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A B S T R A C T   

Microalgae have remarkable potential for wastewater bioremediation since they can efficiently uptake nitrogen 
and phosphorus in a sustainable and environmentally friendly treatment system. However, wastewater 
composition greatly depends on its source and has a significant seasonal variability. This study aimed to evaluate 
the impact of different N:P molar ratios on the growth of Chlorella vulgaris and nutrient removal from synthetic 
wastewater. Furthermore, artificial neural network (ANN) threshold models, optimised by genetic algorithms 
(GAs), were used to model biomass productivity (BP) and nitrogen/phosphorus removal rates (RRN/RRP). The 
impact of various inputs culture variables on these parameters was evaluated. Microalgal growth was not 
nutrient limited since the average biomass productivities and specific growth rates were similar between the 
experiments. Nutrient removal efficiencies/rates reached 92.0 ± 0.6%/6.15 ± 0.01 mgN L− 1 d− 1 for nitrogen and 
98.2 ± 0.2%/0.92 ± 0.03 mgP L− 1 d− 1 for phosphorus. Low nitrogen concentration limited phosphorus uptake 
for low N:P ratios (e.g., 2 and 3, yielding 36 ± 2 mgDW mgP

− 1 and 39 ± 3 mgDW mgP
− 1, respectively), while low 

phosphorus concentration limited nitrogen uptake with high ratios (e.g., 66 and 67, yielding 9.0 ± 0.4 mgDW 
mgN

− 1 and 8.8 ± 0.3 mgDW mgN
− 1, respectively). ANN models showed a high fitting performance, with coefficients 

of determination of 0.951, 0.800, and 0.793 for BP, RRN, and RRP, respectively. In summary, this study 
demonstrated that microalgae could successfully grow and adapt to N:P molar ratios between 2 and 67, but the 
nutrient uptake was impacted by these variations, especially for the lowest and highest N:P molar ratios. 
Furthermore, GA-ANN models demonstrated to be relevant tools for microalgal growth modelling and control. 
Their high fitting performance in characterising this biological system can contribute to reducing the experi-
mental effort for culture monitoring (human resources and consumables), thus decreasing the costs of microalgae 
production.   

1. Introduction 

Microalgae are a diversified group of photosynthetic microorgan-
isms, including eukaryotic microalgae and prokaryotic cyanobacteria 
(Vale et al., 2020). Compared to many types of plants, microalgae have 
high growth rates, high photosynthetic efficiency, remarkable adapt-
ability to different environmental conditions and are easy to cultivate 

(Escapa et al., 2017; Lv et al., 2017). As a result of all these advantages, 
these microorganisms have been widely studied for various applications. 
For instance, due to their rich biomass composition, they can be used for 
food and feed, and in the pharmaceutical and cosmetic industries (Braun 
and Colla, 2022; Lucakova et al., 2022). However, one of the most 
remarkable applications is in wastewater treatment since they can 
rapidly grow while efficiently removing several contaminants, as well as 
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sequestering CO2 and generating O2 (Ahmed et al., 2022; Japar et al., 
2021). The possibility of integrating wastewater treatment and CO2 
capture with the production of biofertilisers and bioenergy is another 
factor that leads to a growing interest in the study of microalgal growth 
using wastewater as a culture medium. In recent years, several authors 
have evaluated the treatment of different types of wastewater by 
growing various microalgal species in municipal (Han et al., 2021; Tran 
et al., 2020), agricultural (Chen et al., 2020; Ganeshkumara et al., 
2018), food processing (Gramegna et al., 2020; Hemalathaa et al., 2019) 
and industrial wastewaters (Behl et al., 2020; Javed et al., 2022; Silva 
et al., 2021). These wastewaters typically have high concentrations of 
essential and growth-limiting nutrients for microalgae, such as nitrogen 
and phosphorus, at various ratios. Nitrogen is a crucial element for 
regulating algal growth and metabolism, especially for protein synthe-
sis, while phosphorus is essential for the formation of nucleic acids, ATP 
and the cell membrane (Su, 2021; Umdu, 2020). However, they are 
conventional pollutants in wastewater and need to be removed before 
they are released into the water bodies. When effluents are continuously 
discharged into water courses without proper treatment, increasing the 
nitrogen and phosphorus concentration in the receiving bodies, harmful 
algal blooms are formed, leading to the eutrophication phenomenon. In 
these circumstances, algal blooms produce biotoxins, cause oxygen 
depletion and contribute to the loss of numerous aquatic species, 
degrading aquatic ecosystems (Gil-Izquierdo et al., 2021; Suteja et al., 
2021). To reduce the risk of this type of event, nitrogen and phosphorus 
are typically removed from effluents in wastewater treatment plants 
through biological processes such as aerobic-activated sludge treatments 
and anaerobic digestion processes followed by nitrification and deni-
trification (Gonçalves et al., 2017; Li et al., 2019). Nevertheless, tradi-
tional biological methods have some limitations such as: (i) limited 
removal capacity of inorganic nutrients and micropollutants; (ii) the 
necessity of various cycles, tanks, and internal recycling of activated 
sludge, which results in high costs and energy requirements; and (iii) 
loss of potentially valuable nutrients (Chai et al., 2021; Gonçalves et al., 
2017). Microalgal treatment systems can be more efficient, sustainable, 
and environmentally friendly, requiring lower capital investment and 
operation costs andproviding natural disinfection and valuable micro-
algal biomass, which balances the energetic requirements for microalgal 
cultivation (Leong et al., 2022; Mohsenpour et al., 2021; Sutherland and 
Ralph, 2019). 

Wastewaters present a widely variable composition, depending on 
the type, location, and season. Hence, wastewater treatment systems, 
particularly biological ones, entail complex non-linear dynamics due to 
the large variations in the influent, which can make it difficult to operate 
them and comply with rigorous environmental legislation. Therefore, it 
is crucial to improve the performance of current wastewater treatment 
systems as well as employ efficient process control strategies (Bahra-
mian et al., 2023; Wang et al., 2022). Mathematical models based on 
artificial intelligence and soft-computing have been increasingly studied 
throughout the years as tools to predict, control and/or optimise process 
variables. Artificial Neural Networks (ANNs) are a popular 
machine-learning technique that mimic the interaction between neurons 
and the learning process in the human brain (Jawad et al., 2021). These 
models have been gaining increased attention throughout the years and 
have prevailed over other tools, such as support vector machines, de-
cision trees, and fuzzy logic, in recent wastewater treatment modelling 
studies (Bahramian et al., 2023). In this technique, a representative 
dataset of input and output variables is used to train the network, which 
allows an efficient description of non-linear interactions and patterns 
between different process variables with a high fitting performance 
(Sakiewicz et al., 2020). Feedforward ANNs are common network types 
in which the information flows through synapses or weights in only one 
direction: from the artificial neurons in an input layer through a hidden 
layer towards an output layer, using an activation function (Zhang et al., 
2019). ANNs have been widely used to model biological wastewater 
treatment systems such as activated sludge processes (Fard et al., 2020; 

Jana et al., 2022; Moral et al., 2008). However, few studies report the 
use of these networks to model microalgal wastewater bioremediation, 
particularly nitrogen and phosphorus removal. To the best of the au-
thors’ knowledge, Arranz et al. (2008) presented the first study in which 
ANNs were applied to describe an algae-based treatment by predicting 
salicylate biodegradation by an algal–bacterial consortium. Parameters 
such as light intensity, hydraulic retention time, temperature, and sa-
licylate concentration were tested as input variables. The authors 
observed a high fitting performance of the ANN model with a coefficient 
of determination (R2) of 0.999. Recently, Carvalho et al. (2021) used 
ANNs to model microalgal tertiary treatment of a domestic effluent 
retrieved from an upflow anaerobic sludge blanket, aiming to predict 
ammonium and phosphate removal. Variables such as light intensity, 
initial concentration of ammonium and phosphate ions, and initial 
biomass concentration were used as input variables. The model pre-
sented a high fitting (R2 over 0.950) for both outputs (ammonium and 
phosphorus concentration), indicating that ANNs can be a great tool for 
predicting microalgal wastewater treatment. However, existing studies 
on the use of ANNs to describe nitrogen and phosphorus removal typi-
cally only consider pollutant removal efficiencies and not kinetic 
removal parameters. Furthermore, ANNs require a robust dataset. The 
number of experimental points should be higher than the number of 
model parameters (weights) (Liyanaarachchi et al., 2020), usually not 
contemplated in these studies. Another difficulty is the optimisation of 
the ANN hyperparameters, as it requires the definition of certain pa-
rameters, such as the input variables, number of hidden layers and 
neurons, and activation functions (Afonso and Pires, 2017). Genetic 
algorithms (GAs) are evolutionary algorithms which can be a great tool 
to optimise these parameters. In a nutshell, these algorithms are based 
on Darwin’s evolution theory, in which a population of chromosomes is 
generated and suffers selection, mutation, and crossover through 
various generations. This process allows to obtain the fittest chromo-
somes, containing information regarding the optimised solution (Katoch 
et al., 2021; Mirjalili et al., 2020). 

For microalgae-based treatment systems that aim to combine 
biomass production and wastewater treatment, it is essential to under-
stand and predict how variations in nitrogen and phosphorus concen-
trations can impact microalgal growth and the removal of these 
pollutants. Therefore, the main objectives of this work were: (i) to 
evaluate the effect of a wide range of nitrogen to phosphorus (N:P) molar 
ratios in a synthetic effluent on the growth of the microalga Chlorella 
vulgaris and nitrogen and phosphorus removal; (ii) to develop effective 
threshold models with ANNs, with a structure defined by GAs, to 
describe biomass productivities and nutrient removal rates based on the 
cultivation time and the initial and/or instantaneous concentrations of 
biomass and nutrients; and (iii) to determine the key process variables 
and their impact on biomass productivity and nutrient removal. 

2. Materials and methods 

2.1. Inoculum preparation 

The microalgal strain C. vulgaris CCAP 211/11 B was obtained from 
the Culture Collection of Algae and Protozoa, CCAP, United Kingdom. 
Stock cultures were maintained in 100-mL flasks at room temperature in 
a modified OECD (Organisation for Economic Cooperation and Devel-
opment) test medium. The culture medium was prepared as follows: 
500 mg NaHCO3, 250 mg NaNO3; 45 mg KH2PO4; 18 mg CaCl2⋅2H2O; 
15 mg MgSO4⋅7H2O; 12 mg MgCl2⋅6H2O; 415 μg MnCl2⋅4H2O; 185 μg 
H3BO3; 100 μg Na2EDTA⋅2H2O; 80 μg FeCl3⋅6H2O; 7 μg Na2MoO4⋅2H2O; 
3 μg ZnCl2; 1.5 μg CoCl2⋅6H2O; and 0.01 μg CuCl2⋅2H2O per liter. 
Microalgae were supplied with a light intensity of 6.5 μmol m− 2 s − 1, 
measured using a Delta OHM HD2102.2 portable photo/radiometer, 
under light:dark cycle of 24:0 h. Constant agitation at 120 rotations per 
minute (rpm) was provided by an Unimax 1010 orbital shaker (Hei-
dolph, Germany). 
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2.2. Experimental setup 

C. vulgaris was cultured in 5-L photobioreactors (PBRs) operating in 
batch mode for 9–11 d, with an average light intensity of 558 μmol m− 2 

s− 1, supplied continuously by a light-emitting diode (LED) panel, as 
represented in the experimental setup in Fig. 1. Synthetic wastewater 
was used as the culture medium, by altering the nitrate-nitrogen 
(NO3–N) and phosphate-phosphorus (PO4–P) concentrations in the 
OECD test medium to simulate the use of real wastewaters. Fifteen 
different assays were conducted with N:P molar ratios ranging between 
2 and 67 (Table 1) to include values reported in the literature for various 
types of real wastewaters used to culture microalgae (Gramegna et al., 
2020; Silva et al., 2021; Tao et al., 2017; Tran et al., 2020). Experiments 
were conducted with an average initial biomass concentration in terms 
of dry weight (DW) of 29 ± 1 mgDW L− 1. Filtered atmospheric air 
(0.2-μm cellulose acetate membranes, Orange Scientific, Braine--
l’Alleud, Belgium) was supplied to the cultures at 1.5 L min− 1 to pro-
mote agitation and CO2 supplementation using AP-180 air pumps 
(Trixie, Flensburg, Germany). A Consort’s C6010 electrochemical ana-
lyser (Brussels, Belgium) was used to monitor the temperature and pH 
daily, and the latter was adjusted daily to approximately 7 using a 10% 
(v/v) HCl solution. 

2.3. Growth monitoring 

Microalgal growth was monitored daily by measuring the culture’s 
optical density (OD) at 680 nm in duplicate with a V-530 UV/VIS 
spectrophotometer (Jasco, Tokyo, Japan). The OD was plotted against 
the biomass concentration in mgDW L− 1 to build a calibration curve. The 
biomass concentration was determined according to a standard method 
described in APHA (2017): 10 mL culture samples were placed in pre-
viously weighed porcelain crucibles and dried at 105 ◦C for 24 h. After 
drying, the crucibles were weighed, and the biomass concentration was 
obtained based on the weight difference per sample volume. 

Certain growth parameters were calculated based on the biomass 
concentration over time to compare the microalgal growth between 
experiments. The specific growth rate (μ, d− 1) was determined accord-
ing to Eq. (1), in which X1 and X2 correspond to the biomass concen-
tration in mgDW L− 1, at the beginning (t1, d) and at the end (t2, d) of the 
exponential growth phase, respectively. The average biomass produc-
tivity (BPavg, mgDW L− 1 d− 1) was determined according to Eq. (2), where 
X0 and Xf (mgDW L− 1) correspond to the biomass concentration at the 
beginning (t0, d) and at the end (tf, d) of the experiment, respectively. 
Biomass productivities (BP, mgDW L− 1 d− 1) were calculated between 
every two consecutive experimental points (Eq. (3)): biomass concen-
tration, Xy+1 (mgDW L− 1), at time ty+1 (d) and biomass concentration, XY 
(mgDW L− 1), at time ty (d). 

μ=
ln(X2 /X1)

(t2 − t1)
(1)  

BPavg =
Xf − X0

tf − t0
(2)  

BPy =
Xy+1 − Xy

ty+1 − ty
(3)  

2.4. Removal of nitrogen and phosphorus 

The nitrogen and phosphorus concentrations were monitored over 
time in each assay. NO3–N concentration was determined in triplicate by 
filtering a diluted sample through 0.2-μm cellulose acetate membranes 
and measuring the OD at 220 nm in a T80 UV/VIS Spectrophotometer 
(PG Instruments, United Kingdom), as described by Gonçalves et al. 
(2016). A calibration curve was prepared using NaNO3 standard solu-
tions and following the same procedure. PO4–P concentration was 
evaluated in triplicate using the ammonium molybdate colourimetric 
method described by Lee et al. (2009). This method is based on the re-
action between inorganic phosphate and ammonium molybdate in the 
presence of a reducing agent (ascorbic acid) and the OD measurement of 
the phosphomolybdate complex at 820 nm. KH2PO4 standard solutions 
were used to build the calibration curve. 

To evaluate nutrient removal, parameters such as nitrogen and 
phosphorus mass removal (MR, mg L− 1), removal efficiency (RE, %) and 
average removal rate (RRavg, mg L− 1 d− 1) were determined as described 
in Eqs. (4)–(6), respectively. In these equations, S0 (mg L− 1) represents 
the nutrient concentration at the beginning of the experiment (t0) and Sf 
(mg L− 1) at the end (tf). Removal rates were determined between every 
two consecutive experimental points as presented in Eq. (7), where Sy+1 
(mg L− 1) corresponds to the nutrient concentration at time ty+1, and Sy 
(mg L− 1) to the nutrient concentration at time ty. 

MR= S0 − Sf (4) 

Fig. 1. Experimental setup: (a) light source (LED panel); (b) atmospheric air pumps; (c) photobioreactors.  

Table 1 
Nitrogen and phosphorus concentrations in the synthetic wastewater at the 
beginning of each experiment.  

Assay Initial N:P molar ratios N0 (mgN L− 1) P0 (mgP L− 1) 

1 2 9.7 ± 0.2 8.6 ± 0.2 
2 3 9.7 ± 0.2 8.4 ± 0.3 
3 5 20 ± 1 8.5 ± 0.2 
4 7 26 ± 2 8.7 ± 0.2 
5 8 39.8 ± 0.1 10.54 ± 0.07 
6 9 40.5 ± 0.4 10.1 ± 0.6 
7 14 66.0 ± 0.4 10.2 ± 0.6 
8 19 94.5 ± 0.7 10.8 ± 0.5 
9 28 98.0 ± 0.4 7.7 ± 0.5 
10 41 103.4 ± 0.1 5.6 ± 0.3 
11 43 98.2 ± 0.1 5.1 ± 0.2 
12 52 103.1 ± 0.1 4.4 ± 0.5 
13 59 84.9 ± 0.1 3.19 ± 0.02 
14 66 91.6 ± 0.7 3.06 ± 0.07 
15 67 94 ± 2 3.11 ± 0.08 

N0: initial nitrogen concentration; P0: initial phosphorus concentration. 
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RE =
S0 − Sf

S0
× 100 (5)  

RRavg =
S0 − Sf

S0
(6)  

RRy =
Sy+1 − Sy

ty+1 − ty
(7) 

A modified Gompertz model was applied to describe the variation of 
nitrogen and phosphorus concentrations over time, as presented in Eq. 
(8). The nutrient uptake rate is presented as k in d− 1 and the lag time as λ 
in d. The Solver supplement of Microsoft Excel V. 2301 was used to 
minimise the sum of squared residuals and determine k and λ. The R2 

and root mean squared error, RMSE, were calculated as presented in Eqs. 
(9) and (10), to assess the fitting performance of the models. In these 
equations, z represents the experimental nutrient concentrations, ẑi 

corresponds to the concentrations predicted by the model, and z to the 
average concentrations of n samples. 

S (t) = Si +
(
Sf − Si

)
× exp [ − exp (k (λ − t)+ 1)] (8)  

R2 = 1 −

∑n

i=1
(zi − ẑi)

2

∑n

i=1
(zi − z)2

(9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(zi − ẑi)

2

n

√
√
√
√
√

(10) 

Moreover, the biomass yield as a function of nitrogen/phosphorus 
consumption (YX/S) was calculated according to Eq. (11). 

YX/S =
Xf − X0

S0 − Sf
(11)  

2.6. Statistical analysis 

Average values and standard deviation were determined for each 
parameter. The differences between the calculated parameters from 
each experiment were evaluated through a one-way analysis of variance 
(ANOVA) with Tukey’s multi-comparison test at a significance level of 
0.05, using GraphPad Prism V. 8.0. Prior to the ANOVA analysis, a 
Shapiro-Wilk test of normality was conducted to verify the normal dis-
tribution of the data. 

2.7. Development of the GA-ANN models 

Feedforward threshold ANNs were developed to describe BP and 
nitrogen (RRN)/phosphorus (RRP) removal rates based on the time of 
cultivation and the initial and/or instantaneous concentrations of 

biomass and nutrients. Threshold models were used in this study since 
BP, RRN, and RRP (output variables) present two different behaviour 
regimes, depending on the value of a certain input variable (threshold). 
For instance, BP can be divided into two regimes as a result of different 
microalgal growth phases, while nutrient removal rates can heavily 
depend on the nutrient concentrations. Each model was constructed as 
presented in Eq. (12), in which y corresponds to the output, ANN1 and 
ANN2 represent the networks for each regime, xi are the input variables, 
and xd and r are the threshold variable and value, respectively. 

y=
{

ANN1(xi), if xd ≤ r
ANN2(xi), if xd > r (12) 

The networks were divided into three layers: input, hidden and 
output. Fig. 2 shows a generalised schematic representation of the ANNs 
constructed in the present work. Eight different input or explanatory 
variables were tested for each ANN: initial (N:P0) and instantaneous (N: 
Pi) N:P ratio, initial (N0) and instantaneous (Ni) nitrogen concentration, 
initial (P0) and instantaneous (Pi) phosphorus concentration, time of 
cultivation (t), and instantaneous biomass concentration (Xi). GAs were 
used to define the optimal structure of ANN threshold models, as 
described by Afonso and Pires (2017). For each model, the fittest 
chromosome (corresponding to the lowest RMSE values – fitness func-
tion, and not considering the ones with the number of model parameters 
higher than the number of experimental points) contained information 
regarding the threshold variable, threshold value, type of activation 
function, number of neurons in the hidden layer (hidden neurons), and 
chosen input variables. The models were determined with the following 
specifications: (i) population size of 100; (ii) selection probability of 
0.20; (iii) selection criterion based on elitism; (iv) crossover probability 
of 0.70; (v) mutation probability of 0.1; (vi) evaluation of RMSE in 
training and validation sets; and (vii) a stopping criterion based on the 
maximum number of generations. The activation function for the output 
layer was deemed linear, while for the hidden layer, GAs selected 
non-linear functions such as the hyperbolic tangent sigmoid (tansig), 
radial basis (radbas), logarithmic sigmoid (logsig) or inverse transfer 
function (netinv). The dataset was composed of 125 experimental points 
and divided into 75% training and 25% validation. The training process 
was stopped once there was an increase in the error during validation 
(early stopping method), avoiding overfitting. The predicted outputs 
were plotted against the experimental data, and the fitting performance 
of the statistical model was evaluated based on R2 and RMSE. Moreover, 
2D contour and 3D surface plots were built to evaluate the combined 
effect of input variables on the outputs. In these diagrams, the interac-
tion of the output variable with two input variables (in the range of the 
experimental data) was assessed, while the rest were fixed as the median 
of the values. MATLAB® software (R2016a, MathWorks, USA, 2016) 
was used for the tasks described throughout this section. 

Fig. 2. Generic schematic representation of the ANNs developed in the present work.  
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3. Results and discussion 

3.1. Chlorella vulgaris growth with different N:P ratios 

C. vulgaris grew successfully in all experimental conditions with an 
overall similar growth behaviour. No lag phase was observed in any of 
the experiments. The exponential growth phase lasted until day 3 of 
cultivation, after which a decline in the exponential microalgal growth 
and the beginning of the stationary phase was observed. Fig. 3 presents 
the growth parameters determined for each experiment. The Xmax values 
(Fig. 3A) varied between 203 ± 14 mgDW L− 1 for ratio 2 and 285 ± 6 
mgDW L− 1 for ratio 8. However, Xmax was significantly lower (p < 0.05) 
for ratios 2 and 3 compared to the remaining assays. In terms of biomass 
productivity (Fig. 3C), the lowest BPavg value (20 ± 2 mgDW L− 1 d− 1) was 
obtained for ratio 2 and the highest (24.7 ± 0.1 mgDW L− 1 d− 1) for ratio 
52. However, the average value for ratio 2 was not statistically different 
(p > 0.05) from ratios 3, 14, 19 and 66, which indicates that nitrogen 
concentration did not impact the BPavg. Moreover, even though the 
maximum value was observed for ratio 52, it was only statistically 
different (p < 0.05) from the values obtained for ratios 2, 3 and 19. The 
specific growth rates (Fig. 3B) ranged between 0.54 ± 0.03 d− 1 and 
0.588 ± 0.008 d− 1, corresponding to ratios 8 and 52, respectively. 
Comparing the different N:P ratios, the μ values did not largely vary 
between experiments and even though significant in some cases, only 
slight differences were observed between the average values. For 
instance, ratio 52 provided higher μ compared to ratios 2–14, 28–43, 66, 
and 67 (p < 0.05), but was not statistically different from ratios 19 and 
59 (p > 0.05). Therefore, the initial nutrient concentration does not 
appear to have severely impacted microalgal growth during the 

exponential growth phase. Similar results were obtained by Chu et al. 
(2022) when testing the growth of the same microalgal species in reused 
synthetic wastewater supplemented with different NO3–N and PO4–P 
concentrations: 31.5–280.3 mgN L− 1 and 1.2–28.7 mgP L− 1. The specific 
growth rates were not statistically different between N:P molar ratios of 
2, 7, 13, 20, 22 and 663, ranging between 0.55 ± 0.01 and 0.59 ± 0.03 
d− 1. Furthermore, Silva et al. (2015) evaluated the growth of C. vulgaris 
in OECD test medium with a PO4–P concentration of 4.6 mgP L− 1 and 
NO3–N concentrations of 16, 33, and 49 mgN L− 1, corresponding to N:P 
molar ratios of 8, 16 and 24. The authors also obtained similar μ values 
regardless of the N:P ratio: 0.66 ± 0.03, 0.67 ± 0.04, and 0.61 ± 0.03 
d− 1 for ratios 8, 16 and 24, respectively. Compared to the present study, 
the slightly higher specific growth rates obtained by Silva et al. (2015) 
might be justified by different experimental conditions, such as light 
source and intensity supplied to the cultures. 

The similar growth parameters between the assays suggest that in the 
experimental conditions of the present study, nitrogen and phosphorus 
concentrations did not significantly impact microalgal growth. In 
response to variations in their environment, such as changes in the 
nutrient ratios, microalgae can remain in homeostasis, maintaining the 
biomass composition and functional activities while sacrificing their 
growth, or adjust their metabolic fluxes and resource utilisation to adapt 
to these new conditions (Fernandes et al., 2020). For instance, under 
limiting phosphorus concentrations, microalgae can shift their meta-
bolic pathways towards the accumulation of energy-rich macromole-
cules, such as lipids, while maintaining their regular growth (Yaakob 
et al., 2021). Hence, in the present study, C. vulgaris most likely altered 
its flux rates, particularly nutrient consumption fluxes, in response to the 
different nitrogen and phosphorus concentrations, being able to 

Fig. 3. Variation of the maximum biomass concentration, Xmax (A), specific growth rate, μ (B), and average biomass productivity, BPavg (C), with different initial N:P 
molar ratios. Each column corresponds to the mean value of 3 samples, and error bars represent the standard deviation. For each parameter, values sharing at least 
one common letter (a, b, c, d, e, f, and g) are not statistically different (p > 0.05). 
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maintain a constant growth pattern. Therefore, it is crucial to evaluate 
nutrient removal in each experiment, as presented in Section 3.2. To 
observe growth limitation, possibly lower nitrogen or phosphorus con-
centrations would have to be tested. Nevertheless, these results 
demonstrate that this microalgal strain easily adapts to different culture 
medium compositions, which is useful when working with real 
wastewater. 

3.2. Nutrient removal 

For microalgae-based wastewater treatment systems, evaluating how 
the different influent nutrient loads impact their ability to remove them 
from the wastewaters is essential. Fig. 4 presents the nitrogen removal 
parameters obtained for each experiment. The removal efficiency (Fig. 4 
C) was generally higher for lower ratios and consequently lower initial 
nitrogen concentrations (Fig. 4 A) compared to the higher ratios, as 

there was less nitrogen available to be consumed by microalgae. The 
highest values were observed for ratios 2–9, ranging from 74.8 ± 0.3% 
for ratio 8 to 92.0 ± 0.6% for ratio 7. As the ratios increased along with 
the initial nitrogen concentration, the removal efficiencies generally 
decreased since microalgae could not uptake all the available nitrogen. 
The lowest values, 29 ± 3% and 30 ± 2% were observed for ratios 66 
and 67, respectively. From ratios 2 to 41, the increase in the initial ni-
trogen concentration reflected an increase in the mass removal (Fig. 4 B) 
and average removal rate (Fig. 4 D), with values ranging from 7.6 ± 0.2 
mgN L− 1 to 60.8 ± 0.1 mgN L− 1 and from 0.86 ± 0.03 mgN L− 1 d− 1 to 
6.15 ± 0.01 mgN L− 1 d− 1, respectively. However, comparing higher 
ratios such as 66 and 67 with lower ratios such as 19, approximately 
40% lower nitrogen removal rates (p < 0.05) can be observed, for similar 
initial nitrogen concentrations. In the experiments with the highest N:P 
ratios, phosphorus appears to be the limiting element since it was pre-
sent at lower concentrations. Therefore, these results suggest that 

Fig. 4. Variation of the initial nitrogen concentration, N0 (A), nitrogen mass removal, MRN (B), nitrogen removal efficiency, REN (C), average nitrogen removal rate, 
RRN,avg (D), and biomass yield in function of nitrogen consumption, YX/N (E), with different initial N:P molar ratios. Each column corresponds to the mean value of 3 
samples, and error bars represent the standard deviation. For each parameter, values sharing at least one common letter (a, b, c, d, e, f, g, h, i and j) are not sta-
tistically different (p > 0.05). 
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phosphorus concentration limited the nitrogen uptake for high N:P ra-
tios. Regarding the biomass yield in terms of nitrogen consumption 
(Fig. 4 E), the highest values (p < 0.05) were observed for ratios 2 and 3 
(23 ± 2 mgDW mgN

− 1 and 24 ± 2 mgDW mgN
− 1, respectively). These results 

indicate that C. vulgaris accumulated less nitrogen to produce the same 
amount of biomass and reflect a very low nitrogen content in the 
biomass (approximately 4% m/m) due to the low availability of this 
nutrient in the synthetic wastewater. The lowest values were observed 
for ratios 14–59, between 3.8 ± 0.2 mgDW mgN

− 1 and 6.1 ± 0.3 mgDW 
mgN

− 1, which correspond to nitrogen contents of 16%–26% (m/m). 
Various authors have evaluated the elemental composition of Chlorella 
vulgaris biomass and reported nitrogen contents between 7.0 and 15% 
(m/m) (Cordoba-Perez and Lasa, 2021; Kröger et al., 2018; Raheem 
et al., 2015). Comparing ratio 19 with 66 and 67, for similar initial ni-
trogen concentrations, YX/N was significantly higher in the latter (p <

0.05): 9.0 ± 0.4 mgDW mgN
− 1 and 8.8 ± 0.3 mgDW mgN

− 1, respectively. 
Therefore, phosphorus limitation resulted in lower nitrogen content in 
the biomass. 

Overall, C. vulgaris efficiently removed phosphorus from the syn-
thetic wastewater. The phosphorus removal parameters for each ratio 
are presented in Fig. 5. The removal efficiencies (Fig. 5 C) were not 
statistically different (p > 0.05) between ratios 8–67 and reached values 
up to 98%. The lowest values, 56 ± 2% and 56 ± 1%, were observed for 
the smallest ratios, 2 and 3, respectively, since they represented the 
highest initial phosphorus concentrations (Fig. 5 A). As the initial con-
centrations decreased from ratios 19 to 67, a decrease in the mass 
removal (Fig. 5 B) and removal rates (Fig. 5 D) was also observed. These 
removal parameters varied between 2.90 ± 0.07 mgP L− 1/0.264 ±
0.006 mgP L− 1 d− 1 for ratio 66 and 10.0 ± 0.3 mgP L− 1/0.92 ± 0.03 mgP 
L− 1 d− 1 for ratio 19. Comparing ratios 5 and 7 with ratios 2 and 3, for 

Fig. 5. Variation of the initial phosphorus concentration, P0 (A), phosphorus mass removal, MRP (B), phosphorus removal efficiency, REP (C), average phosphorus 
removal rate, RRP,avg (D), and biomass yield in function of phosphorus consumption, YX/P (E), with different initial N:P molar ratios. Each column corresponds to the 
mean value of 3 samples, and error bars represent the standard deviation. For each parameter, values sharing at least one common letter (a, b, c, d, e, f, and g) are not 
statistically different (p > 0.05). 
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similar initial phosphorus concentrations, the removal rates were 
approximately 28% lower (p < 0.05) for the latter. Therefore, the lower 
initial nitrogen concentrations led to a decrease in phosphorus uptake. 
Hence, nitrogen concentration appears to be a limiting factor for phos-
phorus removal. The same tendency was observed in the biomass yield 
in terms of phosphorus uptake (Fig. 5 E), as higher values (p < 0.05) 
were observed for ratios 2 and 3 (36 ± 2 mgDW mgP

− 1 and 39 ± 3 mgDW 
mgP

− 1, respectively) compared to 5 and 7 (30.8 ± 0.4 mgDW mgP
− 1 and 

31.1 ± 0.4 mgDW mgP
− 1, respectively), reflecting a lower phosphorus 

content in the biomass for lower initial nitrogen concentrations 
(approximately 3% m/m). The highest values, 84 ± 2 mgDW mgP

− 1 and 
85 ± 1 mgDW mgP

− 1, corresponded to the experiments with the lowest 
initial phosphorus concentrations (ratios 66 and 67, respectively), 
resulting in an approximate phosphorus content of 1% (m/m) in the 
microalgal biomass. The Redfield N:P ratio of 16:1 is usually presented 
as the optimal ratio in microalgal biomass, suggesting that they typically 
accumulate more nitrogen than phosphorus (Hossain et al., 2022; Li 
et al., 2022). In fact, according to the molecular formula for microalgal 
biomass (C106H263O110N16P), the nitrogen and phosphorus contents are 
approximately 6.3% (m/m) and 0.9% (m/m), respectively (Salgado and 
Pires, 2023). This is in accordance with the overall higher YX/P values 
compared to YX/N and, consequently, lower phosphorus content in the 
biomass. Nevertheless, as evidenced in this study, the same microalgal 
strain can present different nutrient removal patterns depending on the 
environmental conditions in which they are cultivated, which can cause 
variations in the accumulated N:P ratio in the microalgal biomass. 

In summary, these results indicate that with low N:P ratios, such as 2 
and 3, nitrogen can limit phosphorus uptake by microalgae, while 
phosphorus might limit nitrogen uptake with high ratios, such as 66 and 
67. The absence or shortage of nitrogen can impact the synthesis of 
proteins required for phosphorus uptake and for overall cellular meta-
bolism (Whitton et al., 2015). On the other hand, ATP synthesis can be 
jeopardised due to phosphorus limitation, which in turn can impact the 
entire cellular metabolism, including nitrogen uptake requirements. 

Various studies have reported the impact of different nitrogen and 
phosphorus concentrations on C. vulgaris nutrient uptake. Choi and Lee 
(2015) tested the effect of N:P molar ratios between 2 and 176 in 
municipal wastewater on the growth and nutrient removal ability of 
C. vulgaris. The authors observed that phosphorus removal greatly 
depended on its intracellular concentration, the N:P ratio, and the 
microalgal physiological state. Furthermore, the authors concluded that 
higher N:P ratios led to higher cellular nitrogen content and lower 
phosphorus content. The optimal N:P ratios for biomass productivity 
and nutrient removal efficiencies were between 11 and 66. Cheng et al. 
(2017) used different initial PO4–P (2–10 mgP L− 1) and 
ammonium-nitrogen (NH4–N, 10–50 mgN L− 1) concentrations in Bold’s 

Basal medium to simulate the bioremediation of an anaerobic secondary 
effluent with C. vulgaris. The authors observed a limitation in nitrogen 
removal for initial phosphorus concentrations below 4 mgP L− 1. Alketife 
et al. (2017) tested N:P molar ratios between 0.68 and 128 for a 
C. vulgaris culture in MLA culture medium, with initial nitrogen and 
phosphorus concentrations of 0–56 mgN L− 1 and 0–19 mgP L− 1, 
respectively. The authors observed that N:P molar ratios higher than 57 
indicated phosphorus limitation in terms of growth and nutrient 
removal efficiencies, while ratios lower than 8 reflected nitrogen limi-
tation. By evaluating the specific growth rates, average biomass pro-
ductivities and nutrient removal efficiencies, the authors concluded that 
70 mgN L− 1 and 7 mgP L− 1 (N:P molar ratio of 22) were the optimal 
nutrient concentrations. However, these studies do not consider other 
nutrient removal parameters besides the removal efficiency. 

In the present study, besides analysing the removal parameters 
determined between the beginning and end of the experiments, Gom-
pertz models were applied to the experimental nitrogen and phosphorus 
concentrations over time. The Gompertz model kinetic parameters are 
presented in Table 2. The model was generally effectively fitted to the 
experimental data and characterised by high R2 and low RMSE values. 
However, the nitrogen model for ratio 67 had the lowest fitting per-
formance; hence the removal parameters presented in Table 2 were not 
considered when comparing the different experiments. For certain N:P 
ratios, a clear lag phase was initially observed, for both nitrogen and 
phosphorus. However, due to the high standard deviations, no statistical 
differences were observed between the lag time values (p > 0.05). 
Comparing the nitrogen uptake rates, lower ratios such as 2, 3 and 14 
resulted in significantly higher (p < 0.05) values compared to the 
remaining experiments: 1.4 ± 0.8 d− 1, 1.5 ± 0.1 d− 1, and 1.1 ± 0.2 d− 1, 
respectively. Therefore, nitrogen appears to have been consumed faster 
for lower initial nitrogen concentrations. On the other hand, ratios 66 
and 67 led to the highest phosphorus uptake rates (p < 0.05), while the 
remaining values were not statistically different between themselves (p 
> 0.05). These results indicate that microalgae consumed this nutrient 
much faster for lower initial available phosphorus. Salgado et al. (2022) 
also observed a higher phosphorus uptake rate when growing C. vulgaris 
in a secondary urban effluent with low nutrient concentrations (1.0 ±
0.2 d− 1) compared to a primary effluent with a higher nutrient load (2.2 
± 0.2 d− 1). In response to low phosphorus concentrations, microalgae 
have been shown to adjust their metabolic fluxes towards an efficient 
capture of extracellular phosphorus by: (i) stimulating the activity of 
phosphatases; (ii) producing high-affinity phosphorus transporters; or 
(iii) synthesising more transporters, which can explain the higher uptake 
rates (Su, 2021). Therefore, microalgae appear to respond to the low 
nutrient availability in the culture medium by quickly assimilating the 
limiting nutrient, which evidences their ability to adapt to different 

Table 2 
Gompertz model parameters for nitrogen and phosphorus.  

N:P molar ratio Nitrogen Phosphorus 

k (d− 1) λ (d) R2 RMSE (mgN L− 1) k (d− 1) λ (d) R2 RMSE (mgP L− 1) 

2 1.38 ± 0.08 0.82 ± 0.07 0.999 0.104 0.7 ± 0.1 0.7 ± 0.5 0.993 0.169 
3 1.5 ± 0.1 0.7 ± 0.1 0.997 0.152 0.6 ± 0.1 0.7 ± 0.4 0.996 0.120 
5 0.4 ± 0.2 1 ± 1 0.983 0.976 0.5 ± 0.2 0 ± 1 0.981 0.349 
7 0.4 ± 0.2 0 ± 1 0.986 1.101 0.4 ± 0.2 0 ± 2 0.979 0.389 
8 0.4 ± 0.1 1.1 ± 0.7 0.987 1.373 0.36 ± 0.06 0.3 ± 0.7 0.996 0.250 
9 0.34 ± 0.08 1.6 ± 0.6 0.992 1.183 0.4 ± 0.1 1 ± 1 0.985 0.425 
14 1.1 ± 0.2 1.4 ± 0.2 0.991 1.443 0.6 ± 0.1 0.0 ± 0.6 0.992 0.309 
19 0.43 ± 0.07 1.0 ± 0.5 0.995 1.260 0.4 ± 0.1 0 ± 1 0.985 0.409 
28 0.4 ± 0.2 0 ± 2 0.962 3.823 0.5 ± 0.2 0 ± 1 0.975 0.401 
41 0.7 ± 0.1 1.4 ± 0.2 0.996 1.487 0.63 ± 0.08 0.3 ± 0.4 0.996 0.125 
43 0.4 ± 0.1 0 ± 2 0.987 2.111 0.6 ± 0.2 0 ± 1 0.980 0.249 
52 0.2 ± 0.2 0 ± 4 0.969 3.276 0.6 ± 0.1 1.7 ± 0.4 0.992 0.152 
59 0.41 ± 0.07 2.4 ± 0.3 0.997 1.418 0.6 ± 0.1 0.2 ± 0.7 0.997 0.064 
66 0.3 ± 0.2 0 ± 2 0.978 1.541 1.1 ± 0.1 1.4 ± 0.1 0.997 0.061 
67 2 ± 11 2 ± 3 0.941 2.644 1.10 ± 0.07 1.04 ± 0.09 0.999 0.043 

k: nutrient uptake rate; RMSE: root mean squared error; R2: coefficient of determination; λ: lag time. 
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environmental conditions. 

3.3. GA-ANN models for biomass productivity and nutrient removal rates 

Using the GAs, the optimal ANN hyperparameters were determined, 
such as the selected input variables, type of activation function, number 
of hidden neurons, and threshold variables and values. Table 3 presents 
the hyperparameters for the optimal ANNs for each output and corre-
sponding performance indicators. Furthermore, a comparison between 
the experimental and predicted output values through ANN modelling is 
presented in Fig. 6. Regarding the ANN model for BP, high R2 (0.951) 
and low RMSE (3.589 mgDW L− 1 d− 1) values were observed, represent-
ing a high fitting performance. Therefore, the ANN models efficiently 
described the time-course evolution of the output variables in various 
experiments, as presented in Fig. 7. Regardless of the regime, five out of 
the eight explanatory variables were selected: Ni, P0, Pi, t, and Xi. The 
variables N:P0 and N:Pi were not selected as input variables. This is in 
accordance with the previous analysis of the experimental data 
regarding microalgal growth, which showed that the average biomass 
productivities and specific growth rates were not impacted by the N:P 
ratio. Xi was identified as the threshold variable due to its great impact 
on biomass productivity. Microalgal growth can be divided into four key 
phases: lag, exponential, stationary, and death (Peter et al., 2022). As 
mentioned in Section 3.1., in the experimental conditions and duration 
of the present study, only two of these phases were observed for 
C. vulgaris: exponential and stationary. The first stage is characterised by 
an exponential increase in biomass concentration and, consequently, 
high biomass productivity. The latter phase occurs due to a decline in 
cell growth due to a limiting factor such as low nutrient availability. The 
growth rate balances this decline, leading to an approximately stable 
biomass concentration (Belaïdi et al., 2020). Therefore, it is under-
standable that Xi would be the chosen variable to define the two regimes 
that describe biomass productivity. 

The combined effect of each pair of input variables on the output 
variables was also analysed based on the determined ANN models. The 
2D contour and 3D surface plots combining the effect of different input 
variables on each output are presented in Figures SM1-SM6 (Supple-
mentary Materials). Regarding BP, for Xi ≤ 183.6 mgDW L− 1 (Fig. SM1), 
Ni and P0 do not appear to have a high impact on biomass productivity 
when plotted with t and Xi. Furthermore, higher BP values were 
observed for lower t (1–3 d) and Xi, which correspond to the beginning of 
the experiment and to the exponential growth phase, in which biomass 
productivities are expected to be higher. Furthermore, Pi does not 
appear to affect the BP compared to t and low Xi values. Peaks in biomass 
productivity are observed when high P0 and Pi or Pi and Ni are combined. 
Once again, the model appears to predict the real scenario, as high 
nutrient concentrations are observed at the beginning of the experi-
ments, in which biomass productivities are higher due to the exponential 
microalgal growth. Furthermore, comparing the effect of P0 and Pi on 
BP, higher values are predicted when Pi is approximately equal to P0, 
which once again corresponds to the initial stage of cultivation. A lower 
range of biomass productivities is predicted for Xi higher than 183.6 

mgDW L− 1 (Fig. SM2), with an overall lower impact of the input vari-
ables. Nevertheless, higher BP is also described for a combination of 
lower values of Xi and t. 

Regarding the ANN model for RRN, R2 and RMSE values of 0.800 and 
1.863 mgN L− 1 d− 1, respectively, were observed. Even though the co-
efficient of determination was lower compared to the one obtained for 
BP, the model provided a high fitting performance in several experi-
ments, such as the one with an N:P molar ratio of 41 (Fig. 7 B). P0 was 
selected as the threshold variable, which demonstrates the impact of this 
parameter on the RRN, which is in accordance with the experimental 
observations from this study. For P0 ≤ 8.06 mgP L− 1, the selected 
explanatory variables were Ni, P0, and Xi. Through the analysis of the 
surface plots (Fig. SM3), it is possible to observe that the combination of 
high Xi with high P0 values maximises the RRN. These results appear 
plausible since high biomass concentrations and phosphorus-replete 
conditions may allow a greater nitrogen uptake. However, when 
comparing the combined effect of Ni with P0 and Xi, Ni revealed a greater 
impact on RRN, with higher values maximising the output. Considering 
the results from the experiments with ratios 43 and 52, with identical 
phosphorus concentrations below the threshold value, higher N0 (ratio 
52) and consequently higher Ni available for consumption, also reflected 
an increase in the RRN,avg. However, the ANN model predicts that for 
lower P0 values, the RRN slightly decreases, even with high Ni, which 
reflects the limiting role of phosphorus in nitrogen uptake. In the ANN 
model regime described for P0 > 8.06 mgP L− 1 (Fig SM4), N:P0, Pi, t, and 
Xi were chosen as input variables. The only clear variable impact that 
maximised the RRN was observed for low Xi values when plotted with N: 
P0, Pi, and t. The initial stage of the experiments was characterised by 
low Xi values, high nutrient availability and high nutrient uptake to 
sustain the exponential growth, which can explain the higher nitrogen 
removal rates. 

The ANN model described for RRP provided R2 and RMSE values of 
0.793 and 0.279 mgP L− 1 d− 1, respectively. High fitting performances 
were observed for various sets of experimental data, such as the one 
corresponding to an initial N:P ratio of 19 (Fig. 7 C). In this case, N0 was 
selected as the threshold variable, which once again evidences the effect 
of the concentration of one nutrient on the removal of the other. As 
opposed to what was observed for the BP and RRN models, the instan-
taneous biomass concentration does not appear to have an impact on 
RRP, as it was not selected as an input variable. For N0 ≤ 62.9 mgN L− 1 

(Figure SM5), which corresponds to low N:P ratios, N:P0, N0, Ni, Pi, and t 
were selected as input variables. The selection of both N0 and Ni reflects 
the importance of nitrogen for phosphorus uptake, particularly for lower 
nitrogen concentrations. When comparing Pi with Ni, N0, and N:P0, the 
first variable had a higher impact on RRP, with higher values reflecting 
higher removal rates. Identically to what was observed for nitrogen, 
higher phosphorus availability (higher Pi) led to higher consumption 
rates. Nevertheless, a decrease in N:P0 and N0 for high Pi values reflected 
a slight decrease in the RRP, evidencing the impact of nitrogen limitation 
on phosphorus uptake. Therefore, the maximum values were observed 
when high N:P0 ratios and N0 were combined with high Pi, as this reflects 
a situation under which microalgae still have high phosphorus levels to 

Table 3 
Hyperparameters for each artificial neural network and performance indicators.  

Model Activation function Hidden neurons R2 RMSE 

BP =

{
ANN1(Ni,P0,Pi, t,Xi), ifXi ≤ 183.6
ANN2(Ni,P0,Pi, t,Xi), ifXi > 183.6 

radbas 
tansig 

6 
5 

0.951 3.589 mgDW L− 1 d− 1 

RRN =

{
ANN1(Ni,P0,Xi), ifP0 ≤ 8.06

ANN2(N : P0,Pi, t,Xi), if P0 > 8.06 
logsig 
tansig 

8 
8 

0.800 1.863 mgN L− 1 d− 1 

RRP =

{
ANN1(N : P0,N0,Ni,Pi, t), ifN0 ≤ 62.9
ANN2(N : P0,Ni,P0,Pi, t), if N0 > 62.9 

tansig 
tansig 

4 
6 

0.793 0.279 mgP L− 1 d− 1 

ANN1: Artificial neural network 1; ANN2: Artificial neural network 2; BP: biomass productivity (mgDW L− 1 d− 1); N0: initial nitrogen concentration (mgN L− 1); Ni: 
instantaneous nitrogen concentration (mgN L− 1); N:P0: initial nitrogen to phosphorus molar ratio; P0: initial phosphorus concentration (mgP L− 1); Pi: instantaneous 
phosphorus concentration (mgP L− 1); RMSE: root mean squared error; RRN: nitrogen removal rate (mgN L− 1 d− 1); RRP: phosphorus removal rate (mgP L− 1 d− 1); R2: 
coefficient of determination; t: time; Xi: instantaneous biomass concentration (mgDW L− 1). 
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consume and an N:P proportion which allows that uptake. Regarding the 
regime for N0 higher than 62.9 mgN L− 1, the selected explanatory var-
iables were N:P0, Ni, P0, Pi, and t. For this higher range of N0 values, 
higher N:P ratios are observed, and nitrogen is no longer limiting 
phosphorus uptake. Therefore, phosphorus will be the main nutrient 
impacting its consumption, which is reflected in the choice of both Pi 
and P0 as input variables. In fact, Fig. SM6 shows that Pi and P0 have a 
higher impact on RRP when plotted with Ni and t. In these plots, higher Pi 
leads to higher RRP, as there is a high phosphorus content available to be 
consumed. However, extremely low P0 showed higher removal rates, 
which can be explained by the high uptake rates described in Section 3.2 
for high N:P ratios such as 66 and 67. In these conditions, due to the low 
available phosphorus at the beginning of cultivation, microalgae 
consumed this nutrient faster. Therefore, even though the average RRP 
were lower due to the low P0, daily removal rates can be higher as a 
result of this quick consumption. 

4. Conclusions 

The results from this study demonstrated that C. vulgaris could easily 
adapt to different N:P molar ratios in synthetic wastewaters, achieving 
similar growth rates and biomass productivities, which is useful for 
maintaining the process’s consistency when working with real 

wastewaters. Furthermore, microalgae efficiently removed nitrogen and 
phosphorus from the wastewaters, with removal efficiencies/rates 
reaching 92.0 ± 0.6%/6.15 ± 0.01 mgN L− 1 d− 1 for nitrogen and 98.2 ±
0.2%/0.92 ± 0.03 mgP L− 1 d− 1 for phosphorus. Even though the 
different nitrogen and phosphorus concentrations used in this study did 
not limit microalgal growth, they had a significant impact on nutrient 
uptake. For instance, microalgal phosphorus uptake for low N:P ratios 
such as 2 and 3 was limited by nitrogen, while phosphorus limited ni-
trogen uptake with high ratios such as 66 and 67. Therefore, C. vulgaris 
most likely responded to the variations in the environmental conditions 
by altering its nutrient uptake fluxes and, consequently, the elemental 
biomass composition to maintain cellular growth. GA-ANN models for 
biomass productivity and nitrogen and phosphorus removal rates 
revealed a high fitting performance, with R2 of 0.951, 0.800, and 0.793, 
respectively. The models effectively described the variation of these 
parameters with different input variables, and the conclusions were in 
accordance with the experimental findings. For biomass productivity, 
the initial biomass concentration was selected as the threshold variable, 
since this is the variable that distinguishes between two productivity 
regimes: one during the exponential growth phase and the other during 
the stationary phase. For nitrogen and phosphorus removal rates, the 
threshold variables were the initial concentrations of phosphorus and 
nitrogen, respectively. These results also reflect the great impact that the 

Fig. 6. Comparison between experimental and predicted values through ANN modelling for: (A) biomass productivity, BP; (B) nitrogen removal rate, RRN; and (C) 
phosphorus removal rate, RRP. The dashed lines correspond to the linear adjustment to the experimental data. 
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concentration of one nutrient has on the removal of the other. In 
conclusion, the present study indicates that microalgae-based systems 
can be an efficient, reliable, and sustainable technology for wastewater 
treatment and GA-ANN models can be a relevant tool for modelling and 
control of microalgal systems. 
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Ferreres, F., Barceló, D., Núñez-Delicado, E., Gabaldón, J., 2021. A sustainable 
approach by using microalgae to minimize the eutrophication process of Mar Menor 
lagoon. Sci. Total Environ. 758, 143613. 

Gonçalves, A.L., Pires, J.C., Simões, M., 2016. Wastewater polishing by consortia of 
Chlorella vulgaris and activated sludge native bacteria. J. Clean. Prod. 133, 348–357. 

Gonçalves, A.L., Pires, J.C., Simões, M., 2017. A review on the use of microalgal 
consortia for wastewater treatment. Algal Res. 24, 403–415. 

Gramegna, G., Scortica, A., Scafati, V., Ferella, F., Gurrieri, L., Giovannoni, M., Bassi, R., 
Sparla, F., Mattei, B., Benedetti, M., 2020. Exploring the potential of microalgae in 
the recycling of dairy wastes. Bioresour. Technol. 12, 100604. 

Han, W., Jin, W., Li, Z., Wei, Y., He, Z., Chen, C., Qin, C., Chen, Y., Tu, R., Zhou, X., 2021. 
Cultivation of microalgae for lipid production using municipal wastewater. Process 
Saf. Environ. Protect. 155, 155–165. 

Hemalathaa, M., Sravana, J.S., Minc, B., Mohan, S.V., 2019. Microalgae-biorefinery with 
cascading resource recovery design associated to dairy wastewater treatment. 
Bioresour. Technol. 284, 424–429. 

Hossain, S.Z., Sultana, N., Jassim, M.S., Coskuner, G., Hazin, L.M., Razzak, S.A., 
Hossain, M.M., 2022. Soft-computing modeling and multiresponse optimization for 

nutrient removal process from municipal wastewater using microalgae. J. Water 
Process Eng. 45, 102490. 

Jana, D.K., Bhunia, P., Adhikary, S.D., Bej, B., 2022. Optimization of effluents using 
artificial neural network and support vector regression in detergent industrial 
wastewater treatment. Cleaner Chem. Eng. 3, 100039. 

Japar, A.S., Takriff, M.S., Yasin, N.H.M., 2021. Microalgae acclimatization in industrial 
wastewater and its effect on growth and primary metabolite composition. Algal Res. 
53, 102163. 

Javed, F., Rehman, F., Khan, A.U., Fazal, T., Hafeez, A., Rashid, N., 2022. Real textile 
industrial wastewater treatment and biodiesel production using microalgae. Biomass 
Bioenergy 165, 106559. 

Jawad, J., Hawari, A.H., Zaidi, S.J., 2021. Artificial neural network modeling of 
wastewater treatment and desalination using membrane processes: a review. Chem. 
Eng. J. 419, 129540. 

Katoch, S., Chauhan, S.S., Kumar, V., 2021. A review on genetic algorithm: past, present, 
and future. Multimed. Tool. Appl. 80, 8091–8126. 
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