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Abstract: The different definitions of chronic pelvic/visceral pain used by international societies
have changed over the years. These differences have a great impact on the way researchers study
chronic pelvic/visceral pain. Recently, the role of systemic changes, including the role of the central
nervous system, in the perpetuation and chronification of pelvic/visceral pain has gained weight.
Consequently, researchers are using animal models that resemble those systemic changes rather
than using models that are organ- or tissue-specific. In this review, we discuss the advantages
and disadvantages of using bladder-centric and systemic models, enumerating some of the central
nervous system changes and pain-related behaviors occurring in each model. We also present some
drawbacks when using animal models and pain-related behavior tests and raise questions about
possible, yet to be demonstrated, investigator-related bias. We also suggest new approaches to study
chronic pelvic/visceral pain by refining existing animal models or using new ones.

Keywords: endometriosis pain syndrome; chronic primary bladder pain syndrome; animal model

1. The Implications of the Definitions and Terminologies of Chronic Pelvic and
Visceral Pain

According to the International Association for the Study of Pain (IASP), chronic pri-
mary pain is defined as a persistent pain lasting for 3 months that is associated with
emotional and/or functional impairment and cannot be associated with another condi-
tion [1]. If pain is associated with the head/neck viscera, thoracic viscera, abdominal
visceral, or pelvic viscera with referral pain patterns from specific visceral organs, it is
called chronic primary visceral pain (CPVP) [1]. If pain is felt in the pelvic region with
referral pain patterns from specific pelvic organs without a diagnosed cause, after ex-
cluding all other causes it is called chronic primary pelvic pain syndrome (CPPPS) [1].
Endometriosis pain syndrome (EPS) is an example of CPPPS and should not be confused
with endometriosis, whose lower abdominal pain is related to ectopic endometrium and,
therefore, considered a chronic secondary visceral pain syndrome caused by persistent
inflammation/vascular mechanisms (Table 1) [1–3]. However, the American Association
of Gynecologic Laparoscopists, the European Society for Gynecological Endoscopy, the
European Society of Human Reproduction and Embryology, and the World Endometriosis
Society do not distinguish the chronic pain associated with EPS and endometriosis, assem-
bling the patients under an umbrella term of endometriosis [4,5]. According to the IASP, if
the pain is felt in the urinary bladder and there is at least one lower urinary tract symptom,
without apparent cause or bladder inflammation, it is called chronic primary bladder pain
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syndrome (CPBPS), formerly known as interstitial cystitis, painful bladder syndrome, and
PBS/IC or BPS/IC (Table 1) [1]. The 2022 European Association of Urology Guidelines
on Chronic Pelvic Pain followed the IASP definitions and nomenclature [6]. The 2022
American Urology Association Guidelines did not approach the chronic pelvic/visceral
pain terminology issue [7].

According to the International Continence Society (ICS) definitions, chronic pelvic
pain (CPP) is a persistent, recurrent, or continuous pain for 6 months that is related to the
pelvic/abdominal region and is often associated with gynecological and lower urinary tract
symptoms. If central sensitization and other chronic pain mechanisms are identified, the
definition of chronic pelvic pain also applies, even if the general rule of six months is yet to
be confirmed [8]. According to the ICS, whenever chronic pelvic pain cannot be associated
with a well-defined pathology, it is called chronic pelvic pain syndrome (CPPS) [9]. Bladder
pain syndrome (BPS) is an example of CPPS (Table 1). The European Society for the Study of
IC/BPS (ESSIC) follows the same definition as the ICS [10]. According to the ICS, if chronic
pain is associated with visceral organ damage, inflammation, or pressure and is detected
by visceral organ nociceptors, it is called chronic visceral pain (CVP) [8]. Endometriosis
is an example of CVP with an organic cause, specifically with an inflammatory origin
(Table 1) [8]. The ICS does not have a definition for EPS.

Table 1. Summary of IASP and ICS classifications of pain related to endometriosis, endometrio-
sis pain syndrome (EPS), and bladder pain syndrome (BPS) and chronic primary bladder pain
syndrome (CPBPS).

IASP/EAU ICS/ESSIC

Endometriosis Chronic secondary visceral pain syndrome Chronic visceral pain

EPS Chronic primary visceral pain—chronic primary
pelvic pain syndrome -

CPBPS/BPS Chronic primary visceral pain Chronic pelvic pain
Interstitial cystitis - Chronic pelvic pain

Both the IASP/EAU and ICS/ESSIC classifications consider that endometriosis is
associated with visceral pain. However, while in the IASP/EAU definition pain is due to
the possible extra-pelvic location of the lesion [1,2,6] and the term secondary indicates that
it is associated with tissue inflammation, in the ICS/ESSIC definition pain results from the
tissue inflammation detected by nociceptors [9].

The ICS/ESSIC do not have a definition for EPS. The ICS classification is based on
symptoms, and therefore it may not distinguish endometriosis from EPS [9]. Hence,
endometriosis may have been used to define EPS in many clinical studies and reports.
Accordingly, the ICS/ESSIC pain classification also does not distinguish bladder pain
syndrome from interstitial cystitis, as patients may present similar pain symptoms, although
it approaches them as two different conditions. The evolution of the bladder pain syndrome
nomenclature showed that in the past, interstitial cystitis was used to define bladder pain
syndrome in clinical studies and reports.

Although EPS patients may have extra-pelvic lesions and/or may report extra-pelvic
pain, the IASP/EAU define it as pelvic pain. On the other hand, CPBPS is not considered a
pelvic pain syndrome by the IASP/EAU, probably because the location of pain, although
difficult to identify, is mostly (but not exclusively [11]) found in the visceral region. In the
ICS/ESSIC definition, however, the pelvic classification is due to the lack of connection of
the pain to a visceral organ impairment [9].

The different criteria used by the IASP/EAU (origin and location) and the ICS/ESSIC
(functional/symptoms) definitions of pain related to endometriosis and bladder pain
syndrome influence the approaches to study these conditions. While using the IASP/EAU
classification, the three identified conditions are endometriosis, EPS, and CPBPS (without
IC). Using the ICS/ESSIC classification, the three identified conditions are endometriosis,
BPS, and IC.
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2. The Implications of Symptom Identification in the Study of Chronic Pelvic/Visceral Pain

One of the characteristics of EPS is that it was previously diagnosed as endometriosis,
which justifies the origin of the pelvic pain [1,2]. However, after the surgical removal of
the ectopic endometrium or its hormonal treatment, the pain may remain [1]. Therefore,
the existence of ectopic endometrium in EPS patients may be, in some cases, irrelevant
to the pain phenotype [1]. CPBPS, on the other hand, does not require the existence of
inflammation and tissue damage in its diagnostic, although some patients might present
inflammatory cells in the urinary bladder wall [1].

One approach to understanding if the mechanisms of chronic pain associated with EPS
and CPBPS overlap is to identify the common features of these conditions. One common
aspect is the location of pain described by patients. Most of the work published concerning
the mapping of pain in endometriosis was performed pre-surgery and complemented
by post-surgery diagnosis. Hence, it is not clear which pain locations were related to
endometriosis and which were related to EPS or even if locations were related to EPS and
changed after the removal of the lesions. Nevertheless, there was an extensive overlap in
the mapping of the pain of endometriosis and CPBPS, as shown in Figure 1.
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Another common aspect in both syndromes is that patients present cognitive, behav-
ioral, sexual, and/or emotional modifications, which are reflected in comorbidities such as
depression and anxiety [1,13–15]. Moreover, the same patient may be diagnosed simulta-
neously with EPS and CPBPS [16]. It is not surprising, therefore, that both syndromes are
associated with changes in the central nervous system [16], with the insula and the thalamus
being the most commonly altered brain structures in both syndromes [17–20]. It is also note-
worthy that both EPS and CPBPS present changes in the hypothalamic–pituitary–adrenal
(HPA) axis, altering the stress-mediated response to noxious stimuli [16,21,22]. In fact,
changes in cortisol levels have been associated with pain intensity (negative correlation)
in these conditions [22,23]. Concurrent with HPA-axis hormonal changes, patients with
both syndromes simultaneously present changes in the autonomic nervous system [24,25].
Therefore, both EPS and CPBPS patients present several phenotypes, which may explain
why the available therapies are not pan-effective. As a corollary, many clinicians strongly
support clustering patients by clinical and histological findings and by their responses to
specific therapies or even to individualized management.

3. Back-translation of Patient Symptoms According to Their Associations with Chronic
Pelvic/Visceral Pain

The clustering of patients according to their symptoms and signs is a complex issue.
The multiplicity of phenotypes presented by patients and the multiplicity of scientific
organizations make the definition of a worldwide accepted cluster very complex. Never-
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theless, some attempts have been made. The UPOINT system proposed by Nickel and
co-workers for phenotyping CPBPS patients is a good example of a simple tool to phe-
notype patients [26]. In the UPOINT algorithm, symptoms and signs are not exclusively
related to the urinary bladder [26,27]. Rather, UPOINT is an acronym for the different do-
mains observed in or reported by patients, which include urinary symptoms, psychosocial
dysfunction, organ-specific findings, infection, neurologic/systemic comorbidities, and ten-
derness (related to pain) [26]. By broadening the urinary symptoms concept into functional
symptoms, UPOINT may help to cluster patients with EPS, CPBPS, and even other chronic
pelvic/visceral pain syndromes. The UPOINT score has shown strong positive correlations
with the score obtained using the Interstitial Cystitis Symptom Index (ICSI) questionnaire
and with the pain score obtained using a visual analogue scale (VAS) [26,27]. UPOINT has
evolved to include other symptoms, including sexual dysfunction [28], and has already
been used to define the therapeutic approach according to the patient’s phenotype [29,30].
That is, the presence and severity of the symptoms observed in each subdomain of UPOINT
determine if a single or a multimodal therapy should be offered to the patient [29].

Back-translation of the UPOINT may help researchers to choose and refine the animal
models used to study chronic visceral/pelvic pain. Some aspects of EPS and CPBPS are
more easily back-translated than others, either due to methodological limitations or due
to the pain characteristics of individual subjects. Taking the organ-specific findings as
an example, in EPS one of the most common organ-specific findings is the presence of
endometrial lesions. Nonetheless, the number of lesions in patients does not correlate with
the intensity of pain [31]. Moreover, the presence of lesions in patients is not a necessary
condition for the development of pain [32,33]. This is an important concept, as back-
translated data are generally supported by clinical studies that use patients with chronic
pain without endometrial lesions as controls for patients that present endometrial lesions.

Recent works have suggested that, independent of being related to endometriotic
lesions, the pain associated with EPS results from changes in the way it is integrated in the
central nervous system (CNS) [32]. Hence, when using the induction of lesions in an EPS
animal model, those lesions should induce changes in the same way that the patients’ CNSs
integrate pain. Moreover, to better replicate what is observed in EPS patients, the CNS
changes should persist after the removal of those lesions (as occurs during EPS) to ensure
that the observed animal pain behavior is not a consequence of the inflammation generated
by the lesions (as occurs during endometriosis). However, this is methodologically complex,
time-consuming, and, to our knowledge, has never been performed. Hence, the finding of
specific markers for these CNS changes will help to surpass this methodological drawback.

In CPBPS, one of the most common organ-specific findings is urothelium functional
impairment (not denudation, as in the case of IC). The urothelium barrier impairment
has been associated with submucosa inflammation of the urinary bladder in patients with
CPBPS and other bladder pathologies [34,35]. The urothelial barrier impairment is thought
to be the mechanism by which the urine content activates bladder nociceptors that, in
turn, induce neurogenic inflammation locally and promote CNS changes that lead to pain
chronification [36]. This hypothesis, however, is difficult to test using bladder-centric
CPBPS animal models, not only because of the technical complexity but also because of the
difficulty in defining if the animal pain-like behavior is due to neurogenic inflammation
(as might predominate in IC) or due to the changes induced in the CNS (as happens
during CPBPS). Hence, the identification of which/how symptoms correlate with the
etiology of chronic pelvic/visceral pain phenotypes is difficult in animals, especially when
it is apparent that different insults/events may lead to similar chronic pelvic/visceral
pain phenotypes.

4. Systemic Symptoms Prompt Systemic Models for the Study of Chronic
Pelvic/Visceral Pain

EPS and CPBPS patients commonly present systemic symptoms, potentially reflecting
the existent comorbidities and CNS changes that translate into the multiple pain sites ob-
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served in Figure 1. Hence, animal models with CNS alterations that lead to pain behaviors
and/or contribute to the development of symptoms of comorbidities (changes in organ
activity and/or sensitivity as well as depression and/or anxiety symptoms, among others)
may potentially provide more information about the chronic pain associated with EPS
(white, Table 2) and CPBPS (grey, Table 2) than organ-centered models. In Table 2, the most
used complex rodent models of EPS/endometriosis and CPBPS [37] and how they relate to
UPOINT are summarized.

Table 2. Rodent models used recently to study EPS (white background) and CPBPS (grey background).
The animals’ characteristics are organized according to their similarity to patients’ symptoms and
signs in each UPOINT subdomain.

Model U P O I N T References

Retrograde menstruation + [38]
Autologous transplantation + + + + + [39–63]
Allogenic transplantation + [39]
Autologous transplantation to the sciatic nerve + + [64–70]
Autologous transplantation to muscle + [71–75]
Syngeneic transplantation + + + + [76,77]
Xenograft transplantation + [78]
Intraperitoneal injection of endometrial tissue + [79–81]
Peritonitis + + [82,83]
Colonic instillation of TNBS + + + + [84–89]
Uterine pain + [90]
Autoimmune + + + + [91–96]
Prostatic inflammation + + + [97–100]
Pseudorabies virus + + + + [101–108]
Systemic administration of molecules + + + [109–111]
Restraint stress + + + [112–115]
Water avoidance stress + + + + + [116–121]
Chronic variable stress + + [122]
Cold stress + [123,124]
Social stress + + + [125–127]
Foot shock stress + + + [128,129]
Early-life stress by odor–shock conditioning + + + [130,131]
Early-life stress by neonatal maternal
deprivation + + + + [132–134]

Among the EPS/endometriosis and CPBPS/BPS/IC models in use, those that more
similarly back-translate the systemic symptoms are those that present urinary/functional
symptoms, psychosocial dysfunction, and neurologic/systemic (comorbidities) impair-
ments. This is the case of the autologous transplantation, water avoidance stress (WAS),
and neonatal maternal deprivation (NMD) models. However, even these models need
further refinements if the goal is to unveil the pathophysiological mechanism or find new
treatments for EPS and CPBPS.

Considering the autologous transplantation model (ATM), endometrial tissue trans-
plantation must be performed because the rodents do not have a menstrual cycle and
consequently do not spontaneously develop endometrial lesions. The only exception is
the spiny mouse [135]. Nevertheless, as in any other rodent species, the spiny mouse also
possesses an ovarian bursa that encapsulates the ovaries and the oviducts, not allowing
the endometrium tissue to escape to the peritoneal cavity. Only recently, an ovarian en-
dometriosis model was developed in spiny mice via bursectomy [136], which provides a
more physiologic endometrial peritoneal lesion model for investigation. The most used
ATM, normally induced in BALB/c mice, offers the possibility, within its limitations, to
study the chronic pain associated with endometriosis once the transplantation is performed
and the ectopic lesions are formed [135]. However, as stated before, the pain induced
in this model may be of inflammatory/neurogenic origin and may not reflect the CNS
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changes observed in patients with EPS. In fact, variations (species and lesion location,
among others) in ATM model induction may be enough to induce different modulations of
the brain activity, which are then reflected in distinct pain-related behavior. For instance,
the use of the ATM in Sprague-Dawley rats (implantation in the peritoneal wall) induces
increased regional homogeneity of the anterior cingulate cortex, in the CA1 field of the
hippocampus, in the thalamus, and in the brainstem, showing that these regions have
abnormal neuronal activity [137]. A high number of neuronal cells show the activation
of the apoptosis cascade [137]. Apart from the thalamus, the overactive neurons found in
these nuclei show higher TRPV1 mRNA levels [137]. In addition, the overactive neurons
from the hippocampus present increased levels of NMDA receptor mRNA [137]. On the
other hand, there is a decrease in the regional homogeneity of the basomedial nucleus of the
amygdala and in the primary motor cortex [137], providing evidence of altered basal brain
activity. All these changes are concomitant with the development of thermal hyperalgesia
and mechanical allodynia but not anxious behavior [137]. The ATM induced in C57BL/6
mice (implantation in the peritoneal wall) presents some similarities to the induction of
the ATM in Sprague-Dawley rats (such as changes in hippocampus activity) but presents
other important differences, such as changes in the activity of different brain areas, namely
the insula [138]. Moreover, the observed changes in neuronal activity in the amygdala
may differ, as in C57BL/6 mice, considering that the ATM increased the expression of the
emotional regulation gene Lcn2, which may explain the increased anxiety induced by the
ATM in these animals [138]. From a behavior phenotype point of view, the ATM induces
thermal hyperalgesia in C57BL/6 mice but decreases locomotor activity [138]. On the other
hand, this animal model presents changes in the thalamus and anterior cingulate cortex
that are concomitant with anxiety behavior and mechanical allodynia [77].

Another model is the water avoidance stress (WAS) model. In this model, pain
induction involves the activation of the peripheral adrenergic system [116]. How long does
the pain phenotype induced by stress last? WAS carried out for 10 consecutive days was
shown to induce a pain-related visceromotor response that lasted, in some animals, for 40
days but induced somatic nociception, which faded away much sooner. Is a 10-day WAS
protocol sufficient to make an imprint in the CNS? When studying chronic pelvic/visceral
pain using animal models of EPS and CPBPS, CNS pain integration changes may need
more time to occur/establish than the other symptoms commonly associated with these
syndromes. The great advantage of the neonatal maternal deprivation (NMD) model is that
the pain-related phenotype occurs and is studied in adulthood, when the early-life insult
is long gone. However, NMD is not free of drawbacks. The spontaneous pain behavior
may not be easily observed, although the changes in the CNS pain integration pathway are
already provoked.

Which test should be used to study chronic pelvic/visceral pain? What endpoint
should be looked for? Many reviews have brought to light the advantages and disadvan-
tages of using spontaneous and induced pain behavior tests [139,140]. The induced pain
behavior tests, such as von Frey filament stimulation or the hot plate test, are normally
based on the reflexive and conscious withdrawal of body parts submitted to a stimulus [139].
Therefore, their principal endpoints, based on nocifensive behaviors, are normally the la-
tency time to a response or equivalent to an LD50 threshold [139]. Although these tests are
indisputably associated with a bothersome/painful sensation, the focal location of such a
sensation is hard to determine in the case of chronic pelvic/visceral pain. Additionally, they
do not allow the spontaneous pain felt by the animals to be measured. Hence, it is impera-
tive to find adjusted endpoints to study chronic pelvic/visceral pain that may overcome
the drawbacks of the classically used tests, including the concomitant use of behavior tests
with other techniques, such as neuroimaging or functional/electrophysiological measure-
ments. In fact, tests that are based on pain-related spontaneous and/or cognitive behaviors
(psychosocial dysfunction and the neurologic/systemic aspect of the UPOINT approach)
associated with animal quality of life have been used more recently [139]. However, such
tests are more susceptible to some pitfalls that are not directly associated with the tests
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per se, which may endanger their interlaboratory comparison and impair their validity.
These pitfalls are related to the animals’ species-specific characteristics, animal husbandry
and manipulation conditions, and/or data acquisition requirements, which are often over-
looked and therefore not included in standard operating protocols. Additionally, the use of
social cues also raises the question of the impact of genetic/epigenetics, which are known
to be implicated in the balance of the HPA axis, in the study of chronic pelvic/visceral
pain. The induction of WAS for 7 days is known to induce changes in the expression of
glucocorticoid receptor and corticotropin-releasing factor genes of neuronal cells of the
amygdala of male F-344 rats that are intimately related with increases in pain-related vis-
ceromotor responses through epigenetic mechanisms [141]. Therefore, we should evaluate
if, for example, outliers should be disregarded. Moreover, investigators should not expect
all animals to develop pain phenotypes after the induction in each experimental model,
a piece of evidence that raises the question of how to handle the groups. Should we use
different strains in the same protocol? What is the real impact of litter balancing in the
study of chronic pelvic/visceral pain?

It is clear that the animal models of EPS and CPBPS require better characterization
before deciding which tests should be used in the evaluation of the pathophysiologi-
cal mechanisms of chronic pain or even pain treatments. For NMD, it should be eluci-
dated which symptoms and signs NMD replicates and which pathways induce the NMD
pain/sensitization pathway and associated behavior changes, such as anxiety. For instance,
NMD is known to increase perigenital sensitivity and increase the number of voiding
episodes in adult male mice [133]. NMD also influences the sensitivity of the colon, as it
increases the visceromotor response to colorectal balloon distention in adult male rats [142],
a fact that may accelerate the progression of endometrial lesions in female mice [143].
NMD causes mastocytosis in the bladder and prostate in adult male mice [133,144]. NMD
also promotes the impairment of hippocampal neurogenesis and alters stress-related gene
expression within the hypothalamic–pituitary–adrenal axis [145]. Moreover, it was recently
postulated that NMD may prime a glial response that is reflected in adulthood in the
development of pelvic/visceral pain, similar to what is observed in somatic pain [146].

Besides the rodent models, non-human primates (NHP) and domestic cats have been
used to study EPS and CPBPS, respectively [147–150]. NHPs share similar reproductive
system anatomy and endocrinology with humans. Baboons and some macaca species
(such as rhesus, pigtail, and cynomolgus) menstruate and may develop spontaneous en-
dometriosis [151–153]. The EPS in macaques is very similar to the condition in humans,
as they present pain behavior, and the functional magnetic resonance imaging of their
brains revealed a sensitized insula and thalamus [154]. Moreover, their endometrium and
endometriosis tissues present mitochondrial impairment, which may be related to oxidative
stress [155], a feature also observed in patients. As happens with some endometriosis pa-
tients, some macaques are anemic [156]. Furthermore, it is possible to find other species that
spontaneously develop endometriosis in non-menstruating animals such as gorillas, horses,
dogs, and guinea pigs, among others [157–159]. Despite the straightforward phylogenetic
gap between humans, rodents are, at the end of the day, animal models with a high level
of physiological homology. The ethical problems associated with the use of many other
species, the maintenance expenses, and the decreased number of animals available for ex-
perimentation when compared to rodents make non-rodent models difficult to use routinely.
The same holds true for CPBPS. Cats may develop feline interstitial cystitis (FIC), which is
a similar form of CPBPS [160]. These cats exhibit flare-like symptoms, lower urinary tract
abnormalities, and central nervous changes, and in some cases they present comorbidities
such as behavioral, endocrine, cardiovascular, and gastrointestinal alterations [150]. How-
ever, the low availability of cats with FIC and the high cost necessary for their maintenance
when compared with rodents make this FIC model less attractive [160,161].



Biomedicines 2023, 11, 696 8 of 16

5. Going beyond the Existing Models to Study the Chronic Pelvic/Visceral Pain
Associated with EPS and CPBPS

To study EPS, the ATM can be combined with procedures/protocols that alter the
way the CNS processes pain (Figure 2). For instance, the combination of the ATM with
stress models (known to alter the HPA axis and/or induce CNS changes [141,162]) or with
autoimmune models (known to induce CNS sensitization due to prolonged inflammation
and/or tissue damage [163]) may help to refine the ATM to study EPS. In fact, female
Balb/C mice submitted to NMD presented depression-like and anxiety-like symptoms in
adulthood [143]. However, it was only after the induction of endometrial lesions in these
animals that it was possible to observe endometriosis-associated generalized hyperalge-
sia [143]. Another putative approach is the use of longer ATM protocols to understand if,
at longer time points, the CNS changes that lead to chronic pain are already observed.
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Figure 2. Possible refinement strategies to improve the study of chronic pelvic/visceral pain using
animal models or animals that naturally develop EPS or CPBPS.

A frequently disregarded aspect regarding chronic pelvic/visceral pain is the role of
visceral fat. EPS/endometriosis are related to an imbalance in the levels of estrogen, a
hormone known to modulate the distribution and amount of fat tissue in the body [164,165].
Moreover, the lesions commonly observed in EPS/endometriosis occur in close proxim-
ity to the visceral fat present in the pelvic cavity [166–169]. The visceral fat is known to
secrete pro-inflammatory molecules, which may promote tissue inflammation, even in
the absence of endometrial lesions. In a study involving 3026 patients with osteoarthritis,
visceral fat was associated with an increased pain phenotype, regardless of BMI [170],
showing that the systemic inflammation induced by visceral fat promotes changes in the
pain phenotype. In a study with 795 participants, it was observed that visceral fat was
associated with sympathetic system activity [171]. Accordingly, visceral fat innervation is
known to develop crosstalk with brain centers, namely the paraventricular nucleus (PVN)
of the hypothalamus [172]. The hyperactivation of the PVN nucleus, as occurs in stressful
situations, is thought to have a role in endometriosis/EPS, as it promotes HPA axis acti-
vation, modulating cortisol release concomitantly with endometrial dysfunction [170,173].
Therefore, combining a high-fat diet with lesion induction might provide a valid approach
for studying EPS (Figure 2), as shown by Heard and colleagues in 2016 [174]. Moreover,
changes in PVN activity, namely the increased release of corticotropin-releasing hormone
(CRH), might also have a role in CPBPS, as these patients present urothelial expression
changes in those hormone receptors [175]. The change in CRH receptors is intimately
related to pain scores and markers in those patients [175]. Hence, high-fat-diet animal
models may provide the chance to study features that are overlapped in EPS and CPBPS.
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Besides the induction of chronic pelvic pain in animal models, a more exhaustive
study of biological samples (ectopic endometrial tissue, blood, saliva, and urine) taken
from animals that naturally develop EPS or CPBPS, together with other veterinary analyses
that might be performed on those animals, should be considered. Important lessons can be
taken, such as the possibility of performing a phylogenetic evaluation of the disease. An
example of this is the recent genetic comparison between humans and the rhesus macaque
that unveiled the importance of the coding variants in neuropeptide S receptor 1 in the
pain treatment associated with endometriosis [158]. The phylogenetic evaluation of the
disease may provide important clues based not only on the similarities but also on the most
noticeable differences. It should be recalled that FIC affects both genders in a relatively
equal way [150,160], a characteristic that may help investigators to understand CPBPS in
the male population.

6. Conclusions

Altogether, the refinement of the translational chronic pelvic/visceral pain model
to better understand the similarities with human conditions is essential to perform more
meaningful studies. In addition, the study of specific cellular and subcellular mechanisms
in the peripheral organs and the central nervous system nuclei will be fundamental to
understanding the pathophysiology of EPS and CPBPS and to developing more effective
treatments in a systemic setting.
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