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Abstract. Time series of counts arise when the interest lies on the num-
ber of certain events occurring during a specified time interval. Many of

these data sets are characterized by low counts, asymmetric distributions,

excess zeros, over dispersion, ruling out normal approximations. Several
approaches and diversified models that explicitly account for the discrete-

ness of the data have been considered in the literature, among which

are the INteger-valued AutoRegressive, INAR, models. These models are
based on random operations which, operating on discrete variables ensure

an integer-valued result. The INAR models are attractive since they are

linear-like models for discrete time series and exhibit recognizable corre-
lation structures. This paper considers INAR models for analyzing time

series of counts and discusses associated statistical inference, comprising

estimation, diagnostics and model assessment.

1. Introduction

The problem of modelling time series of low counts has attracted many
researchers over the last few decades. In fact time series of counts arise in many
different contexts, usually as counts of certain events or objects in specified
time intervals as for example: social science [31, 37], queueing systems [1],
experimental biology [54], environmental processes [48, 11, 24], economics and
finance [6, 39, 15, 28, 27], epidemiology [10, 53], international tourism demand
[8, 17, 7], statistical control processes [50, 52], telecommunications [30], optimal
alarm systems [34], and in the biopharmaceutical industry [3].
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In many cases, the discrete variates are large numbers and it may make
sense to approximate them by continuous variates. Often, however, this is not
possible or even desirable and it is necessary to develop an appropriate mod-
elling strategy for the statistical analysis of time series of counts. One of the
approaches developed is based on a random operation called thinning opera-
tion capable of preserving the integer valued nature of the variables, giving
rise to the class of INteger valued AutoRegressive, INAR, models. This paper
considers the first order INAR, INAR(1), models for analyzing time series of
counts and discusses associated statistical inference, comprising estimation, di-
agnostics and model assessment. The plan of the paper is as follows. Section 2
introduces the INAR(1) models with including discussion of the most relevant
properties. Section 3 considers parameter estimation and presents a set of tools
appropriate to check the adequacy of fitted INAR models, an important part
of any iterative modelling exercise in applied time series analysis. Section 4
illustrates the fitting of the models to a time series of counts of the stock type.
Section 5 provides some concluding remarks.

2. First order INteger valued AutoRegressive models

Definition 2.1. The first order integer autoregressive, INAR(1), model is de-
fined on the discrete support N0 by the recursive equation

(2.1) Xt = α �Xt−1 + εt

where {εt} is a sequence of independent and identically distributed non-negative
integer valued random variables, for each t independent of Xt−1 and of α�Xt−1,
with finite mean µε and variance σ2

ε and, conditional on Xt−1, α �Xt−1 is an
integer valued random variable whose probability distribution depends on the
parameter α.1

Thus, ′�′2 denotes a random operator, usually called thinning operator,
which always produces integer values and introduces serial dependence via the
conditioning on Xt−1. Consider now that in model (2.1) we require that the
marginal distribution of {Xt}t is of the same family as {εt}. [25] proposes an
approach to solve this problem within the convolution-closed infinitely divisible
class of (marginal) distributions. The random operator ′�′ is required not only
to introduce serial dependence and preserve the integer-valued status of the
random variable but also to be unconditionally of the same family as {εt}t.

1In fact, α may be a vector of parameters but at this point we prefer the simpler scalar
notation

2The operator is in fact α� as it depends on α but usually the simpler notation is used.
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The intuition behind the operator ′�′, as described by that author is the fol-
lowing.

Let Fθ denote a convolution-closed infinitely divisible parametric family such
that Fθ1∗Fθ2 = Fθ1+θ2 , with ′∗′ denoting the convolution operator. Let Y1, Y2 be
independent random variables each with distribution F(1−α)θ (pmf f(1−α)θ(·))
and Y12 be a another random variable independent from Y1, Y2 with distribution
Fαθ. The distribution of Y12 given Y12 + Y1 = y is denoted by Gαθ,(1−α)θ,y and
its pmf by g(·|y). [25] writes the joint distribution of (Xt, Xt−1) as being the
same as that of (Y12+Y2, Y12+Y1), in which case Y12 represents a common latent
or unobserved component of the pair (Xt, Xt−1) that carries the dependence of
the observations between two consecutive time periods and Yi, i = 1, 2 represent
the arrivals in the model.

[25] shows that the processes defined in (2.1) are Markov order 1, time
reversible and stationary with non-negative serial dependence, ρk = αk. The
transition probabilities are given by

P(Xt = k|Xt−1 = l) =

min{k,l}∑
j=0

g(j|l)P(εt = k − j)

=

min{k,l}∑
j=0

g(j|l)f(1−α)θ(k − j).(2.2)

Moreover, the INAR(1) model is a member of the class of conditional linear
first order autoregressive, CLAR(1), models introduced by [20].

2.1. The Poisson INAR(1). Consider the case where Fθ is Poisson θ =
λ/(1 − α). Setting Gαθ,(1−α)θ,x as Binomial(x, α), leads to the most common
thinning operator which is the binomial thinning, denoted by ′◦′ and originally
introduced by [46] to extend the notions of self-decomposability (DSD) and
stability to integer-valued time series.

Definition 2.2. Let X be a non-negative integer-valued random variable. Then,
for any α ∈ [0, 1] define the binomial thinning operator as

(2.3) α ◦X :=

X∑
i=1

Yi,

where {Yi}i is a sequence of independent and identically distributed Bernoulli
random variables with P(Yi = 1) = α, called the counting series of α◦X, which
is also independent of X.

For properties of the binomial thinning operation see [47, 51, 43, 44].
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The binomial thinning based INAR(1) model was originally proposed by [2]
and [32]. The conditional distribution of Xt given Xt−1, fXt|Xt−1

(xt|xt−1) =
p(Xt|Xt−1) is now the convolution of the two components, binomial and Pois-
son, as follows:

(2.4) p(Xt|Xt−1) =

Mt∑
i=0

(
Xt−1

i

)
αi (1− α)Xt−1−i e−λ λXt−i

(Xt − i)!
,

where Mt = min (Xt−1, Xt). The bivariate pgf of the PoINAR(1) process, given
by [4]

PXt,Xt−1
(s1, s2) =PXt−1

(s1(1− α− αs2))Pεt(s2)(2.5)

= exp

{
− λ

1− α
[2− α− (1− α)(s1 + s2)− αs1s2]

}
is symmetric in its arguments s1 and s2 and therefore the process is time-
reversible. The PoINAR(1) may be interpreted as an infinite server queue. The
service time is geometric with parameter 1−α and the arrival process is Poisson
with mean λ. A fundamental result in queueing theory, Little Flow’s equation,
states that the expected length of the queue is equal to the arrival rate times the
expected waiting time. It is thus possible to compute the expected number of
time units a newly arrival stays in the system and which is given by: 1/(1−α).

3. Parameter Estimation and Diagnostic Tools

3.1. Parameter estimation. This section considers the estimation of the pa-
rameters in the INAR(1) models discussed previously. Estimation can be car-
ried out in several ways leading to the following broad categories of estimators:
moment based estimators (MM), regression based or conditional least squares
(CLS) estimators and likelihood based (ML) estimators. All these approaches
have been considered in detail in the literature for the Poisson model. Addition-
ally Bayesian methodology has been considered by [36] and [45]. However, the
most common approach for the estimation of the INAR(1) model is maximum
likelihood method.

Let x = (X1, . . . , Xn) represent the observed time series and θθθ the s × 1
vector of model parameters to be estimated. Since the INAR(1) model (2.1) is
a first order stationary Markov chain, the likelihood function is written as

(3.1) Ln(θθθ|x) = P(X1 = x1)

n∏
t=2

fXt|Xt−1
(xt|xt−1)
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where fXt|Xt−1
(xt|xt−1) is given by (2.2) and P(X1 = x1) represents the sta-

tionary marginal distribution. For asymptotic analysis the standard approach
is to consider the conditional log-likelihood function given by

(3.2) ln(θθθ) =

n∑
t=2

log
(
fXt|Xt−1

(xt|xt−1)
)
.

Based on the results of [5] for Markov processes, [25, 26] prove the following
result

Theorem 3.1. The maximum likelihood estimators, MLE, of the parameters
θθθ in INAR(1) models are consistent, asymptotically normal and asymptotically
efficient.

The proof requires that some regularity conditions hold, ([26], pp. 318).

The limit distribution of n1/2(θ̂θθ − θθθ) is N(0,ΣΣΣMLE), ΣΣΣMLE = ΣΣΣ−1(θθθ) and
ΣΣΣ(θθθ) = (σij(θθθ)) is a non-singular s× s matrix with elements

σij(θθθ) = Eθθθ

(
l̇i(θθθ;x1, x2)l̇j(θθθ;x1, x2)

)
In general, for numerical maximum likelihood estimation, a quasi-Newton

method can be used with an input of the negative log-likelihood function and
output of the MLE and inverse Hessian matrix at the MLE. The initial es-
timates required by the optimization algorithm are based on the method of

moments. The inverse Hessian evaluated at the maximum, θ̂θθ, can be used as

the estimated variance-covariance matrix of the ML estimator θ̂θθ.

3.2. Diagnostic tools. A crucial step in any statistical investigation is the
assessment of the adequacy of the models proposed and fitted to the data under
analysis. Various methods for model validation and diagnostics in discrete-
valued time series have been proposed in the literature. These methods can be
broadly classified as: parametric resampling methods; residual based methods;
methods based on the predictive distributions; model comparisons using scores
and information criteria.

3.2.1. Parametric resampling methods. [49] proposes a procedure based on para-
metric bootstrap and special functionals designed to show the specific features
of interest. Specifically, the fitted model is used to generate many samples,
all with the same number of observations as the original data set. The samples
generated are then used to construct an empirical distribution of the functional
of interest. If the fitted model is adequate in describing the feature of inter-
est, the functional quantity of the original data should be a reasonable point
with respect to the empirical distribution. The functional of interest may be
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a spectral density function or the autocorrelation function. Here, the autocor-
relation properties are of interest. Thus M artificial data sets, with the same
length of the original data set, are generated from the fitted model. Based on
these, M sample autocorrelation functions (ACF) are obtained. For each fixed
lag of the ACF, the (1− α/2) and α/2 quantiles of the empirical distribution,
denominated acceptance bounds, are computed. Then, a probability interval is
obtained for each lag and an envelope is obtained for the ACF. If the fitted
model is adequate at each lag, the sample ACF of the original data should be
largely within the envelope. Plotting the envelope and the sample ACF of the
data jointly, gives rise to a graphical display that can be used to assess the
overall goodness of fit of the fitted model with respect to the serial correlation
properties. A model is considered to be adequately reproducing the correlation
structure of the data, if the sample ACF of the observed data lies within these
acceptance bounds. Note that since the sample ACF at different lags are corre-
lated, the acceptance envelope considered is not a joint 100(1−α)% confidence
interval of the sample ACF.

3.2.2. Residual based methods. The dynamic structure in the mean and dis-
persion properties may be checked using tools based on the Pearson residuals
defined by

(3.3) rt =
Xt − E(Xt|Xt−1)

Var(Xt|Xt−1)1/2
,

where the population quantities are replaced by their estimated counterparts.
If the model is correctly specified, these residuals should exhibit mean zero and
variance one and no (significant) serial correlation.

However, the structure of the INAR(1) model suggests additional residu-
als checks. In fact, the INAR(1) model maybe seen as a structural model in
the sense that it considers the data to be composed of a set of unobserved
components each of which captures a feature of the data: the first component
α�Xt−1 specifies the random number departures or its complement the random
number of survivors from the past while εt represents the new arrivals at the
system at time t. This interpretation leads to a residual decomposition that
allows to check the adequacy of each component. For details on the residual
decomposition and subsequent testing procedures see [16].

3.2.3. Methods based on the predictive distributions. A useful tool to check the
adequacy of the distributional assumptions of the models is a suitably speci-
fied and modified version of the probability integral transform, PIT, originally
proposed by [40]. This device has been used in the assessment of predictive dis-
tributions of a continuous type by [40], [14] and recently by [18] and [19]. The
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PIT has a uniform distribution when the underlying model is continuous. For
discrete valued variables the associate distribution functions are step functions,
therefore adjustments are necessary. Several authors propose a randomized PIT
obtained by perturbing the step function nature of the distribution function of
the discrete random variables. Additionally, [12] introduce a nonrandomized
version of the PIT suitable to count data. For details and references see [12].

Further evaluation of the model based on its predictive performance may be
carried out using scoring rules suggested by [12] and [28].

3.2.4. Information criteria. Akaike information criterion, AIC and its many
variants has been one of the most popular tools for model selection in time se-
ries analysis. In the context of time series of counts, [41] studies an automatic
criterion for selecting the order of an INAR(p) model based on the corrected
version of Akaike Information Criterion, AICC of [22]. Some authors have used
AIC as means of choosing between non nested models for time series of counts,
regardless of the lack of studies concerning the performance of the criterion in
this framework. Moreover, [38] examine the ability of widely used information
criteria such as AIC, BIC and the Hannan-Quinn criterion (HQ) [21] to dis-
tinguish between some nonlinear times series models that have been popular
with practitioners. After performing an extensive simulation study they argue
that all three criteria have a useful role to play in a time series model selection
exercise.

4. Illustration

This section illustrates the modelling procedure with a data set consisting
of the number of different IP addresses accessing the server of the pages of the
Department of Statistics of the University of Würzburg in two-minute periods
from 10 am to 6 pm on the 29th November 2005, in a total of 241 observations.
This data set was originally studied by [50] and exhibits small but significant
autocorrelation as indicated by figure 1. The sample mean and variance x =
1.31 and σ̂2 = 1.39 do not indicate overdispersion.

Fitting a PoINAR(1) model to the data yields the CML estimates α̂ =

0.24(0.00) and λ̂ = 1.01(0.01). The parametric bootstrap exercise with M =
1000 and the residual analysis represented in figure 2 indicate that the model
captures the dynamics of the data. In fact, the variance of Pearson residuals is
1.05 and the acf of the component residuals in (c) indicate that the residuals
are white noise. However, figure 2(b) indicates that at time t = 224 the residual
is unusually large with a large arrival component. This may suggest the occur-
rence of an additive outlier meaning that Xt=224 may be contaminated by an
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Figure 1. Number of different IP adresses accessing the server
of the pages of the Department of Statistics of the University of
Würzburg between 10 am and 6 pm on 29 November 2005 (a) and
corresponding sample autocorrelation (b).

exogenous source but the effect is not carried over to subsequent observations
by the dynamics.

[42] propose a Bayesian approach to model such outliers assuming that the
observed process Yt is obtained from the unobservable clean process Xt con-
taminating each Xt with probability δt with an outlier of random size ηt. Thus



INAR 9

●

●

●

● ●

●

●

● ● ●

●
●

●

●

●

●

●
●

● ●

●

●

●

5 10 15 20

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(a)

Lag

A
C

F

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Data
Acceptance bounds

5 10 15

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

(c)

Lag

C
or

re
la

tio
n

●
●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●
●

●

● Residuals
Arrival
Departure

0 50 100 150 200

−
2

0
2

4
6

(b)

t

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●●

●

●
●

●

●

●
●

●
●●●●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

● Residual
Arrival
Departure

Figure 2. Parametric bootstrap exercise (a), component residu-
als (b) and corresponding autocorrelations (c) for IP data set.

Yt = Xt + ηtδt,

with Xt = α �Xt−1 + et and δt ∼ Be(pt)(4.1)
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where δ1, η1, . . . , δn, ηn are independent and independent of the latent process
Xt and ηt, the random size of the outlier at time t is a random variable with
the same support as Xt and mean β : ηt ∼ Po(β). The Bayesian approach to
estimate model (4.1) requires apriori distribution for the parameters of interest.
For the parameters 0 < α < 1 and λ > 0 the traditionally weakly informative
priors for the PoINAR(1) ([45]) are chosen: a non-informative Beta prior with
parameters a = 0.01, b = 0.01 and a a non-informative Gamma prior with
parameters c = 0.01, d = 0.01, respectively. The prior specifications for pt, the
probability of contamination is a Beta distribution with parameters (g = 5, h =
95), with expectation E(pt) = 0.05, reflecting the belief that outliers occur
occasionally. The prior for the mean size of the outliers β is a non informative
Gamma distribution. The result of applying the outlier detection methodology
is represented in figure 3 indicating the occurrence of an outlier at time t = 224
with high probability.

The parameter estimates for model (4.1) are α̂Bayes = 0.27 and λ̂Bayes =
0.89, with posterior distributions represented in figure 4 and η̂ = 7 for the size
of the outlier, leading to the following model:

Yt = Xt + 7I224,

Xt = 0.27 ◦Xt−1 + et, et ∼ Po(0.89)(4.2)

Figure 5 represents the residuals resulting from the fit of (4.2). Note that
the largest residual reduces from 6.8 to 3.3, indicating a better fit. A further
indication of the better fit is based on the prediction sum of squares

∑n
t=2(yt−

ŷt)
2, where ŷt = E(yt|yt−1 = yt−1; parameter estimates) which drops from

317.9 to 264.0 when the outlier is included in the model.

5. Final remarks

Time series of counts arise in a wide variety of fields. The need to analyse
such data adequately led to a multiplicity of approaches and a diversification of
models that explicitly account for the discreteness of the data. One approach is
based on the generalized linear models theory for dependent data [29]. Another
point of view into the problem is given by parameter driven models which
postulate that the observed process is driven by an unobserved process [13].
Yet another approach to the problem of modelling dependent count data is
based on the use of renewal processes for generation of a correlated sequence
of Bernoulli trials [11]. Here we focused on the INAR(1) models which are a
class of observation-driven models particularly suited for stock type data. We
illustrated the modelling of a time series with INAR(1) models.
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Figure 3. IP time series (a) and posterior probability of out-
lier occurrence at each time (b).

Several generalizations of the INAR(1) models are available in the literature,
namely: INAR(p) models [23, 9], models with moving average components,
INARMA, [33], periodic models [35] and bivariate models [37].
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