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Abstract: We discuss three seemingly independent topics concerning polyhedra, which finally show 
some relations. The first topic concerns generalisations of the classical Stella Octangula, whereby 
the pair of indirect congruent tetrahedra, which generates such a Stella, allows forced motions of 
one tetrahedron along the other. Symmetry arguments are used to identify pairs of right triangular 
pyramids and pairs of indirect congruent tetrahedra as candidates for such “movable” Stellae Oc-
tangulae. The second topic discusses equifaced octahedra, as they occur as the common body of 
equifaced Stellae Octangulae. It turns out that, in general, there exist four octahedra with the same 
acute face triangles. They differ in the way their diagonals intersect and in the number of symme-
tries and are, in this paper, distinguished “type A-octahedra” and “type B-octahedra”. For obtuse 
face triangles the is no type A-octahedron. For general right triangles there are two type B-
octahedra, which for isosceles right triangles coincide and become the single Rodrigues-
octahedron. The third topic concerns polyhedra with congruent isosceles right triangular faces, 
thus generalising the Rodrigues-octahedron. This chapter also the aims at providing material for 
educational purposes.  

Keywords: Polyhedron; Stella Octangula; Rodrigues Octahedron.  

INTRODUCTION 

In 1988, H. Stachel (Stachel, 1988, p. 65-75) showed that the two congruent tetrahedra of a classical 

Stella Octangula, if materialized by their edges, allow a two-parameter set of motions of one tetra-

hedron relative to the other. Thereby all edges of the moving tetrahedron 𝑇𝑇2  slide along the edges 

of the fixed one 𝑇𝑇1. We pick up Stachel’s discovery and look for “generalised” Stellae Octangulae 

possessing the afore mentioned property. As somehow natural generalisations we shall consider 
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Stellae Octangulae consisting of a pair of indirect congruent tetrahedra 𝑇𝑇1 and 𝑇𝑇2. For movability of 

𝑇𝑇2 against 𝑇𝑇1 it is necessary that their faces are acute triangles. Here we shall consider only those 

cases of 𝑇𝑇1 and 𝑇𝑇2, which can be treated by symmetry arguments and geometric reasoning alone.  

In the start position of 𝑇𝑇1 and 𝑇𝑇2 their edges intersect in the midpoints of the edges, and the solids 

𝑇𝑇1,𝑇𝑇2 intersect in an equifaced octahedron. This connects generalised Stellae Octangulae with the 

question to find all types of equifaced octahedra and their symmetries. One example is mentioned 

by D. Wyllie Rodrigues (Rodrigues, 2017, e-mail), who designed an octahedron, the faces of which 

are isosceles right triangles, and he connected the ratio of its diagonals with the Golden Mean. It 

turns out that, in general, there are up to three different equifaced octahedra, which can be built with 

eight acute triangles. Adding equifaced tetrahedra to the faces of such an octahedron one obtains an 

equifaced Stella Octangula as mentioned above. 

Furthermore, one might extend Rodrigues’ original idea of using isosceles right triangular faces for 

the octahedron also for other closed and open polyhedra with congruent set square faces. Besides 

polyhedra with the symmetry groups of Platonic solids one can construct also irregular polyhedra, 

cylindrical and even helical ones. For example, with 2𝑛𝑛 + 1 such triangles, (𝑛𝑛 ≥ 3) it is already 

possible to make Möbius stripes (Weiss, 2020, p.20-26). 

As far as it is possible, we treat these three topics by geometric reasoning. This makes it possible to 

omit lengthy calculations and gives better insight, why a supposed property is true. 

STELLAE OCTANGULAE IN MOTION  

H. Stachel’s discovery and description of the motions of one regular tetrahedron 𝑇𝑇1 relative to the 

other 𝑇𝑇2 of a classical Stella Octangula such that all edges of 𝑇𝑇2 slide along the edges of 𝑇𝑇1 see 

(Stachel, 1988, p. 65-75) connects symmetry properties with the kinematics of forced motions. It 

seems that the question, whether the regular Stella Octangula is the only one with movable tetrahe-

dral parts, or whether there are more such objects, still is unanswered. Here we pick up Stachel’s 

discovery and consider generalised Stellae Octangulae consisting of indirect congruent tetrahedra 

𝑇𝑇1 and 𝑇𝑇2. We demand that the two tetrahedra 𝑇𝑇1 and 𝑇𝑇2, if materialized by their edges, allow at 

least a one-parameter set of motions of 𝑇𝑇2 relative to 𝑇𝑇1. Thereby all edges of the moving tetrahe-

dron 𝑇𝑇2  slide along the edges of the fixed one 𝑇𝑇1. It turns out that each tetrahedron 𝑇𝑇1, the faces of 

which are acute triangles, can be completed to a Stella Octangula by an indirect congruent, “sym-

metric” version 𝑇𝑇2 of that tetrahedron 𝑇𝑇1, and there always will exist, at least a one-parameter set of 

forced motions of 𝑇𝑇2 along 𝑇𝑇1. For example, if 𝑇𝑇1 is a right three-sided pyramid, there is a one pa-

rameter set of helical motions from the extremal start position of 𝑇𝑇2, Figure 1 (left), where 𝑇𝑇1 and 𝑇𝑇2 
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are centrally symmetric to another position of 𝑇𝑇2, Figure 1 (right). Note that one vertex of 𝑇𝑇2 moves 

on the screw axis, the other vertices trace a curve on a coaxial cylinder, but not a helix, Figure 2. 

                   
Figure 1 Stella Octangula consisting of two right tetrahedra 𝑇𝑇1 and 𝑇𝑇2 in extremal start position (left), and in an intermediate 
position (right). At the start position the intersection  𝑇𝑇1 ∩ 𝑇𝑇2  is an octahedral antiprism with a regular face triangle at the top 

and the bottom and six congruent isosceles triangles in between (left). At the intermediate position  𝑇𝑇1 ∩ 𝑇𝑇2 still is an antiprism 
with regular top and bottom, but with irregular face triangles between (right).   

 
Figure 2 Top- and Side-view of the right tetrahedra 𝑇𝑇1 and 𝑇𝑇2 from Figure 1. Here both, 𝑇𝑇1 and 𝑇𝑇2, translate 

symmetric to a plane 𝜎𝜎 orthogonal to their common altitude 𝑎𝑎, while rotating in opposite directions at 𝑎𝑎. 
Furthermore, the traces of the vertices of 𝑇𝑇1 and 𝑇𝑇2 are shown as a formally closed curve on a cylinder 

with axis 𝑎𝑎 (grey: paths of black vertices, pink: paths of purple vertices). 
 

As next cases we consider pairs of indirect congruent equifaced tetrahedra 𝑇𝑇1 and 𝑇𝑇2. In the stand-

ard position, when their edges intersect in midpoints, their common inner part 𝑇𝑇1 ∩ 𝑇𝑇2 is an 

equifaced octahedron 𝒪𝒪. (These octahedra are subject to the next topic.) The convex hull of 𝑇𝑇1,𝑇𝑇2 is 

a rectangular box ℬ with edges parallel to the diagonals of  𝒪𝒪, Figure 3 (left). We keep one diagonal 

𝑎𝑎 of 𝒪𝒪 fixed and interpret those edges of 𝑇𝑇1, which intersect 𝑎𝑎, as diagonals of a skew quadrilateral 

consisting of the remaining edges of 𝑇𝑇1. Two opposite edges of this quadrilateral are generators of a 

hyperboloid of revolution Φ1 with axis 𝑎𝑎, the other pair of edges defines a second hyperboloid of 

revolution Φ2 coaxial with 𝑎𝑎, Figure 3 (right). Now we reflect 𝑇𝑇1 at planes 𝜎𝜎 through 𝑎𝑎. Obviously, 

Φ1 and  Φ2remain fixed, and we receive symmetric versions 𝑇𝑇2 of 𝑇𝑇1 in positions, where all edges 
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of 𝑇𝑇2 must intersect those of 𝑇𝑇1. Having chosen 𝜎𝜎 suitably all intersection points are indeed inner 

points of the edge segments. Thereby “suitably” means that the reflection planes 𝜎𝜎 through 𝑎𝑎 must 

be chosen within a restricted angle-interval to ensure that the edge segments intersect in inner points 

(for example, in Figure 3 this angle interval has the size of ∢𝑃𝑃𝑃𝑃𝑃𝑃). 

                          
 

Figure 3 The Stella Octangula based on equifaced tetrahedra 𝑇𝑇1 and 𝑇𝑇2 has an equifaced octahedron 
in common, its convex hull is a right prism (left). The edges of 𝑇𝑇1, considered as a skew quadrilateral together 

with its diagonals, are generators of two hyperboloids of revolution with common axis 𝑎𝑎. Reflecting 𝑇𝑇1 
at a plane 𝜎𝜎 through delivers 𝑇𝑇2 with edges intersecting the edges of 𝑇𝑇1 (right). The figure at right shows 

the reflection at a special plane 𝜎𝜎 delivering the standard position of 𝑇𝑇2. 

As we have three possibilities to choose axis 𝑎𝑎, there are three one-parameter sets of motions of 𝑇𝑇2 

“along” 𝑇𝑇1. We collect this in 

Theorem 1: Besides the classical Stella Octangula based on regular tetrahedra 

𝑇𝑇1,𝑇𝑇2 also those Stellae based on equifaced tetrahedra 𝑇𝑇1,𝑇𝑇2 allow three one-

parameter sets of restricted motions of 𝑇𝑇2 along 𝑇𝑇1. Stellae Octangulae based on 

regular three-sided pyramids 𝑇𝑇1,𝑇𝑇2 allow (at least) one such set of motions. 

Finally, we show an edge model of an equifaced Stella Octangula in start position and in an inter-

mediate position, Figure 4. We leave the discussion whether there are even more general cases of 

movable Stellae Octangulae to another occasion. 

   
 
 

Figure 4 Edge model of an equifaced Stella Octangula in 
start position (left) and in an intermediate situation (right).  
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EQUIFACED OCTAHEDRA AND THEIR SYMMETRIES  

Now we turn to equifaced octahedrons 𝒪𝒪, as they are basic also for the Stellae Octangulae men-

tioned above. We ask for all different types, which can be made of eight congruent and acute trian-

gles. For example, with four congruent acute triangles with side lengths |𝑎𝑎| < |𝑏𝑏| < |𝑐𝑐| one can 

build six different four-sided pyramids, disregarding symmetric versions. Figure 5 shows two char-

acteristic developments of such pyramids, which can occur at an octahedron. 

 

Figure 5 Two possibilities (out of six) to develop a vertex pyramid of an equifaced 
octahedron into the plane. Direct congruent face triangles are marked with the same colour. 

An octahedron can be generated by gluing together a pair of symmetric pyramids along their (not 

necessarily planar) base polygons. It turns out that from these six pairs of symmetric pyramids one 

can obtain exactly four different octahedra. They have pairwise orthogonal diagonals. There is one 

octahedron, “type A”, with co-punctal diagonals, Figure 6 (left), and three with a skew pair of diag-

onals, whereby the third is their common normal, Figure 6 (right). The latter ones will be referred to 

as “type B”-octahedra.  That there are, in general, indeed three different octahedra of the second 

type can be read off from the top vertex of Figure 6 (right): There are three possibilities of edge 

combinations at this vertex, namely 𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏, 𝑏𝑏𝑐𝑐𝑏𝑏𝑐𝑐 and 𝑎𝑎𝑐𝑐𝑎𝑎𝑐𝑐. 

 
Figure 6 The equifaced type A-octahedron (left) has pairwise orthogonal diagonals intersecting in a common point, 

while equifaced type B-octahedra (right) have a pair of skew (but orthogonal) diagonals, while the third is the common 
normal of the other diagonals. Local symmetry of adjacent faces is also a global symmetry of equifaced octahedra. 
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If the eight (acute) triangles are isosceles, i.e., |𝑎𝑎| = |𝑏𝑏| ≠ |𝑐𝑐|, then two of the octahedrons of the 

types of Figure 6 (right) are identical. Obviously, there is only the single regular octahedron to equi-

lateral triangles with |𝑎𝑎| = |𝑏𝑏| = |𝑐𝑐|. Adding equifaced tetrahedrons to the faces of octahedra with 

acute triangular faces one obtains equifaced Stellae Octangulae, which only exist for acute trian-

gles. Nevertheless, one might ask equifaced octahedra with obtuse face triangles, too. Obviously, 

there is no such octahedron with diagonals intersecting in one point, but there are still three other 

ones of type Figure 6 (right). We collect this as   

Theorem 2: From 8 congruent triangles one can build (in general) 4 different 

equifaced octahedra, whereof one, a type A-octahedron, has acute triangular faces 

and three co-punctal and pairwise orthogonal diagonals. Type A-octahedra are 

symmetric to three pairwise orthogonal planes and occur at equifaced Stellae Oc-

tangulae. The other three, type B-octahedra, have pairwise orthogonal diagonals, 

too, but two of them are skew. Type B-octahedra have only two symmetry planes. 

Less than four possibilities of equifaced octahedra are due to cases, when the face 

triangles are obtuse or isosceles or equilateral.  

A single limit case with isosceles right triangles as faces is worthy to be mentioned here. It is due to 

Dr. Wyllie Rodrigues, who mentioned it in an e-mail 2017 (Rodrigues, 2017). He also found out 

that the ratio of its diagonals relates to the Golden Mean. Such a “Rodrigues-octahedron” is an 

equifaced type B-octahedron and can be made of set squares. Therefore, it is appropriate for team-

work in a classroom offside the usual treatment of Platonic Solids, Figure 7.  

     
 

Figure 7 Vertex pyramid (left) of a Rodrigues-octahedron (left) and a model made of set squares (right).  

EQUIFACED SET-SQUARE POLYHEDRA  

Finally, one might extend Rodrigues’ idea and use (congruent) isosceles right triangular faces also 

for other closed and open polyhedra and model them with congruent set squares, c.f. Weiss (2019, 

pp.95-96) and Weiss (2020, pp.20-26). Thereby one should exclude co-planar set squares as faces. 

Besides polyhedra with the symmetry groups of Platonic solids one can construct also irregular pol-
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yhedra and cylindrical or helical ones, the latter connecting the topic also to folded plates and Ori-

gami, Figures 8 to 10.  The topic provides at least non-trivial material for geometry and maths 

courses at different levels. Even so the construction principle and its practical modelling is simple, 

the discussion of occurring symmetries could be of interest.  

  

Figure 8 Cupolas over a square (left) and a regular pentagon (right). 
They could replace the faces of a cube or a pentagonal dodecahedron or one can 
simply glue them together with a reflected cupola to form a closed polyhedron. 

 
 

 

Figure 9 Antiprisms made of set squares (left and middle). They can be duplicated to form 
Cylindrical shapes and closed by suitable cupolas. The image at right shows a cardboard model 

of a helical polyhedron, the faces of which are congruent isosceles right triangles.   

  

Figure 10 Two pphotographs of a closed polyhedron with 14 set square faces. 
It is symmetric with respect to two orthogonal symmetry planes.  

As an unexpected example we mention that it is possible to make even a Möbius stripe with a chain 

of 2𝑛𝑛 + 1 such triangles, (𝑛𝑛 ≥ 3), Figure 11. Such polyhedral Möbius stripes are, within limits 
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movable. In certain positions one can find local symmetries of three adjacent face triangles, but 

there is no global symmetry.  

              
 

Figure 11 Photograph of a Möbius stripe consisting 
of 7 set squares; it is, within limits, movable. 

CONCLUSION 

At a first glance the presented geometric topics are independent, but they finally show some com-

mon features. One is of course symmetry in a wider sense, another is the way of deducing results 

via geometric reasoning. Thereby real models can give deeper insight and are an important stimu-

lant for research.  An educational aspect of this paper is to present polyhedra off the beaten track of 

Platonic and Archimedean solids. Finally, it shall be shown that even rather elementary topics can 

lead to many unexpected aha- moments.  
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