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Abstract: The understanding and anticipating of climate change impacts is one of the greatest
challenges for humanity. It is already known that, until the end of the 21st century, the mean sea
level (MSL) will rise at a global scale, but its effects at the local scale need to be further analyzed.
In this context, a numerical modelling tool and a methodological approach for the river Minho
estuary (NW of the Iberian Peninsula) are presented, to predict possible consequences of local MSL
rise, considering the greenhouse emission scenarios RCP 4.5 and RCP 8.5. Hydrodynamic and
morphodynamic impacts were analyzed considering several driving factors, such as tides, sea level
rise, storm surge, wave set-up, and different river flood peak discharges, taking into account their
probabilities of occurrence. The model was calibrated using in-situ data and a data assimilation tool,
the OpenDA, which automates this process, allowing to reach reliable results in a considerably short
time when compared with traditional techniques. The results forecast that the predicted MSL rise
will reduce the flow velocity magnitude and the sediment transport into the coastal platform but will
aggravate the inundation risks along the estuarine banks. In the worst scenario (RCP 8.5) the water
level near the river mouth of the estuary is expected to rise 0.20 m for 50 years return period ocean
water rising, and 0.60 m for 100 years return period. It was also possible to identify that floods are
the most important driver for the sediment transport along the estuary, while the tide effect in the
morphodynamics is restricted to the downstream estuarine region. This work demonstrated the
importance of the numerical modelling tools to better understand the effects of climate change at
local scales through the representation of the estuarine hydrodynamic pattern evolution for future
climate scenarios.

Keywords: estuary modelling; morpho-hydrodynamic modelling; OpenDA; Delft3D; Minho estuary

1. Introduction

In the last decades, climate change effects on the water cycle have been observed on a global
scale. After the second half of the 21st century, an increase in the frequency of extreme events, such
as storms, floods, and droughts, is likely, moving from a return period (RP) longer than 100 years to
annual occurrences [1]. Besides, climate change will result in higher atmospheric and oceanic mean
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temperatures, promoting the thermal expansion of water bodies that, jointly with land-ice melting,
will result in higher mean sea level (MSL) and extreme sea levels (ESL) [1,2].

A rapid growth in population and economic assets in coastal zones and floodplains has been
observed and it is expected to continue during the next years [3]. The coastward migration of the
population can be explained by the great economic and environmental values of these regions, which
can be translated into high population concentration, increased urbanization, and intensification of
coastal agricultural and industrial activities [4,5]. These facts augment the vulnerability of coastal
regions to climate change effects due to the sea level rise combined with increased risks of storms,
intense rainfall, and flash floods [6]. However, it is important to take into account that the sea level
change is far from being uniform along the temporal and spatial scales, due to the influence of oceanic
currents, land ice mass loss, land water storage variation, ocean thermal expansion, and water density
changes [7-9]. Therefore, it is important to perform local studies to accurately represent the effects of
climate change for small regions, particularly morpho-hydrodynamic studies.

Understanding the erosion and accretion processes in coastal areas, and accurately forecasting their
evolution, is essential in order to prioritize mitigation measures and manage planning decisions [10].
A commonly accepted methodology to predict and evaluate future scenarios is the implementation
of numerical models, which are essential tools to forecast the effects of floods and extreme events
in estuarine regions [11].

This paper presents a numerical model, implemented with the Delft3D software (Deltares,
Delft, The Netherlands) [12], developed to forecast the possible impacts of climate change on the
hydrodynamic and morphodynamic patterns in the Minho estuary. The model was calibrated using
the data assimilator OpenDA [13] to achieve the most adequate calibration parametric values, while
reducing the time needed for this task. Although the developed work is focused on impacts of sea
level rising due to climate change there are other aspects that can also influence the relative sea
level position in coastal areas. Leorri et al. [14] analyzed sea level evolution considering tectonic
movements. Rovira et al. [15] studied sediment imbalances, identifying the Minho estuary as one of
the European estuaries that is affected by sediment accumulation, which can also affect water levels
within the estuary.

2. Study Area and Methods

2.1. Study Area

The Minho is an international river that rises at the Serra de Meira, in Spain, and reaches the Atlantic
Ocean between Caminha (Portugal) and La Guardia (Spain) after 340 km, constituting a natural border
between the northern Portuguese and Galician regions in its last 70 km (Figure 1). This river plays
an important role in hydropower production, tourism, and wine production, and its estuary presents
a large diversity of habitats due to its good ecological quality, being a reference in ecotoxicological
studies and an example for the implementation of water directives in other rivers [16,17]. In the
estuarine area, there is a ferryboat that connects the riverside cities of Caminha and La Guardia, whose
operation is conditioned by water level oscillations (dependent on tides, sea level, and river flow) and
by the morphodynamics of the estuary (Figure 2).

The average annual river flow is 300 m3/s, oscillating between 100 m3/s in the dry season (summer)
and 500 m%/s in the wet season (winter). River flow depends on the precipitation patterns over
the hydrographic basin and on the Frieira dam discharges, located 80 km upstream of the estuary
mouth [18,19]. The lower estuary presents an accentuated enlargement which results in a decrease
of the velocity of the current, creating favorable conditions for sediment deposition. Siltation is one
of the main problems of this estuarine region [17]. The annual average temperature of the water is
14 °C [20]. Next to being considered a low-impacted estuary in terms of human intervention, freshwater
discharges from the river Minho have an important effect on the nearby ocean ecosystems, promoting
phytoplankton growth and biodiversity in the coastal area through its river plume intrusion [21].
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This is especially relevant for the local fishery and for the river to be considered as a natural heritage
resource, which brings a relatively intense touristic activity to the region, also related with a highly

valued wine production activity.
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Figure 2. Detail of the numerical grid generated for the Minho estuary and ferry navigation channel.

Consequences of sea level rise (SLR), like inundations and possible saltwater intrusion can
compromise all these activities, justifying the necessity and importance of anticipating the effects of
climate change on the hydro-morphodynamic patterns within this estuary. It is essential to predict the
effects of hazardous and extreme events, to pinpoint estuarine fragilities and vulnerabilities, and to
provide valuable information to managers and authorities responsible for the safety of populations,

properties, and economical activities, to promote effective and integrated coastal management.
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2.2. Methodological Approach

The work methodology comprises five main tasks. Firstly, field data was collected, such as river
flow discharges, actual and future coastal water levels, and estuarine bathymetry. Secondly, a numerical
model of the estuary was implemented in Delft3D software following usual approaches for
hydrodynamic model implementation, for grid generation, and for open boundary conditions
specification. A relatively new approach for calibration was implemented. The adopted calibration
procedure based on OpenDA, consists of an automatic estimation of the values of some model
parameters, aiming to reduce the error between the model results and observed field data. This requires
the configuration of some input data specifying the selected calibration algorithm, the model parameters
to be calibrated, and the variables to be used to compute the error function. After calibration a sound
definition of relevant simulation scenarios was carried out, considering different climate change
emissions scenarios combined with different river flood events. Lastly, after running the adopted
scenarios the obtained results were judiciously analyzed (Figure 3).

\
Field data Historical and future water levels,
collection bathymetry and river discharge data
1 o )
)
Model Model domain delimitation, grid
set-u generation and open boundary
P o J
l Aut ti del t \
Calibration u F)ma ic mo .e parameters
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definition morphodynamic conditions
| Results
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Figure 3. Methodological approach schematization.
2.3. Numerical Model

The numerical model implemented for the analysis of the hydrodynamic and morphodynamic
behavior of the river Minho estuary followed a two-dimensional approach in the horizontal plane
(2DH) and was developed using the Delft3D software [12]. This numerical tool solves the Reynolds
averaged conservation equations of mass and momentum, being able to simulate hydrodynamic as
well as sedimentary transport equations for morphodynamic processes simulation, with satisfactory
accuracy, allowing to achieve reliable results [6,11,22].

Estuary delimitation and spatial discretization were supported by Geographic Information System
techniques [23]. The model domain was delimited considering all the areas below the elevation of
4.0 m, referred to the Portuguese altimetric datum (MSL) [24]. The fluvial upstream open boundary
coincided with a hydrometric station (Foz do Mouro) of the Portuguese Environmental Agency (PEA),
which measures water levels with an hourly frequency. The downstream open boundary is located at
the Atlantic Ocean at a location of about 80 m depth (MSL).

The model bathymetry was defined based on available bathymetric and topographic data [15].
The model time step was 1 min and, to achieve steady sate solutions, a dynamic simulation time of
24 h was assumed. For bottom friction, a Manning friction law was selected, and the effect of Coriolis
acceleration was taken into account assuming the latitude of the estuary (43° N).

The curvilinear grid dimension is 103 x 468 with 20,180 active cells and was generated using
the pre-processing tools available for the Delft3D software [25]. The size of the grid cells varies from
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a minimum cell surface area of 162 m?, near the upriver boundary, to a maximum of 26,000 m? at the
oceanic boundary. The average cell surface area is 7614 m?.

2.4. Automatic Calibration Procedure

The calibration of a numerical model consists of adjusting values of key parameters, aiming to
reduce errors between model results and observed data. This is usually a very demanding task in terms
of modelling work, involving the realization of numerous simulations, and generating a large amount
of data that has to be carefully analyzed to obtain the most accurate results. However, if this procedure
is based on automatic procedures supported by optimization tools, less effort is required from the
modelers to obtain the best values for the calibration parameters, which minimize model errors [26].
For this purpose, the OpenDA tool was configured and applied.

The OpenDA procedure consists of automatically running the model several times while
determining the value of a cost function (Equation (1)) that computes the differences between
the observed data and the model results. In each iteration, the software applies increments to the
values of the specified parameters and performs a simulation considering the new values. It repeats
these steps until it reaches one of the stopping criteria: the maximum number of iterations or the
improvement of the error function. At the end of its execution, the program informs which model is
considered optimal, that is, the model with the cost function closest to zero. The error function [ is
given by:

N
Ty = (4 (k) = Hax(k) )R (y° (k) — Hox(k)) (1)
k=1
where xj is the initial value of the parameter(s) to be determined, x(k) is the parameter(s) value at time
k, H is the observatory operator, yo (k) is the observation value at time k, N is the total number of time
steps, and R is the covariance.

For the model calibration and validation, points were chosen according to the available measured
data for the estuary. A specific monitoring campaign [15] involving water level measurements
was carried out at six different points in 2006 (points VP1 to VP6 in Figure 1). At the locations of
Tui and Goian, coincident with continuous monitoring gauge stations of Galicia, Spain [27], water
level measurements for the year 2019 were used. Different calibration strategies, involving different
measurement points and periods, were analyzed in order to select the strategy that leads to the
minimum cost function. For the 2006 period, the calibration includes two points located at the lower
estuary that are relatively close to each other (Figure 1). The second period also includes two points,
but one is located at the lower estuary and the other far upstream near Tui.

Calibration parameters include the Manning coefficient values, the tidal constituents M2, S2, N2,
and K2, and a uniform correction of the bathymetry. The performance of the model was evaluated
by calibrating these parameters individually and simultaneously, considering their variation along
different regions of the selected computational domain.

Beside the use of the cost function of the calibration procedure, the performance of the model was
assessed computing several statistical error measures for the selected observation points: root mean
squared error (RMS), bias (BIAS), and standard deviation (STD).

2.5. Climate Change Scenarios Definition

Model scenarios were defined considering the future evolution of the Minho estuary in the context
of climate change. The scenarios correspond to hypothetical/predicted situations that are reflected
in different conditions applied at the open boundaries of the model.

River flow discharges were estimated for different return periods, considering the historical data
available for the river Minho in the Portuguese river monitoring information system [28]. The peak river
flow discharges were estimated using the Gumbel distribution and considering 50 years and 100 years
return periods. The expected extreme sea levels (ESL) were extracted from the numerical solutions
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proposed by Vousdoukas et al. [29], for the location closest to the Minho estuary. These authors
performed a numerical forecast for different frequencies of occurrence, based on dynamic simulations
of all the major components of extreme sea levels (tide, storm surge, wave set-up, and sea level rise),
considering the CMIP5 [30] projections for the Representative Concentration Pathways (RCP) 4.5 and
RCP 8.5.

In order to simulate extreme levels along the estuary, the peak river flow discharge scenarios,
associated with return periods of 50 years (occurrence probability of 2%) and 100 years (occurrence
probability of 1%), were combined with the same ESL return periods estimated for the ocean open
boundary. Assuming that these two variables are independent, which is a rough simplification as
demonstrated by [31], their combination results in probabilities of 0.04% (return periods of 50 years)
and 0.01% (return periods of 100 years). For comparison purposes, the present astronomic tidal water
level variations are considered for both neap and spring tides. In S04, S05, S09, and S10 scenarios, with
the objective to have a baseline scenario for comparison, we neglected the actual SLR by assuming an
ocean boundary water level of 0.0 m (MSL), maintaining all the other components that could contribute
to ESL. Table 1 summarizes the characteristics of each of the considered scenarios.

Table 1. Climate change hydrodynamic modelling scenarios.

Return Period

Scenario (years) River Flow (m®/s) Climate Scenario ~ Expected ESL (m)  Ocean Boundary Water Level

S01 50 5364.5 Historical 29 Constant

502 50 5364.5 RCP 4.5 3.1 Constant

503 50 5364.5 RCP 8.5 31 Constant

S04 50 5364.5 Historical 0.0 Variable—neap tide
S05 50 5364.5 Historical 0.0 Variable—spring tide
506 100 6037.7 Historical 3.0 Constant

S07 100 6037.7 RCP 4.5 3.4 Constant

S08 100 6037.7 RCP 8.5 3.6 Constant

509 100 6037.7 Historical 0.0 Variable—neap tide
S10 100 6037.7 Historical 0.0 Variable—spring tide

Exploratory scenarios were also defined to anticipate possible impacts due to climate change
of ESL on the sediment transport patterns within the river Minho estuary. The historic and future
scenarios considered for the morphodynamic simulations were similar to those presented in Table 1
for the hydrodynamic simulations. Though an additional scenario was included, considering a more
frequent river flow discharge, with a value corresponding to the 85th percentile of the historical river
flow time series. Table 2 presents the main characteristics of the simulated morphodynamic scenarios.

Table 2. Climate change morphodynamic modelling scenarios.

Scenario  Return Period (years)  River Flow (m%/s)  Climate Scenario ~ Expected ESL (m)  Ocean Boundary Water Level

Mo1 - 541.05 Historical 0.0 Constant

MO02 50 5364.50 Historical 29 Constant

Mo03 50 5364.50 RCP 4.5/RCP 8.5 3.1 Constant

Mo04 100 6037.70 Historical 3.0 Constant

Mo05 100 6037.70 RCP 4.5 3.4 Constant

Mo6 100 6037.70 RCP 8.5 3.6 Constant

Mo07 - 541.05 Historical 0.0 Variable—neap tide
MO8 - 541.05 Historical 0.0 Variable—spring tide

Due to silting, the artificial navigation canal between Caminha and La Guardia (Figure 2) requires
frequent dredging works to maintain its depth and allow navigation without restrictions during
low tide conditions. To analyze present and future conditions of accretion at the navigation canal,
four different morphodynamic scenarios were defined based on the conditions indicated in Table 2:
two steady-state scenarios corresponding to the historic and estimated ESL (FB02 and FB03), another
steady state scenario corresponding to a flood event with a return period of 50 years and low tide water
level (FB04) and a fourth scenario performing a long-term simulation of 1 year, considering average
river flow discharges (FBO1), resulting from the application of a morphological scale factor of 52 [12].
This factor accelerates the erosion and accretion processes during the numerical modelling simulation.
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Table 3 summarizes the characteristics of the scenarios defined to analyze accretion conditions in the
navigation canal.

Table 3. Scenarios for sedimentation assessment at the Caminha-La Guardia navigation canal.

Scenario River Flow Discharge Return Period (years) ~ River Flow m%/s Morphological Scale Factor Expected ESL (m)

FBO1 N 325.8 52 0.0
FB02 50 5364.5 1 2.90
FB03 100 6037.7 1 3.10
FB04 50 5364.5 1 -1.78

The sediment fraction considered in the morphodynamic simulations presented a Ds
(median diameter) of 0.59 mm, as indicated by Balsinha et al. [32], for the FBO1-FBO3 scenarios and
a Dsg of 0.20 mm for the FBO4 scenario.

3. Results

3.1. Model Calibration Results

Calibration error cost function results are presented in Figure 4. These results correspond to
a set-up of the OpenDA configuration for the simultaneous calibration of all the specified parameters.
Initially, the individual influence of each parameter was assessed, applying a variation according to
the initially defined standard deviations. This explains why the cost function increases in the first
iterations. After that, all the parameters were allowed to vary in each iteration, until the lowest value
of the cost function was achieved.
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27500
25000
22500
20000
17500

Cost Function

15000

12500 M

10000
0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Iterations
— 2006 Data ==——2019 Data
Figure 4. Cost function variation during the automatic calibration procedure.

A statistical summary of the errors for the two calibration periods is presented in Table 4.
Results showed a lower RMS and standard deviation for the 2006 period than for the 2019 period.
On the other hand, the bias and the cost function associated with the 2019 data were lower.

Table 4. Statistical analysis of the calibration results.

Calibration Period Observation Point RMS Mean RMS Bias Mean Bias STD Mean STD Cost Function

VP3 0.1846 —-0.0876 0.1626

2006 VP4 0.2380 0.2113 _0.1848 —-0.1362 0.1501 0.1563 14,185.44
Tui 0.3385 —-0.1401 0.3085

2019 Goian 0.2007 0.2696 _0.0462 —-0.0932 0.1955 0.2520 11,845.64

Considering that the error cost function and the statistical parameters for both calibration periods
were quite similar, the adopted values for the calibration parameters correspond to the ones obtained
for the 2019 calibration. The results for this simulation were selected because the in-situ data consist of
continuous measurement records, which can be used in future studies and modelling improvements
for data assimilation purposes. The final calibration parameters values are presented in Table 5.



J. Mar. Sci. Eng. 2020, 8, 441 8 of 18

Table 5. Model parameters used in the numerical model.

Parameter Value Parameter Value
M2 amplitude (m) 0.557 K2 amplitude (m) 0.082
M2 phase angle (degrees) 73.953 K2 phase angle (degrees) 102.482
52 amplitude (m) 0.169 Horizontal eddy viscosity (m?/s) 3.000
S2 phase angle (degrees) 118.549 Upper estuary Manning coefficient (m~/3-s) 0.019
N2 amplitude (m) 0.178 Lower estuary Manning coefficient (m~/3.s) 0.026
N2 phase angle (degrees) 55.391

3.2. Hydrodynamic Results

The main results of the simulated water levels are presented in Figure 5 for different extreme
sea levels and flood peak discharges (FPD). Water levels within the estuary, downstream of Tui, vary
from 2.9 (MSL) to 3.9 m (MSL), considering all the simulated climate change hydrodynamic modelling
scenarios. Water levels along the estuary are predicted to rise on average 0.16 m, for the scenarios
that considered RCP 4.5 and RCP 8.5 conditions and 50 years return period flood events (S02 and
S03 scenarios). Higher water levels were obtained considering the same RCP conditions and river flow
discharges associated with 100 years return period flood events. For these scenarios (507 and S08), the
water level is expected to rise 0.32 and 0.48 m for RCP 4.5 and RCP 8.5, respectively.
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Figure 5. Water level results for the hydrodynamic scenarios combining different values of extreme sea
levels (ESL) and flood peak discharges (FPD): (a) ESL = 2.9 m and FPD = 5364.5 m?/s; (b) ESL = 3.1 m
and FPD = 5364.5 m3/s; (c) ESL = 3.1 m and FPD = 5364.5 m3/s; (d) ESL = 3.0 m and FPD = 6037.7 m/s;
(e) ESL = 3.4 m and FPD = 6037.7 m3/s; (f) ESL = 3.6 m and FPD = 6037.7 m3/s.
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The Minho estuary is marked by two natural geometric constrictions, one at the estuary mouth
and the other near Goian/Vila Nova da Cerveira. These constrictions have a pronounced effect on water
level gradients, causing distinct water elevation patterns upstream and downstream of these locations.
Upstream of Goian/Vila Nova da Cerveira, the influence of the river is stronger when compared to the
lower estuary. Between Goian/Vila Nova da Cerveira and the estuary mouth, the oceanic conditions
gain a marked influence on the hydrodynamic behavior, as expected.

Depth averaged velocities are presented in Figure 6. The maximum velocities occur at narrower
estuarine sections, including the natural geometric constrictions described above, where strong water
level gradients were previously identified. Climate change scenarios imply a slight weakening of the
current velocity at those locations, as expected due to the increase in the cross-sectional area associated
with the higher water level.
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Figure 6. Depth average flow velocity results for combinations of ESL and flood peak discharges:
(@) ESL = 2.9 m and FPD = 5364.5 m%/s; (b) ESL = 3.1 m and FPD = 5364.5 m%fs; (¢) ESL = 3.1 m and
FPD = 5364.5 m3/s; (d) ESL = 3.0 m and FPD = 6037.7 m3/s; (e) ESL = 3.4 m and FPD = 6037.7 m?/s;
(f) ESL = 3.6 m and FPD = 6037.7 m%/s.

Although tides can suffer some variations due to astronomic influences during this century [33],
these variations are not considered in the simulated scenarios. In the proposed numerical simulations,
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the present tidal constituents with constant values through the years were considered. Results for the
two flood events during either spring or neap tides are presented in Figure 7. It is clear that the tidal
influence slightly diminishes as the flood peak discharge intensifies, and also that it suffers a strong
decline with increasing distance to the estuary mouth. Neap tides are not strong enough to produce
a marked effect, even at the most downstream locations, due to the strong river flows imposed in those
scenarios. Small differences in the water level elevation between 54 and S9 and between S5 and S10
were observed, probably related to the simulated river flows (5364.5 and 6037.7 m?/s) that strongly
reduced the tide amplitude at upriver locations (Tui and VP6).

Additionally, note that minimum water levels within the estuary are higher than ocean levels
(not shown) during flood events. This is caused by the narrow estuary mouth, restricting river discharge.
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Figure 7. Tidal water levels variation during extreme flood events at different locations in the estuary
(VP1, VP4, VP6, and Tui): (a) spring tide and FPD = 5364.5 m3/s; (b) spring tide and FPD = 6037.7 m3/s;
(c) neap tide and FPD = 5364.5 m?/s; (d) neap tide and FPD = 6037.7 m3/s.

To better represent the changes in the tidal elevation of the performed scenarios, the attenuation of
tidal amplitudes along the estuary was computed for different locations (VP4, VP6, and Tui, Figure 1)
by comparison to the maximum amplitude at VP1, for both spring and neap tides (scenarios SX and
SY). The results, presented in Table 6, show that at VP4 the tidal amplitude is about 80% of the tidal
amplitude verified at VP1, at VP6 it ranges from 42% to 49%, and at Tui it decreases to a range from
22% to 27%, mainly depending on the river flood peak discharge.

Table 6. Results for the variation of tidal amplitudes along the Minho estuary.

Tidal Amplitude as Percentage of the Amplitude at VP1 (%)

Scenario B

VP4 VP6 Tui

S04 (Spring tide, flood peak discharge for RP 50 years) 81 49 27
S05 (Neap tide, flood peak discharge for RP 50 years) 81 45 23
509 (Spring tide, flood peak discharge for RP 100 years) 79 45 23
510 (Neap tide, flood peak discharge for RP 100 years) 78 42 22

Depth averaged velocity results for a spring and a neap tide are shown in Figure 8. For the
simulated river flood peak discharges, currents do not suffer inversion inside the estuary. As expected,
the highest velocity magnitudes occur during ebb tide (see also Figure 7), the amplitude of velocity
being more significant at downstream locations (VP1, VP2) rather than upriver (VP6, Tui).
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Variations of velocity magnitude reach 3 m/s at VP1 and 0.4 m/s at Tui, for spring tides, and are of
the order of 1 m/s at VP1 and near nil at Tui, for neap tides.
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Figure 8. Depth averaged velocity variation during extreme flood events at different locations
in the estuary (VP1, VP4, VP6, and Tui): (a) spring tide and FPD = 5364.5 m3/s; (b) spring tide and
FPD = 6037.7 m%/s; (c) neap tide and FPD = 5364.5 m%/s; (d) neap tide and FPD = 6037.7 m%/s.

The impact of climate change in terms of extreme water levels is shown in Figure 9 at four different
locations: VP1, VP4, VP6, and Tui. The worsening of the extreme water levels has similar values at
VP1 and VP4. At these locations, for the worst scenario (RCP 8.5 and RP 100 years), a 0.6 m increase
in water level is predicted. At VP6, this increase will be 0.5 m, and at Tui it will be 0.4 m. For the RCP
4.5 and RP 100 years’ scenarios, the water level increase will be about 0.4 m at VP1 and VP4, 0.3 m at
VP6, and 0.2 m at Tui. Results for scenarios involving RP 50 years do not show differences between the
two emissions scenarios (RCP 4.5 and RCP 8.5) since, according to [22], the predicted ocean extreme
water levels are identical. In this case, the expected water level rises are 0.2 m at VP1, VP4, and VP6,
and 0.1 m at Tui.
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Figure 9. Results of extreme water levels: (a) at VP1, (b) at VP4, (c) at VP6, and (d) at Tui.
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It was observed that the flooded areas upstream of Vila Nova de Cerveira are quite similar for all
the simulated scenarios. Variations in the location of the inundated areas start to appear downstream
of this location. However, three areas particularly prone to inundations were identified at the estuary
banks, for the worst considered scenario (S8). These regions, in O Rio (Spain), Vila Nova da Cerveira
(Portugal), and Caminha (Portugal) (Figure 10), are all located at an elevation below 4.0 m (MSL).
While in Caminha the flooding could reach a considerable number of urban infrastructures, at O Rio
the affected area is mostly occupied by rural infrastructures.

A - Caminha (PT)

B-ORio(SP) | ; 23|C - V. N. Cerveira (PT)]

74

Figure 10. Potentially flooded high-risk areas for the worst scenario. SP for Spain, PT for Portugal:
(a) location of risk areas; (b) risk area at Caminha; (c) risk area at O Rio; and (d) risk area at V.N. Cerveira.

3.3. Morphodynamic Results

The exploratory morphodynamic simulations aimed to characterize the patterns of sediment
transport for different conditions of water level and river flow. As there was no data available
related to the transport of sediment that occurs in the estuary, the morphodynamic module of the
Delf3D model was not calibrated. Thus, the results presented herein, although quantified in terms of
cumulative erosion/accretion, were qualitatively interpreted and should be considered with caution.
The model solutions show that, for average water level conditions and a river discharge of 541.05 m3/s,
the cumulative accretion/erosion for short term periods (daily time) is almost null, despite the tide
conditions (Figure 11, scenarios M01, M07, and M08). With this river flow forcing, the morphological
changes are restricted to the estuary mouth. However, the cumulative erosion/accretion suffers a strong
increase during floods, even when sea level rise conditions are considered.

In terms of climate change, i.e., SLR, impacts on the morphodynamics, the obtained results
(scenarios M02 to M06) show that these impacts will be minimal in this estuary (Figure 11). This became
evident when the ratios of erosion/accretion areas were computed using Geographic Information
Systems (GIS) tools (Figure 12). The results show more accretion than erosion area for all scenarios and
reinforce the importance of flood events for the sediment transport within the estuary.
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Figure 11. Morphodynamic cumulative accretion/erosion results for scenarios M01 to M08: (a) no
tide, ESL = 0.0 m—historical and FPD = 541.05 m3/s; (b) neap tide, ESL = 0.0 m—historical
and FPD = 541.05 m%/s; (c) spring tide, ESL = 0.0 m—historical and FPD = 541.05 m3/s; (d) no
tide, ESL = 2.9 m—historical and FPD = 5364.50 m%s; (e) no tide, ESL = 3.1 m—RCP 4.5
and FPD = 5364.50 m?/s; (f) no tide, ESL = 3.1 m—RCP 8.5 and FPD = 5364.50 m3/s; (g) no
tide, ESL = 3.0 m—historical and FPD = 6037.70 m>/s; (h) no tide, ESL = 3.4 m—RCP 4.5 and
FPD = 6037.70 m3/s; (i) no tide, ESL = 3.6 m—RCP 8.5 and FPD = 6037.70 m?/s.
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Figure 12. Percentage of areas that suffer erosion/accretion for all morphodynamic scenarios.
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Finally, the conditions of accretion in the navigation canal between Caminha and La Guardia
were analyzed. The obtained results (Figure 13) show that there is almost no sediment accumulation
under average conditions (FB01). For flood conditions and potential climate change effects (FB02 and
FB03) the accretion/erosion is intensified, but the navigation canal is not affected by either erosion or
accretion for the relatively coarse simulated sediment sizes (D5 = 0.59 mm). Indeed, if finer sediment
is considered (FB04), the sediment transport intensifies along the estuary, and, even in a short period,
a flood event can lead to an intense deposition of sediments in the navigation canal.

a) Scenario FBO1 , b) Scenario FB02 Y
D50=0.59 mm ,,’1"‘/ 0 1 2km Ds5o=0.59 mm | ,.v','/ 0 1 2km
/ 7 i rARST -y 2/
c) Scenario FB03 7 Q 5 d) Scenario FBO4
'S /
D50=0.59 mm 5 ) i Dsp=0.20 mm | i
/ A1 o/

Cumulative Accretion / Erosion

Erosion 0 Accretion

"1 - Navigation channel

Figure 13. Accumulated erosion and accretion processes for scenarios FB01 to FB04 in and around the
navigation canal connecting Caminha to La Guardia: (a) river discharge 325.8 m3/s and ESL = 0.0 m;
(b) river discharge 5364.5 m3/s and ESL = 2.9 m; (c) river discharge 6037.7 m3/s and ESL = 3.1 m;
(d) river discharge 5364.5 m3/s and ESL = —1.78 m.

4. Discussion

The methodological approach supported by OpenDA and used for the calibration of the
numerical model revealed its usefulness in reducing the effort needed to perform the modelling
set-up. Computationally, it is an efficient tool, rapidly converging to a final solution with an acceptable
error, while considering simultaneous estimation of different calibration parameters. The bias analysis
demonstrated that both data sets selected from field campaigns and hydrometric gauges for calibration,
resulted in a slight underestimation of the water levels. The various sources of uncertainty associated
either to the defined extreme ocean water levels [22] or the implemented model forcing functions and
parameters, advised a continuous effort in the calibration of the model. An adequate answer to this
inherent uncertainty is to turn the model operational [34] and to use assimilation techniques [35], based
on continuous monitoring data. Thus, the values of the calibration parameters associated with the
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second data set (hydrometric gauges) were adopted, allowing the modelled scenarios to be updated as
new data and more reliable climate change scenarios become available.

The impact of climate change in terms of water levels within the estuary is nonlinear [26,27]. Indeed,
an increase of the present ESL of 2.9 (scenario S01) to 3.6 m (scenario S08) results in different water level
rise values along the estuary, considering only the hydrodynamic behavior. Moreover, assuming that
the estuarine bathymetry will be the same at the end of the century constitutes a great simplification
since either sediment accumulation or marine vegetation will certainly play important roles in the
natural estuarine adaptation to SLR [28]. However, the obtained aggravated water levels can be
adopted as adequate estimates for coastal planning and for the adoption of structural measures in the
context of climate change adaptation, and vulnerability and resilience assessments. It is also expected
that, in the context of the extreme water levels analysis, other nonlinear effects can induce changes
in water levels and tide propagation inside the estuary, as pointed out by [29,30]. These effects are,
however, not relevant during flood events since, for these conditions, the Minho estuary is dominated
by river discharges.

Based on the obtained hydrodynamics results, several estuarine areas with high inundation risk
were identified. These results could be considered by the responsible entities for flood management
as a guide to identify the main critical zones and plan adequate mitigation measures, increasing the
resilience of the potentially affected areas against the effects of extreme events, protecting urban areas
and reducing human and economic losses.

According the simulated exploratory scenarios, climate change will slightly reduce the sediment
transport in average conditions, since the SLR will reduce the current intensities. Although, the increase
in the frequency of extreme events (floods) can have a contradictory effect by enhancing the sediment
transport. During flood events there is almost no sedimentation/erosion within the estuary for the
simulated flood scenarios, and the sediments are mainly transported to the coastal platform.

The morphodynamic results showed that sedimentation processes are predominant over erosion
when fine sediments are considered. The found accretion/erosion patterns can be used to determine
an optimal location for the navigation channel that connects Caminha and La Guardia, through the
identification of estuarine areas that will require less dredging, reducing the channel maintenance
costs. Indeed, according to the exploratory simulations results, in its present location, fine sediments
are deposited in the navigation channel. Further in-situ data are required to perform the calibration of
the sediment transport module and increase the confidence of the morphodynamic numerical models.

The obtained results encourage the realization of smaller-scale studies in the Minho estuary, aiming
to study local solutions to the identified problems associated with climate change scenarios. This can
be easily achieved using a nesting grids implementation approach. Additionally, it is recommended to
extend the use of the OpenDA to the calibration of other model parameters, since it was only used for the
water level measurements. This tool can also be used to calibrate parameters based on measurements
of velocities, sediment budget salinity, and temperature, modelled in Delft3D. Furthermore, it is
also important to improve the uncertainty characterization associated to the occurrence of river
flow discharges and sea level rise, which is important for the development of reliable decision
support systems.

5. Conclusions

A numerical model of the river Minho estuary was implemented using Delft3D in a pioneering
work to assess climate change impacts in this estuary. The developed work constitutes a major
contribution to the actual knowledge at this region to anticipate the effects of impacts associated
with this phenomenon, such as the SLR. The characterization of extreme events is a challenging
task, since these events have a high return period, which implies a significant lack of field data to
adequately describe their impacts. The methodology used in the present study proved to be effective
in forecasting the impact of climate change in estuarine regions and can be adapted to other estuaries
and coastal areas.
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The calibration methodology based on the OpenDA tool revealed to be effective to achieve reliable
modelling results with minimum modeler’s effort. This task is crucial for a good performance of
the numerical model, and the OpenDA helps reducing eventual errors that are usually associated
with a manual calibration procedure. This is extremely important, since one of the main difficulties
in applying numerical models is the time needed in the calibration task.

Extreme water levels rise for the RCP-RP 50 years’ scenarios are identical, according to the ESL
adopted at the ocean open boundary. The rise of water levels for RCP scenarios associated with RP
100 years are nearly 0.5 m, ranging from 0.4 to 0.6 m, depending on the location within the estuary.

The morphodynamic results showed that the main driving factors for the sediment transport
occurring in the river Minho estuary either under actual or future climate scenarios are the river flood
events, tidal conditions, and sediment sizes. Obtained model results agreed well with results found by
Rovira et al. [15], that studied in their work the importance of the floods for sediment transport along
the estuary, and identified an erosion area at the mouth of the river and the influence of upstream dams
in lowering flood peak discharges.

Finally, this study highlights the importance of numerical models for the understanding of the
complex hydro-morphodynamic processes that take place in estuaries. Numerical models allow
to reproduce observed hydrodynamic patterns and forecast the expected behavior for hypothetical
scenarios. With these tools it is possible to anticipate potential problems and design adequate mitigation
solutions. Since long term forecast imply a huge uncertainty for horizons of 50-100 years [36], it is
advised to implement operational models that assimilate the historical behavior and continuously
produce new forecasts. The costs for the study and for implementing measures to adapt and increase
the resilience of sensible areas against these problems will be less than the cost of repairing the damages
after the occurrence of extreme events.
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