Development of low-cost indoor air quality monitoring devices: Recent advancements

H. Chojer, P.T.B.S. Branco, F.G. Martins, M.C.M. Alvim-Ferraz, S.I.V. Sousa

PII:	S0048-9697(20)31898-2
DOI:	https://doi.org/10.1016/j.scitotenv.2020.138385
Reference:	STOTEN 138385
To appear in:	Science of the Total Environment
Received date:	4 February 2020
Revised date:	9 March 2020
Accepted date:	31 March 2020

Please cite this article as: H. Chojer, P.T.B.S. Branco, F.G. Martins, et al., Development of low-cost indoor air quality monitoring devices: Recent advancements, *Science of the Total Environment* (2020), https://doi.org/10.1016/j.scitotenv.2020.138385

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

Development of low-cost Indoor Air Quality monitoring devices: Recent advancements

H. Chojer¹, P.T.B.S. Branco¹, F.G. Martins¹, MCM Alvim-Ferraz¹, S.I.V. Sousa¹*

¹ LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

*Corresponding author:

Telephone: +351 22 508 2262

Fax: +351 22 508 1449

E-mail address: sofia.sousa@fe.up.pt

Postal address: Rua Dr. Roberto Frias, 4200-465, E221, Porto, Portugal

North North

Abstract

The use of low-cost sensor technology to monitor air pollution has made remarkable strides in the last decade. The development of low-cost devices to monitor air quality in indoor environments can be used to understand the behaviour of indoor air pollutants and potentially impact on the reduction of related health impacts. These user-friendly devices are portable, require low-maintenance, and can enable near real-time, continuous monitoring. They can also contribute to citizen science projects and community-driven science. However, low-cost sensors have often been associated with design compromises that hamper data reliability. Moreover, with the rapidly increasing number of studies, projects, and grey literature based on low-cost sensors, information got scattered. Intending to identify and review scientifically validated literature on this topic, this study critically summarizes the recent research pertinent to the development of indoor air quality monitoring devices using low-cost sensors. The method employed for this review was a thorough search of three scientific databases, namely: ScienceDirect, IEEE, and Scopus. A total of 891 titles published since 2012 were found and scanned for relevance. Finally, 41 research articles consisting of 35 unique device development projects were reviewed with a particular emphasis on device development: calibration and performance of sensors, the processor used, data storage and communication, and the availability of real-time remote access of sensor data. The most prominent finding of the study showed a lack of studies consisting of sensor performance as only 16 out of 35 projects performed calibration/validation of sensors. An even fewer number of studies conducted these tests with a reference instrument. Hence, a need for more studies with calibration, credible validation, and standardization of sensor performance and assessment is recommended for subsequent research.

Keywords: low-cost sensors, sensor development, sensor specifications, indoor air quality, air quality monitoring

ر ۲ .

1. Introduction

The right to breathe healthy air is a fundamental right for all. This right is violated every day as 90% of the world's population breathes polluted air, causing 7 million deaths annually (WHO 2018b). While there are a high number of studies focusing on outdoor air pollution and its adverse impacts on human health (Ostro et al. 2018, WHO 2018a), poor indoor air quality (IAQ) may be equally damaging, if not more, as humans spend nearly 90% of their time indoors (Klepeis et al. 2001). Therefore, monitoring air pollutants is of high significance in indoor environments like homes, hospitals, offices, museums, among others (David and Seter 2019, Dzullkiflli et al. 2018, Sánchez-Barroso and García Sanz-Calcedo 2019). WHO guidelines of selected pollutants for IAQ include: benzene, carbon monoxide (CO), formaldehyde, naphthalene, nitrogen dioxide (NO₂), polycyclic aromatic hydrocarbons (PAHs) (specifically, benzo[a]pyrene), radon, trichloroethylene, tetrachloroethylene, PM_{2.5} and PM_{10} . Although not mentioned by WHO in the list of selected pollutants, ozone is considered as a pollutant at ground-level atmosphere (troposphere), whose high concentrations in indoor environments like schools and offices have been reported in the literature (Salonen et al. 2018, Lee et al. 2004). Carbon dioxide (CO₂), while also not included in the list of selected indoor pollutants by WHO, has been used as a surrogate of air ventilation where high CO₂ concentrations imply poor ventilation, which might indicate accumulation of indoor pollutants (Salthammer et al. 2016, Branco et al. 2019, Griffiths and Eftekhari 2008).

Due to the plethora of potential pollutants that might arise in high concentrations in indoor environments, air quality monitoring becomes indispensable. Traditional approaches to air pollution monitoring use high cost, complex, stationary devices, which puts a limit on the data access, application flexibility, and overall budget. In the last decade, low-cost sensor

technology has made remarkable strides to monitor air pollution, giving the opportunity of changing this status quo (Snyder et al. 2013).

As an emerging technology, it is essential to define what exactly is meant by low-cost air sensors firstly. The review article by Rai et al. (2017) acknowledged the lack of any universally agreed definition. It stated, "anything costing less than the instrumentation cost required for demonstrating compliance with the air quality regulations can be termed as low-cost". They ended up using the term low-cost for sensors costing a few 10's of US dollars in their article. Morawska et al. (2018) defined low-cost air pollutant sensors as "technologies which promise a revolutionary advance in air quality monitoring, through massive increases in spatial and temporal data resolution, thus providing answers to scientific questions and applications for end users" and used the term low-cost sensor for sensors costing less than 100 US dollars. This definition is in-line with the paradigm shift vision described by the United States Environmental Protection Agency (U. S. EPA) (Snyder et al. 2013). It can be achieved if sensors of lower-cost are deployed in abundance.

Low-cost air quality sensors can be used to economically analyse air quality in near real time. User-friendly interface and low maintenance requirement makes them an easy-to-use and convenient device (Castell et al. 2013). Scalability of pollutant detection is also an advantage and can supplement the already existing air quality monitoring networks (Castell et al. 2013, Thompson 2016, Santos et al. 2018). Their portability allows personal pollutant monitoring and, subsequently, one can choose less polluted routes while commuting (Castell et al. 2013). The use of low-cost sensors also makes room for citizens to engage in community-driven science, i.e., people can contribute by collecting air quality data (Snyder et al. 2013, White et al. 2012, Thompson 2016).

Low-cost sensors have associated weaknesses. Cheap devices can be accompanied by flaws in their design, which can lead to a lack of reliability of data. Sensors based on electrochemical cell (EC) and metal oxide semiconductor (MOS), which are the two most prevalent technologies used to make low-cost gas sensors, usually suffer from high crosssensitivity, interference from other pollutants, require frequent recalibration and short lifetime (White et al. 2012). They are also sensitive to changes in ambient conditions and suffer from a drift in calibration over some time (Peterson et al. 2017, White et al. 2012, Morawska et al. 2018). The manufacturing process of the MOS sensors result in differences in the reactivity of the metal oxide substrate of individual sensors. Thus, they have weak reproducibility and are prone to inter-sensor variability (Zhang et al. 2014, Peterson et al. 2017). The low-cost PM sensors that are based on light-scattering technology have two major challenges associated: i) they are not a direct mass measurement technology; and ii) they cannot detect ultrafine particles, i.e., their limit of detection are particles with approximately 0.3 µm diameter, below which particles do not scatter enough light (White et al. 2012, Koehler and Peters 2015).

With the rapidly increasing number of studies, projects and grey literature based on low-cost sensors, information got scattered. Although there were some review publications related to low-cost sensors and IAQ (Kumar et al. 2016a, Kumar et al. 2016b, Thompson 2016, Morawska et al. 2018), as far as the authors' knowledge goes, there was no review study published focusing on the studies that specified the characteristics of low-cost IAQ monitoring device development, such as: i) integration of relevant low-cost sensors; ii) processor for data acquisition; iii) analogue to digital convertor for the measurements; iv) data logging and transmission; v) software layer; vi) hardware enclosure; and vii) device performance assessment. It is a crucial but overlooked gap in the literature and this study aims to review the components used by various studies while developing a novel IAQ

monitoring device and evaluate which components (especially sensors) perform the best. Therefore, the present systematic review intended to identify scientifically-validated literature on the development of low-cost IAQ monitoring devices with emphasis on the above-referred characteristics, as well as on sensor specifications.

This study is organized as follows. Section 1 provides an introduction and discusses the background of the study. Section 2 describes the review methodology. Section 3 presents the results and discussion along with the review table of the study, which is further divided into two parts: Section 3.1 device development results, and Section 3.2 sensor performance results. Finally, Section 4 consists of the discussion on critical conclusions and future outlook.

Solution

2. Methodology

The present review includes studies published from 2012 to May 2019 in the following databases: ScienceDirect, IEEE *Xplore*, and Scopus. Although there were no language restrictions imposed during the search, all publications obtained from the search were in English. With no previous review articles on this topic, an exhaustive search was done, and published research and conference articles were both included.

The keywords used were: i) low-cost "Indoor Air Quality" monitoring device, ii) low-cost "Indoor Environmental Quality" monitoring device, and iii) low-cost "Indoor Air Pollution" monitoring device. A total of 891 publications were found with potential interest from the initial search and their titles were screened based on their context of research. As an example, the publications not delving into device development were eliminated. From those, 99 publications remained and their abstracts were appropriately reviewed. After this, exclusions were performed based on the following criteria: i) devices measuring only temperature and relative humidity were excluded; ii) devices measuring only a single pollutant were excluded; iii) IAQ monitoring of indoor environments such as offices, homes, classrooms, hotels were included, but for mines, quarries, subway stations, greenhouses, etc. were excluded; and iv) publications that did not develop their monitoring device were excluded. Multiple publications of the same device (same project and authors) were clubbed together, or only one of them with the complete information regarding device development was included. Using these criteria, 59 abstracts were excluded. Four additional relevant articles were found while reading the selected 40 publications. After rejecting three publications that didn't have enough information regarding device development and clubbing the articles of the same project, 35 total projects were reviewed in detail, corresponding to 41 publications. Figure 1 shows the flowchart with the number of studies identified and included/excluded.

Solution of the second second

3. Results and discussion

The review of the 35 projects was divided into two major parts: i) the first part focusing on device development phase, which included description of sensors, hardware and software details of the device including data communication protocol and total cost of the device (Table 1); and ii) the second part focusing on sensor performance, which included calibration and/or validation outcomes of the sensors. The latter was performed by 16 out of 35 projects (Table 2).

3.1 Device development

The reviewed studies were globally distributed and not concentrated in a specific region. Figure 2 shows the geographical distribution of the reviewed projects. Although there were more studies from U.S.A (8) than from any other country, there were a total of 13 studies from Asia, 8 from Europe (including U.K.), 3 from Oceania, 2 from the Middle East, and 1 from South Africa.

Figure 2. Geographical distribution of the reviewed projects on the world map.

The relevant projects identified were only from 2014 onwards, although the year-range of the present study was 2012-2019, as mentioned in the methodology section. The majority of projects, i.e., 26 out of 35, were published in the last three years (2017-2019).

Most of the projects mentioned buildings or general indoor environment monitoring as their intended application, but there were studies that aimed for specific applications, namely: IAQ monitoring of classrooms (Wang et al. 2017, Sharma et al. 2017), hospitals (Yang et al. 2014, Lasomsri et al. 2018), personal monitoring (Smith and Li 2016, Cho 2016), smart cars (Peng et al. 2017), and for asthma trigger assessments (Teixeira and Postolache 2014). A lack of other relevant IAQ applications such as households in low-income countries, museums or airports was observed. However, the above-referred environments have been mentioned in the literature as potential sites of high indoor air pollutants (David and Seter 2019, Dzullkiflli et al. 2018, Sánchez-Barroso and García Sanz-Calcedo 2019).

The indoor air parameters monitored varied from study to study. The number of projects considering each monitoring parameter is represented in Figure 3. The majority of projects included only sensors to monitor temperature, relative humidity (RH) and CO₂. Although not a pollutant per se, CO₂ is an important parameter to measure indoors, especially in spaces like offices and classrooms (Branco et al. 2015). CO was the next most frequent indoor air parameter evaluated (in 43% of the devices), followed closely by Volatile Organic Compounds (VOC) (37%). Despite being an important indoor air pollutant and widely studied (WHO 2006, Sousa et al. 2012, Nunes et al. 2015), the inclusion of PM sensors was surprisingly lower, as only 20 projects included them, having less than 10 projects included a PM_{2.5} sensor and even fewer studies (6) included a PM₁₀ sensor. The other 5 studies added a PM sensor but did not define the PM size fraction being measured (PM_{unspecified} in Figure 3). Emphasis on formaldehyde monitoring was even scarcer as only 4 projects had a formaldehyde sensor in their device. Ozone and NO₂ measurements were also sporadic with

less than 10 projects, including the pertinent sensors. The remaining studies measured ammonia (3 projects), and benzene, toluene, and NO_x (1 project each). None of the projects included a sensor for naphthalene, PAHs, trichloroethylene, tetrachloroethylene, and radon even though they are relevant pollutant described by WHO. Kumar et al. (2016b) also mentioned the significance of these parameters in their review article on real-time indoor air monitoring sensors for urban buildings that were found to be left out by all the projects covered in this review.

Figure 3. Monitoring parameters included in the 35 reviewed projects.

From the projects that disclosed the sensing principle of the sensors used, thermistors were the most recurrent technology choice for temperature monitoring, and capacitive sensor technology was used most commonly to monitor RH. Most of the CO₂ sensors were based on

nondispersive infrared (NDIR) technology. All reported PM sensors were optical particle counters based on light scattering technology. CO sensors were based on either MOS or EC technology. Most of the VOC and formaldehyde sensors were based on MOS technology. Cross-sensitivity is a critical issue associated with these sensors. Still, these studies neither mentioned nor tested the results from their MOS sensors for cross-sensitivity with non-target gases, i.e., gases that the sensor wasn't designed to measure. In long term monitoring campaigns, this disregard for cross-sensitivity tests can lead to increasing inconsistencies in sensor performance (Peterson et al. 2017).

SHARP's GP2Y1010AU0F was mentioned to monitor PM_{10} in some publications and $PM_{2.5}$ in others. Further, some studies just mentioned it to be monitoring PM (unspecified size fraction). It was the most common choice in the reviewed studies for PM monitoring, although Wang et al. (2017) tested the accuracy of this sensor and found that it lacked long term stability and accuracy and chose another sensor for their device – Plantower Technology's PMS3003. There were some discrepancies noticed in the description of sensor nodes: i) MQ-135 was mentioned as a benzene sensor by one study (Zakaria et al. 2018) and as a CO₂ sensor by another (Sharma et al. 2017); and ii) Marques and Pitarma (2019) used a single, highly cross-sensitive MOS sensor to measure 8 gases. Further, they didn't mention any calibration methods used or any reference instrument for validation of the sensor. In contrast, He et al. (2017) used a sensor array of multiple cross-sensitive MOS sensors and developed a pattern recognition algorithm to identify target gases with precision.

Arduino, Raspberry Pi, and ESP8266 were the most frequently opted microcontroller units (MCUs). Wireless networking was commonly implemented using WiFi, ZigBee, Bluetooth, and Global System for Mobile Communications (GSM). Chanthakit and Rattanapoka (2018) implemented Message Queuing Telemetry Transport (MQTT) network protocol for their device and Vcelak et al. (2017) tested LoRa, Sigfox and IQRF technologies for wireless data

communication. Quan Pham et al. (2019) developed an Electromagnetic Interference (EMI)free real-time monitoring system by designing a visible light communication (VLC) system, which is an emerging technology for high-speed data communication system.

Data storage is a quintessential part of a monitoring device. The rapid and consistent growth of cloud servers was evident from the result of this review as 20 projects were equipped with both the ability to remotely access the sensor data in real-time (via mobile or web application) and online historical data storage. Real-time remote access is a feature that can find its use not only in remotely monitoring the air quality post-development, but also to check if the devices are working correctly during the calibration and validation phase. Seven projects had both online and offline (on-board) storage, while merely 5 projects stored data only offline. The remaining 10 projects didn't mention any specific details about data communication or storage. Morawska et al. (2018) studied the applications of low-cost sensing technologies and mentioned that data protection criteria could lead to the exclusion of cloud-based wireless networks if they don't comply with data security legislation. But neither can the significance of historical data storage be neglected. Striking the right balance between data storage and data security needs to be found. An emphasis on offline data storage is crucial in cases where data security can be a potential concern.

Eleven projects estimated the total cost of their device excluding the labour cost (values are shown in Table 1; currencies were converted to euros; conversion rates on 19th January 2020). Any cost-based comparison should be made with caution, because the studies used a various number of sensors, implemented different communication networks, monitored different IAQ parameters, and used sensors from different sensor manufacturers for most parts. For these reasons, the total costs varied from as little as around $54 \in$ (Marques and Pitarma 2019) to as high as almost 2700 \in (Gillooly et al. 2019).

The reviewed projects had heterogeneous development focus and design phase outcomes. Benammar et al. (2018) used an algorithm to resubmit unsuccessfully transmitted data packets in their wireless communication system. This helps avoid any packet loss and, consequently, any sensor data loss. Salamone et al. (2017b) used thermal analysis to detect temperature distribution near the device. This can help avoid errors in working conditions by providing an idea of how far the sensors should be placed from the device electronics to avoid elevated temperature and decreased humidity as the sensors can give unrepresentative values of the surroundings due to the equipment heat. Wang et al. (2017) developed their prototypes named SKOMOBO, whose level of noise generation was stated to be lower than that of a computer, which is an essential aspect in IAQ monitoring, especially in environments such as offices, classrooms, hospitals, etc. Tran et al. (2017) developed a battery-free device that was based on ultra-low-power sensors and MCU, and a radio frequency energy harvester. This was the only study analyzed in the present review that developed a device that could work without any direct source of power or battery. Cho (2016) created interesting device designs: i) a wall-clock like Personal Environmental Monitoring System (PEMS) and ii) a wrist-watch like Wearable Environment Monitoring System (WEMS). Teixeira and Postolache (2014) developed a web-based information system Enviogis capable of importing indoor or outdoor air quality data and "breath parameters" of the room occupants. Their goal was to assess asthma trigger factors and this system helped them correlate air quality conditions and respiration activity. Hence, several projects showcased uniqueness in design during the development phase.

An explanation of the vast diversity of technologies observed can paradoxically be the question posed by Morawska et al. (2018): "Are these technologies fit for the various purposes envisaged?" Several projects do justify their choice of technologies and device designs. For example, SKOMOBO prototypes were designed to be used in school classrooms

and can monitor with minimal noise (Wang et al. 2017). The sleek design of SAMBA prototypes can be attributed to its end-use as an office monitoring device (Parkinson et al. 2019a), and Cho (2016) used micro-sensors for their very small watch-like WEMS.

Table 1. Summar	y of the device	design chara	acteristics and r	main conclusions	of the reviewed	l research studies.
	J					

Study	Location	Objectives	Intended Application	Monitoring	Sensor Description	Sensing Principle	Processor and	Estimated	Design outcomes
				Parameters			Data Acquisition	Device	
							&	Cost‡	
							Communication		
(Gillooly et	Boston,	To develop a comparatively	To characterize key	СО	Alphasense COB4	EC ^a	Processor: Not	Around	More money was spent on
al. 2019)	MA, USA	lower-cost, portable, in-home	indoor pollutants with	NO	Alphasense NOB4	EC	mentioned	2700€	maintaining the sensors than on
		air sampling platform and a	high sensitivity and	NO_2	Alphasense NO2B43F	EC	Data:		buying them
		guiding development and	reasonable accuracy.	PM _{2.5}	Alphasense OPC-N2	Optical ⁺	Not mentioned		• Power consumption of the
		maintenance workflow to		PM _{2.5}	Harvard miniPEM	N/A	(Cloud based		device: 0.35 kWh in one week
		characterize key indoor		Temperature	Onset Temperature Sensor	N/A ^b	wireless networks		• Lack of built-in power supply
		pollutants		Temperature	Netatmo Weather Station	N/A	not chosen because		was identified as a shortcoming in
				RH	Netatmo Weather Station	N/A	of data security		case there is unavailability of
				Noise	Netatmo Weather Station	N/A	issues)		outlets, or power interruption
				CO_2	Netatmo Weather Station	N/A			episodes
(Marques and	Guarda,	To develop iAir system: an	Indoor Air Quality (IAQ)	со	MICS 6814	MOS ^c	Microcontroller:	54€	• iAir has low cost, easy
Pitarma 2019)	Portugal	IAQ monitoring solution	monitoring in home in	NO ₂	MICS 6814	MOS	ESP8266		installation, configuration, and
		based on the Internet of	real time.	Ethanol	MICS 6814	MOS	Data:		full compatibility with homes
		Things (IoT) composed of a		H_2	MICS 6814	MOS	Cloud storage and		with internet access and a phone
		hardware prototype for		Ammonia	MICS 6814	MOS	real-time remote		• It needs experimental validation
		environment sensing and		CH_4	MICS 6814	MOS	access, via		to improve system calibration and
		web/smartphone interface for		C_3H_8	MICS 6814	MOS	Thingspeak (server		accuracy
		data access		$C_{4}H_{10}$	MICS 6814	MOS	and cloud platform)		
(Parkinson et	Svdnev.	• To review relevant industry	IEO monitoring of	Temperature	N/A	Thermistor	Microprocessor:	Total	• This study recognized a lack of
al. 2019a.	Australia	standards and guidelines	offices with major focus	RH	N/A	Capacitive	ARM Cortex	sensors cost	guidance on sampling procedures
Parkinson et		regarding instrument	on hardware design and	Globe Temperature	N/A	Thermistor	Data:	only: 198 €	or measurement protocols to
al. 2019b)		specifications and	testing the device	Air Speed	N/A	Anemometer	On-board storage		ensure fair and reliable
		measurement protocols	performance.	CO2	N/A	NDIR ^d	Cloud storage and		representation of measured IEO
		Arement Protocols	г	= = 2			and storage and		

		of building Indoor		СО	N/A	EC	real-time remote		parameters
		Environmental Quality IEQ		PM ₁₀	N/A	N/A	access;		
		performance assessment		Formaldehyde	N/A	EC	WPAN for remote		
		• To build and test the		TVOC ^e	N/A	Photoionization	access		
		performance of a low-cost		Sound Pressure	N/A	Microphone	Data transmission		
		IEQ monitoring system (100		Illuminance	N/A	Photodiode	using LTE to cloud		
		devices developed and					server		
		tested)							
(Quan Pham	Busan,	To design a bidirectional	General IAQ monitoring	Temperature	HDC1080	N/A	Microcontroller:	N/A	• The implemented VLC
et al. 2019)	South	visible light communication	with major focus on	RH	HDC1080	N/A	STM32F4		technology could successfully
	Korea	(VLC) system prototype to	developing an	O ₂	Grove-Gas sensor	N/A	Discovery		communicate sensor data
		serve as a remote sensing	Electromagnetic	CO_2	CCS811	N/A	Data:		acquired from indoor
		data acquisition for indoor	Interference (EMI) free	$\rm VOC^{f}$	CCS811	N/A	Cloud storage and		environments
		environments.	device by replacing radio				real-time remote		
			frequency with VLC				access: Wireless		
			technology for wireless				communication via		
			communication.				VLC		
							SpeakThing		
							platform		
(Yang et al.	Taiwan	To develop the prototype for	General IAQ monitoring	Temperature	Series WHT	N/A	Processor: not	N/A	This study implemented cloud
2019, Yang et		real time access in	device with a focus on	RH	Series WHT	N/A	mentioned		storage with real-time data
al. 2014)		OpenStack as cloud	system architecture and	Formaldehyde	CTX300	N/A	Data:		collection, built a platform
		computing application, and a	implementation on cloud	VOCs	OLCT 100XP	N/A	Cloud storage and		iDEMS for data processing, and
		distributed computing	(data collection and	СО	OLCT 20D	N/A	Real-time remote		used Thrift to connect back-end
		environment based on	storage) Their 2014	CO_2			access		and front-end for information
		Hadoop.	research was for IAQ	Temperature	ZGw08VRC	N/A	Data stored via		monitoring
		To develop the service to	monitoring of hospitals.	RH			Zigbee WSN		Time effectiveness comparison
		connect back-end and front-		CO ₂ (in 2014)	N/A	N/A	technology into		in Linux showed Hbase has better
		end HBase data.					Hbase database		performance than MySQL
							system		

(Wang et al.	New	To develop and test a low-	IAQ monitoring box for	Temperature	TELAiRE T9602	Capacitive Polymer	Microcontroller:	266€	Choice of CO ₂ and PM sensors
2017, Wang	Zealand	cost, low power consumption	schools with a focus on	RH	TELAIRE T9602	Capacitive Polymer	Arduino Pro Mini		was based on a prior shortlisting
et al. 2018)		indoor environment	developing prototypes	CO ₂	SenseAir K30	SenseAir K30	Data:		and testing of different sensors.
		monitoring instrument, called	and validating against	PM _{2.5}	PMS3003	Optical (Laser light)	On-board storage,		The sensors showing high
		SKOMOBO (school	reference instrument in	PM_{10}	PMS3003	Optical	Real-time remote		consistencies were selected.
		monitoring box)	controlled and	Occupancy	TB-XC4444	Passive Infrared	access Arduino Pro		• The enclosure for the prototype
			uncontrolled				Mini was connected		was a 3mm thick clear acrylic and
			environments.				to a Node.js server		was built using software
							via a wireless		SOLIDWORKS
							module		
(Benammar et	Doha,	To develop a distributed	General IAQ monitoring	SO_2	4-SO2-20	EC	Microcontroller:	N/A	The radio communication
al. 2018)	Qatar	modular IAQ monitoring	with major development	NO_2	4-NO2-20	EC	Raspberry Pi 2		reliability between sensors,
		system using sensors nodes	focus on IoT	O ₃	OX-A431	EC	model B		gateways, and internet
		for air quality parameters, a	functionality.	CO ₂	INE20-CO2P-NCVSP	NDIR	Data:		communication between the
		WSN, and an IoT server;		со	4-CO-500	EC	On-board storage,		gateways and servers was found
		Gateways to ensure that data		Cl ₂	4-C12-50	EC	Cloud Storage and		• The system modularity allows a
		is transmitted without packet		Temperature	BME280	N/A	real-time remote		large number of sensors to be
		loss.		RH	BME280	N/A	access;		added to the system
							On-board network:		
							Ethernet Port		
							Radio gateway:		
							XBee Pro		
(Martín-Garín	San	To build a monitoring	IAQ monitoring of	Temperature	DHT22	Thermistor	Microcontroller:	90€	• The prototype developed can be
et al. 2018)	Sebastian,	prototype to track the	buildings with major	RH		Capacitive	ESP8266		quickly deployed, can record data
	Spain	environmental conditions of	focus on developing a	Temperature	SHT21	Band Gap	Data:		and is fully compatible with tools
		buildings and to make it	device prototype,	RH	-	Capacitive	On-board storage,		like google data studio for real-
		applicable to other smart	calibrating sensors, and	Temperature	BMP180	N/A	cloud storage and		time graphical representation
		environments, and to provide	using it in a building as a	Pressure	2		real-time remote		dashboards
		implementation in a real case	case study.	Temperature			access;		• The prototype overcomes the

		study – air quality		Pressure			Wi-Fi		shortcomings of currently
		monitoring of an apartment.		RH	BME280	N/A	communication		commercially available devices
				CO_2					that have limited number of
					MH-Z19	NDIR			detection parameters, lack data
									transmission via WiFi network, or
									they are not economical
(Karami et al.	Wyoming,	To develop Arduino-based	IEQ monitoring of	Temperature	HMP60	N/A	Microcontroller:	N/A	• The accuracy of data improved
2018)	USA	IEQ monitoring toolbox,	buildings with major	RH	HMP60	N/A	Arduino Uno,		by calibrating Arduino Uno with
		integrated with ZigBee	development focus on	Air Velocity	TSI 8475	N/A	Data:		a reference data acquisition card
		communication protocol	toolbox calibration, i.e.,	Globe Temperature	Type K thermocouple	Thermocouple	Cloud storage and		• No missing data was found
		incorporating a software	data acquisition device	CO_2	K-30	NDIR	real-time remote		during the data collection, which
		platform VOLTTRON.		Illuminance	LI-210SA & amplifier	Photometric	access;		implies the robustness of toolbox
				Occupancy	Sensky Infrared Sensor	PIR ^g	ZigBee platform for		for long-term applications
				PM _{2.5}	SHARP GP2Y1010AU0F	Optical	wireless		
				VOCs	IAQ-2000	N/A	communication,		
							VOLTRRON		
							Software		
					~				
(Carre and	Australia	To integrate occupant	To create an integrated	Temperature	DS18B20	Semiconductor	Microcontroller:	342€	• Dynamic and heterogeneous
Williamson		satisfaction data and IEQ	platform to log the	Globe Temperature	DS18B20	Semiconductor	Arduino Mega 2560		parameters like illuminance,
2018)		data with a low-cost logger	indoor environment data	RH	SHT21	Capacitive	Data:		sound level and air-speed make
		and to identify empirical	and the resident	Light Intensity	Broadcom-APDS 9930	Photodiodes	On-board storage,		comparison difficult.
		connections between	satisfaction level and	Sound level	Condensor microphone	Waveform	cloud storage and		• Results showed that useful
		measurable environment and	their behaviour with a	Air Velocity	Wind Sensor rev P	Anemometer	real-time remote		information can be obtained from
		resident behaviour and	low-cost logger	PM	SHARP GP2Y1010AU0F	Optical	access;		the sensors to model relationships
		residential perceptions of the		CO_2	GC0010	NDIR	3G cellular modem		between occupant perceptions
		indoor environment.		Occupancy	Unbranded	Infrared (IR) Sensor			and environmental parameters
									that will likely enhance our

understanding of the factors that

contribute to IEQ.

(Zakaria et al.	Melaka,	To develop a wireless and	General IAQ monitoring	Temperature	DHT 22	N/A	Microcontroller:	N/A	Real-time monitoring works
2018)	Malaysia	affordable IoT-based device	with a major focus on the	RH	DHT 22	N/A	Raspberry Pi 2		only where wireless network
		that can monitor air quality,	connectivity and cloud	Benzene	MQ-135	N/A	Model B		access is available.
		to integrate the monitoring	storage.	Ammonia	MQ-135	N/A	Data:		
		system with a cloud storage		NO _x	MQ-135	N/A	Cloud storage and		
		and to generate an alert					real-time remote		
		notification e-mail when the					access;		
		air quality is in unhealthy					A Web page is		
		condition.					created on open		
							source platform		
							ThingSpeak,		
(Tiele et al.	Warwick,	To design a system able to	IAQ monitoring device	Temperature	SHT31	CMOS ^j	Microcontroller:	235€	• The IAQ sensor was not
2018)	UK	operate as a rechargeable and	for research purposes	RH	SHT31	CMOS	Feather M0		sensitive enough for indoor
		portable unit that measures	with a special attention	PM ₁₀ & PM _{2.5}	HPMA115S0	Optical	Data:		monitoring
		indoor air pollutants via low-	to workplace parameters.	TVOC	CC\$811	MOS	On-board storage		
		cost sensor modules.		TVOC	iAQ-Core C	MOS			
				TVOC	MiCS-VZ-89TE	MOS			
				CO ₂	T6713	NDIR			
				со	LLC 110-102	EC			
				IAQ	LLC 110-801	EC			
				Illuminance	TSL2561	IR based Photodiode			
				Sound	T6613	Electret Microphone			
(Chanthakit	Bangkok,	To implement a low-cost air	General IAQ monitoring	Temperature	DHT 22	Thermistor	Microcontroller:	56€	The equation used to convert
and	Thailand	quality monitoring system	device with major focus	RH	DHT 22	Capacitive	ESP8266		signal of PM sensor to
Rattanapoka		that measures temperature,	on implementing the	СО	MQ-7	MOS	Data:		concentration was non-linear
2018)		humidity, CO, O3, and PM2.5	MQTT protocol.	O ₃	MQ-131	MOS	Communication via		(cubic equation)
		and communicates data via		PM _{2.5}	SHARP PPD42NJ	N/A	MQTT protocol		They implemented an air quality
		Message Queuing Telemetry					Mobile and web		monitoring dashboard which can
		Transport (MQTT) protocol,					application for real-		be used as both web and mobile
		and to implement an air					time remote		application.
		quality monitoring					monitoring		

		dashboard					Data are not stored		
		dashboard.					at a database vot		
							(future work)		
							(Tuture work)		
(Tijani et al.	Abu Dhabi,	To design and develop a	General IAQ monitoring	Temperature	LM35	N/A	Microcontroller:	N/A	N/A
2018)	UAE	wireless sensor node for an	device.	RH	HIH-4030	N/A	Arduino Yun (Atmel		
		IAQ monitoring system.		СО	MQ-7	MOS	ATmega32U4 and		
				CH_4	MQ-4	MOS	an Atheros AR9331		
				PM	SHARP GP2Y1010AU0F	Optical	Wi-Fi chipset)		
							Data:		
							On-board storage		
							(SD Card)		
(Lasomsri et	Nakhonnay	To develop low-cost devices	IAQ monitoring of	Temperature	Adafruit BME680	N/A	Microcontroller:	N/A	N/A
al. 2018)	ok,	to measure IAQ. The	hospitals	RH	Adafruit BME680	N/A	Raspberry Pi 3		
	Thailand	developed device was used to		Pressure	Adafruit BME680	N/A	Model B		
		monitor IAQ at a large-scale		TVOC	Adafruit BME680	N/A	Data:		
		hospital.		Temperature	amsAG CCS811	N/A	Nothing mentioned		
				TVOC	amsAG CCS811	N/A	about		
				CO ₂ e	amsAG CCS811	N/A	communication or		
							storage of data		
(Scarpa et al.	Venice,	To present main features and	Indoor environment	Temperature	DHT 22	N/A	Microcontroller:	N/A	N/A
2017)	Italy	expected applications of a	monitoring and building	Temperature	Thermocouple	N/A	Arduino		
		low-budget monitoring	energy.	Temperature	RTD ⁱ	N/A	ATmega328P and		
		platform currently under		RH	DHT22	N/A	ESP-8266 WiFi		
		development.		Illuminance	TSL2561	N/A	microcontroller		
				CO_2	N/A	NDIR	Data:		
				PM	DYP-ME0010	N/A	On-board storage,		
				Movement	N/A	Infrared Sensor	Online storage and		
				Distance	N/A	Infrared Sensor	real-time remote		
							access; Wifi,		
(He et al.	Beijing,	To develop an E-Nose	General IAQ monitoring	Temperature	SHT 10	N/A	Microprocessor:	N/A	• The prediction accuracy was

2017)	China	consisting of an array of	device with major focus	RH	SHT 10	N/A	STM32 (ARMv7		significantly improved by the E-
		sensors having multiple	on having multiple low-	H ₂ , CO, CH ₄ ,		MOS	Cortex)		nose and using artificial neural
		cross-sensitive target gases	cost MOS gas sensors	Ethanol	TGS2600		Data:		network along with pattern
		and to develop a pattern	and using pattern	H ₂ , Ammonia	TCCC (02	MOS	Online storage and		recognition algorithm
		recognition algorithm to	recognition algorithm to	Toluene	TGS2602		real-time remote		
		identify the pollutant gas	precisely estimate IAQ.	H ₂ , CO,		MOS	access;		
		with precision.		Ethanol,	OS-01		Xbee (S6B model)		
				Ammonia			wifi module		
							Web service and		
							Mobile APP		
(Vcelak et al.	Prague,	To present examples of	IAQ monitoring in	Temperature	N/A	N/A	Processor:	N/A	• IoT enabled smart IAQ
2017)	Czech	smart-structure and	buildings with a focus on	RH	N/A	N/A	Not mentioned		monitoring device was developed
	Republic	environmental monitoring	smart cities and smart	CO_2	N/A	N/A	Data:		• The device was used in a high
		applications developed: An	buildings	VOC	N/A	N/A	Real-time remote		school in Czech Republic
		IoT enabled sensor platform					access; Cloud		
							storage not		
							mentioned;		
							Wireless: LoRa,		
							Sigfox, IQRF		
(Sharma et al.	Durgapur,	To use low-cost sensors for	IAQ monitoring in	Temperature	DHT 11	N/A	Processor:	N/A	N/A
2017)	India	checking the air quality of a	classrooms	RH	SHT 11	N/A	Not mentioned		
		classroom with varying	The major focus was on	CO ₂	MQ-135	N/A	Data:		
		number of students and class	analysing pollutant	PM _{2.5}	SHARP GP2Y1010AU0F	N/A	Nothing mentioned		
		durations	levels in the classroom				about data		
							acquisition,		
							communication or		
							storage.		
(Kumar et al.	Roorkee,	To develop an IAQ	IAQ monitoring device	PM _{2.5}	Developed in-house	Optical	Microcontroller:	451€	• Future work: They will further
2017)	India	monitoring device in	for smart buildings	CO_2	N/A	MOS	PIC18F4550		work to improve on the PM
		conformity with		O ₃	N/A	MOS	Data:		sensor and implement IoT for the
		ISO/IEEE/IEC 21451		CO	N/A	MOS	On-board storage		sensor modules

		standards.		Formaldehyde	MQ-138	MOS	(MicroSD card		
							module)		
(Jiang and	New York,	To design a low-cost, cloud-	General IAQ monitoring	Temperature	DHT 11	Thermistor	Microcontroller:	N/A	• The real-time graphical
Huacon 2017)	USA	based smart device named	device and implementing	RH	DHT 11	Capacitive	Raspberry Pi 3		visualization implemented to the
		Cloud-based Environment	its data storage on cloud	Sound Level	Grove-Loudness Sensor	Mic and Amplifier	Model B		device
		Monitoring Smart Device		PM _{2.5} & PM ₁₀	Shinyei PPD42NS	LPO ^k Time Counter	Data:		 Notification system
		(CEMSD) that monitors		O_3	MQ 131	N/A	Cloud storage and		implemented for detection of high
		different environmental		CO_2	COZIR Wide Range 100% CO	NDIR	real-time remote		pollution levels
		parameters such as air			sensor		access; Thingspeak		
		quality, noise, temperature					platform		
		and humidity.							
(Tran et al.	Busan,	To develop a novel battery-	General IAQ monitoring.	Temperature	SHT 15	N/A	Microcontroller:	N/A	• There was an exponential decay
2017)	South	free sensor module to	The major focus lies in	RH	SHT 15	N/A	PIC12F1513		in the received power of the
	Korea	measure the concentration of	making the device work	Pressure	BMP 180	N/A	Data:		energy harvester and an
		VOC, ambient temperature,	without any battery or	VOC	CCS801	MOS	Stored in Electronic		exponential increase in the time
		relative humidity, and	external power. It uses a				Product Code (EPC)		taken to charge the super-
		atmospheric pressure for	Radio Frequency energy				memory before		capacitor with increasing distance
		monitoring air quality in	harvester for receiving				transmitting to		between the sensor tags and the
		indoor environment	power.				reader;		reader
							UHF range wireless		Beyond 250 cm distance
							communication with		between the sensor tags and the
							sensor tags and		reader, the device cannot work
							antenna.		without battery.
(Peng et al.	Chang	To develop a smart movable	IAQ monitoring for	Temperature	DHT22	N/A	Microcontroller:	N/A	N/A
2017)	Chun,	indoor environment	smart cars with focus on	RH	DHT 22	N/A	ATMega328		
	China	monitoring system based on	validating the sensors	СО	MQ-7	N/A	(Arduino)		
		Arduino control, which uses	against reference	PM _{2.5}	GP2Y1010AU0F	Optical	Data:		
		the tracking, obstacle	instrument.				No on-board or		
		avoidance sensors to realize					cloud storage		
		autonomous movable, and					mentioned. No real-		

		applies gas sensors for IAQ					time remote access		
		monitoring.					mentioned.		
							PC connection with		
							serial port: LabView		
							was used to		
							visualize data.		
(Salamone et	Lombardy,	To develop a simple,	IEQ monitoring device	Temperature	HIH 6130	N/A	Microcontroller:	N/A	This study concluded that using
al. 2017a,	Italy	accurate, and easy to use	developed for building	RH	HIH 6130	N/A	Arduino		a low-cost equipment without a
Salamone et		device based on an open	environment and energy.	Temperature	DHT 22	N/A	Data:		preliminary verification of the
al. 2017b,		hardware/software concept	The three articles focus	RH	DHT 22	N/A	On-board storage,		performance can lead to errors of
Salamone et		and aimed at evaluating the	on: integrating smart	Radiant Temperature	Thermistor in a black globe	N/A	Cloud storage;		measurement due to a faulty
al. 2015)		IEQ.	ecosystem for IEQ	Air Velocity	Wind Sensor	Anemometer	Real-time remote		calibration or an improper
		To perform thermographic	monitoring, the design	Illuminance	LDR Sensor	Resistor	access		assembly
		analysis check during the	phase of device	CO_2	K30	N/A	WiFi Shield: Web		• Through the combined use of
		design phase.	development, and				Connection,		additive manufacturing (3D
			validation of the device.				BlueSmiRF:		Printing) and thermographic
							Bluetooth		techniques, it was possible to
							Connection		detect anomalies in the
									distribution of temperature and
									correcting the causes that
									generated them
(Smith and Li	Texas,	To develop a smart phone-	Personal monitoring with	Temperature	RTH03	N/A	Microcontroller:	N/A	This study developed a sensor
2016)	USA	based sensor system for	a major focus on	RH	RTH03	N/A	Arduino Pro Mini		node Printer Circuit Board (PCB)
		personal body area micro-	developing it to work	CO ₂	SenseAir S8	NDIR	Data:		design and, subsequently, the
		climate monitoring	with smartphone via				Cloud storage and		prototype.
		applications.	Bluetooth and mobile				real-time remote		
			app.				access		
							Bluetooth Module,		
							Internet Access, and		
							Mobile Application		
(Ali et al.	Chicago,	To design and develop a suite	To use the device in	Temperature	NTC thermistor	Thermistor	Microcontroller:	Total Cost	Manual and tutorials made to

2016)	USA	of inexpensive, open source	research projects and,	RH	Sensirion SHT15	N/A	Arduino Pro Mini	of each	teach how to build air monitoring
		devices based on the Arduino	eventually, in building	Surface Temp.	NTC thermistor: Modified	Thermistor	Data:	individual	device
		platform for measuring and	automation and control.	Light Intensity	TAOS TSL2561	Digital Light Sensor	On-board storage,	parameter	• Debugging the circuits of the
		recording long-term indoor	The focus was on the	CO_2	SenseAir K-30 1%	NDIR	Future works to	along with	device can be relatively difficult
		environmental and building	open source integration	Occupancy	Parallax PIR	Passive Infrared	include remote	processor	and time consuming in the event
		operational data. To have	and to make tutorials on				communication	was	of a problem
		more flexibility in	how to implement it.					mentioned	• Newer SD cards were found to
		synchronizing a large number						Total:	be not compatible with low power
		of measurements with high						469€	mode of their device
		spatial and temporal							
		resolution in a cost effective							
		manner.							
(Tapashetti et	Santa	To develop an IoT enabled	IAQ monitoring in	Temperature	Grove Sensors	N/A	Microcontroller	153€	• This study developed an IoT
al. 2016)	Clara, USA	IAQ monitoring device	offices, schools, homes,	Gas	Grove Sensors	N/A	(WiFi) Marvell		enabled device and implemented
			etc. with a major focus	CO ₂	Grove Sensors	N/A	88MW302		cloud-storage and remote access
			was on implementing	Formaldehyde	Grove Sensors	N/A	Data:		via Amazon Web Services
			open source sensors with	Light Intensity	Grove Sensors	N/A	Cloud Storage		
			IoT.				(Amazon Web		
							Services)		
							Real-time remote		
							access		
(Abraham	Texas,	To develop a low-cost	General IAQ monitoring	Temperature	RTH03	N/A	Microcontroller:	N/A	This study developed a linear
and Li 2014,	USA	wireless IAQ monitoring	with a major focus on	RH	RTH03	N/A	Arduino Uno		least square estimation-based
Abraham and		device developed using	device development,	CO ₂	MG811	EC	AtMega328		method for sensor calibration and
Li 2016)		Arduino, Xbee and micro gas	calibration methods and	VOC	TGS2602	MOS	Data:		measurement data conversion
		sensor modules. To develop a	the choice of sensors	СО	MQ7	MOS	XBee module		
		linear least square-based		O ₃	MQ131	MOS	(details not		
		method for sensor calibration					provided)		
		and measurement data							
		conversion.							
(Du Plessis et	South	To develop a low-cost	Monitoring IAQ in	Temperature	LM35	Thermoresistor	Microcontroller:	N/A	Calibration was found to be

al. 2016)	Africa	Wireless Sensor Network	buildings with a major	RH	HIH-4000	Capacitive	ATMega88		essential for obtaining accurate
		comprised of multiple nodes	focus on developing the	СО	TGS 2442	MOS	Data:		temperature and humidity results
		and powered by a battery.	device with sensor nodes	CO_2	CO2-D1	Potentiometric	Online storage and		• A carbon monoxide sensor (CO-
			and to transmit the				real-time remote		D4) malfunctioned before any
			parameters to a sink				access		measurements. It was then
			node where data can be				Transciever:		replaced with TGS 2442 MOS
			stored and displayed.				Simcom SIM20		sensor
							(434 MHz) interface		• The system sends only 64 bytes
							with a controller		every 5 seconds – a lower bitrate
							(PC) via UART –		is acceptable for the system
							Serial		
							communication		
(Cho 2016)	Daejeon,	To develop a personal	Personal and wearable	PEMS			Processor:	N/A	 Hardware designed for PEMS as
	South	environmental monitoring	environmental	Proximity	Camera	N/A	WEMS: Cortex M4		a wall clock and for WEMS as a
	Korea	system (PEMS) for stationary	monitoring.	VOC	MiCS 4514	N/A	<u>PEMS:</u> ST		wrist watch
		indoor environment, and	Major focus was on the	Noise	N/A	N/A	Microelectronics		 Three modes of operations for
		wearable environmental	platform outlook, sensor	WEMS			STM32f4xx (ARM		WEMS: Standby, Watch and
		monitoring system (WEMS)	calibration and	O ₃	N/A	N/A	Cortex-M4) and a		Sensing
		for outdoor environment.	communications.	СО	N/A	N/A	Freescale KL17		• Future work: To implement an
				NO_2	N/A	N/A	Data:		application of cloud services
				SO_2	N/A	N/A	PEMS: On-board		
				Temperature	N/A	N/A	storage and Cloud		
				RH	N/A	N/A	storage (via WiFi)		
				UV, Light	N/A	N/A	WEMS: On-board		
							storage and Cloud		
							storage via		
							Bluetooth		
(Yang et al	Shanghai	To implement a low-cost	General IAO monitoring	Temperature	AMT2001	N/A	Microcontroller	Total	Experimental results showed that
2015)	China	multi-sensor, sufficiently-	with a focus on choosing	RH	AMT2001	N/A	Arduino Yun (also	device cost	the selected monitoring
2010)	a	sensitive IAO monitor. To	the sensors with suitable	VOC	M0138	N/A	includes an Atheros	not	narameters could be wirelessly
		sensitive in Q monitor. 10	the sensors with suitable			1 1/ 1 1	mendees un 7 mieros	not	Parameters could be wheressly

		obtain the sensor data in real-	detection range and cost.	PM	SHARP GP2Y1010AU0F	Optical	AR9331 Wi-Fi	mentioned	detected in household with
		time through Wi-Fi using					chipset)	Cost of two	acceptable sensitivities up to
		computers or smart phones,					Data:	sensors	50 m away
		and to store all historical data					On-board storage	mentioned:	
		in the cloud.					Cloud storage and	10.52 €,	
							real-time remote	and 3.29 €	
							access: displayed on		
							website.		
							A smart phone is		
							used to wirelessly		
							plot the data		
(Kim et al.	USA	To examine the issues,	This study discussed the	Temperature	DHT 11	Thermistor	Processor, SD Card	N/A	 Sensor characteristics and
2014)		infrastructure, information	various scenarios in	RH	DHT 11	Capacitive	or any		environmental settings such as
		processing, and challenges of	which such a device can	GAC^{h}	TGS2600	MOS	communication of		temperature and humidity may
		designing and implementing	be used: Community	VOC	TGS2602	MOS	data was not		result in measuring errors; thus,
		an integrated sensing system	Health Care,	NO ₂	GSNT11	MOS	mentioned.		pre-calibration and continual
		for real-time IAQ	construction/maintenanc	СО	TGS5042	MOS			auto-calibration are necessary for
		monitoring.	e site, hazardous	O ₃	MiCS-2610	EC			the sensors
			location, schools or	SO ₂	SO2-AF	EC			 Using gas sensors consumes a
			gathering places.	PM	SHARP GP2Y1010AUF	Optical			lot of power; thus, how to
			The major focus was on	CO_2	T6613	NDIR			properly select sensor type and
			development and testing						improve energy efficiency during
			the device.						design and implementation stages
									are critical
(Saad et al.	Malaysia	To develop an IAQ index	IAQ monitoring in	Temperature	HSM20G	Analog Sensor	Microcontroller:	N/A	The indoor AQI was
2014)		based on the excellence ratio	buildings with a major	RH	HSM20G	N/A	Eight-bit STC		implemented based on outdoor
		method which has been	for indexe sin here	PM ₁₀	SHAKP GP2Y 1010AUF	Optical	microcontroller		AQI formula but based on indoor
		applied in the outdoor Air	for indoor air by		CDIVI 4101	IN/A			air pollutants; it was integrated
		Quality index (AQI)	implementing it with	VOC	TCS 2502	IN/A	Online storage and		with their developed device.
		worldwide.	their developed device.	VUC	TGS 2602	N/A	Real-time remote		

	Journal Pre-proof										
				O ₃	MiCS-2610	N/A	access				
				NO_2	MiCS-2710	N/A	IRIS Mote as the				
				O ₂	KE-25	N/A	wireless module,				
							programmed using				
							TinyOS				
(Brunelli et	Trento,	To develop an ad-hoc	IAQ monitoring in	Temperature	SHT21	N/A	Microcontroller:	N/A	• The developed device operated		
al. 2014)	Italy	wireless sensor network and	buildings.	RH	SHT21	N/A	Jennic NXP JN5148		for four months delivering high		
		to deploy it in Trento, Italy	The focus was on the	Illumination	BH17	N/A	SoC; includes a 2.4		data reliability		
			aspect of providing long	CO_2	N/A	N/A	GHz		The predicted network lifetime		
			and continuous	CH ₄	N/A	N/A	IEEE802.15.4/ZigB		is 520 days (excluding gas		
			monitoring in the most				ee PRO complaint		sensors contribution) that is		
			inhabited areas of the) *	module		confirmed by real-life		
			building and collect				Data:		experiments and simulations		
			comprehensive sensory				Online storage and				
			datasets inferring indoor				real-time remote				
			ecology and people				access				
			comfort level over a long				The ad-hoc WSN				
			period of time (different				relays the data to				
			seasons of the year)				sink node which				
							stores the data in				
							SQL.				
(Teixeira and	Lisbon,	To develop a flexible system	Asthma trigger factors	Temperature	SHT11	N/A	Microcontroller:	N/A	• The system was developed to		
Postolache	Portugal	with low-cost sensor nodes	assessment was the	RH	SHT11	N/A	Raspberry Pi		establish correlations between air		
2014)		for continuous monitoring of	intended application with	NO_2	N/A	N/A	Data:		quality parameters and the		
		air conditions in order to	a major focus on the	O ₃	N/A	N/A	Cloud storage and		appearance of respiratory diseases		
		prevent asthma attacks.	development of	PM_{10}	N/A	N/A	real-time remote		such as asthma		
			communication protocol				access		Future Work: The extension of		
			from Wireless Sensor				Data communicated		the wireless sensor network and		
			Network WSN to the				with and without		implementing the web based		
			internet.				Ethernet bus (using		information system for tablets		
							ZigBee)		and smartphones		

† Optical Sensor: Based on light scattering technology; ‡ Costs converted to Euros and rounded up to nearest integer;

^a Electrochemical Sensor (EC); ^b Not Mentioned (N/A); ^c Metal Oxide Semiconductor (MOS); ^d Non-Dispersive Infrared (NDIR); ^e Total Organic Volatile Compounds (TVOC); ^f Volatile Organic Compounds (VOC); ^g Passive Infrared (PIR); ^h General Air Contaminants (GAC); ⁱ Resistance Temperature Detector (RTD); ^j Complementary Metal Oxide Semiconductor; ^k Low Pulse Occupancy (LPO)

Journal Pre-proot

3.2 Sensor calibration and performance

The majority of projects did not calibrate or validate the sensors used in their devices. Table 2 summarizes the sensor performance of the 12 projects that presented a calibration and/or quantitative validation of the sensors.

All projects had sensors whose detection range includes the typical concentration levels of the indoor pollutants (WHO 2010), except for Kumar et al. (2017) where CO_2 detection was out of range for average indoor levels as the upper detection limit of their sensor was only 1000 ppm. Several studies did not mention the detection range of some or all of their sensors (Martín-Garín et al. 2018, Carre and Williamson 2018, Peng et al. 2017, Salamone et al. 2015, Salamone et al. 2017a, Salamone et al. 2017b).

Only a minority of the studies checked for response time, which plays a crucial role in realtime monitoring. Gillooly et al. (2019) reported the response time of all of their gas sensors to be below one minute except the Netatmo weather station, which had a temporal resolution of five minutes. Wang et al. (2017) tested the response time of their sensors and found it to be less than 30 seconds for every sensor except the temperature sensor, which had a response time of less than 116 seconds. Ali et al. (2016) mentioned the response time of only two of their sensors: temperature (5-10 seconds) and CO_2 (20 seconds). The response time of the PM_{2.5} sensor developed by Kumar et al. (2017) was 1 minute. At 5 minutes, Netatmo weather station showed the slowest response time but is still quick enough to conduct near real-time monitoring. Therefore, all the studies which reported response time were concluded to have real-time monitoring capability.

Only two studies tested the inter-sensor variability of low-cost gas sensors. Gillooly et al. (2019) did a quantitative analysis of the CO, NO and NO₂ sensors they used (n=16 each) and found the average percentage difference to be 5.28% (SD = 4.02%), 7.17% (SD = 4.90%) and 8.59% (SD = 6.30%) respectively. He et al. (2017) showed a graphical comparison of their

test and found inconsistent results between sensors. None of the studies except one performed cross-sensitivity tests (He et al. 2017), which used an array of cross-sensitive MOS sensors with artificial neural network and pattern recognition algorithm to develop an E-nose.

With the lack of a standardization in place, calibration methods varied with each project, and the reference instruments used for validation were different with one exception: The monitoring box SKOMOBO (Wang et al. 2017) and a few sensors of the device SAMBA (Parkinson et al. 2019a, Parkinson et al. 2019b) were both tested with TSI Qtrak (for CO₂) and TSI DustTrak (for PM). Most of the studies did not use professional-grade reference instruments. A few studies calibrated and tested their device by exposing the sensors to a known concentration of pollutant gas (Gillooly et al. 2019, Kumar et al. 2017, He et al. 2017). Parkinson et al. (2019b) calibrated their sensors with reference instruments in a chamber over the anticipated concentration range of the pollutants in an indoor office environment. Abraham and Li (2014) implemented a least-square method for sensor data calibration with a reference instrument – GrayWolf Direct Sense IAQ 610.

Perhaps the most important result of the validation is the lack of it: 25 out of the total 35 projects did not present quantitative results of sensor performance tests. And the absence of any standardization is evident in a closer look at the result outcomes of the projects that did conduct these tests (Table 2). The validation results ranged from R^2 (Gillooly et al. 2019, Wang et al. 2017, Ali et al. 2016), error difference from the reference instrument (Martín-Garín et al. 2018, Kumar et al. 2017, He et al. 2017, Peng et al. 2017, Du Plessis et al. 2016, Salamone et al. 2015), and average Standard Error Estimate (SEE) (Parkinson et al. 2019b). Peng et al. (2017) mentioned the validation of their device but did not specify any reference instruments except for another low-cost CO device used for validating their low-cost sensor. There is no standardization even for accuracy tests and for the statistical parameters to be

used for calculating it. Du Plessis et al. (2016) used *unknown* gas concentration to validate their CO and CO_2 sensors.

Four more projects were not presented in the table but calibrated/qualitatively validated their sensors. They are discussed in this section but not included in the review table because they did not quantify their results in any manner. Benammar et al. (2018) bought pre-calibrated sensors from Libelium and recalibrated them using an in-house developed calibration rig. They mentioned that the results of sensor performance would be included in a future publication, but the authors couldn't find it during their search. Tiele et al. (2018) calibrated their temperature, RH, and CO₂ sensors with a commercially available device – Extech CO210 but did not validate their device with a reference instrument. Yang et al. (2015) performed a qualitative validation of VOC and PM using 75% \pm 5% (V/V%) disinfectant alcohol and cigarette, respectively. Kim et al. (2014) also performed a qualitative validation of their device by noting an increase in CO₂ readings with a higher density of people, VOCs, and General Air Contaminants (GACs) with the type of furniture, and temperature with the air conditioning system.

Table 2. Summary of the sensor performance.

Study	Monitoring	Sensor Description	Sensing Principle	Detection	Response	Reference Instrument	Calibration Method	Accuracy/Error vs Reference
	Parameters			Range	Time			(Outcomes)
(Gillooly et al. 2019)	CO NO NO ₂ PM _{2.5} PM _{2.5} Temperature Temperature RH ^a Noise CO ₂	Alphasense COB4 Alphasense NOB4 Alphasense NO2B43F Alphasense OPC-N2 Harvard miniPEM Onset Temperature Sensor Netatmo Weather Station	EC ^b EC EC Optical [†] N/A ^c N/A	0-1000 ppm 0-20 ppm 0-20 ppm 0.38-17 µm N/A N/A 0-50°С 0-100% 35-120 dB 0-5000 ppm	$\leq 1 \text{ minute}$ $\leq 1 \text{ minute}$ $\leq 1 \text{ minute}$ 1.4 seconds N/A $\leq 1 \text{ minute}$ $\leq 1 \text{ minute}$ 5 minutes 5 minutes 5 minutes	Only PM sensor was validated in field: with RTI MicroPEM (5-min average)	Known gas concentration TSI SidePak™ AM510 (1-hour average)	Only PM sensor validated againstreference:Lab (TSI SidePak TM AM510): $R^2 = 0.47$, RMSE ^d = 2.94µg/m3Field (RTI MicroPEM) $R^2 = 0.83$, RMSE = 3.52 µg/m3EC sensors need frequentcalibration (every three months) butdo not exhibit inter-sensor
(Parkinson et al. 2019a, Parkinson et al. 2019b)	Temperature RH Globe Temperature Air Speed CO ₂ CO PM ₁₀ Formaldehyde TVOC ^e Sound Pressure Illuminance	N/A	Thermistor Capacitive Thermistor Anemometer NDIR ^f EC N/A EC Photoionization Microphone Photodiode	0-50°C 5-95% 0-50°C 0-1 m/s 0-50 ppm 0-50 ppm N/A 0-2 ppm 10-2000 ppb 40-90 dBA 0-20,000 lx	N/A	VelociCalc 9565-A, TSI 54T21, Dantec Dynamics TSI Q-Trak 7575 Fieldpiece SCM4 TSI DustTrak II 8532 HalTech HFX205 N/A Type 1, NL-52, Rion T10A Konica Minolta	Calibration was done with the reference instruments in a chamber of their Indoor Environmental Quality lab. The test was conducted over the anticipated ranges rather than full range of sensor measurement.	variability 0.26 °C (±0.05) 1.04% (±0.12) 0.16 °C (±0.03) 0.015 m/s (±0.008) 9 ppm (±2) 1.2 ppm (±0.4) 0.024 mg/m3 (±0.010) 0.02 ppm (±0.01) N/A 2.4 dBA (±0.4) 8.9% (±1.5%) Results in <u>Average Standard error of</u> estimate (SEE)

(Martín-Garín	Temperature		Thermistor	-40-80°C		Temperature, RH, and CO ₂ :	Temperature Calibration:	• Results were shown as an average
et al. 2018)	RH	DHT22	Capacitive	0-100%		HT-2000 model	Climate chamber Range: 5-	of all the sensors in their prototype:
	Temperature		Band Gap	-40-125°C		Atmospheric Pressure: Weather	35°C, Reference:	0.249°C [Temperature]
	RH	SHT21	Capacitive	0-100%		station near the building: Davis	AHLBORN 2549	-3.006% [RH]
	Temperature	DMD 100	N/A	-40-85°C		Vantage Pro2 Plus	Humidity: Saturated	68.568 ppm [CO ₂]
	Barometric Pressure	BMP180		300-1100 hPa	N/A		Aqueous Solution Range:	5.160 hPa [Barometric Pressure]
	Temperature		N/A	N/A	IVA		11.30 to 84.6%, Ref: Salt	Results as the difference between
	Pressure	BME280	N/A	N/A			Solutions	prototype and commercial sensor
	RH		N/A	N/A			(1-min sampling interval	(only mean differences shown here)
	CO ₂	MH-Z19	NDIR	0-5000 ppm			for both)	\bullet CO ₂ errors were concluded to be
							<u>CO2</u> : N/A	higher than expected probably due
								to the difference in casing
								protection between the two systems
								and due to the high sensitivity of
								these types of sensors (NDIR)
(Carre and	Temperature	D\$18B20	Semiconductor	N/A	87-155 seconds	Rotronic HC2-S3	Individual sensors were	Graphical Comparisons for field
Williamson	Globe Temperature	5510520	Semiconductor	N/A	N/A	HC2-S3 & 150mm globe	tested for accuracy against	tests/validation
2018)	RH	SHT21	Capacitive	N/A	N/A	Rotronic HC2-S3	reference before the	• CO ₂ concentration measurements
	Light Intensity	Broadcom-APDS 9930	Photodiodes	0-30,000 lx	N/A	Testo 480	development of prototype	are noisier than the reference
	Sound	Condensor microphone	Waveform	N/A	1 second	Testo T816-1		sensor, increasing extremes at both
	Air Velocity	Wind Sensor rev P	Anemometer	N/A	1 second	TSI 8475 - Omni		the top and the bottom of the
	PM	SHARP GP2Y1010AU0F	Optical	N/A	N/A	N/A		measurement range
	CO_2	GC0010	NDIR	0-2000 ppm	N/A	Vaisala GMP343		
	Occupancy	Unbranded	Infrared (IR) Sensor	N/A	N/A	N/A		
(Wang et al.	Temperature	TELAiRE T9602	Capacitive Polymer	-20-70°C	\leq 116 seconds	TSI QTrak	Calibration was not	C. $R^2 \ge 0.98$; U. $R^2 = 1$
2017, Wang	RH		1 V	0-100%	\leq 29 seconds	TSI QTrak	mentioned. The tests were	C. $R^2 = 0.92 - 0.97$; U. $R^2 = 0.96 - 0.98$
et al. 2018)	CO_2	SenseAir K30	SenseAir K30	$0-5000 \text{ ppm}_{vol}$	20 seconds	TSI QTrak	done in two environments:	C. $R^2 = 0.99$; U. $R^2 = 0.89 - 0.94$
	$PM_{1.0}$			0.3 to 1 mm	≤ 10 seconds	N/A	C. Controlled (n=6) and U.	N/A
	PM _{2.5}	PMS3003	Optical (Laser light)	1 to 2.5 mm	≤ 10 seconds	TSI DustTrak	Uncontrolled (n=6)	C. $R^2 = 0.82-0.9$; U . Qualitative
	PM_{10}			2.5 to 10 mm	≤ 10 seconds	TSI DustTrak		C. $R^2 = 0.68-0.89$; U . Qualitative
	Occupancy	TB-XC4444	Passive Infrared	3 to 7 meters	0.3 to 18 seconds	N/A		N/A

				100 degrees				Results as Coefficient of
								Determination (R ²)
(Kumar et al.	PM _{2.5}	Developed in-house	Optical	N/A	1 minute	IAQ-2500	The static chamber method	±10%
2017)	CO ₂	N/A	MOS ^g	100-1000 ppm	N/A	Known Gas concentration	with an incubator was used	$\pm 4\%$
	O ₃	N/A	MOS	10 ppb-2ppm	N/A	inserted in incubator	for calibration: known gas	±2%
	СО	N/A	MOS	1-10 ppm	N/A		concentrations were	$\pm 4\%$
	Formaldehyde	MQ-138	MOS	1-10 ppm	N/A		inserted in the incubator	$\pm 6\%$
								Results as Percentage Error from
								reference
(Peng et al.	Temperature	DHT??	N/A	N/A	N/A	N/A	Not mentioned	0.15%
2017)	RH	DIII22	N/A	N/A	N/A	N/A		1.2%
	СО	MQ-7	N/A	N/A	N/A	Hua Chang Sheng CO-110		0.086%
	PM _{2.5}	GP2Y1010AU0F	Optical	N/A	N/A	N/A		0.81%
								Results as Percentage Error from
								reference
(He et al.	Temperature	SHT 10	N/A	N/A		Known amount of pollutant	Calibration method was	For ppm <1:
2017)	RH		1.172	10/1		exposure	not mentioned	14.18
	H ₂ , CO, CH ₄ , Ethanol	TGS2600	MOS	1 30 ppm				For ppm >1:
	H ₂ , Ammonia _, Toluene	TGS2602	MOS	1-50 ppm				4.53
	H ₂ , CO, Ethanol,	05-01	MOS	1 20 ppm	N/A			Results as Mean Absolute
	Ammonia	Q5 01	MOS	1-50 ppm				Percentage Error
			MOS	1 1000 mm				
			MOS	1-1000 ppm				
(Salamone et	Temperature	11111 (120	N/A	-40-85°C	5 seconds	4 Wire PT100 sensor	Temperature and RH :	Graphically represented
al. 2017a,	RH	HIH 6130	N/A	10-90%	5 seconds	Thin Film	Climate Box (C)	Graphically Represented
Salamone et	Temperature		N/A	-40-80°C	2 seconds	4 Wire PT100 sensor	(Results were also	C. 0.32°C; U. <5% (83% of cases)
al. 2017b,	RH	DHT 22	N/A	0-100%	2 seconds	Thin Film	compared with commercial	C. 4%; U. <5% (72% of cases)
Salamone et	Radiant Temperature	Thermistor in a black globe	N/A	-40-60°C	10 seconds	4 Wire PT100 sensor	sensors)	U . <2%
al. 2015)	Air Velocity	Wind Sensor	Anemometer	N/A	N/A	N/A	Air Speed: Test Chamber	U. <5% (87% of cases)
	Illuminance	LDR Sensor	Resistor	N/A	N/A	N/A	CO ₂ : No	U. <10% (95% of cases)
	CO_2	K30	N/A	0-10000 ppm	N/A	N/A	calibration/validation	N/A

								reference
(Ali et al.	Temperature	NTC thermistor	Thermistor	-55-80°C	5-10 seconds	Onset HOBO U12-012	No Calibration mentioned.	C. $R^2 \ge 0.9969$; U. $R^2 = 0.9638$
2016)	RH	Sensirion SHT15	N/A	N/A	N/A	Onset HOBO U12-012	Controlled and	C. $R^2 \ge 0.9965$; U. $R^2 = 0.9907$
	Surface Temperature	NTC thermistor: Modified	Thermistor	-55-80°C	> 5-10 seconds	TMC20-HD	uncontrolled tests were	$\mathbf{R}^2 = 0.9818$ (measured in duct)
	Light Intensity	TAOS TSL2561	Digital Light Sensor	0.1 to 40,000 Lux	N/A	Onset HOBO U12-012	conducted. Commercially	C. $R^2 = 0.999$; U. $R^2 = 0.9884$
	CO ₂	SenseAir K-30 1%	NDIR	0-10,000 ppm	20 seconds	SBA-5 & Telaire 7000	available counterparts were	C. $\mathbf{R}^2 = 0.9691$; U . $\mathbf{R}^2 = 0.8767$
	Occupancy	Parallax PIR	Passive Infrared	3.65 m, 100°	N/A	Onset HOBO UX90-005	used for Controlled Lab	R ² was not calculated
							Tests (C) and Uncontrolled	Results as Coefficient of
							Tests (U)	Determination (R ²)
(Abraham	Temperature	DTU02	NI/A	N/A			Linear Least Square	Only graphical comparison shown
and Li 2014,	RH	K1H05	IN/A	N/A			Method was used for	
Abraham and	CO_2	MG811	EC	350-10000 ppm	NUA	ConstWalf Direct Const	sensor calibration. The	
Li 2016)	VOCs	TGS2602	MOS	1-30 ppm	IN/A	Gray woll Direct Sense	reference instrument used	
	СО	MQ7	MOS	20-2000 ppm		IAQ 610	was GrayWolf Direct	
	O ₃	MQ131	MOS	10-1000 ppb			Sense IAQ 610	
(Du Plessis et	Temperature	LM35	Thermoresistor	0-90°C	N/A	MTD82	RH:	2.6%
al. 2016)	RH	HIH-4000	Capacitive	45.5-98%		EM5510	EM5510 multimeter with	3.8%
	СО	TGS 2442	MOS	0-29 ppm		Unknown Gas Concentration	an in-built humidity sensor	N/A
	CO ₂	CO2-D1	Potentiometric	0-2000 ppm		Unknown Gas Concentration	Others not mentioned	N/A
				(self-tested)				Results as Percentage Error from
								reference

† Optical Sensor;

^a Relative Humidity (RH), ^b Electrochemical Sensor (EC), ^c Not Mentioned (N/A), ^d Root Mean Square Error (RMSE), ^e Total Volatile Organic Compounds (TVOC), ^f Non-dispersive Infrared (NDIR), ^g Metal Oxide Semiconductor Sensor (MOS)

Results as Percentage Error from

4. Conclusions

Intending to tackle the growing grey literature and scattered information, this review compiled scientific literature on the development of low-cost IAQ monitoring devices and studied the recent advancements in this field. This work can be especially helpful for researchers who are aiming to develop a novel device.

Although the choice of internal components like microcontroller units and sensors used in the projects exhibited a certain homogeneity, the individuality of the device design lied in how those components were used and encased in the hardware enclosure. It ranged from devices having wrist-watch like hardware design, ultra-low powered battery-free design, low-noise design, electromagnetic interference-free design, and various web-based interfaces for continuous indoor air quality monitoring, among others.

However, the most important challenge associated with low-cost sensor technology is the lack of data reliability. The fact that was disregarded by most of the studies as there was no sensor performance test or even calibration done by the majority of the research projects. The use of low-cost sensors to develop the device without any prior testing was the prevalent practice. To exacerbate the problem, the studies that tested sensor performance showed that the measurement errors could indeed be very high when compared to professional-grade reference equipment. Another important conclusion in this context is that calibration and validation methods varied significantly with each project due to the lack of any standardized practice in place. The reported validation results also lacked any uniformity (R², percentage errors, SEE). It puts a significant limitation on the comparison of device performance & design, and a consequent failure to understand the advancements in this field. The abundance of grey literature makes the situation even worse.

With just two studies testing the long-term stability and only one study checking the crosssensitivity of the sensors, the situation seems very bleak. Now, with this review, the information is gathered, but it still lacks more studies, especially the ones conducted with a thorough check of device performance to ensure data reliability from the low-cost sensors.

While this review generally observed a murky outlook on most aspects discussed, there were several promising results as well. Studies with a high correlation between the reference instrument and low-cost device advocate that this can be the technology of the (near) future. The responsibility to drive this emerging technology forward lies in the scientific community. With a standardized sensor performance assessment and a credible and mandatory validation process, the results can inspire more confidence than they currently do. Hence, the two most prominent future requirements in this field of study would be: i) an increased number of studies with a thorough analysis of sensor calibration/validation and device performance assessment; and ii) a uniform sensor/device validation method.

Conflict of Interest

None

Acknowledgements

This work was financially supported by: Base Funding - UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE - funded by national funds through the FCT/MCTES (PIDDAC) and Project PTDC/EAM-AMB/32391/2017, funded by FEDER funds through COMPETE2020 – Programa

Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES.

s (.

References

- Abraham, S. and Li, X. 2014 A Cost-effective Wireless Sensor Network System for Indoor Air Quality Monitoring Applications. Procedia Computer Science. 34, 165–171. (https://doi.org/10.1016/j.procs.2014.07.090)
- Abraham, S. and Li, X. 2016 Design of A Low-Cost Wireless Indoor Air Quality Sensor Network System. International Journal of Wireless Information Networks. 23(1), 57– 65. (https://doi.org/10.1007/s10776-016-0299-y)
- Ali, A. S., Zanzinger, Z., Debose, D. and Stephens, B. 2016 Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Building and Environment. 100, 114–126. (https://doi.org/10.1016/j.buildenv.2016.02.010)
- Benammar, M., Abdaoui, A., Ahmad, S. H. M., Touati, F. and Kadri, A. 2018 A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring. Sensors (Basel, Switzerland). 18(2). (https://doi.org/10.3390/s18020581)
- Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G. and Sousa, S. I. V. 2019
 Quantifying indoor air quality determinants in urban and rural nursery and primary schools. Environmental Research. 176, 108534. (https://doi.org/10.1016/j.envres.2019.108534)
- Branco, P. T. B. S., Nunes, R. A. O., Alvim-Ferraz, M. C. M., Martins, F. G. and Sousa, S. I.
 V. 2015 Children's exposure to indoor air in urban nurseries Part II: Gaseous pollutants' assessment. Environmental Research. 142, 662-670. (https://doi.org/10.1016/j.envres.2015.08.026)
- Brunelli, D., Minakov, I., Passerone, R. and Rossi, M. (2014) 'POVOMON: An Ad-hoc Wireless Sensor Network for indoor environmental monitoring' in 2014 IEEE

Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Piscataway, NJ: IEEE, 1–6. (https://doi.org/10.1109/eesms.2014.6923287)

- Carre, A. and Williamson, T. 2018 Design and validation of a low cost indoor environment quality data logger. Energy and Buildings. 158, 1751–1761. (https://doi.org/10.1016/j.enbuild.2017.11.051)
- Castell, N., Viana, M., Minguillón, M. i. C., Guerreiro, C. and Querol, X. (2013) *Real-world application of new sensor technologies for air quality monitoring*, 16.
- Chanthakit, S. and Rattanapoka, C. (2018) 'MQTT Based Air Quality Monitoring System using Node MCU and Node-RED' in Mitrpanont, J. L. and Sawangphol, W., eds., *Proceeding of 2018 Seventh ICT International Student Project Conference (ICT-ISPC)*, Piscataway, NJ: IEEE, 1–5. (https://doi.org/10.1109/ict-ispc.2018.8523891)
- Cho, H. (2016) 'Personal Environmental Monitoring System and network platform' in *ICST*, New York: IEEE, 751–756. (https://doi.org/10.1109/ICSensT.2015.7438496)
- David, M. and Seter, S. 2019 Indoor Air Pollution Related Respiratory Ill Health, a Sequel of Biomass Use. SciMedicine Journal. 1(1), 30-37.
- Du Plessis, R., Kumar, A., Hancke, G. P. and Silva, B. J. (2016) 'A wireless system for indoor air quality monitoring' in Iecon, I., ed. *Proceedings of the IECON2016-42nd Annual Conference of the IEEE Industrial Electronics Society*, Piscataway, NJ: IEEE, 5409–5414. (https://doi.org/10.1109/iecon.2016.7794087)
- Dzullkiflli, S. N. M., Abdullah, A. H., Yong, L. Y., Leman, A. M. and Sohu, S. 2018 A Study of Indoor Air Quality in Refurbished Museum Building. Civil Engineering Journal. 4(11), 2596. (https://doi.org/10.28991/cej-03091184)
- Gillooly, S. E., Zhou, Y., Vallarino, J., Chu, M. T., Michanowicz, D. R., Levy, J. I. and Adamkiewicz, G. 2019 Development of an in-home, real-time air pollutant sensor

platform and implications for community use. Environmental pollution (Barking, Essex : 1987). 244, 440–450. (https://doi.org/10.1016/j.envpol.2018.10.064)

- Griffiths, M. and Eftekhari, M. 2008 Control of CO2 in a naturally ventilated classroom. Energy and Buildings. 40(4), 556-560. (https://doi.org/10.1016/j.enbuild.2007.04.013)
- He, J., Xu, L., Wang, P. and Wang, Q. 2017 A high precise E-nose for daily indoor air quality monitoring in living environment. Integration. 58, 286–294. (https://doi.org/10.1016/j.vlsi.2016.12.010)
- Jiang, B. and Huacon, C. F. (2017) 'Cloud-based smart device for environment monitoring' in Sustainability, I. C. o. T. f., ed. 2017 IEEE Conference on Technologies for Sustainability (SusTech), Piscataway, NJ: IEEE, 1-6. (https://doi.org/10.1109/SusTech.2017.8333472)
- Karami, M., McMorrow, G. V. and Wang, L. 2018 Continuous monitoring of indoor environmental quality using an Arduino-based data acquisition system. Journal of Building Engineering. 19, 412–419. (https://doi.org/10.1016/j.jobe.2018.05.014)
- Kim, J.-Y., Chu, C.-H. and Shin, S.-M. 2014 ISSAQ: An Integrated Sensing Systems for Real-Time Indoor Air Quality Monitoring. IEEE Sensors Journal. 14(12), 4230–4244. (https://doi.org/10.1109/jsen.2014.2359832)
- Klepeis, N. E., Nelson, W. C., R., O. W., Robinson, J. P., Tsang, A. M., Switzer, P., Behar, J. V., Hern, S. C. and Engelmann, W. H. 2001 The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology. 11(3), 231–252. (https://doi.org/10.1038/sj.jea.7500165)

- Koehler, K. A. and Peters, T. M. 2015 New Methods for Personal Exposure Monitoring for Airborne Particles. Current environmental health reports. 2(4), 399–411. (https://doi.org/10.1007/s40572-015-0070-z)
- Kumar, A., Kumar, A. and Singh, A. (2017) 'Energy efficient and low cost air quality sensor for smart buildings' in Ieee, C., ed. 3rd IEEE International Conference on "Computational Intelligence and Communication Technology" (IEEE-CICT 2017), Piscataway, NJ: IEEE, 1–4. (https://doi.org/10.1109/ciact.2017.7977310)
- Kumar, P., Martani, C., Morawska, L., Norford, L., Choudhary, R., Bell, M. and Leach, M.
 2016a Indoor air quality and energy management through real-time sensing in commercial buildings. Energy and Buildings. 111, 145-153. (https://doi.org/10.1016/j.enbuild.2015.11.037)
- Kumar, P., Skouloudis, A. N., Bell, M., Viana, M., Carotta, M. C., Biskos, G. and Morawska,
 L. 2016b Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. The Science of the total environment. 560-561, 150–159. (https://doi.org/10.1016/j.scitotenv.2016.04.032)
- Lasomsri, P., Yanbuaban, P., Kerdpoca, O. and Ouypornkochagorn, T. (2018) A Development of Low-Cost Devices for Monitoring Indoor Air Quality in a Large-Scale Hospital, translated by 282-285.
- Lee, K., Parkhurst, W. J., Xue, J., Özkaynak, H., Neuberg, D. and Spengler, J. D. 2004 Outdoor/Indoor/Personal Ozone Exposures of Children in Nashville, Tennessee. Journal of the Air & Waste Management Association. 54(3), 352-359. (https://doi.org/10.1080/10473289.2004.10470904)
- Marques, G. and Pitarma, R. 2019 A Cost-Effective Air Quality Supervision Solution for Enhanced Living Environments through the Internet of Things. Electronics. 8(2), 170. (https://doi.org/10.3390/electronics8020170)

- Martín-Garín, A., Millán-García, J. A., Baïri, A., Millán-Medel, J. and Sala-Lizarraga, J. M. 2018 Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit. Automation in Construction. 87, 201–214. (https://doi.org/10.1016/j.autcon.2017.12.017)
- Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., Mullins, B., Rahman, M. M., Ristovski, Z., Shafiei, M., Tjondronegoro, D., Westerdahl, D. and Williams, R. 2018 Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International. 116, 286-299. (https://doi.org/10.1016/j.envint.2018.04.018)
- Nunes, R. A. O., Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G. and Sousa, S. I.
 V. 2015 Particulate matter in rural and urban nursery schools in Portugal. Environmental Pollution. 202, 7-16. (https://doi.org/10.1016/j.envpol.2015.03.009)
- Ostro, B., Spadaro, J. V., Gumy, S., Mudu, P., Awe, Y., Forastiere, F. and Peters, A. 2018 Assessing the recent estimates of the global burden of disease for ambient air pollution: Methodological changes and implications for low- and middle-income countries. Environmental Research. 166, 713-725. (10.1016/j.envres.2018.03.001)
- Parkinson, T., Parkinson, A. and Dear, R. d. 2019a Continuous IEQ monitoring system:
 Context and development. Building and Environment. 149, 15–25.
 (https://doi.org/10.1016/j.buildenv.2018.12.010)
- Parkinson, T., Parkinson, A. and Dear, R. d. 2019b Continuous IEQ monitoring system: Performance specifications and thermal comfort classification. Building and Environment. 149, 241–252. (https://doi.org/10.1016/j.buildenv.2018.12.016)

- Peng, L., Danni, F., Shengqian, J. and Mingjie, W. (2017) 'A Movable Indoor Air Quality Monitoring System' in International Conference on Cybernetics, R. and Control, eds., 2017 2nd International Conference on Cybernetics, Robotics and Control, Piscataway, NJ: IEEE, 126–129. (https://doi.org/10.1109/crc.2017.24)
- Peterson, P. J. D., Aujla, A., Grant, K. H., Brundle, A. G., Thompson, M. R., Vande Hey, J. and Leigh, R. J. 2017 Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments. Sensors (Basel, Switzerland). 17(7). (https://doi.org/10.3390/s17071653)
- Quan Pham, N., Rachim, V. P. and Chung, W.-Y. 2019 EMI-Free Bidirectional Real-Time Indoor Environment Monitoring System. IEEE Access. 7, 5714–5722. (https://doi.org/10.1109/access.2018.2889793)
- Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti, C., Yasar, A. and Rickerby, D. 2017 End-user perspective of low-cost sensors for outdoor air pollution monitoring. Science of The Total Environment. 607-608, 691-705. (https://doi.org/10.1016/j.scitotenv.2017.06.266)
- Saad, S. M., Shakaff, A. Y. M., Saad, A. R. M. and Kamarudin, A. M. Y. (2014) 'Implementation of index for real-time monitoring indoor air quality system' in 2nd International Conference on Electronic Design (ICED), 2014, Piscataway, NJ: IEEE, 53–57. (https://doi.org/10.1109/iced.2014.7015770)
- Salamone, F., Belussi, L., Danza, L., Ghellere, M. and Meroni, I. 2015 Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors (Basel, Switzerland). 15(6), 13012– 13027. (https://doi.org/10.3390/s150613012)
- Salamone, F., Belussi, L., Danza, L., Ghellere, M. and Meroni, I. 2017a How to control the Indoor Environmental Quality through the use of the Do-It-Yourself approach and

new pervasive technologies. Energy Procedia. 140, 351–360. (https://doi.org/10.1016/j.egypro.2017.11.148)

- Salamone, F., Danza, L., Meroni, I. and Pollastro, M. 2017b A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques. Proceedings. 1(2), 18. (https://doi.org/10.3390/ecsa-3-C002)
- Salonen, H., Salthammer, T. and Morawska, L. 2018 Human exposure to ozone in school and office indoor environments. Environment International. 119, 503-514. (https://doi.org/10.1016/j.envint.2018.07.012)
- Salthammer, T., Uhde, E., Schripp, T., Schieweck, A., Morawska, L., Mazaheri, M., Clifford, S., He, C., Buonanno, G., Querol, X., Viana, M. and Kumar, P. 2016 Children's wellbeing at schools: Impact of climatic conditions and air pollution. Environment International. 94, 196-210. (https://doi.org/10.1016/j.envint.2016.05.009)
- Sánchez-Barroso, G. and García Sanz-Calcedo, J. 2019 Application of Predictive Maintenance in Hospital Heating, Ventilation and Air Conditioning Facilities. Emerging Science Journal. 3(5), 337-343. (https://doi.org/10.28991/esj-2019-01196)
- Santos, P., Rodrigues, J., Cruz, B. S., Lourenco, T., d'Orey, P., Luis, Y., Rocha, C., Sousa, S., Crisóstomo, S., Queirós, C., Sargento, S., Aguiar, A. and Barros, J. 2018 PortoLivingLab: an IoT-based Sensing Platform for Smart Cities. IEEE Internet of Things Journal. PP, 1-1. (https://doi.org/10.1109/JIOT.2018.2791522)
- Scarpa, M., Ravagnin, R., Schibuola, L. and Tambani, C. 2017 Development and testing of a platform aimed at pervasive monitoring of indoor environment and building energy. Energy Procedia. 126, 282–288. (https://doi.org/10.1016/j.egypro.2017.08.155)
- Sharma, P. K., Poddar, B., Dey, S., Nandi, S., De, T., Saha, M., Mondal, S. and Saha, S. (2017) 'On detecting acceptable air contamination in classrooms using low cost

sensors' in Networks, I. C. o. C. S. a., ed. 2017 9th International Conference on Communication Systems and Networks (COMSNETS), [Piscataway, NJ]: IEEE, 484–487. (https://doi.org/10.1109/comsnets.2017.7945439)

- Smith, J. P. and Li, X. (2016) 'AirSniffer: A smartphone-based sensor system for body area climate and air quality monitoring' in 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT), [S.1.]: IEEE, 1–5. (https://doi.org/10.1109/ismict.2016.7498910)
- Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J. and Preuss, P. W. 2013 The changing paradigm of air pollution monitoring. Environmental science & technology. 47(20), 11369–11377. (https://doi.org/10.1021/es4022602)
- Sousa, S. I. V., Alvim-Ferraz, M. C. M. and Martins, F. G. 2012 Indoor PM10 and PM2.5 at Nurseries and Primary Schools. Advanced Materials Research. 433-440, 385-390. (https://doi.org/10.4028/www.scientific.net/AMR.433-440.385)
- Tapashetti, A., Vegiraju, D. and Ogunfunmi, T. (2016) 'IoT-enabled air quality monitoring device: A low cost smart health solution' in *Proceeding of the Sixth IEEE Global Humanitarian Technology Conference*, Piscataway, NJ: IEEE, 682–685. (https://doi.org/10.1109/ghtc.2016.7857352)
- Teixeira, A. F. and Postolache, O. (2014) 'Wireless sensor network and web based information system for asthma trigger factors monitoring' in 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, IEEE, 1388–1393. (https://doi.org/10.1109/i2mtc.2014.6860974)
- Thompson, J. E. 2016 Crowd-sourced air quality studies: A review of the literature & portable sensors. Trends in Environmental Analytical Chemistry. 11, 23-34. (https://doi.org/10.1016/j.teac.2016.06.001)

- Tiele, A., Esfahani, S. and Covington, J. 2018 Design and Development of a Low-Cost, Portable Monitoring Device for Indoor Environment Quality. Journal of Sensors. 2018, 1–14. (https://doi.org/10.1155/2018/5353816)
- Tijani, I. B., Almannaee, A. D., Alharthi, A. A. and Alremeithi, A. M. (2018) 'Wireless sensor node for indoor air quality monitoring system' in Aset, ed. 2018 Advances in Science and Engineering Technology International Conferences (ASET), [Piscataway, NJ]: IEEE, 1–6. (https://doi.org/10.1109/icaset.2018.8376839)
- Tran, T. V., Dang, N. T. and Chung, W.-Y. 2017 Battery-free smart-sensor system for realtime indoor air quality monitoring. Sensors and Actuators B: Chemical. 248, 930– 939. (https://doi.org/10.1016/j.snb.2017.01.198)
- Vcelak, J., Vodicka, A., Maska, M. and Mrna, J. (2017) 'Smart building monitoring from structure to indoor environment' in Ruzicka, J., ed. 2017 Smart Cities Symposium Prague (SCSP), Piscataway, NJ: IEEE, 1–5. (https://doi.org/10.1109/scsp.2017.7973859)
- Wang, Y., Boulic, M., Phipps, R., Chitty, C., Moses, A., Weyers, R., Jang-Jaccard, J., Olivares, G., Ponder-Sutton, A. and Cunningham, C. (2017) 'Integrating Open-Source Technologies to Build a School Indoor Air Quality Monitoring Box (SKOMOBO)' in *4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)*. (https://doi.org/10.1109/APWConCSE.2017.00046)
- Wang, Y., Jang-Jaccard, J., Boulic, M., Phipps, R., Chitty, C., Weyers, R., Moses, A., Olivares, G., Ponder-Sutton, A. and Cunningham, C. (2018) 'Deployment issues for integrated open-source Based indoor air quality school Monitoring Box (SKOMOBO)' in 2018 IEEE Sensors Applications Symposium (SAS), 1-4. (https://doi.org/10.1109/SAS.2018.8336758)

- White, R. M., Paprotny, I., Doering, F., Cascio, W. E., SOLOMON, P. A. and Sensors, L. A.
 G. 2012 Sensors and Apps for Community-Based Atmospheric Monitoring. EM: AIR
 AND WASTE MANAGEMENT ASSOCIATION'S MAGAZINE FOR
 ENVIRONMENTAL MANAGERS. 36-40.
- WHO (2006) Air quality guidelines: Global update 2005 : particulate matter, ozone, nitrogen dioxide, and sulfur dioxide, Copenhagen: World Health Organization.
- WHO (2010) Who guidelines for indoor air quality: Selected pollutants, Copenhagen: WHO.
- (2018a) *Ambient (outdoor) air pollution* available: https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health [accessed].
- WHO (2018b) 'How air pollution is destroying our health', [online], available: https://www.who.int/air-pollution/news-and-events/how-air-pollution-is-destroyingour-health [Accessed 03/10/2019 2019].
- Yang, C.-T., Chen, S.-T., Den, W., Wang, Y.-T. and Kristiani, E. 2019 Implementation of an Intelligent Indoor Environmental Monitoring and management system in cloud.
 Future Generation Computer Systems. 96, 731–749. (https://doi.org/10.1016/j.future.2018.02.041)
- Yang, C.-T., Liao, C.-J., Liu, J.-C., Den, W., Chou, Y.-C. and Tsai, J.-J. 2014 Construction and application of an intelligent air quality monitoring system for healthcare environment. Journal of medical systems. 38(2), 15. (https://doi.org/10.1007/s10916-014-0015-3)
- Yang, Q., Zhou, G., Qin, W., Zhang, B. and Chiang, P. Y. (2015) 'Air-kare: A Wi-Fi based, multi-sensor, real-time indoor air quality monitor' in *Wireless Symposium (IWS)*, 2015 IEEE International, [S.1.]: IEEE, 1–4. (https://doi.org/10.1109/ieee-iws.2015.7164542)

- Zakaria, N. A., Zainal, Z., Harum, N., Chen, L., Saleh, N. and Azni, F. 2018 Wireless Internet of Things-Based Air Quality Device for Smart Pollution Monitoring. International Journal of Advanced Computer Science and Applications. 9(11). (https://doi.org/10.14569/ijacsa.2018.091110)
- Zhang, L., Tian, F.-C., Peng, X.-W. and Yin, X. 2014 A rapid discreteness correction scheme for reproducibility enhancement among a batch of MOS gas sensors. Sensors and Actuators A: Physical. 205, 170-176. (https://doi.org/10.1016/j.sna.2013.11.015)

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

SUILLO

Graphical abstract

Highlights

- Low-cost sensor technology major challenge is the lack of data reliability.
- Calibration and validation methods varied significantly with each project.
- The reported validation results also lacked uniformity.
- Studies on long-term stability and cross-sensitivity of the sensors are lacking.
- High performance indexes advocate low-cost devices as the (near) future technology