)[ in the boundary relation (i0,x0, j0,x0).

Let E = {(i0,x0, j0,x0)} and ∆ = {(ι(i0)+αui , ι(i0)+αui)}. By the above, the pair (E,∆) sat-
isfies (F.1) and (F.2). Let (S0,M0) be the factorization of (S,M) with respect to (E,∆). Then, the
pair (S0,M0) is covered by Case 2 and we may use it in order to decrease the induction parameter.

Before proceeding with Cases 4 and 5 we perform an auxiliary step that is useful in both of the
remaining cases.

5.6.6 Auxiliary step

We are interested in modifying some of the boundary relations of the form (i,x, j,x) such that i < j
and right(x) = r = right(x), so we assume that there exists at least one. For each i0 ∈ {i ∈ J : i < r},
let E(S, i0) = {(i,x, j,x) : right(x) = r = right(x), i < j, i≤ i0}. Our goal is to prove the existence of
a new pair (S1,M1) that keeps the induction parameter unchanged, satisfies Property (P.2), and such
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that E(S1, i0) = /0. We first construct a pair (S0,M0) satisfying the first two properties and such that
|E(S0, i0)|< |E(S, i0)|. Then we argue by induction to conclude the existence of such a pair (S1,M1).

If E(S, i0) ̸= /0, then we fix a boundary relation (k0,x0,k1,x0) ∈ E(S, i0). Property (M.4) yields

w(k0,k1)w(k1,r) = w(k0,r) R w(k1,r)

modulo DRH, which in turn implies that DRH satisfies

w(k0,r) R w(k0,k1)
ωw(k1,r).

As we are assuming that the Case 3 does not hold, the contents of w(k0,k1) and w(k1,r) are the same,
and so, DRH satisfies

w(k0,r) R w(k0,k1)
ω . (5.24)

Moreover, the fact that the relation w(k0,r) R w(k1,r) holds in DRH implies that the first letter of
w(k0,r) is the same as the first letter of w(k1,r). Since the product w(k0,k1) ·w(k1,r) is reduced by
definition, the product w(k0,k1) ·w(k0,k1) is also reduced. Consequently, we may use Corollary 2.28
and Theorem 2.24 to obtain

αw(k0,r) = αw(k0,k1)ω = αw(k0,k1) ·ω.

In particular, setting βp = ι(k0)+αw(k0,k1) · p for every p≥ 0, the inequality βp < α = ι(r) holds. On
the other hand, as k0 ≤ i0 < r, we also have αw(k0,i0) < αw(k0,r) = αw(k0,k1) ·ω and therefore there exists
an integer n≥ 1 such that αw(k0,i0) < αw(k0,k1) ·n. We fix such an n and we take E= {(k0,x0,k1,x0)}
and ∆ = {(βn,βn+1)}. Then, the pair (E,∆) not only satisfies (F.1) (we already observed that βp < α

for all p≥ 0), but it also satisfies (F.2). Indeed, we may compute

βn− ι(k0) = (ι(k0)+αw(k0,k1) ·n)− ι(k0) = αw(k0,k1) ·n
= (ι(k1)+αw(k0,k1) ·n)− ι(k1)

= (ι(k0)+(ι(k1)− ι(k0))+αw(k0,k1) ·n)− ι(k1)

= (ι(k0)+αw(k0,k1) · (n+1))− ι(k1)

= βn+1− ι(k1)

and use Corollary 2.31 to conclude that w[ι(k0),βn[ =DRH w[ι(k1),βn+1[. So, we let (S0,M0) be the
factorization of (S,M) with respect to (E,∆). Intuitively, the transformation performed in the step
(S,M) 7→ (S0,M0) is represented in pictures 5.6 (before) and 5.7 (after).

k0 x0
k1 x0

β2 β3 βn−1 βn βn+1ι(i0)

· · ·
· · ·

· · ·
· · ·

Fig. 5.6 Original relation (k0,x0,k1,x0) in the system of boundary relations S.

We are now able to establish the desired result.

Lemma 5.29. Let (S0,M0) be the pair defined above. Then the following holds:
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k0 x0
k1 x0

y kn

βn

y kn+1

βn+1ι(i0)

· · ·
· · ·

· · ·
· · ·

Fig. 5.7 Factorization of the relation (k0,x0,k1,x0) in the new system of boundary relations S0.

(a) Cases 2 and 3 do not apply to the system of boundary relations S0;

(b) the inequality |E(S0, i0)|< |E(S, i0)| holds.

Proof. For the first part, we notice that (up to renaming indices) the boundary relations ending in r
that belong to B0 and were not previously in B are (kn,x0,kn+1,x0) and its dual (check construction
in Subsection 5.6.2 and Figure 5.7). The non applicability of Case 2 is then immediate. Concerning
Case 3, it follows from (5.24) that, modulo DRH, any finite power of w(k0,k1) is a prefix of w(k0,r).
In particular, we obtain the equalities c(w(kn,kn+1)) = c(w(k0,k1)) = c(w(k1,r)) = c(w(kn+1,r)).

Assertion (b) holds because the boundary relation (k0,x0,k1,x0) does not belong anymore to the
set E(S0, i0) and, on the other hand, we did not put any boundary relation in E(S0, i0) that was not
already in E(S, i0).

Recall that, by Proposition 5.28, we also have [S0,M0] = [S,M] and Property (P.2) is satisfied by
(S0,M0). Thus, arguing by induction, we may assume, without loss of generality that, given a system
S in Cases 4 or 5, we have E(S, i0) = /0, for all i0 < r in J.

5.6.7 Case 4

In this case we suppose that the Cases 1, 2 and 3 do not hold and that there is a boundary relation
(i,x, j,x) such that right(x)< right(x) = r. Consider the index

ℓ= min{left(x) : right(x)< right(x) = r}.

By the auxiliary step in Subsection 5.6.6, we may assume without loss of generality that all boundary
relations (i,x, j,x) satisfying right(x) = r = right(x) are such that both i and j are greater than ℓ.
Let x0 ∈ X be such that left(x0) = ℓ and right(x0)< right(x0) = r, and let ℓ∗ ∈ J be such that
(ℓ,x0, ℓ

∗,x0) ∈ B. We set r∗ = right(x0). Since Case 1 does not hold, we know that ℓ < r. The
intuitive idea consists in transferring all the information comprised in the factor w(ℓ,r) to the fac-
tor w(ℓ∗,r∗) in order to decrease the induction parameter by discarding the factors w(r−,r) and
w[ι(ℓ∗)+(ι(r−)− ι(ℓ)), ι(r∗)[ intervening in the boundary relation (ℓ,x0, ℓ

∗,x0). See Figure 5.8.
More formally, we define the set of transport positions by

T = {i ∈ J : ∃ box (i,x) such that right(x) = r}∪{r−,r}.

Observe that min(T ) = ℓ and max(T ) = r. Hence, for i ∈ T we may define the index

i◦ = ι(ℓ∗)+(ι(i)− ι(ℓ)).

Some useful properties of _◦ are stated in the next lemma.
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i y

ℓ∗ x0

ℓ x0

r−
i∗ y∗

ℓ∗ y0

ℓ y0

r−

Fig. 5.8 Transferring the segment (ℓ,r) to the segment (ℓ∗,r∗) and discarding the final segments of
the boxes (ℓ,x0) and (ℓ∗,x0).

Lemma 5.30. The function _◦ : T → αw +1 satisfies the following:

(a) it preserves the order and is injective;

(b) for every i < j in T , the pseudovariety DRH satisfies the equality w[i◦, j◦[ = w(i, j) if j < r and
the relation w[i◦,r◦[ R w(i,r);

(c) for every i ∈ T , the inequality i◦ < ι(i) holds.

Proof. We omit the proofs of assertions (a) and (c) since they express properties of ordinal numbers
and thus, are entirely analogous to the proofs of the corresponding properties in [10, Lemma 9.3].

Let us prove (b). Since (ℓ,x0, ℓ
∗,x0) is a boundary relation in B and M is a model of S, we have

w(ℓ,r) = w(ℓ, right(x0)) R w(ℓ∗, right(x0)) = w(ℓ∗,r∗) modulo DRH.

Further, the equalities

ℓ◦ = ι(ℓ∗)+(ι(ℓ)− ι(ℓ)) = ι(ℓ∗)

r◦ = ι(ℓ∗)+(ι(r)− ι(ℓ)) = ι(ℓ∗)+αw(ℓ,r)
Corollary 2.28

= ι(ℓ∗)+αw(ℓ∗,r∗) = ι(r∗)

imply that DRH satisfies w(ℓ,r) R w[ℓ◦,r◦[. On the other hand, since

j◦− i◦ = (ι(ℓ∗)+(ι( j)− ι(ℓ)))− (ι(ℓ∗)+(ι(i)− ι(ℓ))) = ι( j)− ι(i),

we may use Corollary 2.31 twice to first conclude that, for j < r, DRH satisfies w(ℓ, j) = w[ℓ◦, j◦[ and
then, that it satisfies the desired identity w(i, j) = w[i◦, j◦[. Similarly, when j = r, we get that DRH
satisfies w[i◦,r◦[ R w(i,r).

Before defining a new pair (S1,M1), we still need to consider a factorization scheme for the
pseudoword w, in order to memorize the information on constraints that we lose when transforming S

according to Figure 5.8. We let C0 = (J0, ι0,M0,Θ0) be defined as follows:

• J0 = {i◦ : i ∈ T};

• ι0 : J0 ↪→ αw +1 is the inclusion of ordinals;
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• By Lemma 5.30(b) the pseudowords w(r−,r) and w[(r−)◦,r◦[ are R-equivalent modulo DRH.
Therefore, since Property (M.1) holds for (S,M), given s⃗ ∈ ζ (r−,r) and µ ∈M(r−,r, s⃗) the
pseudowords Φ(r−,r, s⃗,µ) and w[(r−)◦,r◦[ are R-equivalent modulo DRH as well. For each
such pair (⃗s,µ), we fix a pseudoword v⃗s,µ ∈ (ΩAS)

I such that

w[(r−)◦,r◦[ =DRH Φ(r−,r, s⃗,µ) v⃗s,µ . (5.25)

In particular, it follows that Φ(r−,r, s⃗,µ) v⃗s,µ and Φ(r−,r, s⃗,µ) are R-equivalent modulo DRH.
Combining Remark 2.16 with Lemma 2.27, we may deduce the inclusion

c(v⃗s,µ)⊆ c⃗(Φ(r−,r, s⃗,µ)) = c⃗(w[(r−)◦,r◦[).

Since ζ (r−,r) is a finite set, we may write ζ (r−,r) = {⃗s1, . . . , s⃗m}. Let s⃗p = (sp,1,sp,2) and
denote by t⃗p,µ the pair (sp,1,ϕ(v⃗sp,µ)) for each s⃗p ∈ ζ (r−,r) and µ ∈M(r−,r, s⃗p). We define Θ0

inductively as follows:

– start with Θ0 = /0;

– for each p ∈ {1, . . . ,m} and µ ∈M(r−,r, s⃗p), we set

µp,µ = {µ : Θ0((r−)◦,r◦ ,⃗ tp,µ ,µ) is defined};
Θ0((r−)◦,r◦ ,⃗ tp,µ ,µp,µ) = (Φ(r−,r, s⃗p,µ), v⃗sp,µ).

• the map M0 is given by M0((r−)◦,r◦ ,⃗ t) = {µ ′ : Θ0(r−,r,⃗ t,µ ′) is defined}, whenever t⃗ = t⃗p,µ

for certain p = 1, . . . ,m and µ ∈M(r−,r, s⃗p). Observe that we may have t⃗p,µ = t⃗p′,µ ′ with
(p,µ) ̸= (p′,µ ′).

Lemma 5.31. The tuple C0 just constructed is a factorization scheme for w.

Proof. Since r− ≺ r in J, Lemma 5.30(a) yields (r−)◦ ≺ r◦ in J0. Therefore, the domain of Θ0 is
compatible with the definition of factorization scheme. Moreover, the definition of M0 guarantees
that the relationship between the domains of Θ0 and of M0 is the correct one. Let s⃗p ∈ ζ (r−,r) and
µ ∈M(r−,r, s⃗p). To prove (FS.1), we compute the following modulo DRH:

prod◦Θ0((r−)◦,r◦ ,⃗ tp,µ ,µp,µ)
def.
= Φ(r−,r, s⃗p,µ) v⃗sp,µ

(5.25)
= w[(r−)◦,r◦[.

To prove (FS.2), we recall that t⃗p,µ = (sp,1,ϕ(v⃗sp,µ)). Since M is a model of S, Property (M.2) yields

ϕ(Φ0((r−)◦,r◦ ,⃗ tp,µ ,µp,µ)) = ϕ(Φ(r−,r, s⃗p,µ)) = sp,1

and by construction, we have

ϕ(Ψ0((r−)◦,r◦ ,⃗ tp,µ ,µp,µ)) = ϕ(v⃗sp,µ).

Thus, C0 is a factorization scheme for w.
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We are now ready to proceed with the construction of the new pair (S1,M1), where

S1 = (X1,J1,ζ1,M1,χ1, right1,B1,B1,H) and M1 = (w1, ι1,Θ1).

We take as set of variables X1 the old set X together with a pair of new variables yi and yi, for each
i ∈ T \{r}. The pseudoword w1 is w. Let C1 = (J1, ι1,M1,Θ1) be a common refinement of C(S,M)

and C0. The elements J1, M1, ι1 and Θ1 are those given by C1. To simplify the notation, we set
ξ = ι

−1
1 ◦ ι and i• = ι

−1
1 (i◦). The refining functions from C(S,M) to C1 and from C0 to C1 are given,

respectively, by

Λ : {(i, j, s⃗,µ) : (i, j, s⃗) ∈ Dom(M),µ ∈M(i, j, s⃗)}→
⋃
k≥0

(S×SI)k×ω,

Λ0 : {((r−)◦,r◦ ,⃗ tp,µ ,µp,µ) : (r−,r, s⃗p) ∈ Dom(M),µ ∈M(r−,r, s⃗p)}→
⋃
k≥0

(S×SI)k×ω.

The functions ζ1 and χ1 are the ones induced by C1, namely ζ1 = ζw1,C1 and χ1 = χw1,C1 (recall (5.18)
and (5.19)). The right1 function is given by

right1 : X1→ J1

x 7→ ξ (right(x)), if x ∈ X and right(x)< r;

x 7→ r•, if x ∈ X and right(x) = r;

yi 7→ ξ (i), if i ∈ T \{r};
yi 7→ i•, if i ∈ T \{r}.

We define B1 iteratively by:

(0) set B′ =B\{(ℓ,x0, ℓ
∗,x0),(ℓ

∗,x0, ℓ,x0)};

(1) start with B1 = {(ξ (ℓ),yi, ℓ
•,yi),(ℓ

•,yi,ξ (ℓ),yi) : i ∈ T \{r}};

(2) for each variable x ∈ X such that right(x) = r and for each boundary relation (i,x, j,x) ∈B′, we
add to B1 two new boundary relations as follows:

(a) if right(x)< r, then add the relations (i•,x,ξ ( j),x) and (ξ ( j),x, i•,x);

(b) if right(x) = r, then add the relations (i•,x, j•,x) and ( j•,x, i•,x);

(3) for each variable x ∈ X such that right(x) < r and right(x) < r and for each boundary relation
(i,x, j,x) ∈B′, we add to B1 the boundary relations (ξ (i),x,ξ ( j),x) and (ξ ( j),x,ξ (i),x).

Finally, in B1,H we include all the equations of the set ξΛ(BH) as well as the following:

• (ξ (ℓ) | ξ (r−)) = (ℓ• | (r−)•);
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• (ξ (r−) | ξ (r)) = ((r−)• | r•) · {(r•)− | r•}ω−1
t⃗ ′p,µ ,µ ′p,µ

· {ξ (r)− | ξ (r)}⃗s ′p,µ ′ , for each s⃗p ∈ ζ (r−,r)

and µ ∈M(r−,r, s⃗p). Here, we are writing

Λ(r−,r, s⃗p,µ) = ((. . . , s⃗ ′p),µ
′);

Λ0((r−)◦,r◦ ,⃗ tp,µ ,µp,µ) = ((. . . ,⃗ t ′p,µ),µ
′
p,µ).

Proposition 5.32. The tuple M1 is a model of the system of boundary relations S1.

Proof. Properties (M.1)–(M.3) are satisfied as a consequence of Lemma 5.18. For the remaining
properties, we first observe that Lemma 5.30(b) implies that the pseudovariety DRH satisfies the
pseudoidentity w1(ξ (i),ξ ( j)) = w1(i•, j•), if i < j in T \{r}. In particular, the boundary relations
added to B1 in step (1) satisfy (M.4). For the rest of the boundary relations, we consider a box (i,x) in
B′ and we first compute w1(ξ (i), right1(x)) or w1(i•, right1(x)) according to whether right(x)≤ r−

or right(x) = r, respectively. If right(x)≤ r−, then DRH satisfies

w1(ξ (i), right1(x)) = w[ι1(ξ (i)), ι1(ξ (right(x)))[ = w[ι(i), ι(right(x))[ = w(i, right(x)),

while, if right(x) = r, then DRH satisfies

w1(i•, right1(x)) = w[ι1(i•), ι1(r•)[ = w[i◦,r◦[
Lemma 5.30(b)

R w(i,r) = w(i, right(x)).

Since (M.4) holds for (S,M), these relations and construction of B1 imply that (M.4) holds for
(S1,M1).

By Remark 5.23, the homomorphism δw,C1 = δw1,C1 is a solution modulo H of ξΛ(BH). Also,
the homomorphism δw1,C1 is a solution modulo H of the equation (ξ (ℓ) | ξ (r−)) = (ℓ• | (r−)•) as
a consequence of the fact that DRH satisfies w1(ξ (ℓ),ξ (r−)) = w1(ℓ

•,(r−)•), as already observed
when proving (M.4). Finally, the equations of the form

(ξ (r−) | ξ (r)) = ((r−)• | r•) · {(r•)− | r•}ω−1
t⃗ ′p,µ ,µ ′p,µ

· {ξ (r)− | ξ (r)}⃗s ′p,µ ′

are satisfied by δw1,C1 modulo H since the following pseudoidentities are valid in H:

δw1,C1(ξ (r
−) | ξ (r)) = w1(ξ (r−),ξ (r)) = w(r−,r)

= Φ(r−,r, s⃗p,µ)Ψ(r−,r, s⃗p,µ) by Property (M.1) for (S,M)

= w[(r−)◦,r◦[ vω−1
s⃗p,µ

Ψ(r−,r, s⃗p,µ) by (5.25)

= w1((r−)•,r•)Ψ0((r−)◦,r◦ ,⃗ tp,µ ,µp,µ)
ω−1

Ψ(r−,r, s⃗p,µ)

= w1((r−)•,r•)

·Ψ1((r•)−,r• ,⃗ t ′p,µ ,µ
′
p,µ)

ω−1
Ψ1(ξ (r)−,ξ (r), s⃗ ′p,µ

′) by (R.2.4) for Λ and Λ0

= δw1,C1

(
((r−)• | r•) · {(r•)− | r•}ω−1

t⃗ ′p,µ ,µ ′p,µ
· {ξ (r)− | ξ (r)}⃗s ′p,µ ′

)
.

With this, we may conclude that M1 is a model of S1.
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Proposition 5.33. If σ satisfies the condition (sig) and κ ⊆ ⟨σ⟩, then Properties (P.1) and (P.2) are
satisfied by the pairs (S,M) and (S1,M1).

Proof. By construction, Property (P.1) holds because there are no boxes in B1 ending at ι(r), and so
the first component of the induction parameter decreases.

For Property (P.2), we may let M′1 = (w′1, ι
′
1,Θ

′
1) be a model of S1 in σ -words and we construct a

new triple M′ = (w′, ι ′,Θ′) as follows. We fix a pair (⃗sq,µ0) ∈ ζ (r−,r)×M(r−,r, s⃗q), for a certain
q ∈ {1, . . . ,m}. We write

Λ(r−,r, s⃗q,µ0) = ((. . . , s⃗ ′q),µ
′
0),

Λ0((r−)◦,r◦ ,⃗ tq,µ0 ,µq,µ0) = ((. . . ,⃗ t ′q,µ0
),µ ′q,µ0

).

The σ -word w′ is given by

w′ = w′1[0, ι
′
1(ξ (r

−))[ ·w′1((r−)•,r•)Ψ′1((r•)−,r• ,⃗ t ′q,µ0
,µ ′q,µ0

)ω−1
Ψ
′
1(ξ (r)

−,ξ (r), s⃗ ′q,µ
′
0)

·w′1[ι ′1(ξ (r)),αw′1
[.

Since we are assuming that σ satisfies the condition (sig) and κ ⊆ ⟨σ⟩, we have that w′ is actually a
σ -word. For i ∈ J, we let ι ′(i) be given by

ι
′(i) =


ι ′1(ξ (i)), if i≤ r−;

ι ′(r−)+(ι ′1(r
•)− ι ′1((r

−)•)), if i = r;

ι ′(r)+(ι ′1(ξ (i))− ι ′1(ξ (r))), if i > r.

Finally, we define Θ′. Given indices i, j such i ≺ j ≤ r− or r ≤ i ≺ j in J, and a pair (⃗s,µ), where
s⃗ ∈ ζ (i, j) and µ ∈M(i, j, s⃗), let Λ(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tn),µ ′) and ξ (i) = i0 ≺ i1 ≺ ·· · ≺ in = ξ ( j).
Then, we take

Θ
′(i, j, s⃗,µ) =

((
n−1

∏
k=1

prod◦Θ
′
1(ik−1, ik ,⃗ tk,0)

)
Φ
′
1(ξ ( j)−,ξ ( j),⃗ tn,µ ′),Ψ′1(ξ ( j)−,ξ ( j),⃗ tn,µ ′)

)
.

On the other hand, when (i, j) = (r−,r), for each s⃗p ∈ ζ (r−,r) and µ ∈ M(r−,r, s⃗p), we write
Λ(r−,r, s⃗p,µ) = ((⃗t1, . . . ,⃗ tn),µ ′), Λ0((r−)◦,r◦ ,⃗ tp,µ ,µp,µ) = ((⃗t ′1, . . . ,⃗ t

′
n),µ

′
p,µ), and we let i0, . . . , in

be such that (r−)• = i0 ≺ i1 ≺ ·· · ≺ in = r•. We define

Θ
′(r−,r, s⃗p,µ) =

((
n−1

∏
k=1

prod◦Θ
′
1(ik−1, ik ,⃗ t ′k,0)

)
Φ
′
1((r

•)−,r• ,⃗ t ′n,µ
′
p,µ),Ψ

′
1(ξ (r)

−,ξ (r),⃗ tn,µ ′)

)
.

It is worth observing that, since each component of Θ′1 is a σ -word, the components of Θ′ are σ -words
as well.

Let us verify that M′ is a model of S. For Properties (M.1) and (M.2), let (i, j, s⃗) ∈ Dom(M)

and µ ∈ M(i, j, s⃗). According to the construction of Θ′, we distinguish whether (i, j) ̸= (r−,r) or
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(i, j) = (r−,r). In the former situation, DRH satisfies

prod◦Θ
′(i, j, s⃗,µ) =

(
n−1

∏
k=1

prod◦Θ
′
1(ik−1, ik ,⃗ tk,0)

)
·prod◦Θ

′
1(ξ ( j)−,ξ ( j),⃗ tn,µ ′)

=

(
n−1

∏
k=1

w′1(ik−1, ik)

)
·w′1(ξ ( j)−,ξ ( j)) by Property (M.1) for (S1,M

′
1)

= w′1(ξ (i),ξ ( j)) = w′(i, j),

thereby obtaining that (M.1) is satisfied by M′. For (M.2), we may compute

ϕ(Φ′(i, j, s⃗,µ)) = ϕ

((
n−1

∏
k=1

prod◦Θ
′
1(ik−1, ik ,⃗ tk,0)

)
Φ
′
1(ξ ( j)−,ξ ( j),⃗ tn,µ ′)

)

=

(
n−1

∏
k=1

tk,1tk,2

)
tn,1 by Property (M.2) for (S1,M

′
1)

= s1 by Property (R.2.3) for Λ;

ϕ(Ψ′(i, j, s⃗,µ)) = ϕ(Ψ′1(ξ ( j)−,ξ ( j),⃗ tn,µ ′))

= tn,2 by Property (M.2) for (S1,M
′
1)

= s2 by Property (R.2.3) for Λ.

When (i, j) = (r−,r), we suppose that s⃗ = s⃗p, for a certain p. Then, the following is valid in DRH:

prod◦Θ
′(r−,r, s⃗p,µ) =

(
n−1

∏
k=1

prod◦Θ
′
1(ik−1, ik ,⃗ t ′k,0)

)
·Φ′1((r•)−,r• ,⃗ t ′n,µ ′p,µ)Ψ′1(ξ (r)−,ξ (r),⃗ tn,µ ′)

=
n−1

∏
k=1

w′1(ik−1, ik) by (M.1) for (S1,M
′
1)

·w′1((r•)−,r•)Ψ′1((r•)−,r• ,⃗ t ′n,µ ′p,µ)ω−1
Ψ
′
1(ξ (r)

−,ξ (r),⃗ tn,µ ′)

= w′1((r
−)•,r•)Ψ′1((r

•)−,r• ,⃗ t ′n,µ
′
p,µ)

ω−1
Ψ
′
1(ξ (r)

−,ξ (r),⃗ tn,µ ′). (5.26)

In turn, since c(Ψ′1((r
•)−,r• ,⃗ t ′n,µ

′
p,µ)

ω−1Ψ′1(ξ (r)
−,ξ (r),⃗ tn,µ ′))⊆ c⃗(w′1((r

−)•,r•)), DRH also sat-
isfies

w′1((r
−)•,r•)Ψ′1((r

•)−,r• ,⃗ t ′n,µ
′
p,µ)

ω−1
Ψ
′
1(ξ (r)

−,ξ (r),⃗ tn,µ ′) R w′1((r
−)•,r•) R w′(r−,r). (5.27)

On the other hand, since the equations

(ξ (r−) | ξ (r)) = ((r−)• | r•) · {(r•)− | r•}ω−1
t⃗ ′n,µ ′p,µ

· {ξ (r)− | ξ (r)}⃗tn,µ ′ ; (5.28)

(ξ (r−) | ξ (r)) = ((r−)• | r•) · {(r•)− | r•}ω−1
t⃗ ′q,µ0

,µ ′q,µ0
· {ξ (r)− | ξ (r)}⃗s ′q,µ ′0

(5.29)
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belong to B1,H, the pseudovariety H satisfies

prod◦Θ
′(r−,r, s⃗p,µ)

(5.26)
= w′1((r

−)•,r•)Ψ′1((r
•)−,r• ,⃗ t ′n,µ

′
p,µ)

ω−1
Ψ
′
1(ξ (r)

−,ξ (r),⃗ tn,µ ′)
(5.28)
= w′1(ξ (r

−),ξ (r))
(5.29)
= w′1((r

−)•,r•)Ψ′1((r
•)−,r• ,⃗ t ′q,µ0

,µ ′q,µ0
)ω−1

Ψ
′
1(ξ (r)

−,ξ (r), s⃗ ′q,µ
′
0)

def.
= w′(r−,r). (5.30)

Using (5.26), (5.27), (5.30) and Lemma 2.32, we finally get that DRH satisfies the pseudoidentity
prod◦Θ′(r−,r, s⃗p,µ) = w′(r−,r), obtaining (M.1). Further, we may compute

ϕ(Φ′(r−,r, s⃗p,µ)) = ϕ

((
n−1

∏
k=1

prod◦Θ
′
1(ik−1, ik ,⃗ t ′k,0)

)
Φ
′
1((r

•)−,r• ,⃗ t ′n,µ
′
p,µ)

)

=

(
n−1

∏
k=1

t ′k,1t ′k,2

)
t ′n,1 by (M.2) for (S1,M

′
1)

= sp,1 by (R.2.3) for Λ0;

ϕ(Ψ′(r−,r, s⃗p,µ)) = ϕ(Ψ′1(ξ (r)
−,ξ (r),⃗ tn,µ ′)) = tn,2 by (M.2) for (S1,M

′
1)

= sp,2 by (R.2.3) for Λ.

This completes the proof of (M.1) and (M.2). For Property (M.3), let i≺ j in J. Then, we have

c⃗(w′(i, j)) =

c⃗(w′1(ξ (i),ξ ( j))), if (i, j) ̸= (r−,r);

c⃗(w′1((r
−)•,r•)), if (i, j) = (r−,r);

=

χ1(ξ (i),ξ ( j)), if (i, j) ̸= (r−,r);

χ1((r−)•,r•), if (i, j) = (r−,r);
by (M.3) for (S1,M

′
1)

=

c⃗(w[ι1(ξ (i)), ι1(ξ ( j))[), if (i, j) ̸= (r−,r);

c⃗(w[ι1((r−)•), ι1(r•)[), if (i, j) = (r−,r);
by definition (5.19) of χ1 = χw,C1

=

c⃗(w(i, j)), if (i, j) ̸= (r−,r);

c⃗(w[(r−)◦,r◦[), if (i, j) = (r−,r);
by definition of _•,_◦ and ξ

=

c⃗(w(i, j)), if (i, j) ̸= (r−,r);

c⃗(w(r−,r)), if (i, j) = (r−,r);
by Lemma 5.30(b)

= χ(i, j) by (M.3) for (S,M).

To prove that Property (M.4) holds, we first notice that, for every i < j < r in T,

w′1(ξ (i),ξ ( j)) =DRH w′1(i
•, j•). (5.31)
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In fact, since (ξ (ℓ),yr− , ℓ
•,yr−) belongs to B1, (ξ (ℓ) | ξ (r−)) = (ℓ• | (r−)•) is an equation of B1,H

and M′1 is a model of S1, Lemma 2.32 implies

w′1(ξ (ℓ),ξ (r
−)) =DRH w′1(ℓ

•,(r−)•).

Since (ξ (ℓ),yi, ℓ
•,yi) and (ξ (ℓ),y j, ℓ

•,y j) are also relations of B1, by Corollary 2.28 we know that
αw′1(ξ (ℓ),ξ (i))

= αw′1(ℓ
•,i•) and αw′1(ξ (ℓ),ξ ( j)) = αw′1(ℓ

•, j•) and thus Corollary 2.31 yields (5.31). Now, let
(i,x) be a box in B′. Using the definitions of w′ and of ι ′ we may compute

w′(i, right(x)) =


w′1(ξ (i),ξ (right(x))), if right(x)≤ r−;

w′1(ξ (i),ξ (r
−))w′1((r

−)•,r•)

·Ψ′1((r•)−,r• ,⃗ t ′q,µ0
,µ ′q,µ0

)ω−1Ψ′1(ξ (r)
−,ξ (r), s⃗ ′q,µ

′
0), otherwise;

(5.31)
=


w′1(ξ (i),ξ (right(x))), if right(x)≤ r−;

w′1(i
•,(r−)•)w′1((r

−)•,r•)

·Ψ′1((r•)−,r• ,⃗ t ′q,µ0
,µ ′q,µ0

)ω−1Ψ′1(ξ (r)
−,ξ (r), s⃗ ′q,µ

′
0), otherwise;

R

w′1(ξ (i), right1(x)), if right(x)≤ r−;

w′1(i
•, right1(x)), otherwise.

Taking into account the steps (2) and (3) in the construction of B1, it is now easy to deduce that (M.4)
holds for all the relations of B′. It remains to verify that w′(ℓ,r) and w′(ℓ∗,r∗) are R-equivalent
modulo DRH. For that purpose, we show that the following relations hold in DRH:

w′(ℓ,r) = w′(ℓ,r−)w′(r−,r)
def.
= w′1(ξ (ℓ),ξ (r

−))w′1((r
−)•,r•)Ψ′1((r

•)−,r• ,⃗ t ′q,µ0
,µ ′q,µ0

)ω−1
Ψ
′
1(ξ (r)

−,ξ (r), s⃗ ′q,µ
′
0)

(5.31)
= w′1(ℓ

•,(r−)•)w′1((r
−)•,r•)Ψ′1((r

•)−,r• ,⃗ t ′q,µ0
,µ ′q,µ0

)ω−1
Ψ
′
1(ξ (r)

−,ξ (r), s⃗ ′q,µ
′
0)

= w′1(ℓ
•,r•)Ψ′1((r

•)−,r• ,⃗ t ′q,µ0
,µ ′q,µ0

)ω−1
Ψ
′
1(ξ (r)

−,ξ (r), s⃗ ′q,µ
′
0)

R w′1(ℓ
•,r•), because of the inclusion

c(Ψ′1((r
•)−,r• ,⃗ t ′q,µ0

,µ ′q,µ0
)ω−1

Ψ
′
1(ξ (r)

−,ξ (r), s⃗ ′q,µ
′
0))⊆ c⃗(w′1(ℓ

•,r•))

= w′1(ι
−1
1 (ℓ◦), ι−1

1 (r◦)) = w′1(ι
−1
1 (ι(ℓ∗)), ι−1

1 (ι(r∗)))

= w′1(ξ (ℓ
∗),ξ (r∗)) = w′(ℓ∗,r∗).

Finally, since ξΛ(BH)⊆B1,H, in Remark 5.24 we observed that, in order to prove that Property (M.5)
is satisfied, it is enough to prove that H satisfies

w′(i, j) = w′1(ξ (i),ξ ( j)) (5.32)

Ψ
′(i, j, s⃗,µ) = Ψ

′
1(ξ ( j)−,ξ ( j), s⃗ ′,µ ′), (5.33)

for every (i, j, s⃗,µ) ∈ Dom(M)×M(i, j, s⃗), where Λ(i, j, s⃗,µ) = ((. . . , s⃗ ′),µ ′). The pseudoiden-
tity (5.32) follows straightforwardly from the definition of w′, except when (i, j) = (r−,r). In that
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case, by computing (5.32) modulo H, we get

w′(r−,r) = w′1((r
−)•,r•)Ψ′1((r

•)−,r• ,⃗ t ′q,µ0
,µ ′q,µ0

)ω−1
Ψ
′
1(ξ (r)

−,ξ (r), s⃗ ′q,µ
′
0)

= w′1(ξ (r
−),ξ (r)),

where the last equality holds because the equation

(ξ (r−) | ξ (r)) = ((r−)• | r•) · {(r•)− | r•}ω−1
t⃗ ′q,µ0

,µ ′q,µ0
· {ξ (r)− | ξ (r)}⃗s ′q,µ ′0

belongs to B1,H and M′1 is a model of S1. Lastly, the pseudoidentity (5.33) corresponds precisely
to the definition of Θ′. Thus, M′ is a model of S in σ -words and so, Property (P.2) holds for the
pair (S1,M1).

5.6.8 Case 5

Finally, it remains to consider the case where B has a boundary relation of the form (i,x, j,x) with
right(x) = r = right(x) and none of the Cases 1–4 hold. In particular, the non occurrence of Cases 2, 3
and 4 implies that all the boundary relations (i,x, j,x) verifying i≤ j and right(x) = r are such that
i < j, right(x) = r and the equality c(w(i, j)) = c(w(i,r)) holds.

We consider the index

c = max{min(J),max{right(x) : right(x)< r},max{i ∈ J : i < r and there is no box (i,x)}}

and we let E= {(i,x, j,x) ∈B : i < j; right(x) = r = right(x)}. By the auxiliary step, we may assume
that all the boundary relations of E are such that c < i, j < r. Since the auxiliary step consists in
successively factorizing a boundary relation from E with respect to a pair of ordinals both greater
than ι(c) (recall Figure 5.7 and Lemma 5.29), it follows that for every index c < i < r there exists
a box (i,x) such that right(x) = r. Observe that the choice of c guarantees that all the indices in the
original set of boundary relations already satisfy this condition. Moreover, since E contains all the
boxes ending in r, if (i,x) is a box such that right(x) = r, then c < i < r.

Now, we let ℓ = max{i ∈ J : there exists (i,x, j,x) ∈ E}. We use the construction presented in
Subsection 5.6.2 to align the left of each variable intervening in E (as schematized in Figure 5.9). For

ℓ x
j x

ie xe

je xe

ι(ℓ) βe = ι( je)+(ι(ℓ)− ι(ie))

ξ (ℓ) x
ξ ( j) x

ℓe xe

ke xe

ξ (ie) ye ξ ( je) ye

Fig. 5.9 Aligning a boundary relation on the left with ℓ.

each e = (ie,xe, je,xe) ∈ E, let βe = ι( je)+(ι(ℓ)− ι(ie)). By Corollary 2.31, βe is the unique ordinal
such that the equality w(ie, ℓ) = w[ι( je),βe[ holds modulo DRH. Hence, if ∆ = {(ι(ℓ),βe)}e∈E,
then the pair (E,∆) satisfies (F.1) and (F.2). We let (S0,M0) be the factorization of (S,M) with
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respect to (E,∆), where S0 = (X0,J0,ζ0,M0,χ0, right0,B0,B0,H) and M0 = (w0, ι0,Θ0). In the new
set of boundary relations B0, any boundary relation such that one of its boxes ends at ξ (r) is either
of the form (ξ (ℓ),xe,ke,xe) or of the form (ke,xe,ξ (ℓ),xe), where ξ = ι

−1
0 ◦ ι , ke = ι

−1
0 (βe) and

right0(xe) = ξ (r) = right0(xe). In order to simplify the notation, we drop the index 0 in the pair
(S0,M0) and we simply assume that the given pair (S,M) is such that the set E defined above is given
by

E= {(ℓ,x1, j1,x1), . . . ,(ℓ,xn, jn,xn)}

with j1 ≤ j2 ≤ ·· · ≤ jn. We notice that, by definition of the index c, we have jn ≺ r in J. Since M is a
model of S, the pseudovariety DRH satisfies

w(ℓ, jm)w(ℓ,r) R w(ℓ, jm)w( jm,r) = w(ℓ,r),

for m = 1, . . . ,n. Multiplying successively by w(ℓ, jm) on the left, we get

w(ℓ, jm)ωw(ℓ,r) R w(ℓ,r) modulo DRH.

Since c⃗(w(ℓ, jm)ω) = c(w(ℓ, jm)) = c(w(ℓ,r)), it follows that

w(ℓ,r) R w(ℓ, j1)ω R · · · R w(ℓ, jn)ω modulo DRH. (5.34)

But all the pseudowords w(ℓ, jm)ω represent the identity in the same maximal subgroup of ΩADRH

where they belong (recall Proposition 2.18). Therefore, all the elements w(ℓ, jm)ω are the same
over DRH. Then, Proposition 5.13 applied to the elements w(ℓ, j1), . . . ,w(ℓ, jn) guarantees the
existence of pseudowords u ∈ΩAS, v1, . . . ,vn ∈ (ΩAS)

I and of positive integers h1, . . . ,hn such that,
for m = 1, . . . ,n we have

w(ℓ, jm) =DRH uhmvm,

vmu =DRH u,
(5.35)

where all the products u ·u, u ·vm and vm ·u are reduced, whenever the second factor is nonempty. Note
that hn is the maximum of {h1, . . . ,hn}. In fact, if we had, for a certain m, the inequalities jm < jn and
hm > hn then, since DRH satisfies

w(ℓ, jm) = uhmvm = uhnvnuhm−hnvm = w(ℓ, jm)w( jm, jn)uhm−hnvm,

we would be able to use Corollary 2.28 and Theorem 2.24 to compute

αw(ℓ, jm) = αw(ℓ, jm)+αw( jm, jn)uhm−hn vm
> αw(ℓ, jm),

which would yield a contradiction.

Now, we observe that the pseudoidentities in (5.35) imply that every finite power of u is a prefix
of w(ℓ, jm)ω , which in turn, by (5.34), is R-equivalent to w(ℓ,r) modulo DRH. Since the semigroup S
where the constraints are defined is finite, this allows us to find some periodicity on them. With this in
mind, to deal with the constraints, we consider a big enough direct power of the semigroup S, more
specifically, the semigroup T = SK , with K = ∑s⃗∈ζ ( jn,r) M( jn,r, s⃗), and we take N = |T |+2. Let us
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construct a new pair (S1,M1) as follows:

S1 = (X1,J1,ζ1,M1,χ1, right1,B1,B1,H) and M1 = (w1, ι1,Θ1),

where

• the set of variables is X1 = X⊎{yq,yq}
hn
q=1⊎{zm,zm}n

m=1⊎{ fi, f i}N
i=1, where variables with

different names are assumed to be distinct;

• the pseudoword in the model is w1 = w;

• let O be the set containing the following ordinals:

– β0 = ι(ℓ);

– βq = β0 +αu ·q, for q = 1, . . . ,hn +1;

– γm = β0 +(ι( jm)−βhm), for m = 1, . . . ,n;

– δp = β0 +αu ·hn p, for p = 0, . . . ,N.

The ordinals in O are depicted in Figure 5.10.

β0 β1 β2 βh1

γ1
αv1

γn
αvn

ℓ u u · · · u u

jn xnuhn vn

βhn = δ1 β2hn = δ2

uhn

uh1 v1 j1 x1

Fig. 5.10 The set of ordinals O.

We let C1 = (J1, ι1,M1,Θ1) be a common refinement of the factorization schemes C(S,M) and
(O,O ↪→ αw +1, /0, /0) for w and

Λ : {(i, j, s⃗,µ) : (i, j, s⃗) ∈ Dom(M), µ ∈M(i, j, s⃗)}→
⋃
k∈N

(S×SI)k×ω

be a refining function from C(S,M) to C1. The factorization scheme C1 supplies the items
J1, ι1, M1 and Θ1 and the items ζ1 and χ1 by taking ζ1 = ζw1,C1 and χ1 = χw1,C1 (recall (5.18)
and (5.19)). We denote bq = ι

−1
1 (βq), cm = ι

−1
1 (γm), dp = ι

−1
1 (δp), and ξ = ι

−1
1 ◦ ι ;
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• the function right1 is given by

right1(x) =



ξ (right(x)), if x ∈ X;

bq, if x = yq;

bq+1, if x = yq;

bhm+1, if x ∈ {zm,zm};

dp, if x = fp;

dp+1, if x = f p;

• in the set B1 we include the following boundary relations:

– (ξ (i),x,ξ ( j),x), if (i,x, j,x) ∈B\ (E∪{dual of e : e ∈ E});

– (bq−1,yq,bq,yq) and (bq,yq,bq−1,yq), for q = 1, . . . ,hn;

– (bhm ,zm,ξ ( jm),zm) and (ξ ( jm),zm,bhm ,zm), for m = 1, . . . ,n;

– (dp−1, fp,dp, f p) and (dp, f p,dp−1, fp), for p = 1, . . . ,N−1;

• the set B1,H consists of the following equations:

– all the equations of ξΛ(BH);

– (b0 | b1) = (b1 | b2) = · · ·= (bhn | bhn+1);

– (bhm | bhm+1) = (ξ ( jm) | bhm+1), for m = 1, . . . ,n;

– (d0 | d1) = (d1 | d2) = · · ·= (dN−1 | dN).

ℓ x1
j1 x1

ℓ xn
jn xn

b0 y0 b1 y0

b1 y1 b2 y1

yhn

bhn−1

bhn
yhn

bh1 z1

ξ ( j1)
z1

znbhn

ξ ( jn)
zn

d0 f1 d1 f 1

· · ·

· · ·

· · ·

· · ·

Fig. 5.11 Above, the old boundary relations; below, the new boundary relations.

Proposition 5.34. Let (S1,M1) be the pair defined above. Then, M1 is a model of S1.
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Proof. Properties (M.1), (M.2) and (M.3) follow from Lemma 5.18. Let us verify Properties (M.4)
and (M.5). For the boundary relations of the form (ξ (i),x,ξ ( j),x), with (i,x, j,x) ∈ B, there is
nothing to prove since, up to renaming of indices, they were already satisfied before changing
the system. Because of (5.35), any power of u is a prefix of w(ℓ,r) modulo DRH. Therefore, all
pseudowords w(bq−1,bq), for q = 1, . . . ,hn +1 represent the same element over DRH, namely u. This
not only proves that Property (M.4) holds for all boundary relations of the form (bq−1,yq,bq,yq), but
also that (M.5) holds for the equations (b0 | b1) = (b1 | b2) = · · · = (bhn | bhn+1). For the relations
(bhm ,zm,ξ ( jm),zm), m = 1, . . . ,n, we first observe that DRH satisfies

u = w[βhm ,βhm+1[ = w[βhm , ι( jm)[ ·w[ι( jm),βhm+1[;

u = vm ·u = w[βhm , ι( jm)[ ·w[βhm ,βhm+1[.

Thus, it follows from Corollary 2.31 that DRH satisfies w[βhm ,βhm+1[ = w[ι( jm),βhm+1[ or, in other
words, that DRH satisfies w1(bhm , right1(zm)) = w1(ξ ( jm), right1(zm)). Again, we also proved (M.5)
for the equations (bhm | bhm+1) = (ξ ( jm) | bhm+1), m = 1, . . . ,n. Finally, for the boundary relations
(dp−1, fp,dp, f p), with p = 1, . . . ,N−1, taking into account the relationship between the ordinals βq

and δp, the pseudoidentity w(dp−1,dp) = uhn holds in ΩADRH, for all p = 1, . . . ,N. Therefore, all the
elements w1(dp−1, right1( fp)) and w1(dp, right1( f p)) represent the same power of u modulo DRH.
Yet again, Property (M.5) follows for the equations (d0 | d1) = (d1 | d2) = · · ·= (dN−1 | dN). Lastly,
to complete the verification of Property (M.5), it remains to prove that δw1,C1 is a solution modulo H

of ξΛ(BH). But this is a consequence of Remark 5.23.

Since in B1 there are no boxes ending at r, we decrease the first component of the induction
parameter, and so, Property (P.1) holds. Before proving that Property (P.2) also holds, we define
integers 1≤ H < L < N that later play an essential role.

Recall that, in J1, we have ξ ( jn)≺ bhn+1 ≼ d2 ≺ d3 ≺ ·· · ≺ dN ≺ ξ (r), where bhn+1 = d2 if and
only if hn = 1. Therefore, for each (⃗s,µ) ∈ ζ ( jn,r)×M( jn,r, s⃗), the first component of Λ( jn,r, s⃗)
belongs to (S× SI)N if hn = 1 or to (S× SI)N+1, otherwise. We assume that hn > 1. The same
argument can be used when hn = 1, simply by working with N instead of N +1. We may write

Λ( jn,r, s⃗,µ) =
((⃗

t (⃗s,µ)1 , . . . ,⃗ t (⃗s,µ)N+1

)
, µ⃗s,µ

)
, (5.36)

with t⃗ (⃗s,µ)i =
(

t (⃗s,µ)i,1 , t (⃗s,µ)i,2

)
. Let t⃗1, . . . ,⃗ tN ∈ T satisfy the following properties:

• each element t⃗i is a tuple whose coordinates are of the form t (⃗s,µ)i,1 t (⃗s,µ)i,2 , for certain s⃗ ∈ ζ ( jn,r)
and µ ∈M( jn,r, s⃗);

• for i∈{1, . . . ,K} and k1 ̸= k2, if the k1-th coordinate of t⃗i is t (⃗s1,µ1)
i,1 t (⃗s1,µ1)

i,2 and the k2-th coordinate

of t⃗i is t (⃗s2,µ2)
i,1 t (⃗s2,µ2)

i,2 , then (⃗s1,µ1) ̸= (⃗s2,µ2);

• for i ∈ {2, . . . ,K}, if the k-th coordinate of t⃗1 is t (⃗s,µ)1,1 t (⃗s,µ)1,2 , then the k-th coordinate of t⃗i is

t (⃗s,µ)i,1 t (⃗s,µ)i,2 .

Table 5.1 schematizes how the vectors t⃗i should be understood.
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Pairs of the form (⃗s,µ) in
ζ ( jn,r)×M( jn,r, s⃗):

(⃗s1,µ1) (⃗s2,µ2) · · · (⃗sK ,µK)

t⃗1: t (⃗s1,µ1)
1,1 t (⃗s1,µ1)

1,2 t (⃗s2,µ2)
1,1 t (⃗s2,µ2)

1,2 · · · t (⃗sK ,µK)
1,1 t (⃗sK ,µK)

1,2

t⃗2: t (⃗s1,µ1)
2,1 t (⃗s1,µ1)

2,2 t (⃗s2,µ2)
2,1 t (⃗s2,µ2)

2,2 · · · t (⃗sK ,µK)
2,1 t (⃗sK ,µK)

2,2

· · ·

t⃗N : t (⃗s1,µ1)
N,1 t (⃗s1,µ1)

N,2 t (⃗s2,µ2)
N,1 t (⃗s2,µ2)

N,2 · · · t (⃗sK ,µK)
N,1 t (⃗sK ,µK)

N,2

Table 5.1 The K coordinates of the vector t⃗i are represented in the i-th row.

Since N−1 > |T |, there exist 1≤ H < L < N such that t⃗1 · · ·⃗ tH = t⃗1 · · ·⃗ tL, which implies that

t⃗1 · · ·⃗ tH⃗tH+1 · · ·⃗ tL = t⃗1 · · ·⃗ tH (⃗tH+1 · · ·⃗ tL)ω .

In particular, since Λ satisfies (R.2.3), given s⃗ = (s1,s2) ∈ ζ ( jn,r) and µ ∈M( jn,r, s⃗) the following
equalities hold in the semigroup S:

s1 = t (⃗s,µ)1,1 t (⃗s,µ)1,2 · t
(⃗s,µ)
2,1 t (⃗s,µ)2,2 · · · t

(⃗s,µ)
H,1 t (⃗s,µ)H,2 · t

(⃗s,µ)
H+1,1 t (⃗s,µ)H+1,2 · · · t

(⃗s,µ)
L,1 t (⃗s,µ)L,2 · t

(⃗s,µ)
L+1,1 t (⃗s,µ)L+1,2 · · · t

(⃗s,µ)
N,1 t (⃗s,µ)N,2 · t

(⃗s,µ)
N+1,1

= t (⃗s,µ)1,1 t (⃗s,µ)1,2 · t
(⃗s,µ)
2,1 t (⃗s,µ)2,2 · · · t

(⃗s,µ)
H,1 t (⃗s,µ)H,2 ·

(
t (⃗s,µ)H+1,1 t (⃗s,µ)H+1,2 · · · t

(⃗s,µ)
L,1 t (⃗s,µ)L,2

)ω+1

· t (⃗s,µ)L+1,1 t (⃗s,µ)L+1,2 · · · t
(⃗s,µ)
N,1 t (⃗s,µ)N,2 · t

(⃗s,µ)
N+1,1,

s2 = t (⃗s,µ)N+1,2.

In order to ease the notation, we define

s(⃗s,µ)1 = t (⃗s,µ)1,1 t (⃗s,µ)1,2 · t
(⃗s,µ)
2,1 t (⃗s,µ)2,2 · · · t

(⃗s,µ)
H,1 t (⃗s,µ)H,2 ,

s(⃗s,µ)2 = t (⃗s,µ)H+1,1 t (⃗s,µ)H+1,2 · · · t
(⃗s,µ)
L,1 t (⃗s,µ)L,2 ,

s(⃗s,µ)3,1 = t (⃗s,µ)L+1,1 t (⃗s,µ)L+1,2 · · · t
(⃗s,µ)
N,1 t (⃗s,µ)N,2 t (⃗s,µ)N+1,1,

s(⃗s,µ)3,2 = t (⃗s,µ)N+1,2.

(5.37)

Hence, we have s1 = s(⃗s,µ)1 ·
(

s(⃗s,µ)2

)ω+1
· s(⃗s,µ)3,1 and s(⃗s,µ)3,2 = s2.

Next, we verify that Property (P.2) is satisfied, as claimed before.

Proposition 5.35. Let σ be an implicit signature such that κ ⊆ ⟨σ⟩ satisfying (sig), and suppose that
there exists a model M′1 = (w′1, ι

′
1,Θ

′
1) of S1 in σ -words. Then, there is a model of S in σ -words as

well.

Proof. Let M′ = (w′, ι ′,Θ′) be constructed as follows. The σ -word w′ is set to be

w′ = w′1[0, ι
′
1(dL)[ · (w′1(dH ,dL))

ωw′1(dL,ξ (r)) ·w′1[ι ′1(ξ (r)),αw′1
[.
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The map ι ′ is defined by

ι
′ : J→ αw′+1

i 7→ ι
′
1 ◦ξ (i), if i < r,

r 7→ αw′1[0,ι
′
1(dL)[·(w′1(dH ,dL))ω ,

i 7→ ι
′(r)+(ι ′1 ◦ξ (i)− ι

′
1 ◦ξ (r)), if i > r.

In order to define Θ′, we first consider the following auxiliary pseudowords:

• for each i ≺ j ≤ jn and each r ≤ i ≺ j in J, each s⃗ ∈ ζ (i, j) and each µ ∈ M(i, j, s⃗), if
Λ(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tk),µ ′) and ξ (i) = i0 ≺ i1 ≺ ·· · ≺ ik = ξ ( j), then we take

Φ
′
0(i, j, s⃗,µ) =

(
k−1

∏
m=1

prod◦Θ
′
1(im−1, im ,⃗ tm,0)

)
·Φ′1(ξ ( j)−,ξ ( j),⃗ tk,µ ′);

Ψ
′
0(i, j, s⃗,µ) = Ψ

′
1(ξ ( j)−,ξ ( j),⃗ tk,µ ′);

• for each s⃗ ∈ ζ ( jn,r) and µ ∈M( jn,r, s⃗), we set (recall the notation in (5.36))

Φ
′
0( jn,H, s⃗,µ) = prod◦Θ

′
1

(
ξ ( jn),bhn+1 ,⃗ t

(⃗s,µ)
1 ,0

)
·prod◦Θ

′
1

(
bhn+1,d2 ,⃗ t

(⃗s,µ)
2 ,0

)
·

H

∏
m=3

Θ
′
1

(
dm−1,dm ,⃗ t

(⃗s,µ)
m ,0

)
;

Φ
′
0(H,L, s⃗,µ) =

L

∏
m=H+1

prod◦Θ
′
1

(
dm−1,dm ,⃗ t

(⃗s,µ)
m ,0

)
;

Φ
′
0(L,r, s⃗,µ) =

(
N

∏
m=L+1

prod◦Θ
′
1

(
dm−1,dm ,⃗ t

(⃗s,µ)
m ,0

))
·Φ′1

(
dN ,ξ (r),⃗ t

(⃗s,µ)
N+1 , µ⃗s,µ

)
;

Ψ
′
0(L,r, s⃗,µ) = Ψ

′
1

(
dN ,ξ (r),⃗ t

(⃗s,µ)
N+1 , µ⃗s,µ

)
.

Now, for i≺ j in J, (i, j, s⃗) ∈ Dom(M) and µ ∈M(i, j, s⃗) we define

Θ
′(i, j, s⃗,µ) = (Φ′0(i, j, s⃗,µ),Ψ′0(i, j, s⃗,µ)), whenever j ̸= r;

Θ
′( jn,r, s⃗,µ) = (Φ′0( jn,H, s⃗,µ) ·Φ′0(H,L, s⃗,µ)ω+1 ·Φ′0(L,r, s⃗,µ),Ψ′0(L,r, s⃗,µ)).

Now, we verify that M′ just defined is a model of S. Let (i, j, s⃗) ∈ Dom(M) be such that s⃗ = (s1,s2),
and µ ∈ M(i, j, s⃗). We first suppose that j ̸= r. Setting Λ(i, j, s⃗,µ) = ((⃗t1, . . . ,⃗ tk),µ ′) and letting
ξ (i) = i0 ≺ i1 ≺ ·· · ≺ ik = ξ ( j), the following holds modulo DRH

prod◦Θ
′(i, j, s⃗,µ) = Φ

′
0(i, j, s⃗,µ)Ψ′0(i, j, s⃗,µ)

=

(
k−1

∏
m=1

prod◦Θ
′
1(im−1, im ,⃗ tm,0)

)
·Φ′1(ξ ( j)−,ξ ( j),⃗ tk,µ ′) ·Ψ′1(ξ ( j)−,ξ ( j),⃗ tk,µ ′)

=

(
k−1

∏
m=1

w′1(im−1, im)

)
·w′1(ξ ( j)−,ξ ( j)) by Property (M.1) for (S1,M

′
1)
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= w′1(ξ (i),ξ ( j))

= w′(i, j) by definition of ι
′,

which proves (M.1). We deduce Property (M.2) from the same property for the pair (S1,M
′
1):

ϕ(Φ′(i, j, s⃗,µ)) = ϕ

((
k−1

∏
m=1

prod◦Θ
′
1(im−1, im ,⃗ tm,0)

)
·Φ′1(ξ ( j)−,ξ ( j),⃗ tk,µ ′)

)

=

(
k−1

∏
m=1

tm,1tm,2

)
· tk,1 writing t⃗m = (tm,1, tm,1) and using (M.2) for (S1,M

′
1)

= s1 because Λ satisfies (R.2.3)

ϕ(Ψ′(i, j, s⃗,µ)) = ϕ(Ψ′1(ξ ( j)−,ξ ( j),⃗ tk,µ ′))
(M.2)
= tk,2

= s2 because Λ satisfies (R.2.3).

We justify (M.3) by observing that

c⃗(w′(i, j)) = c⃗(w′1(ξ (i),ξ ( j))) by definition of ι
′ and w′

= χ1(ξ (i),ξ ( j)) by (M.3) for (S1,M
′
1)

= c⃗(w[ι1(ξ (i)), ι1(ξ ( j))[) by definition (5.19) of χ1 = χw1,C1

= c⃗(w(i, j))

= χ(i, j) by (M.3) for (S,M).

Now, consider the case where i = jn and j = r. The following pseudoidentities hold in DRH:

prod◦Θ
′( jn,r, s⃗,µ) = Φ

′
0( jn,H, s⃗,µ) ·Φ′0(H,L, s⃗,µ)ω+1 ·Φ′0(L,r, s⃗,µ) ·Ψ′0(L,r, s⃗,µ)

= prod◦Θ
′
1

(
ξ ( jn),bhn+1 ,⃗ t

(⃗s,µ)
1 ,0

)
·prod◦Θ

′
1

(
bhn+1,d2 ,⃗ t

(⃗s,µ)
2 ,0

)
·

H

∏
m=3

Θ
′
1

(
dm−1,dm ,⃗ t

(⃗s,µ)
m ,0

)
·

(
L

∏
m=H+1

prod◦Θ
′
1

(
dm−1,dm ,⃗ t

(⃗s,µ)
m ,0

))ω+1

·
N

∏
m=L+1

prod◦Θ
′
1

(
dm−1,dm ,⃗ t

(⃗s,µ)
m ,0

)
·Φ′1

(
dN ,ξ (r),⃗ t

(⃗s,µ)
N+1 , µ⃗s,µ

)
·Ψ′1

(
dN ,ξ (r),⃗ t

(⃗s,µ)
N+1 , µ⃗s,µ

)
(∗)
= w′1 (ξ ( jn),bhn+1) ·w′1 (bhn+1,d2)

·
H

∏
m=3

w′1 (dm−1,dm) ·

(
L

∏
m=H+1

w′1 (dm−1,dm)

)ω+1

·
N

∏
m=L+1

w′1 (dm−1,dm,) ·w′1 (dN ,ξ (r))

= w′1(ξ ( jn),dH) ·w′1(dH ,dL)
ω+1 ·w′1(dL,ξ (r))

= w′( jn,r) by definition of w′,
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where step (∗) follows from M′1 being a model of S1, using Property (M.1). Moreover, since

ϕ(Φ′( jn,r, s⃗,µ)) = ϕ(Φ′0( jn,H, s⃗,µ) ·Φ′0(H,L, s⃗,µ)ω+1 ·Φ′0(L,r, s⃗,µ))

= ϕ

(
prod◦Θ

′
1

(
ξ ( jn),bhn+1 ,⃗ t

(⃗s,µ)
1 ,0

)
·prod◦Θ

′
1

(
bhn+1,d2 ,⃗ t

(⃗s,µ)
2 ,0

))
·ϕ

 H

∏
m=3

Θ
′
1

(
dm−1,dm ,⃗ t

(⃗s,µ)
m ,0

)
·

(
L

∏
m=H+1

prod◦Θ
′
1

(
dm−1,dm ,⃗ t

(⃗s,µ)
m ,0

))ω+1


·ϕ

(
N

∏
m=L+1

prod◦Θ
′
1

(
dm−1,dm ,⃗ t

(⃗s,µ)
m ,0

))
·ϕ
(

Φ
′
1

(
dN ,ξ (r),⃗ t

(⃗s,µ)
N+1 , µ⃗s,µ

))

= t (⃗s,µ)1,1 t (⃗s,µ)1,2 · t (⃗s,µ)2,1 t (⃗s,µ)2,2 ·
H

∏
m=3

t (⃗s,µ)m,1 t (⃗s,µ)m,2 ·

(
L

∏
m=H+1

t (⃗s,µ)m,1 t (⃗s,µ)m,2

)ω+1

·
N

∏
m=L+1

t (⃗s,µ)m,1 t (⃗s,µ)m,2 · t
(⃗s,µ)
N+1,1 by (M.2) for (S1,M

′
1)

= s(⃗s,µ)1 ·
(

s(⃗s,µ)2

)ω+1
· s(⃗s,µ)3,1 = s1 by (5.37),

ϕ(Ψ′( jn,r, s⃗,µ ′)) = ϕ(Ψ′0(L,r, s⃗,µ)) = ϕ

(
Ψ
′
1

(
dN ,ξ (r),⃗ t

(⃗s,µ)
N+1 , µ⃗s,µ

))
= t (⃗s,µ)N+1,2 by (M.2) for (S1,M

′
1)

= s2 by (5.37),

we have Property (M.2). To establish (M.3), we observe that, since S has a content function and thanks
to Property (M.2) for both pairs (S1,M1) and (S1,M

′
1), the content of the corresponding segments in

(w1 = w) and in w′1 does not change. Therefore, the equalities

c(w′1(ξ ( jn),dL)) = c(w[ι( jn),δL[) = c(w[β0,β1[),

c(w′1(dH ,dL)) = c(w[δH ,δL[) = c(w[β0,β1[),

c(w′1(dL,ξ (r))) = c(w[δL, ι(r)[) = c(w[β0,β1[)

(5.38)

hold. Thus, we also have

c⃗(w′( jn,r)) = c⃗(w′1(ξ ( jn),dL) ·w′1(dH ,dL)
ω ·w′1(dL,ξ (r))) = c(w[β0,β1[) = c⃗(w( jn,r))

= χ( jn,r).

It remains to verify that (M.4) and (M.5) are satisfied. For Property (M.4), all boundary relations
but the ones of the form (ℓ,xm, jm,xm) are immediate. For those relations, we already observed
in (5.38) that c(w′1(dH ,dL)) = c(w′1(dL,ξ (r))), so that, w′( jm,r) and w′1(ξ ( jm),dL) ·w′1(dH ,dL)

ω lie
in the same R-class modulo DRH. Hence, the pseudovariety DRH satisfies

w′(ℓ,r) = w′1(d0,dL) ·w′1(dH ,dL)
ωw′1(dL,ξ (r))

R w′1(d0,dL) ·w′1(dH ,dL)
ω

= w′1(b0,b1)
hnL ·w′1(dH ,dL)

ω
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= w′1(bhm ,bhm+1)w′1(b0,b1)
hnL−1 ·w′1(dH ,dL)

ω

(∗)
= w′1(ξ ( jm),bhm+1) ·w′1(b0,b1)

hnL−1 ·w′1(dH ,dL)
ω

R w′1(ξ ( jm),dL) ·w′1(dH ,dL)
ω

R w′( jm,r).

The validity of step (∗) is justified in view of S1 having M′1 as a model. More precisely, it follows
from Property (M.4) for the relation (bhm ,zm,ξ ( jm),zm) and from Property (M.5) for the equation
(bhm | bhm+1) = (ξ ( jm) | bhm+1), together with Lemma 2.32. Finally, as the inclusion ξΛ(BH)⊆B1,H

holds, by Remark 5.23 it is enough to show that for all (i, j, s⃗) ∈ Dom(M) and µ ∈ M(i, j, s⃗), if
Λ(i, j, s⃗,µ) = ((. . . ,⃗ t ),µ ′), then the pseudoidentities

w′(i, j) = w′1(ξ (i),ξ ( j));

Ψ
′(i, j, s⃗,µ) = Ψ

′
1(ξ ( j)−,ξ ( j),⃗ t,µ ′)

are valid in H. Analyzing the construction of Ψ′, the second pseudoidentity becomes clear, since
it is actually an equality of pseudowords. The first pseudoidentity w′(i, j) = w′1(ξ (i),ξ ( j)) is also
immediate, whenever j ̸= r, after noticing that w′(i, j) = w′1(ξ (i),ξ ( j)). It remains to prove that
w′( jn,r) = w′1(ξ ( jn),ξ (r)) modulo H. That is made clear in the next computation modulo H:

w′( jn,r) = w′1(ξ ( jn),dL) ·w′1(dH ,dL)
ω ·w′1(dL,ξ (r))

= w′1(ξ ( jn),dL) ·w′1(dL,ξ (r)) = w′1(ξ ( jn),ξ (r)).

This completes the proof.

We have just completed the analysis of all the Cases 1–5. Thus, we proved Theorem 5.26. The
announced result follows from Corollary 5.17.

Theorem 5.36. Let σ be an implicit signature satisfying the condition (sig) and such that κ ⊆ ⟨σ⟩.
Let H be a pseudovariety of groups. Then, the pseudovariety DRH is σ -reducible for finite systems of
κ-equations if and only if the pseudovariety H is σ -reducible for finite systems of κ-equations.

Consequently, we have a characterization of the pseudovarieties of the form DRH that are com-
pletely κ-reducible in terms of reducibility properties for H.

Theorem 5.37. The pseudovariety DRH is completely κ-reducible if and only if so is H.

Illustrating the usefulness of these results, we may invoke the work of Almeida and Delgado [13,
Theorem 6.2] to derive the complete κ-reducibility of the pseudovariety DRAb. Also, DRH is
completely κ-reducible for every locally finite pseudovariety of groups H. On the other hand, by
Theorems 5.37 and 2.11, the pseudovariety DRG is not completely κ-reducible.





Chapter 6

Further directions

The following is a summary of the main results of this thesis:

Chapter 3: • The existence of a canonical form for elements in Ωκ
AH yields the existence of a

canonical form for elements in Ωκ
ADRH (Theorem 3.25).

• A pseudovariety of groups H has decidable κ-word problem if and only if the same
happens for the pseudovariety DRH (Theorem 3.47 and Proposition 3.48).

Chapter 4: Let σ be an implicit signature such that ⟨σ⟩ ≠ ⟨{_ ·_}⟩ and let H be a pseudovariety of
groups. The following properties hold:

• if H is σ -reducible with respect to systems of pointlike equations, then so is DRH

(Theorem 4.1);

• the pseudovariety H is σ -reducible if and only if so is DRH (Theorem 4.13 and
Proposition 4.15);

• if ⟨σ⟩ contains a non-explicit operation η such that η =H 1 and H is σ -reducible,
then DRH is σ -reducible with respect to systems of idempotent pointlike equations
(Theorem 4.22).

Chapter 5: The pseudovariety DRH is completely κ-reducible if and only if the pseudovariety H

enjoys the same property (Theorem 5.37).

Thereafter, several natural questions may arise. On the one hand, we may try to extend the results
obtained and, on the other hand, we may try to apply different techniques for solving the same kind of
problems. We proceed with the presentation of some of them.

6.1 Generalizing the results

1. We know that the pseudovariety Gp (with p prime) is not κ-reducible (Theorem 2.11). Hence,
DRGp is not κ-reducible. In [5], it was exhibited an implicit signature σ that makes Gp a σ -
reducible pseudovariety and thus, also DRGp is σ -reducible. Furthermore, the referred implicit
signature σ is such that Ωσ

AGp = Ωκ
AGp, so that, Gp has decidable σ -word problem. It is then

natural to ask whether DRGp has decidable σ -word problem as well. A positive answer would

127



128 Further directions

imply σ -tameness of DRGp. Also, one may try to determine whether the required conditions to
apply the techniques used to deal with the complete κ-reducibility of DRH admit a generalization
in order to deal with the complete σ -reducibility of DRH.

2. A natural generalization of a pseudovariety DRH is the pseudovariety DO∩H. In the same way
that DRH may be considered a non aperiodic version of R, also DO∩H may be seen as a non
aperiodic version of DA. Since Moura [53] generalized the approach in [25] (the same in which
our work was inspired) in order to solve the κ-word problem over DA, it should be possible to
solve the κ-word problem over DO∩H through a combination of her work with our own. Also,
it is expected that a canonical form for the elements of Ωκ

ADO∩H might be obtained from the
knowledge of a canonical form for the elements of Ωκ

AH.

3. Along the same lines of the preceding question, we may try to identify necessary and sufficient
conditions on H in order to have the complete κ-reduciblity of DO∩H, through the generalization
of the notions of “system of boundary relations” and respective “model”. Also, the results of
Section 4.2 are prone to be generalized with the same kind of techniques. Note that the problems
corresponding to Sections 4.1 and 4.3 for the pseudovarieties DO∩H were solved in [12].

6.2 The same problems, a different approach

4. Kufleitner and Wächter [49] proved that the κ-word problem is decidable over each pseudovariety
in the Trotter-Weil hierarchy. In particular, that includes the decidability of the κ-word problem
over R and over DA. Since their motivation arose from the quantifier alternation hierarchy inside
FO2 (two-variable first order logic), their approach was fairly combinatorial. It is then natural to
ask whether such approach admits a generalization for proving decidability of the κ-word problem
over the pseudovarieties DRH and DO∩H.

5. Makanin’s algorithm [50] appeared as a means of establishing the decidability of the existential
theory of equations over free semigroups. Roughly speaking, the idea of the algorithm is derived
from the following property: “the existence of a solution of a given system of equations over
the free semigroup entails the existence of a solution of that system of a special kind”. That is
precisely the idea behind the notion of reducibility. Concerning the pseudovarieties of the form
DRH, there exist indeed some similarities between proving the existence of certain solutions of
equations in the free semigroup and modulo DRH. That fact is witnessed by the possibility of
adapting Makanin’s algorithm in order to prove complete κ-reducibility of DRH under certain
reasonable conditions on H (such adaptation is obtained by extending the constructions considered
for proving complete κ-reducibility of R [10], which in turn were directly inspired by Makanin’s
algorithm). On the other hand, Plandowski and Rytter [56] came up with a different algorithm for
deciding existence of solutions of equations over the free semigroup. Also, Jeż [44] proposed an
alternative solution for the same problem. Both methods of Plandowski and Rytter, and Jeż can
produce a representation of all solutions of a given word equation. Then, it may be interesting
to understand how deep is the relationship between handling equations over the free semigroup
and over DRH. In this case, that means to figure out whether the algorithms of Plandowski and
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Rytter, and Jeż may be adapted in order to derive reducibility and/or hyperdecidability of DRH
with respect to certain classes of systems.





Appendix A

Ordinal numbers

Here we recall some general facts about arithmetic of ordinal numbers.

Fact A.1. Addition of ordinals is associative:

(α +β )+ γ = α +(β + γ).

Fact A.2. Addition of ordinals is strictly increasing on the right argument and increasing on the left:

α < β =⇒ γ +α < γ +β ,

α < β =⇒ α + γ ≤ β + γ.

Fact A.3. Addition of ordinals is left-cancellative:

α +β = α + γ =⇒ β = γ.

Given two ordinal numbers α and β , if α ≤ β , then we denote by β −α the unique ordinal
number γ such that α + γ = β .

Fact A.4. For ordinal numbers α ≤ β , the following equalities are a straightforward consequence of
the definitions:

(α +β )−α = β = α +(β −α).

Fact A.5. Let β , γ and δ be ordinal numbers such that β < γ < δ . Then, the following inequality
holds:

γ−β < δ −β .

Fact A.6. Let α , β , γ and δ be ordinals such that α < β < γ < δ . Then, the following equality holds:

(α +(δ −β ))− (α +(γ−β )) = δ − γ.

Proof. We first notice that Fact A.5 guarantees that all the involved subtractions are well defined.
Then, saying that (α +(δ −β ))− (α +(γ−β )) = δ − γ is the same as saying that

(α +(γ−β ))+(δ − γ) = (α +(δ −β )).
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Associativity and left-cancellative properties of addition of ordinals together imply that this equality
is equivalent to (γ−β )+(δ − γ) = (δ −β ). In turn, this means to have β +(γ−β )+(δ − γ) = δ .
Now, using Fact A.4, we may compute β +(γ−β )+(δ − γ) = γ +(δ − γ) = δ .



Appendix B

Implementation of the solution for the
word problem in DRG

While in Chapter 3 we made a rather informal description of the steps to be taken in order to decide
whether two given κ-words have the same value over DRG, in here we present the implementation in
Python of the complete solution. The reader is referred to Chapter 3 for unexplained notation.

Let us describe the scenario considered in Sections B.1–B.3. We assume that the alphabet A is the
set {1,2, . . . ,n}. A well-parenthesized word is represented by a list of pairs [a, i], where a belongs
to {0}∪A∪{n+1}∪{[, ]} and i to N. The pair [a, i] represents ai if a ∈ A, and it represents [i or ]i

if a = [ or a = ], respectively. Given a κ-term w, we use n+1 to denote the distinguished symbol
# in the well-parenthesized word w. We further assume that the κ-terms we receive as input are
already given by a well-parenthesized word. In what follows, we use w to refer to such an arbitrary
well-parenthesized word. Should no confusion arise from the context, we may abuse notation and still
use w to represent one of the κ-terms that the well-parenthesized word w defines. For instance, we
may write G(w) to mean the DRG-graph of such a κ-term. All our algorithms take the size n of the
alphabet as input.

On the other hand, in Section B.4 we drop out all those technical assumptions and exhibit an
algorithm taking strings in the input.

B.1 Preliminary computations

We start with Algorithm B.1 returning a table (that is, a list of lists) T of dimension (|w|+1)×(|A|+1),
so that the entry T [i][a] contains the word first(w(i,a)) (also given by a list).

Once we possess all the information to construct GR(w), we should be able to determine the regular
parts of each factor of the form om(w(i,a)). Algorithm B.2 returns I if reg(om(w(i,a))) = I, and k
if reg(om(w(i,a))) = om(w(k,a)). It receives the result FIRSTw = first(w, n) of Algorithm B.1
as input. On the other hand, Algorithm B.3 computes the well-parenthesized word w(i,a).

By now, we have all the theoretical data for computing G(w). Next step is to prepare the tools to
solve the word problem over G when comparing two DRG-graphs. We do that in next section.
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B.2 The word problem over G

We already know that all the κ-words we have to compare over G are of the form om(w(i,a)). In
turn, these factors are well-parenthesized words over B2. We create a class tree of ternary trees, for
representing such words and do a routine wpwTOtree to convert a well-parenthesized word w over B2

into a tree (Algorithm B.4). Each attribute of a tree is given by a list [a,s] (with a ∈ A and s ∈ {−1,1})
that represents the letter as of A∪A−1. If we wish to recover a well-parenthesized word from a tree
outputted by Algorithm B.4, then we shall get a well-parenthesized word over B1. Thus, this step may
be seen as the precomputation of the expansion of w.

A (binary) tree representing the linearization of a κ-term described by another tree is computed in
Algorithm B.5. Finally, we may use Algorithm B.6 to obtain the word over A∪A−1 represented by a
given binary tree and then, calculate its canonical form in the free group FGA with Algorithm B.7.

B.3 Constructing DRG-graphs

Now, we are ready to construct DRG-graphs. We represent them by lists of state’s G. Each state
has 5 attributes: two labels l and lG given by a ∈ A and k ∈ N∪{I}, respectively, if λ (state) = a
and λG(state) = ρG(w(k,a)) (or λG(state) = I if k = I); two transitions zero and one representing
transitions state.0 and state.1, respectively; and an optional marker. This is done in Algorithm B.8.
The entry G[i][a] encodes the state q(i,a) and each of the transitions zero and one is given by a list
of the form [ j,b]. We further leave the entry G[i][a] empty if either the state is not reachable or is
terminal. The routine DRGgraph owes its name to the fact that it constructs the DRG-graph of the
κ-term corresponding to a given well-parenthesized word of the form w. We point out that, although
we are solving the word problem over DRG, since we are characterizing the nonempty labels λG(q) by
an integer k such that reg(w(i,a)) = w(k,a) (for (i,a) correctly chosen depending on q), this routine
actually returns the DRH-graph of w, independently of the pseudovariety H.

Lastly, we are able to decide whether two κ-words om(u) and om(v) are equal modulo DRG (for
u and v well-parenthesized words over B1). Algorithm B.9 arranges all the information and returns
the logical value of om(u) =DGR om(v), when called with the tuple

(DRHgraph(u,n,first(u)),[0,n+1],DRHgraph(v,n,first(v)),[0,n+1], n).

B.4 The solution

This last section is dedicated to an user friendly presentation of a routine to check whether two
κ-words coincide over DRG. Algorithm B.11 is prepared to receive any pair of strings representing a
κ-term, agreeing that any (ω−1)-power is represented by ˆw-1. Unlike in the algorithms of previous
sections, it is not necessary neither to assume that the alphabet is of the form A = {1, · · · ,n}, nor to
input its size. The reason is that we use Algorithm B.10 to rename all the letters appearing in the
given strings and to compute the corresponding well-parenthesized words. Thus, if we wish to decide,
for instance, if (abω−1aω−1)ω−1 and abω−1(aaω−1bω−1)ω−1a are equal modulo DRG, then we just
need to call

TESTmoduloDRG(“(abˆw-1aˆw-1)ˆw-1”, “abˆw-1(aaˆw-1bˆw-1)ˆw-1a”).
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Algorithm B.1

def f i r s t (w, n ) :
S = [ ] ;
x = w[ 0 : −1 ] ;
w a i t = [ [ ] f o r i in range ( n +1) ] ;
r e s = [ [ ] f o r i in range ( l e n ( x ) ) ] ;
f o r i in range ( l e n ( x ) ) :

i f x [ i ] [ 0 ] == "[" :
S += [ i ] ;
f o r a in range ( n +1) :

w a i t [ a ] = [ i ] + w a i t [ a ] ;
e l i f x [ i ] [ 0 ] == "]" :

matchingOpen = S . pop ( ) ;
f o r a in range ( n +1) :

i f w a i t [ a ] != [ ] and w a i t [ a ] [ 0 ] == matchingOpen :
w a i t [ a ] += [ w a i t [ a ] [ 0 ] ] ;
d e l w a i t [ a ] [ 0 ] ;

l i n e = r e s [ matchingOpen ] ;
f o r k in range ( l e n ( l i n e ) ) :

row = w a i t [ l i n e [ k ] [ 0 ] ] ;
w a i t [ l i n e [ k ] [ 0 ] ] = [ ] ;
f o r l in range ( l e n ( row ) ) :

r e s [ row [ l ] ] += [ l i n e [ k ] ] ;
f o r a in range ( n +1) :

w a i t [ a ] += [ i ] ;
e l s e :

row = w a i t [ x [ i ] [ 0 ] ] ;
f o r j in range ( l e n ( row ) ) :

r e s [ row [ j ] ] += [ x [ i ] ] ;
w a i t [ x [ i ] [ 0 ] ] = [ ] ;
f o r a in range ( n +1) :

w a i t [ a ] += [ i ] ;
f o r i in range ( l e n ( x )−1) :

i f x [ l e n ( x ) − i − 1 ] [ 0 ] in [ "[" , "]" ] :
d e l r e s [ l e n ( x ) − i − 1]

L = [ [ [ ] f o r i in range ( n +2) ] f o r j in range ( l e n ( r e s ) ) ] ;
f o r i in range ( l e n ( L ) ) :

f o r j in range ( l e n ( r e s [ i ] ) ) :
L [ i ] [ r e s [ i ] [ j ] [ 0 ] ] = r e s [ i ] [ 0 : j ]

L [ i ] [ n +1] = r e s [ i ] ;
re turn L
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Algorithm B.2

def r e g (w, i , a , n , FIRSTw ) :
L = [ ] ;
j = i ;
whi le j not in L and FIRSTw [ j ] [ a ] != [ ] :

j = FIRSTw [ j ] [ a ] [ − 1 ] [ 1 ] ;
L += [ j ] ;

i f FIRSTw [ j ] [ a ] == [ ] :
re turn "I"

e l s e :
s i z e _ c o n t e n t = l e n ( FIRSTw [ j ] [ a ] ) ;
k = i ;
whi le l e n ( FIRSTw [ j ] [ a ] ) != s i z e _ c o n t e n t :

k = FIRSTw [ k ] [ a ] [ − 1 ] [ 1 ] ;
re turn k
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Algorithm B.3

def f a c t o r (w, i , a ) :
m = 0 ;
L = [ ] ;
whi le w[m] [ 1 ] != i or w[m] [ 0 ] in [ "[" , "]" ] :

i f w[m] [ 0 ] == "[" :
L += [m] ;

e l i f w[m] [ 0 ] == "]" :
d e l L[−1] ;

m += 1 ;
x = [ ] ;
n = 0 ;
f o r j in range (m+1 , l e n (w) ) :

i f w[ j ] [ 0 ] == "[" :
x += [w[ j ] ] ;
n += 1 ;

e l i f w[ j ] [ 0 ] == "]" and n > 0 :
x += [w[ j ] ] ;
n −= 1 ;

e l i f w[ j ] [ 0 ] != "]" :
x += [w[ j ] ] ;

e l s e :
x += [ [ "[" ,w[ L[ −1] ] [1 ] −1] ] + w[ L[−1]+1: j ] +

[ [ "]" ,w[ L [ −1 ] ] [ 1 ] −1 ] ] ;
d e l L[−1] ;

m = 0 ;
L = [ ] ;
y = [ ] ;
whi le x [m] [ 0 ] != a :

y += [ x [m] ] ;
i f x [m] [ 0 ] == "[" :

L += [m] ;
e l i f x [m] [ 0 ] == "]" :

d e l L[−1] ;
m += 1 ;

f o r i in range ( l e n ( L ) ) :
d e l y [ L [ i ]− i ] ;

re turn y
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Algorithm B.4

c l a s s t r e e :
def _ _ i n i t _ _ ( s e l f , l e f t , mid , r i g h t ) :

s e l f . l e f t = l e f t
s e l f . mid = mid
s e l f . r i g h t = r i g h t

def wpwTOtree (w) :
L = [ ] ;
T = 0 ;
f o r i in range ( l e n (w) ) :

i f w[ i ] [ 0 ] = = "[" :
L += [ T ] ;
T = 0 ;

e l i f w[ i ] == [ "]" ,−1] :
T = t r e e ( L[−1] , None , t r e e ( None , T , None ) ) ;
d e l L[−1]

e l i f w[ i ] == [ "]" ,−2] :
T0 = t r e e ( None , T , None ) ;
T = t r e e ( L[−1] , None , t r e e ( T0 , None , T0 ) ) ;
d e l L[−1]

e l i f T != 0 :
T = t r e e ( T , None , [ w[ i ] [ 0 ] , 1 ] ) ;

e l s e :
T = [w[ i ] [ 0 ] , 1 ] ;

re turn T

Algorithm B.5

def l i n ( T , s i g n ) :
i f not i s i n s t a n c e ( T , t r e e ) :

re turn [ T [ 0 ] , s i g n *T [ 1 ] ]
e l i f T . l e f t == None :

re turn l i n ( T . mid ,− s i g n )
e l i f s i g n == −1:

re turn t r e e ( l i n ( T . r i g h t , s i g n ) , None , l i n ( T . l e f t , s i g n ) )
e l s e :

re turn t r e e ( l i n ( T . l e f t , s i g n ) , None , l i n ( T . r i g h t , s i g n ) )

Algorithm B.6

def t reeTOword ( T ) :
i f not i s i n s t a n c e ( T , t r e e ) :

re turn [ T ]
e l s e :

re turn t reeTOword ( T . l e f t ) + treeTOword ( T . r i g h t )
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Algorithm B.7

def c f ( word ) :
i = 0 ;
whi le i < l e n ( word )−1:

i f word [ i ] == [ word [ i +1][0] ,−word [ i + 1 ] [ 1 ] ] :
word = word [ 0 : i ] + word [ i +2 : l e n ( u ) ] ;
i = max ( 0 , i −1) ;

e l s e :
i = i +1 ;

re turn word [1 :−1]

Algorithm B.8

c l a s s s t a t e :
def _ _ i n i t _ _ ( s e l f , l , lG , zero , one , marker = None ) :

s e l f . l = l
s e l f . lG = lG
s e l f . z e r o = z e r o
s e l f . one = one
s e l f . marker = marker

def a r e E q u a l ( u , s1 , v , s2 ) :
i f s1 == [ ] :

re turn s2 == [ ]
e l i f s1 . lG == "I" :

re turn s1 . l == s2 . l and s2 . lG == "I"
e l s e :

lGu = [ [ 0 , 0 ] ] + f a c t o r ( u , s1 . lG , s1 . l ) ;
u0 = c f ( t reeTOword ( l i n ( wpwTOtree ( lGu ) , 1 ) ) ) ;
lGv = [ [ 0 , 0 ] ] + f a c t o r ( v , s2 . lG , s2 . l ) ;
v0 = c f ( t reeTOword ( l i n ( wpwTOtree ( lGv ) , 1 ) ) ) ;
re turn s1 . l == s2 . l and u0 == v0

def DRGgraph (w, n , FIRSTw ) :
G = [ [ [ ] f o r a in range ( n +2) ] f o r i in range ( l e n ( FIRSTw ) ) ] ;
f o r i in range ( l e n ( FIRSTw ) ) :

f o r a in range ( 1 , n +2) :
i f FIRSTw [ i ] [ a ] != [ ] :

PM = FIRSTw [ i ] [ a ] [ −1 ] ;
lG = r e g (w, i ,PM[ 0 ] , n , FIRSTw )
G[ i ] [ a ]= s t a t e (PM[ 0 ] , lG , [ i ,PM[ 0 ] ] , [PM[ 1 ] , a ] )

re turn G
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Algorithm B.9

def compare ( u , Gu , qu , v , Gv , qv , n ) :
i f Gu [ qu [ 0 ] ] [ qu [ 1 ] ] == [ ] :

re turn Gv [ qv [ 0 ] ] [ qv [ 1 ] ] == [ ]
e l i f Gu [ qu [ 0 ] ] [ qu [ 1 ] ] . marker == None or

Gv [ qv [ 0 ] ] [ qv [ 1 ] ] . marker == None :
Gu [ qu [ 0 ] ] [ qu [ 1 ] ] . marker = 1 ;
Gv [ qv [ 0 ] ] [ qv [ 1 ] ] . marker = 1 ;
i f a r e E q u a l ( u , Gu [ qu [ 0 ] ] [ qu [ 1 ] ] , v , Gv [ qv [ 0 ] ] [ qv [ 1 ] ] ) :

qu0 = Gu [ qu [ 0 ] ] [ qu [ 1 ] ] . z e r o ;
qu1 = Gu [ qu [ 0 ] ] [ qu [ 1 ] ] . one ;
qv0 = Gv [ qv [ 0 ] ] [ qv [ 1 ] ] . z e r o ;
qv1 = Gv [ qv [ 0 ] ] [ qv [ 1 ] ] . one ;
re turn compare ( u , Gu , qu0 , v , Gv , qv0 , n ) and

compare ( u , Gu , qu1 , v , Gv , qv1 , n )
e l s e :

re turn F a l s e
e l s e :

re turn a r e E q u a l ( u , Gu [ qu [ 0 ] ] [ qu [ 1 ] ] , v , Gv [ qv [ 0 ] ] [ qv [ 1 ] ] )

Algorithm B.10

def rename ( s t r i n g , A) :
m = 0 ;
L = [ ] ;
i = 0 ;
whi le i < l e n ( s t r i n g ) :

i f s t r i n g [ i ] == "(" :
L . append ( [ "[" ,−1]) ;
i += 1 ;

e l i f s t r i n g [ i ] == ")" :
L . append ( [ "]" ,−1]) ;
i += 5 ;

e l i f s t r i n g [ i ] == "^" :
L . i n s e r t (−1 ,["[" ,−1]) ;
L . append ( [ "]" ,−1]) ;
i += 4 ;

e l s e :
m += 1 ;
i f s t r i n g [ i ] in A:

a = A. i n d e x ( s t r i n g [ i ] ) + 1 ;
e l s e :

A . append ( s t r i n g [ i ] ) ;
a = l e n (A) ;

L . append ( [ a ,m] ) ;
i += 1 ;

re turn [ [ [ 0 , 0 ] ] + L + [ [ l e n (A) +1 ,m+ 1 ] ] , A]
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Algorithm B.11

def TESTmoduloDRG ( u , v ) :
uu = rename ( u , [ ] ) ;
vv = rename ( v , uu [ 1 ] ) ;
n = l e n ( vv [ 1 ] ) ;
WPWu = uu [ 0 ] [ : − 1 ] + [ [ n +1 , uu [ 0 ] [ − 1 ] [ 1 ] ] ] ;
WPWv = vv [ 0 ] ;
FIRSTu = f i r s t (WPWu, n ) ;
FIRSTv = f i r s t (WPWv, n ) ;
Gu = DRGgraph (WPWu, n , FIRSTu ) ;
Gv = DRGgraph (WPWv, n , FIRSTv ) ;
UmoduloG = c f ( t reeTOword ( l i n ( wpwTOtree (WPWu) , 1 ) ) ) ;
VmoduloG = c f ( t reeTOword ( l i n ( wpwTOtree (WPWv) , 1 ) ) ) ;
re turn compare (WPWu, Gu , [ 0 , n +1 ] ,WPWv, Gv , [ 0 , n + 1 ] , n ) and

UmoduloG == VmoduloG
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end-marked, 16
infinite, 7

idempotent designated by, 14
reduced, 15

pseudoidentity, 10
V satisfies the, 10
holds in V, 10
holds modulo V, 10

pseudovariety
C-decidable, 11
σ -equational, 10
σ -recursive, 12
σ -reducible, 12

147



148

σ -reducible with respect to C, 12
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pro-V, 8
profinite, 8
regular element of a, 7
regular subset of a, 7

system
of σ -equations, 10
of boundary relations, 88

box of a, 88
model in σ -words of, 89
model of, 89

of graph equations, 11
V-equivalent to, 69
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[A], 33
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c⃗(A), 21
A(u), 33
A1 ∼A2, 23
AR, 21
A[i], 24
G(w), 50
L(A), 30
L(v), 30
L(w), 30
T(w), 28
id(A), 25
∥A∥, 21
π(A), 24
πirr(A), 25
r.ind(A), 21
v1 ∼ v2, 32
A⃗, 24
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Automata
Av, 8

Green’s relations
D, 7
H, 7
L, 7
R, 7
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Implicit operations
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F(u), 34
irr(u), 14
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ρW, 9
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c(u), 9
fα(u), 34
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S, 8
Sl, 8
V, 8
W, 8
H, 8
DRG, 8
I, 8

Semigroups
A∗, 7
A+, 7
S1, 7
SI , 7
∏

n
i=1 si, 7

Systems of (pseudo)equations
S(Γ), 11
Su=v, 80

Systems of boundary relations
(i | j), 88
X(J,ζ ,M), 88
[S,M], 98
χw,C, 93
δw,C, 89
left(x), 89
C(S,M), 93
Su=v, 89

ξΛ(BH), 97
ζw,C, 93
{i | j}⃗s,µ , 88
j−, 88
u(i, j), 89

Well-parenthesized words
B[ ], 37
Dyck(B), 37
η(x), 38
om(x), 38
πA(x), 38
πN(x), 38
pa(x), 39
ti(x), 39
w, 38
word(u), 38
c(x), 37
cA(x), 38
cN(x), 38
x(i,a), 39
xN, 38
exp(x), 56
lin(x), 57

Words
|u|, 7
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