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Abstract: Like many mathematicians of his era, Evangelista Torricelli (1608-1647) studied the cy-
cloid. This paper examines Torricelli’s proof that the area under the cycloid (the quadrature) is 
three times the area of the generating circle. Torricelli proved this result in three distinct ways. It is 
worth noting that he carried on an extensive mathematical correspondence with Cavalieri and it is 
clear that Cavalieri’s techniques influenced his proofs. What follows is a discussion of Torricelli’s 
proofs with an emphasis on the use of symmetry and geometric reasoning, as viewed through the 
lens of graphical representations of the proofs. 
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INTRODUCTION 

Many well-known mathematicians of the seventeenth and eighteenth centuries studied the cycloid. 

These include Roberval (1693), Descartes (1659), and Pascal (1963). The solutions of Leibniz, 

Newton, Johann and Jacob Bernoulli were all published in the Acta Eruditorum of May 1697 (Men-

cke, 1697). These mathematicians focused on three types of computation: finding the tangent, the 

rectification (length of the curve) and the quadrature (area under the curve).  

This paper provides a visual representation of Evangelista Torricelli’s proofs of the quadrature of 

the cycloid. His computations were completed sometime before April 1643 when Bonaventura 

Cavalieri sent a letter to Torricelli congratulating him on his findings (Torricelli et al. 1919, p 121). 

Torricelli's results were published in an appendix in his Opera Geometrica (1644).  
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THE CYCLOID 

The cycloid is a simple curve to describe, and was a favorite mathematical example used by many 

sixteenth, seventeenth, and early 18th century mathematicians. The equation of this curve was not 

described until the late 17th century; however, knowledge of the equation was not necessary for the 

curve to be useful in the geometrically-focused proofs of the era. The simple description of the cy-

cloid is that it is the curve that is traced by a point on a circle when the circle is rolled along a hori-

zontal line (see Figure 1). 
 

Figure 1. The drawing of the cycloid in Torricelli’s Opera geometrica 
(1644). (Torricelli, 1664, p 85 of appendix). Photograph by the author. 

Some mathematicians of the period considered the cycloid as an object created by two component 

motions (Roberval, 1693), the turning of the circle and the horizontal motion of the centre of the 

circle as it moves parallel to the line. In all proofs discussed in this paper, one critical geometric 

idea is used: when the circle rolls along the line, the distance moved around the circle is equivalent 

to the distance travelled along the horizontal line (see Figure 2). 

 

Figure 2. The red marks demonstrate that distance around the circle is the 
same as the distance traveled in the horizontal line. Drawing by the author.  

A GEOMETRIC LOOK AT TORRICELLI’S THREE PROOFS 

Torricelli states three times that the area under the cycloid is three times the area of the generating 

circle. Each of his Theorems I – III represents a unique proof of this fact. Torricelli simplifies his 

geometric arguments by showing that the quadrature of one half of the cycloid is equivalent to the 

area contained in three halves of the generating circle. In Theorem I, he links the quadrature to the 

area of a triangle (Torricelli, 1664, p 86): 
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Theorem I: The space between the cycloid and the straight line of the base is tri-

ple the generating circle; or one and a half of the triangle that has the same base 

and height (translation from the Latin by the author). 

This proof of Torricelli’s is fairly well-known since it has been translated into a number of lan-

guages. The proof relies on a theorem of Archimedes that states that the area of any circle is equal 

to a right-angled triangle in which one of the sides about the right angle is equal to the radius and 

the other to the circumference of the circle. Using parallel lines, the definition of the cycloid, and 

some simple geometry, Torricelli shows in the proof of Theorem I, that the area of the half cycloid 

is one and a half times the area of the triangle ACF (Figure 3) (Torricelli, 1664, p 86-87).  

 

Figure 3. Illustration for Theorem I from Opera geometrica. 
The blue lines emphasize the triangle used in the proof. Coloring by the author. 

Torricelli’s second and third Theorems make use of a Lemma (Torricelli, 1664, p 87) (see Figure 

4). 

Lemma I: On opposite sides of a rectangle AEFD, draw two semicircles EIF and 

AGD. The area between EIF and AGD is equal to the rectangle (translation from 

the Latin by the author). 

The figure presented with the lemma (Figure 4) shows that if a semicircle is added to the exterior of 

a rectangle and then a semicircle is subtracted from the resulting shape, the area of the lune (what 

Torricelli calls an arcuatus) is the same as the area of the rectangle. 

 

Figure 4. Illustration for Lemma I from Opera geometrica. 
The blue shading shows the relevant areas. Coloring by the author. 
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Torricelli’s Theorem II simply states that “the area of the cycloid is triple the generating circle” 

(Torricelli, 1664, p 89 of appendix). Translation by the author. What is needed for this proof is 

Lemma II (Torricelli, 1664, p 88): 

Lemma II: Let the cycloid be drawn from the point C on the semicircle CDE 

which is rolled out along a fixed line AE. Let the rectangle AFCE be completed 

and make a semicircle AGF on the diameter AF. I say that the cycloid ABC cuts 

the arcuatus AGFCDE in two halves (translation from the Latin by the author). 

Figure 5 illustrates the conclusion of the Lemma. 

 

Figure 5. Illustration for Lemma II from Opera geometrica. 
The blue and red shading illustrate the division into two pieces. Coloring by the author. 

The proof of this Lemma is the most complicated argument in Torricelli’s discussion of the quadra-

ture of the cycloid, and it is also the argument where the Latin of the proof is not perfectly clear. 

Torricelli is using a reductio ad absurdum argument and begins by assuming that ABCDE is the 

larger of the two parts in Figure 5. The set up for Torricelli’s proof is shown in Figure 6. AE is the 

base of the half cycloid AC, it is divided in half at point H, then the segment EH is divided in half 

and the process is continued iteratively until the rectangle IRCE with base IE has an area smaller 

than that of the rectangle with predefined area K. 

 

Figure 6. Illustration for Lemma II from Opera geometrica. 

AE is divided into segments of length IE. A tangent semicircle is placed at the endpoint of each IE-

length segment (e.g., I, H, L). These semicircles cross the cycloid at points O, B and M. The lines 

GO, PB, and QMD are drawn parallel to the base AE. FC is divided in the same manner, so segment 

RC is the same length as IE. Because GO and AH are parallel, and the semicircles FGA and TPL are 
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tangent to AE at A and L respectively, the arcuatus GAL and the arcuatus OLH must have the same 

area. Torricelli is using arcuatus to give a name to these shapes that are parts of lunes. The process 

continues and thus pairs of arcuatus are given (see Figure 7). 

 

Figure 7. Illustration for Lemma II from Opera geometrica. 
The slate blue shading illustrates the pairs of areas. Coloring by the author. 

The balance of the argument relies on the use of symmetry and the physical definition of a cycloid. 

In particular, that the length of the segment AE is the same as the circumference of the semicircle 

(CDE). This physical definition gives that arcOL = AL (this can be seen by recognizing that if the 

semicircle TPL was rolled so that point O was on the line segment AE, the semicircle moves from 

being tangent at point L to being tangent at point A). In a similar manner, arclengthDC= RC. By 

construction AL=IE=RC=SR and because QMD is parallel to FC, arclengthDC=arclengthMR. This 

gives that the areas of arcuatus OLH and arcuatus MRC are the same (see Figure 8). By use of par-

allel lines and symmetry (see Figure 7), the areas of arcuatus OLH and arcuatus QSR are the same 

(see Figure 8). This now gives two arcuatus of equal size, one inscribes in the cycloid (to the right) 

and one circumscribed on the cycloid (to the left). 

 

Figure 8. Illustration for Lemma II from Opera geometrica. 
The red shading indicates areas of the same size. Coloring by the author. 

In a similar manner, using the definition of the cycloid, the properties of parallel lines, and sym-

metry, additional pairs of arcuatus can be obtained (see Figure 9). This creates Cavalieri-like divi-

sions of the areas inscribing and circumscribing the cycloid. 
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Figure 9. Illustration for Lemma II from Opera geometrica. 
The blue, green, and red shading illustrate the Cavalieri-like divisions. Coloring by the author. 

The Latin in Torricelli’s conclusion of this proof is not clear. He says (Torricelli, 1664, p 89): 

Using the arcuatus, the entire figure inscribed in the triline ABCDE, will be equal 

to the same figure circumscribed by the triline FGABC, with the arcuatus IM-

RCDE removed. But if you were to add the circumscribed figures to the same ar-

cuatus IMRCDE, the circumscribed figure will exceed the inscribed by the excess 

of the given arcuatus, or the rectangle RE, and certainly by an excess less than 

area K (translation from the Latin by the author). 

An interpretation of this can be found by looking at Figure 10. Consider the area not covered by the 

pairs of arcuatus, it can be seen that what remains is the area of a full arcuatus of the semicircle 

which has the area of the arcuatus IMRCDE. Lemma I shows that the area of the arcuatus IMRCDE 

is the same as the area of the rectangle RIEC, and thus smaller than area K. The balance of Torricel-

li’s proof of Lemma II states that the argument would be the same if FGABC had been chosen to be 

the larger area, thus ABC must divide the shape AGFCDE in half. 

 

Figure 10. Illustration for Lemma II from Opera geometrica. 
The yellow shading illustrates the area not used by the pairs of arcuatus. Coloring by the author. 

The proof of Theorem II follows from Lemma I and Lemma II. What Torricelli shows is that since 

the blue area in Figure 11 is the same as the area of the rectangle AFCE (Lemma I), the part of the 

arcuatus under the cycloid has the same area as one half of the rectangle (see Figure 5 and Lemma 

II), thus it is equal to two semicircles. When a third semicircle is added to fill in the white space 

(semicircle on CE), the desired result that the area under the half cycloid is three semicircles is 

achieved. 
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Figure 11. Illustration for Theorem II from Opera geometrica. 
Coloring by the author. 

Torricelli’s Theorem III also states that the area under the cycloid is the same as three times the area 

of the generating circle (Torricelli, 1664, p 90). The proof also relies on showing that the large ar-

cuatus is cut in half by the cycloid (as shown in Figure 5), but a different proof for this result is giv-

en. Once again, Torricelli uses symmetry and Cavalieri-like techniques. His proof focuses on pairs 

of parallel lines (GI and LH) that are symmetric with respect to the centre of the diameter of the 

generating circle (CD) (see Figure 12). Line GI intersects the cycloid at point O and line LH inter-

sects the cycloid at point B. Semicircles are drawn through O and B such that they are tangent to AD 

at points N and Q respectively. 

 

Figure 12. Illustration for Theorem III from Opera geometrica. 
Coloring by the author. 

Once again, Torricelli invokes the physical properties of the cycloid to build his argument. Because 

GI is parallel to AD, GR=OV and thus GO=GR+RO=OV+RO=RV=AN (red, yellow, and green lines 

in Figure 12). By Properties of the cycloid arcON=AN (blue lines in Figure 12). Similarly in the top 

of Figure 12, BT=SH and thus BS=BT+TS=SH+TS=TS=PC. Since GI and LH are symmetric with 

respect to the centre of the line CD, arcON=arcBP. By properties of parallel lines and circles 

arcBP=arcCS and by properties of the cycloid and the rectangle arcCS=QD=PC. Combining these 

equations yields GO=arcON=arcCS=PC=SH (see Figure 13). This process can be iterated and thus 

provides the basis for a Cavalieri-type argument that ABC cuts the shape AGFCSD in half. 

Since the area of AGFCSD is the same as the area of the rectangle AFCD (Lemma I), then the area 

of ABCED is one half of the rectangle AFCD and thus equivalent to two semicircles. When the third 

semicircle is added to fill in the white space (see Figure 11) the desired result is achieved.  
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Figure 13. Illustration for Theorem III from Opera geometrica. 
Coloring by the author. 

CONCLUSION 

Torricelli had an extensive correspondence with Cavalieri (Torricelli et al., 1919) and Torricelli’s 

three proofs of the quadrature of the cycloid make use of Cavalieri’s indivisibles (Cavalieri, 1635). 

These proofs provide a small window into how 17th century European mathematicians made use of 

geometry and symmetry in calculations of quadrature well before the “discovery” of calculus. 
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