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Abstract

One important problem in the design of novel logic programming systems is the support
of several forms of implicit parallelism. A new binding model, the Sparse Binding Array
(SBA), has been proposed for the efficient and simplified integration of Independent-And,

Determinate-And and Or-parallelism. In this paper we report on the use of this model for
pure Or-parallelism.
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orthogonally to the other forms of parallelism. In contrast, bindings representation affects
all forms of parallelism.

The problem in binding a variable arises because each may have several different bind-
ings in different or-branches. Quite a few very different approaches [7] have been presented
to tackle this problem. Two successful ones are copying, as used in Muse [1], and binding
arrays, as used in Aurora.

In the copying approach, each worker maintains its own copy of the path in the search
tree it is exploring. Whenever there is some work to be shared, the worker that is looking
for work copies the entire path up to the current node of the worker that it is sharing.
Sharing between workers only happens through an auxiliary data structure associated with
choice-points.

In the binding array approach the work stacks are shared. To obtain an efficient access,
each worker maintains a private data structure, the binding array. The binding array gives
the worker quick access to the binding of a variable. It is implemented as an array, indexed
by the number of variables that have been created in the current branch. This number
is also stored in the variable itself which gives constant-time access to private variable
bindings.

Both schemes have problems when the system is extended with And-parallelism. In the
case of copying, the main problem is what to copy because workers working in And-parallel
will be at different points in the search tree. The ACE system addresses this problem for
a combination of Or-parallelism with Independent And-parallelism. The same happens for
the Penny [12] parallel implementation for AKL.

In the case of binding arrays the main problem are workers working in And-parallel,
hence that share the same Team Binding Array, that may want to place their variables in
the same binding array positions. A solution to the binding array problem is the PBA (8],
and the SPBA [5] data structures. These data structures use indirection to address the
binding array management problem. They present a very general solution to the problem,
but introduce an extra dereferencing layer in the binding array scheme.

In this paper we introduce a novel data structure, the Sparse Binding Array, or SBA.
The Sparse Binding Array simplifies the traditional binding array and naturally allow
the representation of Independent and-computations running in Or-parallel. A variable’s
binding array entry is not associated with a relative position in the search tree branch
where it was created, as in the BA approach, but with the variable’s memory address.

The paper is organized as follows. We first describe the sparse binding array data
structure. compazingg' fowibht hict eraitinndNondinggarray, Weenretvlirscass sonnd mrpuot carte
implementation issues and explain how levels are used to obtain variable age. We then
discuss in detail how the Aurora system was extended to support the SBA data-structure,
and give a preliminary performance analysis for a standard set of benchmarks. We finish
with our conclusions and proposals for further work.
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2 The Sparse Binding Array

We first define some terminology. A worker is a processing agent, usually a process running
on a separate processor. A team is a group of workers that share the same bindings, that
is, that are running in And-parallel. We assume that Or-parallelism is exploited by having
these teams running in Or-parallel, as in Andorra-I, or as in the C-tree model [6].

In our model, as in the original SRI model, the environment, choice-point and global
stacks, trail and code segment are all sharéd between workers. Following the cactus stack
concept, each worker has its area of work on the stacks, where he writes and from where
other workers can only read. The exception to this rule is the choice-point stacks. To fetch
Or-parallel work, workers will need to change shared choice-points. In this case, access is
synchronized.

Each team keeps a private set of bindings for shared variables. Therefore these data
structures are shared between workers in a team, and are not shared between teams. We
say that a team'’s binding array shadows the shared variables. The key idea in the binding
array concept is that for each variable in the stacks there is a single, uniquely identified,
binding array slot that is the same for any team. This allows for fast access to a binding
from a variable.

To implement the concept, the SRI model “binds” each variable X to the number of
variables NV between X and the root of the computation tree. To find out the private
binding of the variable X at SHARED_PTR, it is sufficient to search for the following
value:

PRIVATE.VALUE = BA_BASE[s(SHARED PTR)|

where PRIV ATE_V ALUE represents the value we are looking for, BA_BASE repre-
sents the origin of the corresponding binding array, and SHARED_PT R represents the
position of the shared variable, with *(SHARED_PT R) giving the value X.

In the Binding Array approach each new variable is initialized with an offset that
actually serves as a pointer to the binding array. Also notice that binding array cells are
allocated sequentially, that is, the entry for V;;; immediately follows the entry for V;.

Unfortunately the scheme breaks down when we do not know the number of variables
between a variable X and the root of the tree. This is the case when we have And-
parallelism. :

To address this problem, the Sparse Binding Array extends the original binding array
with the further restriction that this variable position must be unigue, that is, no other
currently accessible variable may have the same binding array offset. In this way, if several
workers in a team create variables at the same time, they are guaranteed never to use the
same binding array slot.

To implement this concept, the SBA uses a direct mapping from the global stack to
the global binding array, and from the local stack to the local binding array. The mapping
is from pointers to a shared stack to pointers to the corresponding binding array and is as
follows:
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SHARED_PTR = SHARED _PTR + (BA_BASE — STACK .BASE)

Thus, the private value can be obtained as follows:

PRIVATE_VALUE = SHARED PTR(BA.BASE -~ STACK .BASE]

where STAC K_BASE represents the base of the corresponding stack. Again we have
a constant-time operation, giving fast access. This access can be made quite fast if we
know before-hand STACK _BASE and BA_BASE. In fact, by using a shared memory
interface such as MMAP or SHM we may indeed know the two values at compile-time.

Note also that for each variable in the local and global stacks, we are creating at least
as many “virtual” copies in the SBA. We have used the word virtual because most of this
memory will never be actually used, only requested. As we shall discuss in more detail
later, modern Operating Systems only actually allocate memory that is being used.

3 Sparse Binding Array Implementation Issues

*In this section we discuss in detail two important issues in the SBA. First, we discuss the
problem of variable representation in the SBA, and next we discuss in more detail the
problem of memory allocation. It is clear that some space allocated for the SBA will be
wasted. This problem can be offset by the advantages of a simpler memory management
scheme and by the support for Independent And-parallelism.

3.1 Variable Representation in the SBA

If we use the SBA as the underlying system for the management of environment space
what should be the value of a variable cell?

Ih the BA scheme a cell’s value is an index into the binding array. In the PBA[8] scheme
the cell value is required to determine the location of its private environment value. In the
SBA it is the address of the cell that is used.

Both the BA and the PBA carefully maintain the cell value as an indication of vari-
able age. This is necessary because in a parallel implementation we cannot just compare
addresses to obtain ages. In the SBA scheme, we do not need to use indexes, but we still
require variable age maintenance to avoid conditional bindings and to trim the trail when
we cut.

We could have preserved the Aurora scheme. Aurora uses two counters, one for local
and other for global variables.

A first possible simplification is to use a single counter. A more interesting simplification
is to avoid having a counter, and instead to use a variable level representing the number
of choice points above it in the execution tree. If we carefully design our systems to
always allocate memory in such way that any private segment of branch will always be
composed of memory chunks in ascending order (as it is the case in Aurora) then variable
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age can be simply determined by the lexicographic order of the pair (variable level,
variable_address) .

The main advantage is that instead of updating an index each time a variable is created,
the level will be updated only when a choice point is allocated.

A second problem we needed to address with this scheme was the cut. When we
have cut, several choice-points are discarded. If we are at level O, cut to level M, and
bind a variable created at level N, where M < N < O, a binding to the variable is still
deterministic. The obvious solution would be to reset the counter to M. The problem
is that the next time we create a choice-point, its level would be M + 1, hence every
variable already created at levels between M + 1 < O would be considered to be bound
unconditionally, when in fact they can only be bound conditionally.

The solution to this problem is to use two counters. One counter, level-top represents
the level we have reached so far, whereas level-uncond represents the level for uncondi-
tional variables.

Private operations with levels are as follows:
new-var : «SHARED _ADRESS = leval-top;
conditional : («SHARED _ADRESS < level-uncond)
try : B-tlevel = level-uncend = level-top = level-top+i;
retry : level-top = level-uncond = B—level;
trust : level-top = B—level-1; level-uncond = B—iparent—level;

cut : level-uncond = NB—tlevel;

Note that the approach is similar to the way Aurora manipulates the binding array
counters. As in Aurora, the major problem arises when we have shared and private parts
of the search tree. We discuss the problems in further detail in section 4.3

3.2 Trusting the underlying Operating System

One of our motivations in designing the SBA was the improvements in Operating System
support for memory allocation. Modern operating systems support the direct mapping of
files in shared memory. Page frames for this mapping are allocated lazily (each time they
are referenced) and later written to the mapped file in disk. Consequently while virtually
we may have requested a big chunk of address space the operating system only allocates a
much smaller number of page-frames and supporting swap space.

Note that the operating system takes automatic care of the dynamic allocation of
memory and mapped file disk blocks each time a reference is made to a non allocated
page. Current file operating system implementations are also optimized to only use a
small number of real physical disk blocks . This means that the actual amount of physical
memory we need is not what we ask for, but what we use.



156 XVI Congresso da Sociedade Brasileira de Computacdo (SBC)

The question for the SBA is therefore of how much more memory we use in the Sparse
Binding Array. The answer is that the pages we will need in the Or-parallel implementation
are the pages where variables were created, and later on referenced. These pages consist
of variables plus environment control information, for the local stack, and variables plus
compound terms constructors and atoms, for the heap.

Notice also that when these system pages are no longer in use the operating system
automatically pages them out of memory. As a consequence the only thing that the system
implementor has to do when using SBA is to map memory space and leave to the underlying
operating system the task of its efficient maintenance.

Finally, we must not forget the fact that we are using the WAM [15] as the underlying
avpcntionangine.. 4 ettt i% well known, the’ WA M has very good memory'locality properiies.

The SBA inherits these properties.

4 The Or-Parallel Implementation of the SBA

As a first step towards a combined SBA based and-or system we have studied SBA’s
implementation in Aurora. We concluded that the necessary changes were reasonably
small as can be seen in detail with the discussion that follows.

4.1 Memory Allocation

We preserved Aurora’s memory allocation for the shared stacks but investigated two ap-
proaches for the SBA implementation in Solaris 2.4 .

MMAP: alarge chunk of memory was allocated for the SBA. Unfortunately in our experience we found out the BMAP routines
had severe problems. There were wide variations of performance between runs. Also, the HMAP best performance was
obtained when we actually allocated all the memory first. If we did not ask for the memory immediately, there would
be a severe degradation in performance.

MALLOC: the alternative was to use mallec to allocate space for the binding array. Surprisingly this gave much more
stable performance in our platform, and has since been used in the benchmarks.

The actual space we ask for the SBA “shadows” all the stacks. These include code
space, choicepoint stack, and trail, which need to be shadowed. In practice this should not
matter, as the space is only virtually allocated.

In any case we can keep the offset BA.BASE — STACK _BASE fixed and known at
compile-time. In order to save space, Aurora does not have a fixed BA_BASE value [4],
which results in worse performance versus the SBA system.

4.2 Engine in Private Region

Most of the time the Aurora engine will be executing private work. As we explained,
execution in the SBA model could follow the exact execution in Aurora, the only difference
being the macros for variable access.
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After introducing the “level” scheme, we had to make changes to other operations,
such as choicepoint manipulation and cut. These changes follow the principles presented
in section 3.1. To support shallow backtracking [3] the actual implementation for Aurora
is slightly more complex than in a traditional WAM [15].

A problem arises with the implementation of tail recursion in Aurora. Aurora keeps
a free variable in every environment in order to calculate the age for the environment.
In order to recover space it tests whether this age is younger than the age for the last
choicepoint. The SBA implementation uses the same approach, giving each environment
an extra slot with its age. Environments can be recovered if they are younger or if they
have the same age as level-uncond.

Whenever it creates a choice-point Aurora verifies if there is an overflow of the binding
array. This is not done within SBA thus accelerating choice-point creation.

4.3 Parallel Work

Parallel Work happens in Aurora when the engine enters a shared area of the search-tree,
or when the engine calls a scheduler.

Work in the shared area can be: moving up the tree to backtrack, moving down the
tree to select new work, and cutting shared work. Using sparse binding arrays does not
force any changes to this scheme. Problems only arise with the new level-based scheme. In
this case it is necessary to reset levels whenever we backtrack to shared areas of the tree,
or whenever we create new work. Note that when creating work we never perform trust
in the shared area because we cannot be sure someone else is exploring an alternative. The
choice-point has been created before, hence the operation is always a retry. In Aurora
the retry is always followed by creating an embryonic choice-point. These rules had to be
followed very carefully.

5 Initial Performance Evaluation

We have measured the timings and speedups obtained both from Aurora with SBA and
Aurora with Binding Arrays (table 1 and table 2). We have used an 8-CPU SparcCenter
2000 with 256MB of main memory, IMB cache per CPU, running Solaris 2.4. The system
was in multi-user mode. Both versions of Aurora were compiled with gcc -02. We used
the standard Aurora benchmark set. The scheduler we use is l;he distribution release of
the Bristol scheduler (2], as ported to the Sparc [13].

With one worker the SBA is between 10 and 15% faster then Aurora. Increasing the
number of workers, the SBA generally outperforms Aurora, although for higher number of
workers Aurora comes close and sometimes actually performs better then SBA.

We believe that the better sequential performance is explained by the advantages of
the SBA: easy calcuation of the BA address, and the use of levels for age comparison of
variables.
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As regards speedups, we think Aurora can achieve better speedups because:

o Aurora has worst one-worker performance, and therefore has coarser task-granularity.
This means that scheduling overheads will be less significant.

e Task-switching in the SBA is more expensive because the page working set is bigger.

We expect the speedups to improve by using the newer releases of the Bristol scheduler.
Finally note that these results are still preliminary. Further tests and optimizations
shall be carried out.

num_workers

Goals [*Times] 1 2 3 4 5 6 T
parsal #200 1.62 | 1.14(1.42) | 1.13(1.44) | 1.25(1.30) | 1.25(1.30) | 1.26(1.29) | 1.27(1.27)
parse2 *200 6.36 | 3.64(1.74) | 3.20(1.99) | 2.83(2.24) | 2.71(2.35) | 2.61(2.43) | 2.54(2.50)
parse3 #200 1.32 | 1.03(1.29) | 1.04(1.28) | 1.13(1.17) | 1.16(1.15) | 1.20(1.11) | 1.24(1.07)
parsed s50 5.81 | 2.97(1.96) | 2.28(2.55) | 1.88(3.09) | 1.69(3.44) | 1.55(3.76) | 1.46(3.98)
parse§ *10 3.86 | 2.04(1.89) | 1.45(2.66) | 1.20(3.23) | 1.04(3.72) | 0.92(4.20) | 0.87(4.44)
db4 *100 2.52 | 1.58(1.60) | 1.19(2.12) | 1.02(2.48) | 0.92(2.73) | 0.90(2.82) | 0.86(2.94)
dbs 100 3.27 | 2.03(1.61) | 1.45(2.25) | 1.23(2.65) | 1.14(2.88) | 1.07(3.06) | 1.03(3.17)
farmer #1000 2.96 | 2.48(1.19) | 3.09(0.96) | 3.61(0.82) | 3.96(0.75) | 4.21(0.70) | 4.51(0.66)
house *200 4.09 | 2.69(1.52) | 2.38(1.72) | 2.20(1.85) | 2.10(1.94) | 2.04(2.01) | 1.98(2.06)
8-queensi #10 7.00 | 3.58(1.95) | 2.44(2.87) | 1.85(3.79) | 1.52(4.61) | 1.29(5.43) | 1.13(6.18)
8-queens2 +10 | 17.99 | 8.89(2.02) | 5.98(3.01) | 4.50(4.00) | 3.70(4.86) | 3.11(5.79) N/A
tina *10 14.68 | 8.20(1.79) | 5.48(2.68) | 4.38(3.35) | 3.62(4.05) N/A N/A
sm2 *+100 10.03 | 5.35(1.88) | 4.05(2.48) | 3.10(3.23) | 2.63(3.81) | 2.33(4.30) | 2.10(4.77)
AVERAGE (1.68 (2.15) (2.56 (2.89) (3.07) (3.00)

Table 1: Performance of SBA on a SparcCenter 2000

num.workers

Goals [*Times] 1 2 3 4 5 6 7

parsel »200 1.86 | 1.17(1.58) | 1.12(1.67) | 1.18(1.58) | 1.20(1.56) | 1.21(1.54) | 1.26(1.48)
parse2 *200 7.00 | 3.78(1.85) | 3.07(2.28) | 2.73(2.56) | 2.61(2.68) | 2.56(2.73) | 2.62(2.68)
parse3 *200 1.49 | 1.10(1.36) | 1.11(1.34) | 1.18(1.26) | 1.19(1.25) | 1.24(1.20) | 1.30(1.15)
parsed *50 6.07 | 3.25(1.87) | 2.44(2.49) | 1.96(3.10) | 1.76(3.45) | 1.63(3.72) | 1.54(3.96)
parseb *10 3.99 | 2.13(1.87) | 1.50(2.66) | 1.24(3.22) | 1.05(3.78) | 0.94(4.22) | 0.87(4.59)
db4 +100 2,57 | 1.50(1.71) | 1.15(2.24) | 0.98(2.63) | 0.89(2.90) | 0.86(3.00) | 0.85(3.05)
dbs *100 3.15 | 1.82(1.73) | 1.32(2.39) | 1.18(2.68) | 1.08(2.91) | 1.04(3.04) | 0.99(3.19)
farmer #1000 3.24 | 2.36(1.37) | 3.07(1.06) | 3.63(0.89) | 3.95(0.82) | 4.16(0.78) | 4.49(0.72)
house #200 4.36 | 2.63(1.66) | 2.37(1.84) | 2.18(2.00) | 2.09(2.09) | 1.99(2.19) | 1.97(2.21)
8-quesnsi #10 8.14 | 3.84(2.12) | 2.59(3.15) | 2.06(3.96) | 1.66(4.90) | 1.40(5.83) | 1.19(6.84)
8-queens2 «10 | 20.06 | 9.75(2.06) | 6.37(3.15) | 4.79(4.19) | 3.89(5.16) | 3.32(6.04) | 2.92(6.88)
tina 10 15.57 | 7.95(1.96) | 5.51(2.83) | 4.21(3.70) | 3.47(4.49) | 2.94(5.30) | 2.62(5.94)
sm2 100 10.24 | 5.42(1.89 3.15(2.E§_ 3.03(3.38) | 2.51(4.07) | 2.24(4.58) | 2.07(4.94)
AVERAGE (1.77 (2.29 52.70; (3.08 (3.40) (3.66)

Table 2: Performance of Aurora on a SparcCenter 2000
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6 Conclusions

We presented the Sparse Binding Array, an efficient environment representation scheme
designed to support both Independent And- and Or-parallelism. The scheme can be eas-
ily ported to traditional Binding Array based systems. In this paper we show that the
ensuing implementation can actually outperform the corresponding Binding Array based
implementation, at least in sequential execution.

We believe this approach to be very promising for combined parallel systems, as the
binding model directly supports Independent And-parallelism and Determinate And-parallelism
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