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Can data reliability of low-cost sensor devices for indoor air particulate 
matter monitoring be improved? – An approach using machine learning 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Low-cost sensors (LCS) showed low ac-
curacy in schools’ measurements. 

• LCS devices showed improved accuracy 
with field calibration using machine 
learning. 

• Boosting regression models performed 
best and were most robust. 

• The LCS responded differently in class-
rooms in comparison with the 
lunchroom.  
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A B S T R A C T   

Poor indoor air quality has adverse health impacts. Children are considered a risk group, and they spend a significant 
time indoors at home and in schools. Air quality monitoring has traditionally been limited due to the cost and size of 
the monitoring stations. Recent advancements in low-cost sensors technology allow for economical, scalable and 
real-time monitoring, which is especially helpful in monitoring air quality in indoor environments, as they are prone 
to sudden peaks in pollutant concentrations. However, data reliability is still a considerable challenge to overcome 
in low-cost sensors technology. Thus, following a monitoring campaign in a nursery and primary school in Porto 
urban area, the present study analyzed the performance of three commercially available low-cost IoT devices for 
indoor air quality monitoring in real-world against a research-grade device used as a reference and developed 
regression models to improve their reliability. This paper also presents the developed on-field calibration models via 
machine learning technique using multiple linear regression, support vector regression, and gradient boosting 
regression algorithms and focuses on particulate matter (PM1, PM2.5, PM10) data collected by the devices. The 
performance evaluation results showed poor detection of particulates in classrooms by the low-cost devices 
compared to the reference. The on-field calibration algorithms showed a considerable improvement in all three 
devices’ accuracy (reaching up to R2 > 0.9) for the light scattering technology based particulate matter sensors. The 
results also show the different performance of low-cost devices in the lunchroom compared to the classrooms of the 
same school building, indicating the need for calibration in different microenvironments.  
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1. Introduction 

Air pollution is responsible for over 7 million premature deaths every 
year globally (WHO, 2022). A significant number of fatalities arises as 
more than 90% of the world’s population live in places where air 
pollution exceeds its set guidelines (WHO, 2022). Pollution in indoor 
environments has been garnering much attention recently, where the 
pollutant concentration levels can be much higher than outdoors (Jones, 
1999) and their numerous adverse health impacts have been docu-
mented in the literature (Rosário Filho et al., 2021; Schraufnagel et al., 
2019; Sousa et al., 2012; Weschler et al., 1989). As humans spend an 
increasing amount of time indoors, more than 90%, (Klepeis et al., 
2001), monitoring indoor air quality (IAQ) becomes essential. More-
over, people can modify indoor environmental exposures, making its 
monitoring even more important. 

Children’s exposure to air pollutants is especially alarming as they 
are considered a risk group due to the development of respiratory and 
the immune systems during childhood and higher inhalation rate (per 
kilogram of their body weight) than adults, which leave them suscep-
tible to health risks (Branco et al., 2020a; Mudway et al., 2019; Nieu-
wenhuijsen et al., 2006; Schwartz, 2004; Sousa et al., 2012). The 
resulting ramifications of this early exposure may have long-term effects 
on their health as well (Schwartz, 2004). Past research associates chil-
dren’s exposure to poor air quality with adverse health impacts, 
including reduced lung function, asthma and allergies (Gehring et al., 
2013; Mendell, 2007; Schwartz, 2004; Sousa et al., 2012). Hence, 
monitoring children’s exposure to air pollutants is of great significance. 
In the context of indoor environments, nursery and primary schools are a 
unique case study for two main reasons: i) children spend more time 
there than in any other environment besides home, being the first place 
of social activity in life (Branco et al., 2014b); and ii) previous studies 
have evidenced that the poor indoor air quality often found in nursery 
and primary schools impairs children’s health (Branco et al., 2020b; 
Nunes et al., 2016; Sá et al., 2017). 

Recently, low-cost sensors (LCS) for air quality monitoring have 
witnessed remarkable advancements (Sá et al., 2022; Snyder et al., 
2013). Generally, the term LCS implies inexpensive sensor nodes costing 
less than 100 US dollars (Chojer et al., 2020; Morawska et al., 2018; Rai 
et al., 2017). LCS are a portable, user-friendly and economical solution 
that can provide near real-time air quality analysis while offering scal-
ability and widespread availability (Castell et al., 2013; Thompson, 
2016; White et al., 2012). They spearhead the paradigm shift in air 
quality monitoring Snyder et al. (2013) by being a potential supplement 
to the enormous, expensive traditional monitoring methods by imple-
menting relatively cheaper technologies such as electrochemical cell 
(EC), metal oxide semiconductor (MOS), nondispersive infrared (NDIR), 
nephelometry, and optical particle counters (OPC) among others (Hagan 
and Kroll, 2020; White et al., 2012). Such LCS based Internet of Things 
(IoT) devices for indoor air quality monitoring are especially promising 
as portable devices that can easily be deployed where bulky monitoring 
devices are not feasible. 

Many such devices are currently commercially available for any 
common citizen. They do not require qualified technicians to operate 
them, thus they can be used ubiquitously. There have been several 
studies using LCS devices developed or deployed to monitor various 
indoor environments like homes/residences (Singer and Delp, 2018; 
Zamora et al., 2020), schools (Wang et al., 2017), and offices (Parkinson 
et al., 2019). However, with the design flaws accompanying the lower 
cost, data reliability is still a concern associated with this technology 
(Peterson et al., 2017; White et al., 2012). The poor reliability stems 
from the weak reproducibility, high cross-sensitivity, frequent recali-
bration requirement, variability in measurements with changing 
ambient conditions and the short life spans, to name a few (Morawska 
et al., 2018; Peterson et al., 2017; White et al., 2012; Zhang et al., 2014). 

LCS for particulate matter (PM) monitoring usually employ nephe-
lometry. The sensors detect the aerosols by the detection of light 

scattered or reflected. The scattered light detected by the detector is 
dependent upon properties like particle size distribution, shape and 
refractive index (Hinds, 1999). The particle properties vary in 
real-world and hence, the PM mass concentrations with which these 
sensors are calibrated in the lab (with a reference mass measurement) 
will be different when deployed for uncontrolled monitoring (Hagan and 
Kroll, 2020). Moreover, it also adds the limitation of varying environ-
mental parameters like humidity to the performance of these sensors. 
The hygroscopic influences can modify particle properties like shape, 
density and refractive index as the particles take up water (Hagan and 
Kroll, 2020). Therefore, while these nephelometers are small and inex-
pensive, they have associated concerns as they are not a direct mass 
measurement (Snyder et al., 2013). The devices housing nephelometers 
usually also lack a heater/dryer at the inlet, which is useful to remove 
the moisture that would influence the performance of these sensors 
(Barkjohn et al., 2021; Giordano et al., 2021; Levy Zamora et al., 2019). 
These concerns for LCS and, specifically, LCS for PM monitoring pose 
some challenges and measurement limitations with these sensors. 

Recently, there have been several studies trying to address this issue 
of data accuracy and precision by evaluating the LCS performance for 
particulate matter monitoring (Barkjohn et al., 2021; Levy Zamora et al., 
2019; McFarlane et al., 2021; Singer and Delp, 2018; Zamora et al., 
2020). Levy Zamora et al. (2019) evaluated the three Plantower 
PMSA003 sensors in field and laboratory settings. and found the accu-
racy ranged from 13 to more than 90% compared to reference values. 
They also found the accuracy of the sensors decrease with increasing 
humidity. They conducted their indoor field experiments in a residential 
apartment of a coastal city. Zamora et al. (2020) evaluated the perfor-
mance of three LCS devices (AirVisual Pro, Speck, and AirThinx) for over 
a year. They found that AirVisual Pro exhibited the best accuracy (about 
86%) compared to the filter. They also concluded that high accuracies 
could be observed for AirVisual Pro and AirThinx with one or two cal-
ibrations during one year, although, monthly calibration was needed for 
achieving highest accuracies. Singer and Delp (2018) simulated particles 
from typical residential sources in a laboratory to test LCS devices like 
AirBeam, AirVisual, Foobot and PurpleAir. They found that the LCS 
devices under-reported the concentration peaks and even missed events 
for particles emitted below 0.3 μm in diameter. Tryner et al. (2021) 
designed a sampling platform of LCS for IAQ monitoring and tested 9 
units with reference monitors in an occupied home. They used Plan-
tower PMS5003 (the sensor used in PurpleAir) for aerosol monitoring 
and found that the sensor overestimated the PM2.5 concentrations 
compared to the reference. Hence, there is a lack of agreement in 
literature about the behaviour of these LCS for aerosol monitoring, 
especially for indoor monitoring, as in some studies they are reported to 
be understating the PM concentrations while overstating in others. A 
potential reason of this lack of consensus can be the variation of prop-
erties and size distribution of the particulates from one environment to 
the other as the nephelometers are heavily influenced by these 
parameters. 

In general, the current research for improving the data reliability of 
LCS is focused on developing correction or calibration models. Giordano 
et al. (2021) best described it as the process of measuring true aerosol 
concentrations using LCS side-by-side with a trusted reference device 
and finding a calibration algorithm that best describes their relationship. 
Barkjohn et al. (2021) used more than 10,000 PurpleAir sensors in 
ambient air and developed a United States wide correction for PM2.5 
measurements using a simple linear regression method. Magi et al. 
(2020) evaluated PurpleAir devices in near-road urban ambient settings 
and used multiple linear regression (MLR) models to improve the ac-
curacy (27–57% improvement) of the PM2.5 data. Recently, McFarlane 
et al. (2021) showed in their monitoring campaign in Accra, Ghana that 
MLR and random forest regression models that have been previously 
shown to improve accuracy between PurpleAir and reference data, did 
not result in significant improvement in Accra. They used gaussian 
mixture regressions to achieve high correlation and accuracy (R2 = 0.88 
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and MAE = 2.2 μg/m3). Low-cost sensors are known to exhibit different 
behaviour with different chemical composition of aerosols (Giordano 
et al., 2021; Singer and Delp, 2018) Thus, the extensive literature survey 
solidifies the hypothesis that the environment has a major role to play in 
the accuracy and calibration of LCS devices for PM monitoring. 

Apart from the effect of environment on LCS, the behaviour of pol-
lutants indoors is also known to be significantly different than outdoors, 
especially for particulate matter whose concentrations can be up to five 
times higher indoors (Branco et al., 2014a). The particulate matter (PM) 
concentrations indoors are also highly prone to peaks in comparison to 
smoother patterns of concentration outdoors (Branco et al., 2014a; 
Nunes et al., 2015). Even within the same indoor environment, signifi-
cant variations can occur in PM chemical compositions and sizes be-
tween different microenvironments (Amato et al., 2014; Moreno et al., 
2014). Due to these reasons, it is of great significance to study the per-
formance of low-cost sensors in different indoor environments. More-
over, and as far as the authors’ knowledge goes, no similar studies were 
performed using machine learning (ML) models for LCS calibration in 
nurseries and primary schools. Schools are a specific microenvironment 
that can potentially have different composition, size, and concentration 
levels of PM pollution. 

Thus, the current work intended to evaluate the performance and 
improve data reliability of commercially available LCS devices for in-
door air particulate matter monitoring in nurseries and primary schools 
by using advanced ML algorithms to build on-field calibration models. It 
also intended to evaluate and compare several models for calibration, 
namely multiple linear regression (MLR), support vector regression 
(SVR) and boosting regression models. 

2. Methodology 

2.1. Deployed devices 

The IAQ monitoring was conducted in a nursery and primary school 
in the urban area of Porto city, Portugal. Three commercially available 
IAQ monitoring devices were deployed in four different rooms of the 
same building, including three classrooms and one lunchroom for in-
fants (<3 years old), pre-schoolers (3–5 years old) and primary school 
children (6–10 years old). The research campaign was carried out from 
June 3, 2019 to July 8, 2019. The deployed low-cost devices were Air-
Visual Pro, PurpleAir PAII SD, uRAD Monitor Model A3 (IQAir, 2021; 
PurpleAir, 2021; uRAD, 2021), alongside the research-grade device (TSI 
DUSTTRAK DRX Aerosol Monitor) used as reference, as can be observed 
in Table 1. PurpleAir houses two Plantower PMS5003 sensors and the an 
average of the two sensors was taken for our analysis. The calibration of 
TSI DUSTTRAK was performed prior to the monitoring campaign by the 
manufacturer (TSI) as per standard ISO 12103–1, A1 test dust (Arizona 
dust). All the devices were deployed side-by-side on a table or a shelf, 
usually near a wall or in the centre of the microenvironment, at about 
the height of the children’s breathing. Natural ventilation was adopted 
in all the studied microenvironments by opening windows (to the 
playgrounds, the residential area or the street, depending on the ME 
location) and/or doors (inside the building to the hallways). 

Regression models were implemented for all three particulate matter 
fractions (PM1, PM2.5, and PM10). All three LCS devices collected 

temperature and relative humidity data and used light scattering tech-
nology for PM monitoring. They all came with prior factory calibration 
settings, and the ML models were implemented for the on-field cali-
bration phase. 

2.2. Data analysis 

The methodology flowchart of the work from raw data to the final 
best models is shown in Fig. 1. 

2.2.1. Data preprocessing 
The pre-processing and visualization involved merging datasets and 

removing the null data points from the merged datasets and data visu-
alization through distribution plots to observe skews and scatter plot 
matrices. Arithmetic mean was taken to harmonize the sampling rate, 
and the datasets were merged with the basis of timestamps to further 
eliminate any missing values between the devices to establish a common 
ground for comparison of the devices and the creation of calibration 
models. Literature (Giordano et al., 2021), and references therein, show 
that due to the lack of a heater or dryer to remove the moisture at the 
sensor inlet, RH influences the low-cost PM sensors. Prior studies have 
also demonstrated that temperature can be a significant predictor in 
low-cost PM sensor response (McFarlane et al., 2021). Hence, it was 
concluded that T and RH, along with low-cost device measurements, 
should be used for developing the models. 

Data sorting involved randomly splitting the dataset into training 
and testing subsets. For training, 80% of the data were selected, and the 
rest were used for final model testing. Regression algorithms were 
trained individually for each pollutant of each device for all the studied 
rooms. The datasets were split using the train_test_split function from 
scikit-learn. A fixed random state was used to ensure that the same split 
was used to draw a consistent comparison between different models. 

2.2.2. Regression training algorithms 
The regression algorithms used were MLR, SVR and boosting re-

gressions (GBR - gradient boosting regression and XGB- extreme 
gradient boosting). The input variables were temperature (T), relative 
humidity (RH), and LCS concentrations trained to match all models’ 
reference concentrations. The output variable was the adjusted LCS 
concentration. 

MLR model is an extension of simple linear regression, and it was 
used here due to multiple explanatory variables and is defined in 
Equation (1). 

yi,pred = p0 + p1x1 + … + pnxn (1)  

where yi,pred is the ith predicted value of the model, pi are the regression 
coefficients and xi are the explanatory variables. The statsmodels Python 
module was used to ascertain the regression summary and significance 
test results (Seabold and Statsmodels, 2010). The level of statistical 
significance was set at a p-value of 0.05, except when stated otherwise. 

Support vector machine was a training algorithm initially developed 
as a classifier (Boser et al., 1992) and quickly found its application in 
regression analysis called SVR (Drucker et al., 1996). The fundamental 
concept of training an SVR is solving a convex optimization problem: 

Table 1 
The deployed devices in the research campaign.  

Device Type Pollutants Monitored PM Sensor Monitoring 
Interval 

IoT 

AirVisual Pro Low-cost PM1, PM2.5, PM10, CO2 AVPM25b 10 s Enabled 
PurpleAir PAII SD Low-cost PM1, PM2.5, PM10 Plantower PMS5003 

(2) 
2 min Enabled 

uRADMonitor Model A3 Low-cost PM1, PM2.5, PM10, CO2, O3, CH2O, VOCs Winsen ZH03A 1 min Enabled 
Reference PM: TSI DUSTTRAK DRX Aerosol 

Monitor 
Research- 
grade 

PM1, PM2.5, PM4, PM10, Total Suspended Particles 
(TSP) 

– 10 s No  
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min
w,b,ξ,ξ*

1
2
wT w+C

∑l

i=1
ξi + C

∑l

i=1
ξ*

i (2)    

where φ(xi) maps xi into a higher-dimensional space, w is the vector 
variable, C is the regularisation parameter and ξ denotes the deviation 
from the margin beyond the maximum error ε (giving an additional 
hyperparameter) (Chang and Lin, 2011; Smola and Schölkopf, 2004). 
The present study analyses both linear and non-linear (RBF - radial basis 

function) kernels for SVR training. 
Boosting is a type of ensemble learning which converts a sequence of 

weak learners into complex models to predict by combining all learners 
in the end (Friedman, 2002). GBR and XGB were used in the present 
study as they apply a similar idea for regressions (Scikitlearn, 2021). An 
extensive grid search for several hyperparameters was done for boosting 
algorithms, with a considerable emphasis on optimizing the number of 
iterations and learning rate. 

Hyperparameters optimization was performed for SVR, XGB, and 
GBR models via an exhaustive grid search performed with 3-fold cross- 
validation. The different hyperparameters that were optimized are 
shown in Table 2. The hyperparameters that exhibit a strong influence 
on the model were generally chosen to be optimized. 

Subsequently, models underwent final testing with the single split 
holdout testing dataset, and the best performing models were obtained 
for all the low-cost devices in every room and each pollutant 
individually. 

2.2.3. Performance indexes 
The performance indexes considered for the evaluation of the models 

were the coefficient of determination (R2), the root mean square error 
(RMSE) and mean bias error (MBE), given by Equations (4)–(6), 
respectively. 

R2 = 1 −
SSr

SSt
= 1 −

∑
i

(
yi − yi,pred

)2

∑
i(yi − y)2 (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑

i

(
yi − yi,pred

)2
√

(5)  

MBE =
1
n

∑

i

(
yi − yi,pred

)
(6)  

where SSr is residual sum of squares, SSt is total sum of squares of de-
viations in relation to the global reference mean (ȳ), yi is the ith true 
value (reference), and yi,pred is the ith predicted value of the model. 

The data treatment was done using the open-source Python 3.7 with 
Jupyer Notebook interface (Beg et al., 2021; Pilgrim and Willison, 
2009). The regression modelling and analysis was performed using the 
scikit-learn library (Pedregosa et al., 2011). 

3. Results & discussion 

3.1. Data preprocessing and visualization 

Table 3 shows the availability of devices for each classroom during 
the experimental campaign. 

Only one classroom (S01_A) and the lunchroom (P01_LR) had all the 

devices available for the entire period of the experimental campaign. 
Data acquired were not uniform for all devices due to differences in time 
resolutions and data loss incurred by the devices. The data loss were 
especially evident in the case of uRAD monitor for several classrooms. 
Other low-cost devices lost almost no data points during the monitoring 
campaign. As mentioned in Table 1, PurpleAir had a minimum reporting 
interval of 2 min. Hence, taking 10-min means after removing the null/ 
blank values resolved the issue and the datasets were then merged based 
on timestamps, which gave a common ground for comparison between 
all the devices. The discussion of results specific to the classrooms is 

detailed in section 3.2.1 and for the lunchroom in section 3.2.2., 
respectively. The concentrations of all two PM fractions for the moni-
toring period in the school can be seen in Fig. S1 (supplementary 
material). 

Fig. 2 shows the scatter plot of PM2.5 as measured by the three LCS 
devices for classroom S01_A (as an example, with n = 712). A distinction 
between the occupancy and non-occupancy periods shows that most 
non-occupancy periods exhibited low PM2.5 concentrations, whereas 
there were higher concentrations for occupancy periods where re- 
suspension of particles might be more prevalent. The necessity of the 
field calibration is apparent as none of the three LCS concentrations even 
broke the 12 μg/m3 mark compared to the reference, which showed up 
to five times higher average concentrations. PurpleAir exhibited almost 
perfect linearity at low concentrations of PM2.5 but failed to corroborate 
with the reference at higher concentrations. uRAD monitor also showed 
some linearity at lower concentrations but showed poorer performance 
at higher concentrations. Similar results were obtained for other class-
rooms. The results imply that all three LCS devices performed well for 
concentrations lower than 15 μg/m3, but their performance worsened at 
elevated PM2.5 concentrations inside the classroom. This corresponds 
also for some parts with the period of non-occupancy. Paradoxically, the 
concept of employing the LCS is rendered useless if they are not able to 
track higher pollutant concentrations, especially when the indoor spaces 
are occupied and the air is being inhaled by the people. It is precisely at 
those periods of elevated concentrations that these devices, with their 
real-time monitoring, are supposed to aid the end-user. In our specific 
environment of classrooms in a school building, the 3 LCS devices 
struggled to detect the particulates. Even if these devices were to be used 
for indicative purposes, they did not indicate a significant rise in PM 
concentrations in the classroom. Our results differ from that of some 
prior studies that have shown the LCS devices tested here (AirVisual and 
PurpleAir) to be able to detect PM concentrations of up to 350 μg/m3 

(Singer and Delp, 2018; Tryner et al., 2021; Zamora et al., 2020), 
although those studies were conducted in different microenvironments 
and were not monitoring inside school classrooms. The findings from the 
experiments of Singer and Delp (2018) are especially of interest in 
interpreting our results as they found that AirVisual and PurpleAir de-
vices both did a poor job in detecting particles from sources like dust 
from a mop (coarser particles) and from sources of ultrafine particles. 
Hence, an explanation of the discrepancy found here might be that the 
PM in the classroom is composed of particles in a size range that these 
sensors struggle to detect. 

For all three LCS devices, significant overlaps can be observed be-
tween occupancy and non-occupancy period for PM2.5 concentrations. A 
probable explanation might be that the transition from occupancy 
period to non-occupancy period is taken by fixed boundary conditions as 
provided by the timetable of the school authorities as per their sched-
ules. In reality, there might have been some activity even after the 

subject to wT Φ(xi)+ b − zi ≤ ε+ ξi, →
⃒
⃒zi − wT Φ(xi) − b

⃒
⃒ ≤ ε+ ξ*

i , → ξi, ξ*
i ≥ 0, i= 1, . .., l, (3)   
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designated times as the rooms would have been slowly vacated, causing 
further re-suspension, and, consequently, higher PM concentrations. 
Similarly, it is hard to quantify how long before the designated time 
were the rooms slowly occupied. Although the authors note the differ-
entiating behavioural trends between occupancy and non-occupancy 
periods with a visual inspection, the calibration results and discussion 
were conducted for the entire period. 

Fig. 3 shows the strength of linear correlation for the monitoring 
period in the representative classroom S01_A between all the variables 
involved via a Pearson correlation matrix plot. AirVisual showed the 
strongest linear relationship with reference, followed by uRAD monitor 
while PurpleAir showed the weakest overall linearity. The results 
observed here differ from previous studies (Barkjohn et al., 2021; Magi 
et al., 2020; Malings et al., 2020) that showed a better correlation (r >
0.7 for all three studies) for PurpleAir. It should be noted that these 
studies were conducted for ambient air monitoring. Hence, as discussed 
above, this difference in findings might be due to the difference in the 
monitoring environments and the types and sizes of pollutants therein. 

Temperature and RH, expectedly, showed a negative correlation 
towards each other. Temperature and PM concentrations showed weak 
correlations, which is in line with the findings in the literature (Zamora 
et al., 2020). 

For two classrooms (S01A and S01B) the RH values varied from 30% 
to 70%, whereas for the classroom P01A and lunchroom P01LR the 
variation was between 50% and 70%. Levy Zamora et al. (2019) showed 
in their year long study in a coastal city (in field and lab settings) that 
their Plantower PMSA003 sensors (similar to the one used in PurpleAir) 
were affected by RH levels higher than 50%. Other studies have also 
shown the influence of high RH on Plantower sensors (Jayaratne et al., 
2018; Malings et al., 2020). The findings from the classrooms in the 
present study differ from those observed previously as PurpleAir and 
uRAD showed weak correlations with RH (maximum pearson correla-
tion coefficient of 0.25). Neither of these devices has a dryer at the inlet, 
implying that the unmodified air should influence the PM sensor due to 
the moisture. Perhaps, the two devices already have a correction factor 
applied for RH by the manufacturer (no specific information from the 
manufacturer regarding this issue). Another possible explanation might 
be that the mean RH values in the present study were around 55% for the 
entire monitoring period. 

3.2. Model training and testing results 

3.2.1. Classroom results 
The results obtained from all the classrooms were similar. The set 

consisting of 80% of the total dataset in S01_A classroom yielded around 
570 data points used to train the models. The initial regression models 
were trained with the default hyperparameters provided by scikit-learn. 

Table 3 
Device availability for each classroom.  

Classroom AirVisual PurpleAir URAD Reference PM 

S01_B ✔ ✔ × ✔ 
S01_A ✔ ✔ ✔ ✔ 
P01_A × ✔ ✔ ✔ 
P01_LR ✔ ✔ ✔ ✔ 

Reference PM: TSI DUSTTRAK DRX Aerosol Monitor. 

Fig. 1. Methodology flowchart of the data analysis.  

Table 2 
Hyperparameters optimized for the models.  

Model Hyperparameters 

SVR Kernel, Regularisation parameter C 
GBR number of boosting stages, learning rate, maximum depth 
XGB number of boosting stages, learning rate, maximum depth, subsample, 

gamma  
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It was done to have some sort of baseline performance of the models for 
the given data. This performance was evaluated via the three statistical 
metrics described in the methodology: R2, RMSE, MBE. For S01_A PM2.5 
monitoring with AirVisual Pro (taken as an example case for brevity), all 
the MLR coefficients obtained were statistically significant (p-value <
0.01) and hence, considered to be valid. 

The models then underwent hyperparameter optimization on the 
parameters mentioned in Table 2. It should be noted that the optimi-
zation methodology was followed, but manual tuning was done when-
ever necessary. For example, in cases where overfitting was suspected 
due to low cross-validation scores evaluated for the hyperparameter 
optimization, the overfitting suspected was also verified by making 
learning and deviance curves (learning curves of all four models in 
Supplementary Material Fig. S4). In these cases, manual optimization 
was done by a hit and trial manner to rectify the overfitting. The results 
presented here include the test set results of the final trained models. 
The learning curves also show that most models would have continued 
to improve if a larger dataset was available, with only the GBR model 
showing a slight decline in R2 towards the end. 

Fig. 4 shows the scatter plot of LCS device AirVisual Pro and 

reference PM2.5 values of final test set results arising from implementing 
the four models. The subfigures show that the machine learning strategy 
improved the results with all four models showing significant 
improvement compared to the scatter observed in Fig. 2. It can be noted 
that after the application of the models, the LCS device AirVisual Pro did 
not seem to be understating the pollutant concentrations. 

Moving the discussion further to the comparison between the four 
models, MLR model showed the lowest R2 and the highest error and bias 
values for our example case. SVR showed the most significant 
improvement, followed very closely by GBR and XGB models. The 
hyperparameter optimization results showed that RBF kernel with a 
regularisation parameter fixed at 100 was the best configuration for 
SVR. Following the trend of the uncorrected scatter plots, at lower 
pollutant concentrations, the LCS showed a very strong resemblance to 
the reference values, but the deviations increased as the pollutant con-
centrations increased and the 95% confidence interval widens (Fig. S 2. 
In the supplementary material). Further, the negative MBE values for the 
two boosting models (and for all three LCS devices) imply that even after 
implementing these models, the predicted values mostly underestimated 
the PM2.5 concentrations compared to the reference values. Although, 
the extent of the underestimation is much lower in comparison to the 
raw data. SVR also showed the lowest MBE values compared to the other 
three models for AirVisual. In general, taking all three metrics (R2, 
RMSE, and MBE) into consideration, the three devices were significantly 
improved by SVR, GBR and XGB, and they only marginally out-
performed each other in most instances. 

The same methodology was applied for all PM fractions and the rest 
of the devices. Table 4 shows the performance indexes for both training 
and testing stage results using the four models for S01_A classroom as an 
example (similar results for the other two classrooms can be seen in the 
supplementary material - Tables S1 and S2). It is prudent to base the 
performance discussion on testing set results, while the training set re-
sults signify that the models were not underfitting. 

Throughout the results for all PM fractions and classrooms, before 
applying the supervised learning models, all devices showed very low 
concentrations for all PM concentrations, similar to the ones observed in 
Fig. 2. AirVisual Pro consistently performed better than the other two 
devices. Table 4 shows low R2 values of PurpleAir and uRAD monitor 
even after applying the MLR model, which implies that PurpleAir and 
uRAD monitor did a poor job detecting periods of elevated PM pollution 
in real-time, specifically in the classroom setting. AirVisual Pro showed 
moderate to good R2 scores and lower error values in comparison. It 
shows that AirVisual is better capable of tracking the aerosol concen-
tration fluctuations in near real-time but the displayed concentrations 

Fig. 2. Scatter plot of the AirVisual Pro, PurpleAir, and uRAD Monitor PM2.5 10-min mean measurements with reference using raw data for classroom S01_A; LCS: 
Low-cost sensor. 

Fig. 3. Pearson correlation matrix plot of all the variables involved in PM2.5 
measurements for classroom S01_A; AV: AirVisual Pro, PA: PurpleAir, uRAD: 
uRAD Monitor, Ref: Reference, Temp: Temperature, RH: Relative Humidity. 
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remain lower relative to the reference concentrations. On the other 
hand, the weak linear relationship between PurpleAir, uRAD monitor 
and the reference for all PM fractions was evident with the weaker 
performance results even after using the MLR model. In general, the 
results show that using SVR and boosting models yielded better cali-
bration results than MLR model for the LCS devices. 

Boosting and SVR models after hyperparameter optimization showed 
a significant improvement in the performance of all three devices for all 
PM fractions. For SVR, the optimization always favoured the rbf kernel 
while the regularisation parameter C varied. Both the boosting models 
were steady in their performance throughout and outperformed other 

models in most cases. The SVR, GBR and XGB models adjusted LCS 
values showed strong association with the reference, but some caution is 
needed here because of the relatively small size of the dataset, which can 
easily lead to overfitting in complex models. However, in the current 
study, the extensive model evaluation upon hyperparameter optimiza-
tion with learning curves and deviance curves increases confidence in 
the developed models. 

The results for the devices were similar throughout for all PM frac-
tions and the classrooms (Supplementary Material – Tables S1–S3), with 
PM10 showing slightly higher RMSE values compared to PM2.5 and PM1 
even after implementing the models. As the errors are squared before 

Fig. 4. Model test set scatter plot for all four models for PM2.5 10-min mean measurements of AirVisual Pro for classroom S01_A; MLR: Multiple Linear Regression, 
SVR: Support Vector Regression, GBR: Gradient Boosting Regression, XGB: Extreme Gradient Boosting. 

Table 4 
Performance indexes of each model applied to the three low-cost devices for PM for the classroom S01_A.   

PM1 

Model AirVisual PurpleAir URAD 

R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE 

Training MLR 0.629 4.567 − 0.000 0.114 7.054 − 0.000 0.105 7.090 1.357 
SVR 0.956 1.563 0.207 0.818 3.196 0.464 0.785 3.476 0.597 
GBR 0.985 0.913 − 5.604 0.919 2.129 − 0.000 0.905 0.231 0.000 
XGB 0.988 0.812 0.988 0.999 0.172 − 0.001 0.992 0.649 − 0.000 

Testing MLR 0.598 4.786 − 0.642 0.182 6.827 − 0.094 0.159 6.921 1.224 
SVR 0.841 3.015 0.105 0.736 3.876 0.410 0.706 4.092 0.443 
GBR 0.780 3.539 − 0.679 0.744 3.823 0.092 0.712 4.049 − 0.495 
XGB 0.857 2.852 − 0.436 0.802 3.361 − 0.162 0.696 4.164 − 0.234 

PM2.5 

Training MLR 0.645 4.728 − 0.000 0.136 7.377 − 0.000 0.134 7.387 1.344 
SVR 0.955 1.681 0.149 0.831 3.257 0.483 0.804 3.517 0.529 
GBR 0.993 0.670 3.225 0.863 2.940 − 0.000 0.957 1.638 1.514 
XGB 0.975 1.243 0.975 0.915 2.309 0.004 0.908 2.404 0.037 

Testing MLR 0.594 5.100 − 0.597 0.215 7.093 − 0.062 0.195 7.179 1.261 
SVR 0.857 3.024 0.130 0.742 4.062 0.536 0.739 4.091 0.371 
GBR 0.838 3.225 − 0.447 0.743 4.061 − 0.429 0.765 3.882 − 0.096 
XGB 0.839 3.209 − 0.528 0.650 4.733 − 0.260 0.724 4.203 − 0.329 

PM10 

Training MLR 0.833 6.872 0.000 0.111 15.849 − 0.000 0.090 16.034 3.038 
SVR 0.992 1.491 0.074 0.838 6.776 0.986 0.752 8.37 1.153 
GBR 0.999 0.564 − 0.000 0.909 5.060 − 0.000 0.937 4.232 − 0.000 
XGB 0.992 1.480 0.021 1.000 0.226 0.001 0.898 5.373 0.136 

Testing MLR 0.801 7.326 − 0.985 0.193 14.747 − 0.404 0.161 15.037 2.709 
SVR 0.902 5.145 − 0.062 0.722 8.650 1.125 0.742 8.334 0.121 
GBR 0.831 6.751 − 1.078 0.727 8.583 − 0.840 0.647 9.758 − 1.506 
XGB 0.923 4.560 − 0.662 0.626 10.043 − 0.254 0.679 9.301 − 1.215 

Bold numbers represent best performing models; MLR: Multiple Linear Regression; SVR: Support Vector Regression; GBR: Gradient Boosting Regression; XGB: Extreme 
Gradient Boosting; The units for error values are μg/m.3. 
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being averaged, RMSE accentuates large errors. It implies that errors 
were slightly larger for PM10 predicted values compared to reference 
than for the other two PM fractions. AirVisual for PM10 monitoring (both 
pre and post ML corrections) resembled the reference better in terms of 
R2 score. After applying the MLR model, it achieved a high R2 score of 
more than 0.8. It might imply that AirVisual is more suited to monitor 
coarse PM fractions than finer ones. These results somewhat deviate 
from those of Wang et al. (2020), who showed in their “accuracy for 
quantifying event integrated PM10” results that PM10 data from LCS 
devices might have lower consistency than the PM2.5 data. However, 
they also noted that one LCS device reported PM10 similar to the refer-
ence for several sources. 

3.2.2. Lunchroom results 
Fig. 5 shows that all LCS devices showed strong linearity (r > 0.95) 

even for higher concentrations. This behaviour is different than that 
observed in the classrooms, which showed linearity only for lower 
concentrations. In the classrooms, the LCS devices weren’t even able to 
show an increase in PM concentrations, as is evident from Fig. 2. For the 
lunchroom, all three devices were able to correctly indicate increasing 
PM concentrations, albeit still understating the concentrations. The 
calibration benefited from this response, and MLR models, in this case, 
showed very high R2 scores (>0.9) and very low error values, which was 
different from the results from the classrooms (Tables S1–S3 in the 
supplementary material). 

At a perfunctory glance, the results might seem contradictory. 
Hence, concentration ranges, median concentrations, occupancy and the 
temperature and RH conditions in all the rooms were analyzed. Table 5 
shows the PM2.5 concentration range (as an example, similar results 
were obtained for other PM fractions) in all the classrooms and the 
lunchroom (P01_LR). The idea was to check if the majority of PM con-
centration in the lunchroom lies in the low concentration regime, which 
would imply similar behaviour for the devices in all the monitored 
rooms inside the school. However, both the minimum and maximum 
concentrations observed in the lunchroom were higher than in the 
classrooms. It also showed higher median concentrations than in the 
classrooms. The daily average duration of occupancy in all the rooms 
was also similar. Moreover, the temperature and RH conditions in all the 
rooms were also similar. Hence, these were excluded as a possible 
explanation for this behaviour. 

The reason for this discrepancy could lie in the difference of PM 
compositions present in the classrooms and the lunchroom. Past studies 
showed that different sources of pollutants exist for different rooms in a 
school (Branco et al., 2014a, 2019). For the present study, the school’s 

kitchen was also adjacent to the lunchroom, and they shared a window 
and a door. Therefore, the PM composition in the lunchroom could 
indeed be different from the ones encountered in the classrooms. Past 
studies (in controlled/lab settings) for indoor and outdoor environments 
(Giordano et al., 2021; Liu et al., 2017; Salimifard et al., 2020) also 
showed that the chemical composition plays an important role in the 
linearity and sensitivity of the sensor response for low-cost PM sensors. 
The PM compositions can differ not only due to the chemical composi-
tions, but also due to different particle size distributions found in these 
two microenvironments, which has an even larger impact on the sensor 
response (Hagan and Kroll, 2020; Ouimette et al., 2021). In the present 
field analysis of the PM concentrations in rooms within a school having 
similar temperature and RH conditions and with a PM concentration 
range that was not exorbitantly different, it can be hypothesized that the 
difference in the particle size distributions and chemical compositions 
showed a huge impact in the linearity exhibited by the 3 LCS devices. 

To emphasize the difference between these two microenvironments 
on the behaviour of LCS devices and the potential ramifications to the 
calibration models developed, the model developed in one classroom 
(S01A) was implemented on the raw uncorrected data from another 
classroom and on the data from the lunchroom. Fig. 6 shows the scatter 
plot along with the performance metrics for both the cases. The error 
values found when the classroom model was deployed for the lunch-
room were very high. The adjusted values highly overestimated the PM 
concentration. The ability of the LCS devices to better determine the 
concentration of finer particles that might have been prevalent in the 
lunchroom implies that the classroom corrections were not applicable 
there. The higher coefficient of determination for the lunchroom results 
implies higher linearity of the lunchroom data that was already observed 
earlier. The classroom calibration model when applied to another 
classroom showed better results with lower error values. It also implies 
that the calibration model developed can be used in another similar 
microenvironment and improve the data reliability and accuracy of the 
LCS devices for PM monitoring. 

These results have a high significance on the usage of LCS devices. 

Fig. 5. Scatter plot of the AirVisual Pro, PurpleAir, and uRAD Monitor PM2.5 10-min mean measurements with reference using raw data for the lunchroom; LCS: Low- 
cost sensor. 

Table 5 
PM 2.5 concentration ranges and median values as monitored by reference device 
in all the rooms monitored.  

Room Concentration Range Observed (μg/m3) Median (μg/m3) 

S01_B 4.0–35.2 8.4 
S01_A 4.03–59.1 10.1 
P01_A 4.7–83.3 14.1 
P01_LR 16.5–137.3 28.1  
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These LCS devices are generally manufactured and sold to monitor IAQ 
in a broad range of indoor environments like homes, offices, schools, 
hospitals, clinics, etc. This study shows that the LCS devices might 
behave differently even in different rooms within the same building. 
While the LCS might register similar PM concentrations for two rooms 
(say, kitchen and bedroom), the actual concentrations might be poles 
apart. Much attention needs to be paid to this aspect of low-cost aerosol 
monitors, and it might be crucial to calibrate them for specific micro-
environments. This study’s calibration results also prove that making 
generic calibration models for different microenvironments might not 
provide reliable concentrations for PM monitoring using LCS devices. 

In some aspects, our results differed from prior studies. The class-
room monitoring results especially showed unique results that showed 
poor detection of elevated concentrations of LCS devices. The lunch-
room results exhibited strong linearity by all three LCS devices 
compared to the reference. The difference in sources of pollutants might 
explain the difference in results shown here and in prior studies. Further 
studies monitoring IAQ in various school rooms are needed to corrob-
orate the current findings. As these devices begin to gradually become 
ubiquitous, the duty to disseminate the information on their perfor-
mance in various environments lies in the scientific community. 
Deploying these devices in huge numbers might give us the information 
to work on mitigating pollution. But it might not be the case here as 
many of the measurements recorded by the devices in the classrooms 
vastly differed from the reference measurements. Thorough calibration, 
validation and verification of the data quality of these sensors and de-
vices would ensure that false information is either curbed or rectified. 
From the overall results of this study, it is also inferred that field cali-
bration using boosting models proved to be very robust for improving 
the data accuracy of the LCS devices in different indoor microenviron-
ments. These models can be used reliably for similar purposes in future 
scenarios. 

3.3. Limitations 

Models made using a small dataset may show strong prediction re-
sults because it is easier to over-fit the models than with extensive data 
modelling. Hence, the single-split holdout dataset results should be 
taken with a grain of salt and further studies with more extended 
monitoring periods and larger datasets are needed to confirm this 
study’s results. Generally, it is reasonable to use simpler models for 
small datasets as they reduce the chance of overfitting. Moreover, longer 
monitoring periods with multiple identical devices might also show drift 
in LCS calibration and inter-device variations, which was not studied 
here. 

4. Conclusions 

The foremost conclusion from the present study is that the 
commercially available low-cost devices showed unreliable results by 
massively understating the pollutant concentrations in real-world set-
tings (an urban school). The data suggested that using these commer-
cially available devices in their current plug and play form, as advertised 

to be used, understated the pollutant concentrations in the specific 
environment of classrooms. Even for indicative purposes, the devices did 
not show enough sensitivity to the PM peaks, and they were not able to 
provide the warnings necessary in classrooms. The advanced models 
developed in the present study could improve the data reliability of 
commercially available LCS devices for IAQ monitoring. Four ML 
models: MLR, SVR, GBR and XGB were used with hyperparameter 
optimization to make the corrections. Generally, the in-field calibration 
approach achieved high accuracy with boosting and SVR models for PM 
(PM1, PM2.5 and PM10) sensors. For AirVisual Pro, linear models worked 
well to improve PM sensors’ data reliability and can be relied upon due 
to their simplicity and robust nature, which is especially important to 
mention for the present work where the datasets are smaller, and 
overfitting is easier. Although the other two devices, PurpleAir and 
uRAD monitor, showed a weak linear relationship with the reference 
and MLR models, they did not show sufficient improvement in their 
classroom performance. 

The lunchroom results were different from the classrooms. All three 
LCS devices showed strong linearity and were able to indicate increasing 
aerosol concentrations correctly, although they were still understating 
the PM concentrations. But it could be concluded that the LCS devices 
behaved differently in the lunchroom and classrooms. MLR models were 
able to improve the results for all three devices, which wasn’t the case 
for classroom LCS devices data. The difference in the results found in 
classrooms and the lunchroom was hypothesized to be due to differences 
in PM composition: chemical composition and particle size distribution. 
Further analysis and monitoring of IAQ in school classrooms are 
required to corroborate the results observed here. 

While this study showed improvement in R2 scores and low error 
values with ML models, it lacked the long-term analysis of sensors per-
formance (using the developed models). One of the significant issues 
related to low-cost sensor devices is the calibration drift over time. Thus, 
in the future, the research campaigns for such a study will require long- 
term IAQ monitoring with the devices along with reference instruments 
and add sensor age as one of the calibration variables. Moreover, future 
work should also consider investigating how the developed models 
perform versus the constant need to recalibrate the sensors. 
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