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Abstract: The concept of symmetry has become the main tool for structural analysis in mathematics 
and science. There were many attempts to provide a quantitative methodology for research on infor-
mation (e.g., Shannon’s entropy) but the structural aspects of information were always investigated 
within the limits of specific applications without any common structural methodology.  This paper 
has as its main objective the development of a uniform formalism incorporating the general concepts 
of information and symmetry allowing the study of structural characteristics of the encoding of in-
formation. It starts from the justification for the description of the encoding of information as a filter 
in information logic formalized as the lattice of closed subsets in a closure space. Then, symmetry of 
the encoding of information is associated with the invariance of the filter representing this encoding 
with respect to a group of automorphisms of the logic of information.   
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INTRODUCTION 

Symmetry and its breaking became the main conceptual tool of science and mathematics for the study 

of structural characteristics. Felix Klein’s Erlangen Program initiated or accelerated the process of 

synthesis integrating inquiries of diverse forms of geometric structures. However, even in Klein’s 

vision of unified geometry, we can find the limits for synthesis. The recognition of the unifying role 

of symmetry identified with the invariance with respect to the action of groups of geometric transfor-

mations and its fundamental role in all contexts involving the geometric description of the subject of 

inquiries promoted geometric conceptualization across diverse disciplines of science but inhibited 

attempts to transcend the confines of geometry in the study of symmetry in matters such as symmetry 

breaking or symmetry-structure relationship. This motivated me to explore a more general formali-

zation of the concept of symmetry in terms of closure spaces where symmetry 
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is understood as the invariance of configurations of closed subsets instead of the invariance of con-

figurations of elements (points in geometry) (Schroeder, 2017). In geometry formulated in terms of 

closure spaces, all one-element sets are closed and therefore the orthodox symmetry is a special case. 

However, even in geometry, the generalization can offer some additional insight into the symmetry–

structure relationship. In the orthodox approach, very different geometric structures such as cubes 

and octahedrons have the same symmetry (i.e. the same symmetry group), while their symmetries 

understood in terms of the invariance configurations of closed subsets are different.  

I will not elaborate here on the well-known reasons why at present there is no commonly accepted 

comprehensive, mathematically sound theory of information, in particular why the so-called infor-

mation theory initiated by Shannon is not a theory of information but its transmission. It is enough to 

mention the absence of semantic aspects of information or conceptual tools for its structural analysis. 

The critique of the existing attempts to develop such a theory and exploration of alternative formula-

tions can be found in many papers, including my own (Schroeder, 2011). My original proposal of the 

description of the encoding of information as a filter in the logic of information was based on the 

analogy with the description of the state of a physical system in terms of filters in quantum logic.  

The present paper has as its main objectives a presentation of the justification for this description of 

the encoding of information as a filter in information logic independent from the analogy to quantum 

theory or other applications and a demonstration that this formalization allows for the application of 

the concept of symmetry. Symmetry in the encoding of information is associated with the invariance 

of the filters with respect to automorphisms of the logic of information represented by a complete 

lattice of closed subsets of the closure space.   

ALGEBRAIC PRELIMINARIES 

The key concept here, both for the formalism of symmetry and the description of information is a 

closure space, i.e. a set  S with a  closure operator f: 2S→ 2S which satisfies the following conditions: 

(i) ∀A ⊆ S: A ⊆ f(A), (ii) ∀A, B ⊆ S: If A ⊆ B, then f(A) ⊆ f(B), (iii) ∀A ⊆ S: f(f(A)) = f(A). 

Every closure space can be defined in an equivalent (cryptomorphic) way by a Moore family of sub-

sets of S, i.e. family closed with respect to arbitrary intersections and including the set S. Every Moore 

family ℳ defines a transitive operator: f(A) = ∩ {M∈ℳ : A ⊆M} and in turn the family                   f-

Cl = {M ⊆ S: f(M) = M} is a Moore family. 

The set-theoretical inclusion defines a partial order on f-Cl with respect to which it is a complete 

lattice ℒf. To this structure, we will refer to as the logic ℒf of a closure space <S,f>.  
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Closure operators play important roles in the context of Galois connections of special importance for 

my inquiry of symmetries. A Galois connection between two partially ordered sets (in short posets) 

<P, ≤P > and <Q, ≤Q > is defined by two antitone mappings ϕ:P → Q and ψ:Q → P (i.e. such that 

∀x,y∈P: x ≤P y  ⇒  ϕ(y) ≤Q ϕ(x) and ∀s,t∈Q: s ≤Q t ⇒ ψ(t) ≤P ψ(s)) which satisfy the additional 

condition: ∀x∈P: x ≤P ψ(ϕ(x)) and ∀t∈Q: t ≤Q ϕ(ψ(t)). The three conditions for a Galois connection 

(two for the mappings to be antitone and third linking them) are equivalent to the single condition: 

∀x∈P∀t∈Q: t ≤Q ϕ(x) iff x ≤P ψ(t).  

It is easy to see that whenever P and Q are complete lattices, the mappings which are compositions 

of  ϕ and ψ defined on P and Q respectively ψϕ:P → P and ϕψ:Q → Q satisfy the generalized con-

ditions for a closure operator on a complete lattice. Thus, if both posets P and Q are power sets 2S 

and 2T respectively for some sets S and T ordered by inclusion ⊆ of their subsets, then ψϕ is a closure 

operator on 2S and ϕψ is a closure on 2T. Moreover, both mappings ϕ and ψ define anti-isomorphisms 

(or inverse isomorphisms) of the complete lattices for these closure operators. More details can be 

found in the classic monograph on the lattice theory by Birkhoff (1967).   

ENCODING OF INFORMATION 

Information, in general, is defined in my approach as an identification of variety considered within 

the context of the categorical opposition of one and many. The identification is understood as that 

which makes one out of many either by the selection of one out of many or by supplying a structure 

that binds many into a whole. This duality results in the two co-existing manifestations of infor-

mation: the selective and the structural. Based on this general definition we can consider a set-theo-

retic model of information system and encoding of information using the closure space formalism.  

We will consider a closure space <S,f> with its corresponding Moore family ℳ of closed subsets as 

an information system. The specific choice of closure space depends on the choice of the type of 

information system. For instance, we can consider geometric, topological, logical information, etc. 

The family of closed subsets ℳ = f-Cl is equipped with the structure of a complete lattice ℒf which 

we can consider to be the logic of information. It plays a role in the generalization of logic for (not 

necessarily linguistic) information systems, although it does not have to be a Boolean algebra. In 

many cases, it maintains all the fundamental characteristics of a logical system (Schroeder, 2011).  

Encoding of information is a distinction of a subfamily ℑ of ℳ, such that it is closed with respect to 

the (pair-wise) intersection and is dually hereditary, i.e., with each subset A of S belonging to ℑ, all 

subsets of S including A belong to ℑ (i.e., ℑ is a filter in the lattice ℒf). The Moore family ℳ can 

represent a variety of substructures of a structure of a particular type (e.g., geometric, topological, 
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algebraic, logical, etc.) defined on S. This corresponds to the structural manifestation of information. 

Filter ℑ in turn, in many mathematical theories associated with localization, can be used as a tool for 

identification, i.e., selection of an element within the family ℳ, and under some conditions within 

the set S. Thus, filters can be interpreted in both the structural and selective way.   

There is a legitimate question about the reason for the use of closure spaces as models for information 

systems and filters in the lattice of closed subsets as models for encoding information.  

The first question has a rather simple answer. The most important stages of the development of civi-

lizations can be associated with the methods of encoding, storage, and processing of information. We 

know about a great variety of distinct methods or ways in which information can be encoded by 

human intervention or by natural processes. In each case of encoding, we have some method or mech-

anism of its realization and this is called here an information system. Closure spaces can be found in 

virtually all mathematical theories either as an original fundamental concept (e.g. the case of topol-

ogy) or as a fundamental concept of a derived, alternative formulation (e.g. in the finite geometries). 

Of course, nobody can claim that the choice of closure spaces for the description of information sys-

tems is the only possible or even the best.  

The second question about the identification of filters of closed subsets as instances of information is 

more complex. The original reason for this choice was to formulate a theory of information for which 

we can develop semantics. I will give here only an example of a special case that can support intuitive 

understanding.  

When we have this extreme case of ℳ being the entire power set of S we can relate the idea of 

distinction of sets in terms of the linguistic information as it is done in the Axiom (schema) of Re-

duced Comprehension: Given any set A, there exists a set B (a subset of A) such that, given any 

set x, x is a member of B iff x is a member of A and φ holds for x (where φ is a formula of set theory 

with a free variable x). The axiom tells us that to identify a set we need to use a set from which we 

select elements (i.e, all elements of the collection have to be elements of some predefined set A to 

avoid Russell’s Paradox), and then we can identify the elements of our set by the description of its 

properties in the language of the set theory.  

In this axiom, the set-theoretical formula φ plays a central role. Intuitively, it is information that 

allows us to select elements for the set B formulated as their property. However, we want to consider 

models of information which is independent of the particular restrictions of linguistic encoding of 

information, and additionally, we want to have information characterized relative to the diverse types 

of encoding, i.e. diverse information systems. Moreover, we want to consider multiple levels of in-

formation related to complete identification or an only partial one. Here comes the idea that properties 
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are not corresponding to all possible subsets but only to closed subsets and the identification is 

achieved by the distinction of the filter of closed subsets.  

The distinction of all closed subsets of S is equivalent to the unique determination of the closure 

operator on S, i.e., the determination of the closure space. Information in the form of an ultrafilter 

(maximal filter) corresponds to the former case of complete information, the trivial filter which con-

sists of only the entire set S is another extreme case of minimal information and there are many 

possible levels of information in between. 

The additional gain is that the identity of the elements is associated with the structure formed by the 

subsets in the filter. If they correspond to the structure of properties, then we have the structural 

characteristic parallel to the selective one. The meaning of the information is not determined by just 

a singular property but by a structure of properties. This gives us a link between denotation which is 

related to the identification (or localization) and connotation which is related to the structure of de-

scriptive characteristics. We regain what was lost in Shannon’s (in)famous exclusively selective focus 

in which the meaning of information is not a subject of concern for the engineering problem of infor-

mation transmission.   

Shannon’s approach has the advantage of providing a quantitative methodology. Is the quantitative 

methodology lost when we model information as a filter in the lattice of closed subsets? At the higher 

level of generality, the quantitative description becomes more complex. However, at the level corre-

sponding to Shannon’s finite case (i.e. when the set S is finite with n elements) and we do not make 

any restriction on the subsets corresponding to properties (the closure is trivial ∀A ⊆ S: f(A) = A) the 

task is quite simple. First, we have to observe that in the finite case every filter is principal, i.e. for 

every filter ℑ, there is a subset A of S such that this filter consists of all subsets that include A (i.e. ℑ 

= ℑA = {B⊆ S: A ⊆ B}). Let’s assume that A has k elements. Then we can use reasoning similar to 

the reasoning used by Hartley (1928) in establishing his quantitative description of information. Since 

S has n elements and A has k elements, the least numbers of elementary units of any type within an 

auxiliary set used for encoding that is necessary to encode all elements of S and A respectively is the 

rounding to the nearest integers of log2 n and log2 k, thus we can consider HA = log2 n - log2 k = log2 

n/k to be a quantitative description of information represented by ℑ when it is understood as the degree 

of selection. The maximum value of log2 n is for A with one element only and the minimum value of 

0 for A = S.   

Notice that thus far we don’t use here probability but simple enumerating reasoning about the con-

struction involved in encoding information. Also, we do not restrict our reasoning to letters, charac-

ters, or messages. Moreover, we do not assume here that encoding has to be in the form of ordered 

sequences of a distinguished set of units (positional system).  
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The transition to the probabilistic formulation in the finite case can be facilitated by the interpretation 

of the above reasoning in terms of characteristic functions of subsets. The subset A is associated with 

its characteristic function χA(x) on S such that χA(x) = 1 when x∈A, and χA(x) = 0 when x∉A. It is 

easy to see that ℑA consists of all subsets B of S such that ∀x∈S: χA(x) ≤ χB(x).  The characteristic 

function χA(x) can be interpreted as a random variable X with Bernoulli distribution with parameter 

p = 1. In the next step, we can consider a more general case with the parameter p belonging to the 

interval [0,1]. Then we have that the probability P(A) of A considered as an event is p and for all B 

∈ ℑA the probability P(B) ≥ p. However, P(B) ≥ p does not entail B ∈ ℑA. The necessary and sufficient 

condition is that the conditional probability P(B|A) = 1.   

This leads us to the next step. If we have a family ℑ of events for the finite probability space S with 

a probability measure P defined by ℑ = { B ⊆ S: P(B) = 1}, then ℑ is a filter as p(A∩B) = 1 when 

p(A) = p(B) =1, and ∀A,B ⊆ S: If A ⊆ B and p(A) = 1, then p(B) = 1. This of course applies to every 

conditional probability generated by P too. Now, we have that there is a correspondence linking filters 

in 2S and probability measures in the probability space S with probability measure P which determines 

conditional probabilities P(• |A) for every A such that P(A) ≠ 0. Information in the form of a filter 

can be defined by ℑA = { B ⊆ S: P(B|A) = 1}.  

Finally, when we have the very special case of the uniform (classical) probability distribution for P 

our magnitude of information considered above HA = log2 n/k = - log2 P(A). Shannon’s entropy H(X) 

= -∑pi log2 pi for the random variable X partitioning S into subsets A with the values    x1=- log2 p1, 

x2= - log2 p2,...,xm= - log2 pm is simply the expected value for the random variable X with values x = 

HA, whenever As are elements of some partition of S.     

This was just an example that shows that in the very special and simple case of the trivial closure (∀A 

⊆ S: f(A) = A) the corresponding model of information in the form of a filter in the logic of infor-

mation is not very far from the approach of Shannon’s information theory. However, the general case 

is much more complex. For instance, there are non-prime filters in the infinite case and the logic of 

information (the complete lattice of closed subsets) may be non-Boolean. The original rather ad hoc 

definition of encoding of information (Schroeder, 2011) was guided by such a non-Boolean case in 

the quantum logic formulation of quantum mechanics where the filters are states of the physical sys-

tems.  

SYMMETRY IN A CLOSURE SPACE 

The concept of symmetry can be defined in an arbitrary closure space <S,f>. Let G = Aut(ℒf) be the 

group of automorphisms of the logic ℒf of a closure space <S,f> and H◄G be a subgroup of the 
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group G = Aut(ℒf); ℬ ⊆ ℒf be a configuration of closed subsets (e.g. points and lines in geometry on 

a plane); ϕ* be an automorphism induced on the lattice ℒf by a bijection ϕ on S. 

We get a correspondence between subgroups H of the group of automorphisms of <S,f> and invariant 

families of configurations ℬ as follows. 

 Let H ◄ G = Aut(ℒf). Define the family ℐH of subsets of ℒf by ∀ℬ ⊆ ℒf: ℬ∈ℐH iff 

∀A∈ℬ∀ϕ∈H: ϕ*(A)∈ℬ. Then ℐH is a complete lattice with respect to the order of set inclusion. 

The following two functions Φ and Ψ form a Galois connection between Φ(H) =ℐH defined by 

∀ℬ⊆ ℒf:ℬ∈ℐH iff ∀A∈ℬ∀ϕ∈H: ϕ*(A)∈ℬ and Ψ(ℐ) = H defined by H =∨{K ◄ G:ℐ ⊆ ℐK} = 

{ϕ∈G: ϕ(ℐ) ⊆ ℐ}, where the last equality is a consequence of the fact that {ϕ∈G:ϕ (ℐ) ⊆ ℐ} is a 

subgroup of G.  

We will consider configuration ℬ of closed subsets and conditions for its invariance.  Let G = Aut(ℒf) 

be the group of automorphisms of the logic ℒf of a closure space <S,f> and H◄G be a subgroup of 

the group G = Aut(ℒf). Let ℬ ⊆ ℒf be a configuration of closed subsets. Then there is a mutual 

correspondence between subgroups H of the group of automorphisms of <S,f> and invariant families 

of configurations ℬ defining a Galois connection between the lattice of subgroups of G = Aut(ℒf), 

i.e. ℒG or ℒAut(ℒf) and the lattice of families of closed subsets of the closure space <S,f>. The Galois 

connection is defined by two mappings:  

Φ: ℒG → ℐ & Ψ:ℐ→ ℒG: Φ(H) = ℐH and Ψ(ℐ) = H = {ϕ∈G: ϕ(ℐ) ⊆ ℐ} 

This Galois connection defines anti-isomorphism of the lattice of subgroups of G and the lattice of 

invariant families of closed subsets of <S,f>. 

Thus, the invariant families ℬ are symmetric with respect to the corresponding subgroup of the group 

of automorphisms of the logic of closure space. The symmetric configurations are distinguished as 

those closed with respect to Galois closure (different from f of course). 

We can observe that in this approach it is necessary to consider a hierarchy of three levels of sets: 

sets, families of such sets, and families of families of such sets. Let℘(S) indicate the power set of the 

set S, ℘(℘(S)) the power set of ℘(S), etc. Then we have here S,℘(S), and ℘(℘(S)). The reason is 

that the concept of symmetry involves two concepts: that of a fixed subset of a group of transfor-

mations (set of elements which are not changed by the transformations) and that of an invariant subset 

(set which remains the same, although its elements are permuted by the transformations). The two 

concepts are very different, although they are related across the distinction between sets and their 

power sets. Invariant subsets at the lower level are fixed points at the higher level. 
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At the level of ℘(℘(S)), we have the Galois connection defined by Φ: ℒG → ℐ & Ψ:ℐ→ ℒG which 

links symmetric configurations of closed subsets of <S,f> with subgroups of Aut(ℒf). 

The level of ℘(S): Φ(H) = ℐH & Ψ(ℐ) = H, where Φ(H) =ℐH defined by ∀ℬ ⊆ ℒf:ℬ∈ℐH iff 

∀A∈ℬ∀ϕ∈H: ϕ*(A)∈ℬ and Ψ(ℐ) = H where H = Ѵ{K ◄ G:ℐ ⊆ ℐK} = {ϕ∈G: ϕ(ℐ) ⊆ ℐ} ◄ G 

The level of S: There is a more general bijective correspondence between group G acting on the set 

S which preserves closure f and the group Aut(ℒf). 

So, at the lowest level, we have simply a group G acting on S. The group G does not have to be the 

entire symmetric group Sym(S). It is a subgroup of Sym(S) selected by the choice of closure f. The 

distinction of these three levels serves the distinction between subsets of fixed points and invariant 

subsets. The approach is based on the group Aut(ℒf). There could be a legitimate concern that for the 

closure operation f of subalgebras of a given algebra, ℒf does not determine uniquely the algebra, e.g. 

non-isomorphic groups can have isomorphic lattices of subgroups. However, the symmetry is not 

described as a distinction of this lattice, but it is described by the Galois connection that adds addi-

tional specification. Similarly, symmetry is not simply giving a privileged position to the lattice ℒG 

of subgroups of a given group, but it is involving it in the Galois connection. 

CONCLUSION 

We have now both concepts of information encoding, and symmetry formulated in terms of a closure 

space that defines our information system. The symmetry is determined by a subgroup of the group 

of automorphisms of the information logic (the lattice of closed subsets). Thus, we have a uniform 

formalism for both information and symmetry and our main objective has been achieved.     
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