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Can Markov switching model generate long memory?
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h i g h l i g h t s

• The relationship between Markov switching (MS) model and long memory is reexamined.
• Common spectral estimators of the long memory parameter are found to be extremely biased for the MS model.
• This is explained by analyzing the expected periodogram and the variance of the partial sum process of the MS model.
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a b s t r a c t

In an influential work by Diebold and Inoue (2001), the Markov switching model was shown to exhibit
long memory, in terms of the behavior of the second moments of partial sums. The relationship between
the Markov switching model and long memory is reexamined here. Common estimators of the long
memory parameter are found to be extremely biased when applied to the data generated by the Markov
switching model. An explanation for these findings is provided.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In a seminal work, Diebold and Inoue (2001) related several
forms of changes in regime to long memory. One of several fun-
damental models studied in their work was the Markov switching
(MS) model, defined as

XT
k = µsTk

+ ϵk, k = 1, . . . , T , (1.1)
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where {ϵk} is a sequence of i.i.d. random variables withmean 0 and
variance σ 2

ϵ , {sTk }k=1,...,T is a stationary Markov chain, taking the
value 0 or 1, with the transition probabilities pij = pij(T ), i, j =

0, 1, depending on T , and µ0 ≠ µ1 are two different mean levels.
Supposing

pjj = pjj(T ) = 1 −
cj
T δj

, j = 0, 1 (1.2)

with 0 < c0, c1 < 1 and 0 < δ0, δ1 < 1, Diebold and Inoue (2001,
Proposition 3), showed that

Var(ST ) ∼ CT 2d+1, as T → ∞, (1.3)

where ST = XT
1 + · · · + XT

T is the partial sum of the series XT
k , and

d = (min{δ0, δ1} − |δ0 − δ1|)/2 ∈ (0, 1/2).
The behavior (1.3) of the variances of the partial sums is consis-

tent with that of long memory time series, with the long memory
parameter d ∈ (0, 1/2) (e.g. Robinson, 2003; Beran et al., 2013).
The MSmodel thus seemingly suggests a way to generate (induce)
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long memory, providing another physical mechanism for long
memory akin to ON/OFF models (Willinger et al., 1997; Mikosch
et al., 2002; Smith, 2005) or aggregation of short memory models
(Granger, 1980).

In this note, we reexamine the relationship between the MS
model and long memory. We find through numerical simulations
that the spectral (GPH or local Whittle) estimation of the long
memory parameter d in theMSmodel is extremely biased and very
sensitive to the tuning parameter (the number of low frequencies
used in estimation). This occurs because the population quantities
(the log of the expected periodogram) deviate very significantly
from what would be expected under long memory (see Section 2).

We shed further light on the relationship between the MS
model and long memory by examining the variance of the partial
sum process ST (t) =


[Tt]
k=1(X

T
k − EXT

k ), t ∈ [0, 1]. As shown be-
low (see Section 3), the behavior of this variance is more in line
with short memory (associated with d = 0) and not long mem-
ory (d ∈ (0, 1/2) as above). Since this behavior often underlies the
estimation of the long (short) memory parameter, the MS model
should thus be viewed as a short memorymodel which happens to
have some long memory features as in (1.3). This also sheds light
on the estimation results in the spectral domain.

Our findings show that the MS model should not be viewed as
another physical mechanism to generate true long memory (see
also Section 3 below). The MS model may nevertheless suggest
longmemory through common spectral estimators such as GPH or
localWhittle. Diebold and Inoue (2001) showed this by focusing on
testing for shortmemory (which can be rejected for theMSmodel).
We differ from Diebold and Inoue (2001) by focusing on point
estimates of the long memory parameter. This not only confirms
the findings of Diebold and Inoue (2001) but also identifies the
issue of a serious bias in estimating the expected long memory
parameter.

The rest of the note is organized as follows. Estimation results
are presented in Section 2 and further discussion can be found in
Section 3. Section 4 contains some concluding remarks.

2. Estimation of long memory parameter

In this section, we consider the estimation of the long memory
parameter in the MS model. We first consider the popular GPH
and local Whittle (LW, in short) methods. Both methods are in the
spectral domain, and use the periodogram IX (ωj) of the series {XT

k }

at the Fourier frequencies ωj = 2π j/T , j = 1, . . . , T . The GPH
estimator is obtained from the regression of log IX (ωj) on logωj and
can be expressed as

dgph =

m
j=1

aj log IX (ωj),

where m is the number of low frequencies used in estimation and
the regression weights aj = (zj − z̄)/

m
j=1(zj − z̄)2 with zj =

−2 logωj, z̄ =
m

j=1 zj/m (Geweke and Porter-Hudak, 1983). The
LW estimator, based on theWhittle approximation of the Gaussian
log-likelihood, is defined as (Robinson, 1995)

dlw = argmin
d∈[Θ1,Θ2]


log


1
m

m
j=1

ω2d
j IX (ωj)


−

2d
m

m
j=1

logωj


, (2.1)

where −0.5 < Θ1 < 0 < Θ2 < 1 are fixed.
Fig. 1 depicts GPHand LWestimation for theMSmodel.We took

µ0 = 0, µ1 = 1, c0 = c1 = 0.9, normal errors with σ 2
ϵ = 1,

T = 105 and two choices of δ0 = δ1 = 0.8 and δ0 = δ1 = 0.2 cor-
responding to d = 0.4 and d = 0.1, respectively. The top plots are
the estimatesd = d(m) as functions of m when d = 0.4, for 100
realizations. The bottom plots correspond to d = 0.1. It is clearly
seen from Fig. 1 that both estimators are extremely biased for a
wide range of low frequencies used in estimation even for such a
large sample size. For larger d = 0.4, the estimators suggest long
memory for a wide range of lower frequencies but the bias is close
to zero only for a tiny subset of this range.

The difficulties with estimation can be explained further
through the following argument. By using Proposition 3 in Diebold
and Inoue (2001), which provides the autocovariance function of
the MS model {XT

k }, it can be shown that

EIX (ωj) =
1
2π


σ 2

ϵ +
(1 − p00)(1 − p11)
(2 − p00 − p11)2

(µ0 − µ1)
2

×


1 + 2

T−1
k=1


1 −

|k|
T


λk cos(kωj)



=
1
2π


σ 2

ϵ +
(1 − p00)(1 − p11)
(2 − p00 − p11)2

(µ0 − µ1)
2

×


1 + 2ℜ


λeiωj

1 − λeiωj

+
1
T

(λeiωj)T+1
− λeiωj

(1 − λeiωj)2


, (2.2)

where ℜ denotes the real part. Fig. 2 shows the log–log plot of
the expected periodogram (2.2) in plus marker, an average of 100
periodograms from simulated data in dotted line, and the slope
with the long memory parameter d in dashed–dotted line, against
the Fourier frequencies. Note the good agreement between the ex-
pected and averaged periodograms. But also note that they deviate
very significantly from the line of the expected slope determined
by d.

Diebold and Inoue (2001) have also reported some numerical
simulations for the MS model (see also Yu, 2009). In figures 8 and
9, they consider the GPH estimates for the choice ofm = T 0.5, find-
ing them in the interval (0, 0.5). Although these findings are con-
sistent with the ones reported here (Fig. 1), we go a step further by
focusing on the bias of the GPH estimator.

3. Behavior of variance of partial sum process

A disagreement of the MS model with the expected long mem-
ory behavior also manifests itself in the following more basic and
fundamental way. If ST (t) =


[Tt]
k=1(X

T
k − EXT

k ), t ∈ [0, 1], is the
partial sum process of theMSmodel, then Proposition 3 in Diebold
and Inoue (2001) can be used to show that

Var(ST (t)) =
(1 − p00)(1 − p11)
(2 − p00 − p11)2

(µ0 − µ1)
2
[Tt]

×


2λ

1 − λ
+ 1 +

2(λ[Tt]+1
− λ)

[Tt](1 − λ)2


+ σ 2

ϵ [Tt]. (3.1)

This further leads to

vT (t) := Var


ST (t)
T d+1/2


∼ Ct, (3.2)

as T → ∞ (see Baek et al., 2014 for details).
In the case of a true long memory time series, the right-hand

side of (3.2) is Ct2d+1. The behavior (3.2), on the other hand, is asso-
ciatedwith shortmemory and d = 0. (As shown inBaek et al., 2014,
ST (t)/T d+1/2 also converges in the sense of finite-dimensional dis-
tributions to Brownian motion.) Fig. 3 presents the log–log plot of
vT (t) as a function of t , together with the expected slope equal to
1 (d = 0). Note the good agreement between log vT (t) and the
expected slope.

In fact, the relation (3.2) with t2d+1 on its right-hand side gives
rise to the so-called aggregated variance estimator of the long
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Fig. 1. GPH and LW estimation for the MS model with d = 0.4 and 0.1. The dashed horizontal line indicates the value of d = 0.4 or 0.1. Three vertical lines correspond to
m = T 0.4, T 0.5 and T 0.6 , as rule-of-thumb choices form.
Fig. 2. Periodogram against Fourier frequencies in the log–log plots. The slope of the dashed–dotted line is determined by the true long memory parameter.
memory parameter d, which according to (3.2) is zero for the MS
model, corresponding to short memory. From the estimation per-
spective, the MS model thus behaves more like a short memory
model which happens to have some long memory features as in
(1.3). This claim also sheds light on the estimation result in the
spectral domain: the slope of the expected periodogram in Fig. 2
tends to have the zero slope at lowest frequencies (for a larger d,
a much larger sample size is needed to observe the zero slope at a
larger range of the lowest frequencies).
4. Conclusion

In this note, we reexamined the connection between the
Markov switchingmodel and longmemory. The theoretical results
of Diebold and Inoue (2001) relate the model to long memory, but
a serious bias makes the expected long memory parameter diffi-
cult to observe in practice. By examining the variance of the partial
sum process, we also argued that the MS model should be viewed
rather as a short memorymodel which happens to have some long
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Fig. 3. log vT (t) against log t for the MS model with d = 0.4.
Fig. 4. Log–log plots for the ON/OFF model with d = 0.4 and sample sizes T = 103 and T = 104 .
memory features. In particular, the MS model may suggest long
memory through common estimators in the spectral domain.

Related to this last point, we also mention several recent works
aiming at distinguishing changes-in-mean and related models
from long memory. For example, Iacone (2010), McCloskey and
Perron (2013) employ common estimators of long memory in the
spectral domain by selecting carefully the range of frequencies to
be used in estimation. Baek and Pipiras (2012, 2013) propose a
method based on removing changes in mean and local Whittle es-
timation.

Our findings for the MS model also stand in sharp contrast to
other physicalmechanisms to generate longmemory. For example,
the ON/OFF model (superimposed with i.i.d. noise) can be defined
by (1.1) where sTk = sk does not depend on T and still takes values
0 or 1 but now

sk =


1, if Si ≤ k < Si + UON

i ,

0, if Si + UON
i ≤ k < Si+1,

with Si = S0 +
i

j=1(U
ON
j + UOFF

j ) and independent collections
{UON

j } and {UOFF
j } of i.i.d. positive random variables. (S0 is a special

random variable to ensure that sk is stationary.) Such an ON/OFF
model is long memory as long as the distribution F = FON of {UON

j }
or F = FOFF of {UOFF
j } is heavy-tailed, that is, 1 − F(u) ∼ cu−α, as

u → ∞, whereα ∈ (1, 2). The longmemory parameter d is related
to α through d = (2 − α)/2.

Fig. 4 presents the log–log plots of the averaged periodogram
against Fourier frequencies for the ON/OFF model where ON times
are chosen to be Pareto with α = 1.2 (corresponding to d = 0.4),
c = 501.2, and OFF times follow the exponential distribution with
mean 150. The noise variance is σ 2

ϵ = 1 as in the MS model simu-
lations, and the results are based on 100 replications. As seen from
the plots, the log of the periodogramexhibits a linear behaviorwith
the slope close to the true one for a number of low frequencies con-
sidered.
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