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Abstract. In [4] it was stated that the entropy-like map provided by the variational principle
established in [4, Theorem 1] is always affine. In this note we present an example which shows
that this claim is incorrect, and establish necessary and sufficient conditions for the affinity to
hold.

1. Introduction

Let (X, d) be a metric space and B its σ-algebra of Borel subsets of X. Denote by B a Banach
space over the field R equal to either

Bm(X) =
{
φ : X → R | φ is Borel measurable and bounded

}
or Cb(X) =

{
φ ∈ Bm(X) | φ is continuous

}
or else Cc(X) =

{
φ ∈ Cb(X) | φ has compact support

}
endowed with the norm ∥φ∥∞ = supx∈X |φ(x)|. In what follows, Pa(X) stands for the set of
Borel finitely additive probability measures endowed with the total variation distance, P(X)
denotes the set of Borel σ-additive probability measures on X with the weak∗ topology and
C(X) is the space of real valued continuous maps whose domain is X.

Definition 1.1. A function Γ: B → R is called a pressure function if it satisfies the following
conditions:

(C1) Monotonicity : φ 6 ψ ⇒ Γ(φ) 6 Γ(ψ) ∀φ, ψ ∈ B.

(C2) Translation invariance: Γ(φ+ c) = Γ(φ) + c ∀φ ∈ B ∀ c ∈ R.

(C3) Convexity : Γ(t φ+ (1− t)ψ) 6 tΓ(φ) + (1− t) Γ(ψ) ∀φ, ψ ∈ B ∀ t ∈ [0, 1].

The first result of [4] established the following abstract variational principle for pressure
functions.

Theorem 1 ([4]). Let Γ : B → R be a pressure function. Then

Γ(φ) = max
µ∈Pa(X)

{
h(µ) +

∫
φdµ

}
∀φ ∈ B (1.2)

where, for every µ ∈ Pa(X),

h(µ) = inf
φ∈AΓ

{∫
φdµ

}
and AΓ =

{
φ ∈ B : Γ(−φ) 6 0

}
. (1.3)
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The map h is concave, upper semi-continuous and

h(µ) = inf
φ∈B

{
Γ(φ)−

∫
φdµ

}
∀µ ∈ Pa(X).

Moreover, if α : Pa(X) → R∪{−∞} is another function taking the role of h in (1.2), then α 6 h.
If, in addition, X is locally compact and B = Cc(X), then the maximum referred to in (1.2) is
attained in P(X).

It is immediate from (1.2) that h is upper bounded by Γ(0). Since the pointwise infimum of
concave functions is concave, and affine maps are themselves concave, we get from (1.3) that
the map h is concave. In [4, Theorem 1] we asserted incorrectly that h is affine. The following
example shows that this is not true in general.

Example 1.4. Consider a two point compact metric space X = {a, b} with the discrete metric.
The space P(X) of Borel probability measures onX is precisely the set

{
tδa+(1−t)δb : t ∈ [0, 1]

}
of convex combinations of the Dirac measures δa and δb supported on {a} and {b}, respectively.
Let Γ: C(X) → R be given by

φ ∈ C(X) 7→ log
(
eφ(a) + eφ(b)

)
.

This is a pressure function on the Banach space C(X) with the norm ∥φ∥∞ = maxx∈X |φ(x)|.
Actually, the formula for Γ gives the topological pressure of the potentials on the shift space
{0, 1}N that are locally constant on cylinders of size 1 (cf. [6]). Thus, Theorem 1 provides the
variational principle

Γ(φ) = max
µ∈P(X)

{
h(µ) +

∫
φdµ

}
where

h(µ) = inf
ψ ∈AΓ

∫
ψ dµ ∀µ ∈ P(X) (1.5)

and

AΓ =
{
ψ ∈ C(X) : Γ(−ψ) 6 0

}
=

{
ψ ∈ C(X) : e−ψ(a) + e−ψ(b) 6 1

}
. (1.6)

Therefore, there is µ0 ∈ P(X) such that

Γ(0) = log 2 = h(µ0).

Yet, a straightforward computation using (1.5) and (1.6) yields

h(δa) = inf
ψ ∈AΓ

ψ(a) = 0 and h(δb) = inf
ψ ∈AΓ

ψ(b) = 0.

Thus, h is not affine.

2. Necessary and Sufficient conditions for the affinity of h

The wrong statement that h is always affine is the content of Lemma 3.2 in [4]. Although
this error has no impact on the other results of [4], since the possible affinity of h is not needed
elsewhere in that paper, it is relevant to identify where the proof of Lemma 3.2 fails and to
clarify under what assumptions it becomes correct.

Let X be a locally compact metric space. The convex set P(X) is compact and metrizable
with the weak∗ topology, as a consequence of Banach-Alaoglu Theorem (cf. [7, Theorem 2,
V.4.2]). So, by the Krein-Milman Theorem (cf. [8, pages 187-188]), it is the closed convex
hull of its extreme points. Moreover, we can use the Choquet Representation Theorem (cf. [3,
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Theorem 6.6]) to express each member of P(X) as a generalized convex combination of the
extreme elements of P(X). More precisely, if E(X) denotes the set of extreme points of P(X)
and µ belongs to P(X), then there is a unique measure Pµ on the Borel σ-algebra of P(X) such
that Pµ(E(X)) = 1 and µ =

∫
E(X) m dPµ(m). We call the last equality the decomposition in

extremes of µ.

Given a pressure function Γ, take the map h provided by Theorem 1 and consider µ ∈ P(X).
In the Banach space B, define the following binary relation

φ ≼µ ψ ⇔
∫
φdµ 6

∫
ψ dµ.

Then ≼µ is well defined, total (since (R,6) is completely ordered), reflexive and transitive, but
depends on the fixed probability measure µ.

Definition 2.1. A non-empty set A with a pre-order � is said to be downward directed if, given
a, b ∈ A, there is c ∈ A such that c� a and c� b.

Lemma 2.2. Given µ ∈ P(X), if h(µ) > −∞ then AΓ with the pre-order ≼µ is a lower bounded
downward directed set in B.

Proof. Given φ, ψ ∈ AΓ, one has either
∫
φdµ 6

∫
ψ dµ or

∫
ψ dµ 6

∫
φdµ. In the former

case, the map Ψ = φ is in AΓ and satisfies both Ψ ≼µ φ and Ψ ≼µ ψ. In the latter case, one
chooses Ψ = ψ. Thus, (AΓ,≼µ) is a downward directed set.

As h(µ) > −∞, we may take the constant map H : X → R defined by H(x) = h(µ), which is
a lower bound of (AΓ,≼µ) in B since∫

H(x) dµ(x) =

∫
h(µ) dµ(x) = h(µ) = inf

ψ ∈AΓ

∫
ψ dµ 6

∫
ψ dµ ∀ψ ∈ AΓ.

�

Therefore,
( ∫

ψ dµ
)
ψ ∈AΓ

is a lower bounded decreasing net. So, as X is locally compact, if

B = Cc(X) and µ ∈ P(X), then we may apply the Monotone Convergence Theorem for nets
(cf. [9, Theorem IV.15] or [5, Theorem 1, Chapter IV, §1]), thus concluding that the infimum

of the net with respect to ≼µ, say inf(µ)AΓ, belongs to L
1(X,B, µ) and

inf
ψ ∈AΓ

∫
ψ dµ =

∫
inf(µ)AΓ dµ.

Proposition 2.3. Assume that X is locally compact and infµ∈P(X) h(µ) > −∞. Then h is
affine if and only if∫

inf(µ)AΓ dµ =

∫
E(X)

(∫
inf(m)AΓ (x) dm(x)

)
dPµ(m) ∀µ ∈ P(X) (2.4)

where µ =
∫
E(X) m dPµ(m) is the decomposition in extremes of µ.
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Proof. Assume that infµ∈P(X) h(µ) > −∞ and the condition (2.4) is valid. Then, for every
µ ∈ P(X),

h(µ) = inf
ψ ∈AΓ

∫
ψ dµ =

∫
inf(µ)AΓ dµ

=

∫
E(X)

(∫
inf(m)AΓ (x) dm(x)

)
dPµ(m)

=

∫
E(X)

(
inf

ψ ∈AΓ

∫
ψ(x) dm(x)

)
dPµ(m)

=

∫
E(X)

h(m) dPµ(m). (2.5)

Remark 2.6. We note that, to obtain the previous estimates, which yield the equality

h(µ) =

∫
E(X)

h(m) dPµ(m) ∀µ ∈ P(X) (2.7)

we only needed to assume that h(µ) > −∞ for every µ ∈ P(X).

We are left to conclude from (2.5) that h is affine. Given µ1, µ2 ∈ P(X) whose decompositions
in extremes are µi =

∫
E(X) m dPµi(m), for i ∈ {1, 2}, then

∀ 0 < t < 1 t µ1 + (1− t)µ2 =

∫
E(X)

m
[
t dPµ1 + (1− t) dPµ2

]
(m)

and so, using (2.5), we get for every 0 < t < 1

h
(
t µ1 + (1− t)µ2

)
=

∫
E(X)

h(m) d[tPµ1 + (1− t)Pµ2 ](m) = t h(µ1) + (1− t) h(µ2). (2.8)

Remark 2.9. It may happen that there is ν0 ∈ P(X) such that h(ν0) = −∞, so the first
assumption in Proposition 2.3 fails, whereas the map h is affine. This is precisely the case
illustrated in Example 2.14, for which, despite its infinite values, the map h is affine. Actually, in
this example the equality (2.7) is valid, and this equality is just what one uses in the computation
(2.8) to show that h is affine.

Remark 2.10. If we may find a pre-order so that the function inf AΓ does not depend on the
probability measure µ, then the request (2.4) in the statement of Proposition 2.3 is trivially
fulfilled. See, for instance, Example 2.15, for which the set AΓ is downward directed and lower
bounded in C(X) with respect to the usual order, defined by φ 6 ψ ⇔ φ(x) 6 ψ(x)∀x ∈ X.

Regarding the converse assertion in Proposition 2.3, assume now that infµ∈P(X) h(µ) > −∞
and h is affine. We start by recalling that:

Lemma 2.11. [10, page 186] If F : P(X) → R is affine, upper semi-continuous and lower
bounded by a continuous map G : P(X) → R, then

F (µ) =

∫
E(X)

F (m) dPµ(m) ∀µ ∈ P(X) (2.12)

where µ =
∫
E(X) m dPµ(m) is the decomposition in extremes of µ.
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Proof. Firstly, suppose that F is continuous. As F is affine, then the equality (2.12) is an
immediate consequence of the Choquet Representation Theorem.

Suppose now that F is only upper semi-continuous. Then F is the pointwise limit of a decreas-
ing (with respect to the usual order in C(X)) net (Fα)α of continuous affine maps Fα : P(X) → R
(cf. [2, Corollary I.1.4]). As G 6 F = infα Fα, then (Fα)α is bounded from below in the space
of continuous real valued maps whose domain is P(X). Therefore, for every µ ∈ P(X), whose
decomposition in extremes is µ =

∫
E(X) m dPµ(m), one has

F (µ) = lim
α
Fα(µ) = lim

α

∫
E(X)

Fα(m) dPµ(m) =

∫
E(X)

lim
α
Fα(m) dPµ(m) =

∫
E(X)

F (m) dPµ(m)

where the last but one equality is due to the Monotone Convergence Lemma for nets (cf. [1,
Lemma 19.36]), which may be applied since Pµ is σ-additive on the Borel σ-algebra of the
compact metric space P(X). �

Since h is upper semi-continuous and satisfies infµ∈P(X) h(µ) > −∞, then, if in addition it
is affine, one may apply Lemma 2.11 using F = h and G = infµ∈P(X) h(µ). Therefore,

h(µ) =

∫
E(X)

h(m) dPµ(m) ∀µ ∈ P(X).

That is, ∫
inf(µ)AΓ dµ =

∫
E(X)

(∫
inf(m)AΓ (x) dm(x)

)
dPµ(m) ∀µ ∈ P(X).

The proof of Proposition 2.3 is completed. �

Remark 2.13. In Example 1.4, one has infµ∈P(X) h(µ) > −∞. Indeed, h(δa) = h(δb) = 0 and

h
(
t δa + (1− t) δb

)
= −t log (t)− (1− t) log (1− t) ∀ 0 < t < 1.

So infµ∈P(X) h(µ) = minµ∈P(X) h(µ) = 0. However, if µ0 =
1
2 δa +

1
2 δb, then

log 2 =

∫
inf(µ0)AΓ dµ0 ̸=

∫
E(X)= {δa, δb}

(∫
inf(m)AΓ (x) dm(x)

)
dPµ0(m) = 0.

Example 2.14. Consider, as in Example 1.4, the set X = {a, b} with the discrete metric and its
space of Borel probability measures P(X) =

{
tδa+(1− t)δb : t ∈ [0, 1]

}
. Let now Γ: C(X) → R

be given by
Γ(φ) = φ(a).

It is easy to check that Γ is a pressure function on the Banach space C(X). Therefore, by
Theorem 1,

Γ(φ) = max
µ∈P(X)

{
h(µ) +

∫
φdµ

}
where

h(µ) = inf
ψ ∈AΓ

∫
ψ dµ ∀µ ∈ P(X)

and

AΓ =
{
ψ ∈ C(X) : Γ(−ψ) 6 0

}
=

{
ψ ∈ C(X) : − ψ(a) 6 0

}
=

{
ψ ∈ C(X) : ψ(a) > 0

}
.
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Thus,

h(δa) = inf
ψ ∈AΓ

∫
ψ dδa = inf

ψ ∈AΓ

ψ(a) = inf
{ψ : ψ(a)> 0}

ψ(a) = 0;

h(δb) = inf
ψ ∈AΓ

∫
ψ dδb = inf

ψ ∈AΓ

ψ(b) = inf
{ψ : ψ(a)> 0}

ψ(b) = −∞;

and, for every 0 < t < 1,

h
(
t δa + (1− t) δb

)
= inf

ψ ∈AΓ

∫
ψ d(t δa + (1− t) δb)

= inf
ψ ∈AΓ

(
t ψ(a) + (1− t)ψ(b)

)
= inf

{ψ : ψ(a)> 0}

(
t ψ(a) + (1− t)ψ(b)

)
= −∞.

Thus, h is affine, although for some probability measures one has h = −∞.

Apart from the known cases where h is affine when restricted to an interesting convex subset
of P(X) (see, for instance, [4, Remark 2.4]), there are examples for which a better choice of the
pre-order in AΓ is available.

Example 2.15. Consider a compact metric space (X, d) and the function Γ: C(X) → R given
by

Γ(φ) = max
x∈X

φ(x).

Then Γ is a pressure function, since

(1) φ 6 ψ ⇒ maxx∈X φ(x) 6 maxx∈X ψ(x);

(2) maxx∈X (φ+ c)(x) =
(
maxx∈X φ(x)

)
+ c ∀φ ∈ C(X) ∀ c ∈ R;

(3) ∀φ, ψ ∈ C(X) ∀ t ∈ [0, 1],

max
x∈X

(
t φ+ (1− t)ψ

)
(x) 6 t max

x∈X
φ(x) + (1− t) max

x∈X
ψ(x).

Moreover,

AΓ =
{
ψ ∈ C(X) : Γ(−ψ) 6 0

}
=

{
ψ ∈ C(X) : max

x∈X
−ψ(x) 6 0

}
=

{
ψ ∈ C(X) : ψ > 0

}
.

So

h(µ) = inf
{∫

ψ dµ : ψ ∈ C(X) and ψ > 0
}

= 0 ∀µ ∈ P(X).

Hence h is affine. Furthermore, given φ ∈ C(X) whose maximum is attained at a point x0 ∈ X,
one has

Γ(φ) = φ(x0) = h(δx0) +

∫
φdδx0 .

In this case, instead of the pre-order ≼µ, we may consider in AΓ the usual order in C(X) and
still conclude that (AΓ,6) is a lower bounded downward directed set. Indeed, given φ, ψ ∈ AΓ,
the map min {φ, ψ} is continuous and non-negative, hence belongs to AΓ; besides, one has
min {φ, ψ} 6 φ and min {φ, ψ} 6 ψ; and the map 0 is a lower bound for AΓ. Therefore, the
function inf AΓ does not depend on any probability measure µ.
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