ignt '13

BOOK OF ABSTRACTS

6TH MEETING OF YOUNG RESEARCHERS OF UNIVERSITY OF PORTO

6TH MEETING OF YOUNG RESEARCHERS OF UNIVERSITY OF PORTO

U. PORTO

CREDITS

Livro de Resumos IJUP'13

6° Encontro de Investigação Jovem da U.Porto

© Universidade do Porto AA ID+i t.22 040 81 46 secidi@reit.up.pt

Design Ana Fernandes & Daniel Martins Rui Mendonça

Impressão e acabamentos Invulgar — artes gráficas

Tiragem 1000 exemplares

Depósito Legal 340336/12

ISBN 978-989-746-006-7

Neuregulin-1 treatment reduces the severity of pulmonary arterial hypertension

P. Mendes-Ferreira¹, C. Maia-Rocha¹, R. Adão¹, A. Lourenço¹, R. Cerqueira¹, S. Pinho¹, M. Mendes¹, P. Castro-Chaves¹, G. de Keulenaer², A. Leite-Moreira¹, C. Brás-Silva^{1,3}

¹ Department of Physiology, Faculty of Medicine, University of Porto, Portugal.
² Laboratory of Physiology, University of Antwerp, Belgium.
³Faculty of Nutrition and Food Sciences, University of Porto, Portugal.

Neuregulin (NRG)-1 is implicated in the preservation of left ventricular function in pathophysiological conditions [1]. However, the role of NRG-1 in right ventricular (RV) failure is still unknown. We analysed the effects of NRG-1 treatment in an animal model of pulmonary arterial hypertension (PAH) and RV heart failure (HF).

Male Wistar rats (180-200g) randomly received monocrotaline (MCT, 60mg/Kg,sc) or vehicle. After 14 days, animals randomly received NRG-1 ($40\mu g/Kg/day$,ip) or vehicle, resulting in 4 groups: ctrl (n=10); ctrl+NRG (n=10); MCT (n=10); MCT+NRG (n=10). RV hemodynamics and sample collection for vascular, morphometric, histologic and molecular studies were performed 25-28 days after MCT administration. Only significant results (mean±SEM, p<0.05) are given.

MCT group developed PAH, as shown by increased RV maximum pressure (MCT vs ctrl: 63 ± 3 vs 34 ± 3 mmHg) and by decreased cardiac output (MCT vs ctrl: 34 ± 4 vs 65 ± 4 mL/min) which were both attenuated in the MCT+NRG group (53 ± 3 mmHg and 52 ± 2 mL/min). Animals from the MCT group developed RV hypertrophy (RV weight/tibia length ratio MCT vs ctrl: 0.08 ± 0.002 vs $0.05\pm0.003g/cm$) and pulmonary congestion (lung weight/tibia length ratio MCT vs ctrl: 0.08 ± 0.002 vs $0.05\pm0.003g/cm$), both changes were minimized by the NRG-1 treatment (0.06 ± 0.002 g/cm and 0.6 ± 0.03 g/cm, respectively). Histological analysis also revealed a decrease of RV cardiomyocyte hypertrophy and fibrosis in the MCT+NRG group vs MCT group. The RV of MCT group presented increased expression of brain natriuretic peptide (BNP) and endothelin (ET)-1 (17.5 and 5.0 times vs ctrl, respectively). These changes were attenuated or reversed in the MCT+NRG group (BNP expression increased only 5.6 times vs ctrl, and ET-lexpression did not change). The MCT group presented endothelial pulmonary dysfunction ($35\pm2\%$ vs ctrl $86\pm2\%$ of relaxation in response to acetylcholine), which was attenuated in the MCT+NRG group ($48\pm3\%$).

NRG-1 chronic treatment significantly reduced the severity of PAH and RV hypertrophy, as well as the expression of genes associated with overload and ventricular hypertrophy. These findings suggest that the NRG-1 pathway has a relevant role on the pathophysiology of PAH and RVHF, representing a potential therapeutical target.

References:

[1] De Keulenaer, G.W., Doggen, K. and Lemmens, K. (2010). The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res, 106, 35-46.