ignt '13

BOOK OF ABSTRACTS

6TH MEETING OF YOUNG RESEARCHERS OF UNIVERSITY OF PORTO

6TH MEETING OF YOUNG RESEARCHERS OF UNIVERSITY OF PORTO

U. PORTO

CREDITS

Livro de Resumos IJUP'13

6° Encontro de Investigação Jovem da U.Porto

© Universidade do Porto AA ID+i t.22 040 81 46 secidi@reit.up.pt

Design Ana Fernandes & Daniel Martins Rui Mendonça

Impressão e acabamentos Invulgar — artes gráficas

Tiragem 1000 exemplares

Depósito Legal 340336/12

ISBN 978-989-746-006-7

Neuregulin-1 decreases the passive force of cardiomyocytes from the right ventricle in pulmonary arterial hypertension

<u>R. Adão</u>¹, A. Meireles¹, P. Mendes-Ferreira¹, C. Maia-Rocha¹, I. Falcão-Pires¹, G. de Keulenaer², A. Leite-Moreira¹ and C. Brás-Silva^{1,3}

¹ Department of Physiology, Faculty of Medicine, University of Porto, Portugal.
² Laboratory of Physiology, University of Antwerp, Belgium.
³Faculty of Nutrition and Food Sciences, University of Porto, Portugal.

Neuregulin (NRG)-1 is implicated in the maintenance and structural integrity of the cardiovascular system. Recent studies showed the involvement of NRG-1 in the preservation of left ventricular performance in pathophysiological conditions [1]. Nevertheless, the role of NRG-1 in pulmonary arterial hypertension (PAH) and right ventricular (RV) failure is still unknown. Therefore, the goal of this study was to evaluate the effects of a NRG-1 chronic treatment on intrinsic myocardial properties, namely on the modulation of active and passive force of cardiomyocytes isolated from the right ventricle of animals with PAH.

Male Wistar rats (180-200g) randomly received monocrotaline (MCT,60mg/Kg,sc) or vehicle. After 14 days, animals from these groups were randomly assigned to receive treatment with either NRG-1 (4ug/Kg/day,ip) or vehicle. The study resulted in 4 experimental groups: control (CTRL,n=9); CTRL+NRG (n=12); MCT (n=12); MCT+NRG (n=18). Between 21 and 24 days after MCT administration, samples were collected for functional studies. Right ventricular samples were mechanically disrupted and incubated in relaxing solution supplemented with Triton (0.2%). Single cardiomyocytes were subsequently attached with silicone adhesive between a force transducer and a piezoelectric motor and active and passive forces were measured. Only significant results (p<0.05) are given.

MCT-group isolated cardiomyocytes developed higher passive force when compared to CTRLgroup cells at the sarcomere lengths of 2.0 (MCT vs. CTRL: 1.76 ± 0.26 vs. 1.43 ± 0.29 N/m²), 2.2 (MCT vs. CTRL: 3.74 ± 0.71 vs. 2.68 ± 0.24 N/m²), and 2.3μ m (MCT vs. CTRL: 5.73 ± 1.22 vs. 3.86 ± 0.87 N/m²). Treatment with NRG-1 was able to restore passive force development to levels similar to the CTRL-group cardiomyocytes, at 2.0, 2.2, and 2.3μ m (MCT+NRG: 1.28 ± 0.25 , 3.04 ± 0.55 , and 3.63 ± 0.89 N/m², respectively). CTRL+NRG-group cardiomyocytes developed significantly less passive force when compared to CTRL-group cells (CTRL+NRG: 1.19 ± 0.25 , 2.32 ± 0.55 , and 3.16 ± 0.54 N/m², at 2.0, 2.2, and 2.3μ m respectively). The analysis of the active force showed that in the MCT+NRG-group cardiomyocytes active force development was decreased when compared to MCT-group cells (MCT+NRG: 9.67 ± 2.83 N/m²).

NRG-1 chronic treatment is able to reverse the changes in both active and passive myocardial forces that occur in the presence of PAH. Interestingly, NRG-1 chronic treatment also decreases the passive force of cardiomyocytes isolated from the right ventricle of healthy animals. These findings suggest that the NRG-1 pathway has a relevant role in the regulation of diastolic function and in pathophysiology of PAH by decreasing passive force and thus myocardial stiffness, pointing to its potential role as a therapeutic target.

[1] De Keulenaer, G.W., Doggen, K. and Lemmens, K. (2010). The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res, 106, 35-46.