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Abstract
Objective and design The current study aimed to summarize the evidence of compounds contained in plant species with the 
ability to block the angiotensin-converting enzyme 2 (ACE-II), through a scoping review.
Methods PubMed and Scopus electronic databases were used for the systematic search and a manual search was performed
Results Studies included were characterized as in silico. Among the 200 studies retrieved, 139 studies listed after the exclu-
sion of duplicates and 74 were included for the full read. Among them, 32 studies were considered eligible for the qualitative 
synthesis. The most evaluated class of secondary metabolites was flavonoids with quercetin and curcumin as most actives 
substances and terpenes (isothymol, limonin, curcumenol, anabsinthin, and artemisinin). Other classes that were also evalu-
ated were alkaloid, saponin, quinone, substances found in essential oils, and primary metabolites as the aminoacid l-tyrosine 
and the lipidic compound 2-monolinolenin.
Conclusion This review suggests the most active substance from each class of metabolites, which presented the strongest 
affinity to the ACE-II receptor, what contributes as a basis for choosing compounds and directing the further experimental 
and clinical investigation on the applications these compounds in biotechnological and health processes as in COVID-19 
pandemic.
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Introduction

Several efforts have been performed to manage the COVID-
19 pandemic (coronavirus disease 2019), responsible for 
causing the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), including the recent vaccination programs 
rolled out worldwide. However, there is still a need to iden-
tify effective treatments, particularly in countries where not 
only the vaccine uptake is slow, but also the insidious threat 
of mutations has led to a vaccine escape and an increase of 
infections [1–3]. Up until 31th of January 2022, the global 
situation is that more than 373 million cases of COVID-19 
were confirmed, with over 5 million deaths [4].

The angiotensin-converting enzyme 2 (ACE-II), a type 
I membrane protein found in the lung, arteries, heart, liver, 
and kidney cells, plays an important role in the renin–angio-
tensin–aldosterone system (RAAS), involving blood pres-
sure regulation and electrolyte homeostasis. ACE-II cleaves 
angiotensin-II to angiotensin (1–7) which exerts vasodilat-
ing, anti-inflammatory, and antifibrotic effects through 
binding to the receptor. Additionally, by coordinating the 
bradykinin metabolism in the lungs, ACE-II can inhibit both 
vasodilation and elevation of vascular permeability [5–7].

ACE-II has an active enzyme domain exposed on the 
cells surface that acts as a functional receptor allowing, 
among others, the entry of the SARS-CoV-2 virus (i.e. 
etiological agent of the new coronavirus disease—COVID-
19) into human cells, especially in the upper respiratory 
tract [7]. The viral Spike (S) protein of the SARS-CoV-2 
has a high binding affinity to ACE-II, which leads to the 
S-protein priming by the host cell transmembrane pro-
tease serine 2 (TMPRSS2) and fusion of the virus with 

cell membranes to release the virus RNA genome into the 
host cell through receptor-mediated endocytosis [8–10].

According to the literature, nearly 80% of the world's 
population depends on traditional medicines to treat a 
range of diseases. The past experiences with the influenza 
outbreak, MERS-CoV, and HIV infections proven that 
natural products, such as medicinal plants and their deriva-
tives, are valuable sources for the synthesis of new antivi-
ral drugs due to their availability and variety of substances 
with therapeutic potential [11, 12]. Substances such as 
flavonoids (e.g. hesperidin, baicalin, rutin), xanthones, 
and alkaloids (e.g. ergotamine, nigellidine, quinadoline B) 
have antiviral, antibacterial and anti-inflammatory activi-
ties [13, 14]. Additionally, there is evidence that plant 
species from traditional Indian system of medicine are 
capable of reducing infection caused by SARS-CoV-2 by 
modulating the anti-inflammatory effects on the organism 
and by inhibiting the replication and modulation of fluids 
in the viral membrane. Some substances can also inhibit 
proteins that are paramount for the infection’s process such 
as the ACE-II, TMPRSS2 or NLRP3 (i.e. molecular plat-
form that promotes inflammation) in the host [15].

Although the role of the ACE-II receptor in the patho-
physiology of COVID-19 is not yet fully elucidated. It is 
known that drugs that act on this enzyme may prevent the 
entry of the virus into the cell and also increase its expres-
sion in the tissue, suggesting a protective effect on the 
pulmonary inflammatory process. In addition, the search 
for substances with therapeutic potential for COVID-19 is 
moving towards drugs with multiple therapeutic targets, 
acting on key sites of the disease, such as ACE-II recep-
tors [16, 17].

In this context, the aim of this scoping review was to 
synthesize the available evidence on the effects of metabo-
lites from plants with potential to inhibit ACE-II receptor, 
thus preventing the entry of SARS-CoV-2 in the respira-
tory tract.

Methods

Research question

This scoping review was performed according to the rec-
ommendations of the Preferred Reporting Items for Sys-
tematic reviews and Meta-Analyses extension for Scoping 
Reviews (PRISMA-ScR) [18], Cochrane Handbook for 
Systematic Reviews of Interventions [19], and the Joana 
Briggs Institute [20]. The study was registered in Open 
Science Framework (OSF) and its protocol is available at 
https:// doi. org/ 10. 17605/ OSF. IO/ 7QXV8.

https://doi.org/10.17605/OSF.IO/7QXV8
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Search strategy

The search was conducted in the electronic databases Pub-
Med and Scopus with no restriction for publication date 
(October the 5th, 2020). Manual searches were performed in 
the references from the included articles. The main descrip-
tors used were: “ACE-II”, coronavirus, COVID-19 and 
“herbal medicine” (see full strategy search in appendix A 
provided in the supplementary material).

Inclusion and exclusion criteria

We included in silico studies that evaluated the effect of bio-
active compounds from plant species as potential treatment 
of infection caused by the SARS-CoV-2 virus (COVID-19) 
using ACE-II as the receptor. Other study designs, articles 
not assessing bioactive compounds or targeting different 
proteins and those published in non-Roman characters were 
excluded from this scoping review.

Eligibility and data extraction

Relevant studies selected during screening (title and abstract 
reading) and eligible according to the above-mentioned cri-
teria after full-text reading, had their data extracted using 
structured tables (general characteristics of the studies, 
metabolites classes, biding energy, software used and main 
findings). The Protein Data Bank (PDB) was consulted for 
the codes of target proteins. According to the nature of the 
data, qualitative data analyses and synthesis were performed.

The steps title and abstract reading (i.e. screening), full-
text reading (i.e. eligibility) and data extraction were con-
ducted by two reviewers independently, in case of disagree-
ment, a third reviewer was consulted.

Results

A total of 200 registers were selected from the database 
after duplicates removal, of which 139 were included during 
screening (title and abstract reading) and 74 were included 
for full-text appraisal (see the complete list in appendix 
B provided in supplementary material). Finally, 32 regis-
ters studies meeting the eligibility criteria had their data 
extracted and analyzed [21–52]. No articles were identified 
through manual searches (Fig. 1).

The main characteristics of the included studies, 
grouped according to metabolites’ classes, is depicted in 
Table 1. Studies were mostly performed in India (n = 11; 
34.37%) and China (n = 10; 31.25%). Flavonoids (n = 10; 
31.25%) and others phenolic compounds (n = 5; 15.62%), 
terpenes (n = 5; 15.62%), alkaloids (n = 3; 9.37%), sapo-
nins (n = 3; 9.37%), quinone (n = 1; 3.12%), substances 

found in essential oils (n = 3; 9.37%) were the bioactive 
compounds evaluated as representatives from secondary 
metabolism. As primary metabolites were founded ami-
noacid (n = 1; 3.12%) and lipidic compound (n = 1; 3.12%). 
Overall, crystallographic structures available at the Pro-
tein Data Bank (PDB) were used by 27 studies (84.37%). 
The main used programs were Autodock Vina, Cytoscape, 
Visual Molecular Dynamics (VMD), and Molecular Oper-
ating Environment v.2.2 (MOE). The table with chemical 
structure classification of substances mentioned in Table 1 
is in appendix C provided in the supplementary material.

Phenolic compounds

From the eligible studies, 15 (46.87%) evaluated the bonds 
in phenolic compounds. Among them, five used the PDB 
1R42 (native human angiotensin-converting enzyme-
related carboxypeptidase) and three, the PDB 2AJF (struc-
ture of SARS coronavirus spike receptor-binding domain 
complexed with its receptor). The other PDBs were used 
by only one study each, like 4APH (human angiotensin-
converting enzyme in complex with angiotensin-II), 6VW1 
(structure of SARS-CoV-2 chimeric receptor-binding 
domain complexed with its receptor human ACE-II) and 
6M17 (2019-nCoV RBD/ACE2-B0AT1 complex). Three 
of these studies (20.0%) found quercetin as the best binder 
[31, 34, 40]. However, one study had observed a stronger 
binding capability from the substance curcumin in rela-
tion to the target ACE-II (PDB 1R42) [27], suggesting 
that the flavonoids, especially quercetin and curcumin are 
promising substances for the treatment of COVID-19 by 
multiple pathways.

Fig. 1  Flow diagram of included records of the scoping review
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Terpenes

Terpenes were the second class of secondary metabolites 
with high number of published studies (n = 5) [21–23, 33, 
36, 47]. The targets used were PDB 6VW1, 6M1D (ACE-
II-B0AT1 complex), 1R4L (inhibitor bound human angio-
tensin-converting enzyme-related carboxypeptidase), 2AJF 
and 6LZG (structure of the new binding domain to the peak 
receptor of coronavirus complexed with its ACE-II recep-
tor), were used in one study each. Substances that showed 
most promising results according to Table 1 were: isothymol 
[21], limonin [33], curcumenol [47], anabsinthin [23] and 
artemisinin [36].

Alkaloids

The antiviral potential of alkaloids were evaluated for three 
studies [38, 48, 49] with PDBs 1R42, 1R4L and 6LZG, 
described as targets substances with promising activities 
were bicuculline [48], pipercyclobutanamide B [49], and 
norreticuline [38].

Saponins

Three studies referred to the effects of the saponins dios-
genin, ursodeoxycholic acid, and glycyrrhizic acid [28, 32, 
42]. One PDB code was used in each study for determining 
the substance’s binding energy with its target, which were, 
1R42, 6M17, and 6M0J (crystal structure of peak receptor-
binding domain SARS-CoV-2 bound to ACE-II). Among 
these, the most significant result was ursodeoxycholic acid, 
through molecular docking performed using the Glide 5.5 
software, with a score of − 48.990 kcal/mol [32].

Others

Essential oils were studied in three articles, with substances 
obtained from species of Allium sativum L., Melaleuca caju-
puti Powell, Matricaria recutita L., Ocimum campechianum 
Mill., and Zingiber officinale Roscoe. The compound that 
performed better when analyzed through molecular docking 
was (E,E)-α-farnesene, in an experiment carried out using 
the Molegro Virtual Docker v. 6.0.1, for this binding the 
molecule reached the score of − 23.97 kcal/mol [29, 39, 41]. 
The quinone (dithymoquinone) was evaluated in only one 
study [22].

Of all the articles analyzed, two investigated the bind-
ing of substances from the primary metabolism of plants 
with ACE-II, and the genera/species of the plants of the 
analyzed formulations were presented. The most promis-
ing results were associated with l-tyrosine (aminoacid) 
and 2-monolinolenin [37]. The PDBs used were the 3D0G 
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(crystal structure of spike protein receptor-binding domain 
from the 2002–2003 SARS coronavirus human strain com-
plexed with human-civet chimeric receptor ACE-II) and 
1R42, respectively.

In general, considering the binding energies, the sub-
stances from each class with the strongest affinity with the 
ACE-II receptor were associated with PDBs code as shown 
in Fig. 2.

Discussion

In this scoping review, were evaluated the outcomes of in 
silico studies conducted with bioactive compounds from 
plants with potential to interact with the ACE-II recep-
tor. This type of study was chosen for analysis because 
it allows computational searching of protein databases to 
find novel substances, which allows its application in the 
search for therapeutic options against the COVID-19 pan-
demic [22, 53].

SARS-CoV-2 binds to human ACE-II through the 
binding of the spike protein (S) that contains S1 and S2 
subunits. The S1 subunit is the receptor’s binding site that 
is responsible for binding with the host ACE-II, and the 
S2 subunit facilitates membrane fusion in host cells. The 
receptor’s binding domain cleaves the ACE-II receptor so 
that SARS-CoV can enter host cells. Some studies have 
evaluated that plant metabolites have the ability to selec-
tively bind and inhibit this receptor-binding domain. These 
ligands can potentially inhibit the Spike-RBD/TMPRSS2/
ACE-II axis simultaneously in RBD and ACE-II [14, 43]. 
Thus, studies are needed to elucidate the details of this 

inhibition, which may be due to different mechanisms 
according to plant metabolites.

Plants are capable of producing, transforming and/or 
accumulating low molecular mass metabolites, classified as 
secondary or special metabolites, which provide advantages 
for the survival of the species and may present interesting 
biological and therapeutic activities [54]. Among them, phe-
nolic compounds are one of the most representative classes, 
with antioxidant, antiinflammatory, antiviral, antiprolifera-
tive, antitumoral and hormonal activities described in the lit-
erature, among others. Depending on the number of phenolic 
rings, polyphenols can be classified into phenolic acids, fla-
vonoids, stilbenes, lignans, and others [54–56].

A previous study comparing the efficacy of flavonoids 
from the Sambucus nigra L. species versus antivirals as 
oseltamivir and amantadine by means of real time mass 
spectrometry ionization, found that these bioactive com-
pounds had antiviral activities against Influenza A virus 
(H1N1), by binding and consequently blocking the ability 
of the virus to infect host cells [57]. Similarly in vivo study 
demonstrated effects of flavonoids glycosides from Hout-
tuynia cordata Thunb., as rutin, hyperin, isoquercitrin, and 
quercitrin, on influenza A virus (IAV)-induced acute lung 
injury (ALI) in mice. Some of the effects reported were: 
increased the survival rate and life span, lesser weight loss, 
lower lung index, intact lung microstructural morphology, 
milder inflammatory infiltration, lower levels of markers 
anti-inflammatory, and lung H1N1 virus titers. In addition, 
in vitro results associated of inhibited viral replication and 
signaling in cells with the flavonoids hyperin and quercitrin 
[58]. Further, in silico studies showed inhibitory activity of 
flavonoids against the 3CLpro protein of SARS-CoV-2, one 
the main pharmacological targets against COVID-19 [59]. 

Fig. 2  Possible inhibition of SARS-CoV-2 binding to the ACE-II 
receptor by primary and secondary metabolites. 1.1. (a) δ-viniferine; 
(b) resveratrol. 1.2. (c) luteolin, quercetin, puerarin; (d) theaflavin; (e) 
tectochrysin; (f) isorhamnetin. 1.3. (g) phillyrin. 1.4. (h) curcumin, 
(i) chlorogenic acid. 2. (j) isothymol, curcumenol; (k) limonin; (l) 

curcumenol; (m) anabsinthin; (n) artemisinin. 3. (o) bicuculline; (p) 
pipercyclobutanamide B; (q) norreticulin. 4. (r) diosgenin; (s) urso-
deoxycholic acid; (t) glycyrrhizic acid. 5.1 (u) linalool, (v) (E,E)-
α-farnesene; 5.2. (w) dithymoquinone. 6.1. (x) l-tyrosine; 6.2. (y) 
2-monolinolenin. Source: the authors
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In this context, the studies included in this review show that 
the most studied class was flavonoids, as quercetin and cur-
cumin with lower binding energies, which show potential 
of this class for development of new treatment strategies 
against COVID-19.

The antiviral activity has also been reported in studies 
that evaluated the biological activities of terpenes, which 
are classified according to the number of isoprene units in 
mono, di, tri, tetra, and sesquiterpenes. The andrographolide 
is a diterpene with known large anti-inflammatory activ-
ity and also has proved action against the viruses causing 
Influenza A, Hepatitis B, Hepatitis C, and Herpes Simplex. 
Among these substances, andrographolide is suggested to 
be a potential terpene for the treatment of SARS-CoV-2 due 
to its antiviral mechanism is the inhibition or reduction of 
binding protein’s expression in these viruses [60]. More, 
artemisinin had promising results in docking analysis. This 
compound was found by Tu Youyou (Nobel Prize in 2015) 
in the Artemisia annua L. for the threat of malaria, known 
for its effects in the treatment of fever and chills, having a 
relatively safe toxicity profile [36]. Thus, its anti-inflamma-
tory activity may be useful in alleviating respiratory distress 
syndrome associated with viral infections [61].

In a recent in vitro study, the hydroalcoholic extract of 
Uncaria tomentosa DC., majorly consisted by alkaloids 
(other class of secondary metabolites) was related to anti-
inflammatory, immunomodulating, and antiviral activities, 
by inhibiting the release of infectious particles of SARS-
CoV-2 and reducing the cytopathic effect caused by the virus 
in Vero E6 cellular lineage, thus being able to be considered 
a potential therapy against these viruses [62]. Other study 
demonstrated tetrandine, fangchinoline, and cepharanthine 
are potential antiviral agents for the prevention and treat-
ment in the early stages infection of Coronavirus Human 
OC43 [63]. The alkaloids correspond to the group formed 
by diverse chemical compounds presenting at least a one 
basic nitrogen atom in any position of the molecule, as long 
as such nitrogen is not derived from an amide or peptide 
binding. This class of secondary metabolite has been used 
throughout the years due to its medicinal properties, includ-
ing analgesic, cytotoxic, antifungal, antibacterial, and anti-
viral activity [64, 65]. Moreover, alkaloids showed antiviral 
and anti-inflammatory effects in acute respiratory distress 
syndrome against Influenza A infection, by interfering in 
signal transduction activated by PRR and IFN [66]. In addi-
tion, traditionally, these bioactive compounds are used in 
the treatment of some diseases as the use of lycorine for 
enterovirus, quinine for malaria, colchicine for gout arthritis, 
capsaicin/lidocaine for varicella-zoster virus, and vincris-
tine and vinblastine for cancer, what highlights the possi-
ble applicability of alkaloids for treating COVID-19 [54, 
67–70].

In this review, other classes of bioactive compounds 
evaluated were saponins and substances found in essential 
oils, which are also the focus of studies to assess the thera-
peutic potential, which have promising antiviral, antibacte-
rial, antifungal, anti-inflammatory, and cytotoxic activities 
[23, 52, 71–73]. Regarding the reported primary metabo-
lites, these are associated with the ability to modulate the 
anti-inflammatory response, as well antioxidant, antiviral, 
and antitumor activities [74]. The antiviral activity of the 
2-monolinolein substance was a test for the African swine 
fever virus in an in vitro study, showed its capacity to inhibit 
the growth of the virus in a dose-dependent system [75]. For 
synthetized amino acids, antiviral activity for the hepatitis C 
virus was obtained when l-methionine and l-alanine were 
used [76]. An in vitro study carried out to evaluate the anti-
viral activity of polysaccharides in Sargassum naozhouense 
C.K. Tseng & Lu Baoren concluded that they have promis-
ing activity against herpes simplex virus [77].

According to the studies included in this review, the most 
promising classes of substances to act on the disease caused 
by the SARS-CoV-2 virus are flavonoids and terpenes. The 
main reasons are related to the fact that flavonoids (phe-
nolic substances), such as quercetin and curcumin, have 
well-established antioxidant activity, and can act by reduc-
ing damage associated with oxidative stress, inflammatory 
disorders and reducing C-reactive protein, a marker in the 
process of COVID-19 infection. Terpenes, made up of iso-
prene units, can have multiple therapeutic actions, includ-
ing antioxidant and antiviral actions, besides cardiovascular, 
rheumatological, neurological and inflammatory disorders 
[78, 79].

Thus, the evaluation of different substances with a 
specific purpose in pulmonary inflammation and action 
on ACE-II should be a point of reflection for the sectors 
involved, such as research and industry, requiring studies 
aimed at the characterization of new drugs with potential 
for treatment.

Our study has some limitations. No quantitative analyses 
were possible given the heterogeneity of data from different 
study designs and lack of common comparators. Results are 
only exploratory, however, because we followed a systematic 
and critical review process, individual bias from primary 
studies were reduced and the synthetized data may support 
the development of further studies in this field.

Conclusions

This scoping review synthetized the available evidence from 
in silico studies on the potential effects of bioactive com-
pounds for treating COVID-19. The most evaluated class 
of secondary metabolites was flavonoids with quercetin 
and curcumin as most actives substances and terpenes with 



1498 P. H. de Matos et al.

1 3

anabsinthin, isothymol, curcumenol, dithymoquinone, and 
limonin.

Thus, this review serves as a basis for choosing com-
pounds and directing the further investigation in  vitro, 
in vivo, and clinical trials on the applications these com-
pounds in biotechnological and health processes as in 
COVID-19 pandemic.
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