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Article info:  Abstract 
The present study aimed to investigate two numerical solutions of the Navier-
Stokes equations. For this purpose, the mentioned flow equations were 
written in two different formulations, namely (i) velocity-pressure and (ii) 
vorticity-stream function formulations. Solution algorithms and boundary 
conditions were presented for both formulations and the efficiency of each 
formulation was investigated by considering a two-dimensional low laminar 
flow around a square pile in a rectangular computational domain. 
Simulations under the same conditions were conducted to assess the 
difference between results generated by both formulations. Furthermore, the 
accuracy of the results was analyzed through a comparison of the results with 
the available reference data. In addition, computational efficiency of both 
formulations was investigated in term of computation time. The 
corresponding results indicated that both formulations are adequate to the 
case used in the present study. Moreover, performed simulations showed that 
solving the vorticity-stream function form of the flow equations is faster than 
solving the velocity-pressure form of those equations for simulating a two-
dimensional laminar flow around a square pile. 
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Nomenclature 

 Pressure ݌ ଵ Stream-wise direction (x)ݔ
 ଶ Span-wise direction (y) ߱ Vorticityݔ
ଵݑ ,  ଶ Velocity components  (u,v) ߰ Stream functionݑ
,∗ݑ  Intermediate velocities ݇ Iteration number ∗ݒ
 Dynamic viscosity of fluid ݊ Time step counter ߤ
 Time step size ݐ∆ Fluid density ߩ
h Grid spacing ߚ Over relaxation parameter 
D Square side dimension ܮ௥ Recirculation length 
Uin Inlet flow velocity i, j Node indexes 
Re Reynolds number  (ρUinD

μ
) CDP Pressure drag coefficient (Pressure force

0.5ρUin
2 D

) 
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1. Introduction 
 
Nowadays, numerical methods such as 
computational fluid dynamics (CFD) are widely 
used in engineering to perform a full analysis on 
the flow characteristics around bluff bodies. 
The CFD methods can be classified in 
accordance with the used solution algorithms. 
In order to choose a solution algorithm, 
numerical accuracy and computation time are 
important factors. Therefore, a balance of these 
factors is required in any numerical simulation. 
The governing equations to predict the flow 
behavior around a pile are the Continuity and 
the Navier-Stokes equations. One difficulty for 
solving the mentioned flow equations is that 
there is no explicit equation for the pressure. 
Several methods have been proposed to solve 
this problem, e.g., SIMPLE (Semi-Implicit 
Method for Pressure Linked Equations) and 
Fractional time step methods.  
The SIMPLE method was firstly proposed by 
Patankar and Spalding [1]. Extensions were 
then added to the method:  SIMPLER (SIMPLE 
Revised), SIMPLEC (SIMPLE Consistent) 
and PISO (Pressure-Implicit with Splitting of 
Operators). A good description of the SIMPLE 
method and its extensions has been presented by 
Versteeg and Malalasekera [2]. Another method 
to solve the flow equations is the Fractional 
time step which was firstly introduced by 
Chorin [3]. Then, various forms of this method 
were investigated and developed by several 
researchers (e.g. Kim and Moin [4] among 
others). Majander and Siikonen [5] compared 
two mentioned methods and noted that the 
Fractional time step method is faster than the 
SIMPLE method at low Reynolds number 
range. 
In these mentioned methods, unknown 
variables are the velocity components and the 
pressure (primitive variables). The flow 
equations can also be written in the vorticity and 
stream function form such that the pressure is 
absent in the main flow equations. A good 

explanation on this formulation can be found in 
[6, 7]. 
In the present study, two mentioned 
formulations of the flow equations (velocity-
pressure and vorticity-stream function 
formulations) were employed and their 
efficiency was investigated by considering a 
two-dimensional (2-D) flow around a square 
pile at low laminar flow conditions.  
In the following sections, firstly, the problem 
geometry is defined and then the governing 
equations are expressed in primitive variables 
and vorticity-stream function formulations. 
Afterward, the corresponding solution 
algorithms are explained properly and finally, 
numerical results are presented and analyzed. 
 
2. Computational domain 
 
In the present study, a rectangular domain 
(40D×20D) was used to simulate the flow past 
a stationary 2-D square pile as shown in Fig. 1. 
The computational domain was discretized into 
a uniform grid with equal grid spacing (h) in 
both x and y directions. The square pile was 
modeled by blocking cells inside the square 
geometry. The inlet boundary section was 
located 10D upstream from the center of the 
square and the fluid flow down from this 
boundary was considered to have a specified 
constant velocity (free-stream). That distance is 
necessary to obtain results independent of the 
inlet location for the mentioned flow conditions 
[8]. Lateral boundaries were located far away 
(10D) from the square pile to reduce probable 
effects of the boundaries on the flow behavior 
around the square. The no-slip condition was 
imposed at the lateral boundaries and also at the 
pile surface. Finally, the Neumann boundary 
condition (NBC), 𝜕𝑢/𝜕𝑥 = 𝜕𝑣/𝜕𝑥 = 0, was 
employed at the outlet boundary section.  
It is noted that the size of the computational 
domain, location of the square pile and grid 
spacing are the same for both formulations. 
Details of the vorticity and stream function are 
presented in section 4. 
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Fig. 1. Computational domain and boundary conditions. 

 
3. Velocity-Pressure formulation (u, v-p) 
 
The incompressible Continuity and Navier-
Stokes (or momentum) equations in the 
velocity-pressure form can be written as Eqs. 
(1) and (2). 
 

௜ݑ߲

௜ݔ߲
= 0  (1) 

௜ݑ߲

ݐ߲ +
௝ݑ௜ݑ߲

௝ݔ߲
= −

1
ߩ

݌߲
௜ݔ߲

+
ߤ
ߩ

ቈ
߲ଶݑ௜

௝ݔ߲
ଶ቉ 

(2) 

As mentioned in Introduction, lack of explicit 
equation for the pressure is a major problem to 
solve the main flow equation. Hence, in the 
present study, a simple form of the Fractional 
time step method was employed to solve the 
flow equations. In this simple method, the 
intermediate velocities are calculated by 
ignoring the pressure terms in the momentum 
equations. Then, the pressure values are 
obtained by solving the Continuity equation for 
each grid cell. Finally, the intermediate 
velocities are corrected using the pressure 
values.  
For computing the intermediate velocities, the 
second-order-explicit Adams-Bashforth 
scheme, as explained in [7], was used for 
treating the convection and diffusion terms of 
the Navier-stokes equations. In addition, the 
central difference scheme was employed to 
approximate the spatial derivatives of the flow 
equations. Therefore, the present algorithm is 
second-order accurate in both space and time. 

Since the convection and diffusion terms are 
solved explicitly, stability consideration for a 2-
D convective-diffusive equation requires the 
time step to satisfy [9]: 
 

ݐ∆ ≤ ݉݅݊ ቆ
ℎଶ ߩ

ߤ 4 ,
ߤ 2

ଶݑ) ߩ +  ଶ)ቇ (3)ݒ

The first term on the right-hand side of Eq. (3) 
is related to the diffusion terms and the other 
term is related to the convection terms. 
The discretization of the flow equations was 
performed on a staggered grid system such that 
the velocities ݑ are calculated on the vertical 
cell interfaces, the velocities ݒ on the horizontal 
cell interfaces and the pressure (݌) in the center 
of each cell. In other words, the velocities and 
pressure are computed at different locations. A 
direct advantage of using the staggered grid 
system is that the pressure boundary conditions 
are not required in the calculations. 
The adopted control volume definition for u, v 
velocity components and the pressure are 
presented in Fig. 2 (a, b and c), respectively. 
Applying the Continuity equation to the control 
volume related to the pressure variable results 
to a relation between the pressure and the 
intermediate velocities as Eq. (4): 
 

௜ାଵ,௝݌ + ௜ିଵ,௝݌ + ௜,௝ାଵ݌ + ௜,௝ିଵ݌
− ௜,௝݌4  

=
ℎ ߩ
ݐ∆ ൬ݑ∗

௜ାభ
మ,௝

− ∗ݑ
௜ିభ

మ,௝ + ∗ݒ
௜,௝ାభ

మ

− ∗ݒ
௜,௝ିభ

మ
൰ 

(4) 
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Equation (4) is an implicit equation; hence, the 
iterative Successive Over Relaxation (SOR) 
method, as explained in [7], was employed to 
solve this equation in the present study. 
Applying the correct boundary conditions in the 
staggered grid system is complex and requires 
care, as some boundary points lie exactly on the 
boundary lines while others are out of those 
(Fig. 3). At the points that lie exactly on the 
boundary lines, the values are directly 
prescribed (such as 𝑢 at the inlet section and 𝑣 
at the lateral boundary lines). For other 
boundary points, the average value of two 
neighbor points on the boundary line should 
satisfy the boundary condition. In order to 
exemplify that, two points are considered below 

and above a wall boundary similar to Fig. 3. The 
average value of data on these two points should 
be equal to the u-velocity at the wall boundary. 
For a wall with the no-slip condition, u-velocity 
is equal to zero. Hence: 
 

𝑢𝑖,1 + 𝑢𝑖,2

2
= 0     →     𝑢𝑖,1 = − 𝑢𝑖,2 (5)   

 
It is noteworthy to mention that the pressure 
values are not required in the so-called ghost 
cells (see Fig. 3) but the pressure equation, Eq. 
(4), should be modified in the cells close to the 
boundary lines according to the velocity values 
at these lines. 

 

 
              (a)                                              (b)                                (c) 
  

Fig. 2. Control volume for: (a) u-velocity, (b) v-velocity components, and (c) pressure. 
 

 

 
 

Fig. 3. An example of the applying boundary conditions in the staggered grid system. 
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4. Vorticity-Stream function formulation (ω-
𝜓) 
Summing up the 𝑥- and 𝑦- direction 
components of the momentum equations, each 
multiplied, respectively, by (− ∂/ ∂y) and 
(∂/ ∂x), leads to the incompressible Navier-
Stokes equations in the vorticity-stream 
function form (without the pressure term) as 
follows: 

𝜕𝜔

𝜕𝑡
+ 𝑢

𝜕𝜔

𝜕𝑥
+ 𝑣

𝜕𝜔

𝜕𝑦

=
𝜇

𝜌
[
𝜕2𝜔

𝜕𝑥2
+

𝜕2𝜔

𝜕𝑦2
] 

(6) 

 
where 𝜔 is the vorticity and defined as: 
 

𝜔 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 (7) 

In accordance with the Continuity equation, 
stream function (𝜓) is defined as follows: 

𝑢 =
𝜕𝜓

𝜕𝑦
 (8) 

𝑣 = −
𝜕𝜓

𝜕𝑥
 (9) 

Substituting Eq. (8) and Eq. (9) into the 
definition of the vorticity, Eq. (7), leads to: 
 

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= −𝜔 (10) 

 
Equation (6) can be solved using an explicit or 
an implicit method. In the present study, this 
equation was discretized by the explicit Adams-
Bashforth scheme in time and the central 
difference scheme in space. Equation (10) can 
be solved by an iterative method or even by a 
direct solution. In the present study, the iterative 
SOR method was employed to solve the 
mentioned equation. By that, Eq. (10) yields as: 
 

𝜓𝑖,𝑗
𝑘 =

1

4
𝛽(𝜓𝑖+1,𝑗

𝑘−1 + 𝜓𝑖−1,𝑗
𝑘 + 𝜓𝑖,𝑗+1

𝑘−1

+ 𝜓𝑖,𝑗−1
𝑘 + ℎ2𝜔𝑖,𝑗)  

+ (1 − 𝛽) 𝜓𝑖,𝑗
𝑘−1 

(11) 

 

where 𝜓𝑘 is the kth approximation or iteration 
of 𝜓 at each time step. The over relaxation 
parameter is denoted by 𝛽 and a good choice of 
this parameter can speed up the convergence. 
In order to solve the Navier-Stokes equations in 
the form of the vorticity and stream function, all 
variables were calculated at the intersection of 
the grid lines. Initial and boundary conditions 
were firstly set at all internal and cell boundary 
points and then vorticity, stream function and 
velocity components were computed at each 
new time step (n+1), as follows: 
* Calculation of the vorticity at each internal 

point at time step (n+1) using Eq. (6) 
* Computation of the stream function using Eq. 

(11) 
* Updating the velocity components through 

Eqs. (8) and (9) 
* Updating the boundary values 
The square geometry and the grid cells inside 
the square are presented in Fig. 4. These cells 
are blocked to model the square pile geometry 
in the present study. Points A, B, C and D are 
defined as square corner points. 
The no-slip boundary condition was imposed at 
the square faces AB, BC, CD, and AD.  
Therefore, velocity components are equal to 
zero at each grid points on the mentioned faces. 
In order to satisfy the no-slip condition, the 
stream function should be constant on the 
square faces. Liu and Wang [6] noted that the 
stream function is constant on the square faces 
but varies with time for the calculations of the 
unsteady flows. In the present study, the steady-
state case, 𝜓pile was considered equal to zero.  
In order to determine the vorticity (𝜔), Taylor 
series for stream function were written up to the 
second order term like Eq. (12) for the face BC:  
𝜓𝑖,𝑗𝑚𝑎𝑥+1 = 𝜓𝑖,𝑗𝑚𝑎𝑥

+ ℎ (
𝜕𝜓

𝜕𝑦
)

𝑖,𝑗𝑚𝑎𝑥

+
ℎ2

2
(

𝜕2𝜓

𝜕𝑦2
)

𝑖,𝑗𝑚𝑎𝑥

+ ⋯ 

(12) 
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Applying the no-slip boundary condition leads 
to Eq. (13): 

𝜔𝑖,𝑗𝑚𝑎𝑥 =
2

ℎ2
(𝜓𝑖,𝑗𝑚𝑎𝑥

− 𝜓𝑖,𝑗𝑚𝑎𝑥+1) 
(13) 

 

 
Fig. 4. A part of the computational domain, ω-𝜓 
formulation. 
 
In order to compute the pressure values that 
may be required to compute the pressure force 
acting on the square pile, the momentum 
equations, Eq. (2), should be solved at the 
square faces as explained in [7]. 
 
5. Results and discussion 
 
Two computational codes (using the Finite 
difference method) were developed by 
employing two different formulations (u,v-p 
and 𝜔-𝜓) as explained in section 3 and section 
4. The numerical codes were then run for 
various Reynolds numbers (10, 20, 30 and 40) 
using the same uniform grid spacing of 0.1 and 
the time step size of 0.01, both dimensionless. 
In both formulations, computations were 
repeated at each new time step until the 
maximum error (the difference between 
obtained values at new time step and the 
previous one) went below the convergence limit 
(10-6, in the present study).  
The pressure distribution around the square pile, 
computed by u, v-p formulation, is presented in 
Fig. 5.  The maximum pressure is observed at 
the center of face AB (stagnation point) and the 
minimum values are detected close to the square 
corner points A and B as pictured in Fig. 5. As 
the Reynolds number increases, the pressure 
value at the stagnation point decreases and 

consequently the pressure force acting on the 
pile changes. One important parameter of the 
flow around a square pile is the drag force 
produced by the viscous (friction) and pressure 
forces acting on the square pile. In the present 
study, the pressure drag coefficient (CDP) is 
presented in Fig. 6 together with the 
corresponding numerical results obtained by 
Sharma and Eswaran [10]. They defined a 
rectangular computational domain (26D×20D) 
such that the square center was located 9D from 
the inlet boundary section. They also considered 
the lateral boundaries 10D from the square 
center (as in the present study) and noted that in 
this case, the boundaries are sufficiently far 
away and their presence has little effect on the 
characteristics of the flow near the square. 
These researchers employed the Convective 
boundary condition (CBC) at the outlet 
boundary section while the Neumann boundary 
condition (NBC) was used in the present study. 
Sohankar et al. [8] have investigated these 
mentioned outlet boundary conditions and 
concluded that the minimum downstream 
length of the pile (XDown) for negligible near-
body effects is much lower with the CBC than 
with the NBC. As an example, on comparing 
NBC and CBC, both with Re=100: CBC 
essentially shows the same global results for 
XDown=10D, as the NBC for XDown=26D. This 
may justify the difference between the length of 
the computational domain used in the present 
study (40D) and what was used by Sharma and 
Eswaran (26D) [10]. 
Overall, there is a good agreement between the 
numerical results (CDP) obtained by u,v-p 
formulation in the present study and those 
obtained numerically by Sharma and Eswaran 
[10]. Moreover, Fig. 6 also shows that the 
pressure drag coefficient varies strongly with 
Reynolds number in the steady-state flow 
regime. 
The predicted flow behavior around the square 
pile is presented in Fig. 7 by drawing the 
streamlines and the velocity vectors for ω-𝜓 
and u, v-p formulations, respectively. At values 
of the Reynolds number used in the present 
study (10 ≤ Re ≤ 40), the flow field around 
the pile is symmetric (stable pattern) and a fixed 
pair of symmetric vortices which is formed 
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behind the pile rises in length with increasing 
Reynolds number. All the pictures in Fig. 7 
indicate that the flow separates at the trailing 
edge and reattaches at a short distance 
downstream of the square. The stream-wise 
distance from the rear face of the square to the 
re-attachment point along the wake centerline is 
denoted by 𝐿𝑟  (recirculation length). In order to 
assess the accuracy of the obtained numerical 
results, the corresponding non-dimensional 
recirculation lengths (𝐿𝑟 𝐷⁄ ) are compared with 
those obtained numerically by Sharma and 
Eswaran [10] as shown in Fig. 8. Sharma and 

Eswaran presented the following expression 
(Eq. (14)) to compute the recirculation length 
(with a maximum deviation of 5%): 
 

Lr

D = 0.0672 × Re,     5 ≤  𝑅𝑒 ≤  40 (14) 
 
Single point plots in Fig. 8 indicate that the 
numerical predictions computed by both 
formulations agree well, and also fit fairly well 
with the results obtained numerically by 
Sharma and Eswaran [10].  

 

 
Fig. 5. Non-dimensional pressure (

𝑃

𝜌 𝑈𝑖𝑛
2 ) around the square pile at different Reynolds numbers. 

 

 
Fig. 6. Variation of the pressure drag coefficient with Reynolds number. 
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Fig. 7. Flow behavior around the square pile for various Reynolds numbers; Left: ω-𝜓 formulation, Right: u,v-p 
formulation. 
 

 
Fig. 8. Non-dimensional recirculation length for various Reynolds numbers. 

 



JCARME                                     A comparative study between . . .                                        Vol. 6, No. 2 

9 
 

The stream-wise velocity (ݑ ௜ܷ௡⁄ ) at the wake 
centerline downstream of the pile is presented in 
Fig. 9 for both formulations. There is a good 
agreement between the results obtained by two 
formulations used in the present study.  The u-
velocity on the centerline is zero at the square 
surface. It reaches a negative minimum value in 
the recirculation zone and then increases 
progressively until a maximum value. 
Furthermore, it can be observed that the u-
velocity values at the wake centerline decrease 
with increasing Reynolds number because they 
are influenced by the wake region, and the length 
of the wake region increases with Reynolds 
number. Moreover, it is observed that the u-
velocity at the outlet section is 10% higher than 
the inlet velocity for Re=10. In order to justify 
that difference, the u-velocity values were also 
calculated by considering the free-slip condition 
ݒ) = 0, ݕ߲/ݑ߲ = 0) at the lateral boundaries 
and compared with those obtained by employing 
the no-slip condition (ݑ = ݒ = 0) in Fig. 10 and 
Fig. 11. The obtained numerical results show 
that the outlet u-velocity is 20% lower than the 
inlet velocity, for Re=10, when the free-slip 
condition was used in the solution, although the 
u-velocity values are nearly the same close to the 
square for both mentioned boundary conditions 
(see  Fig. 11).  
In the case of using the no-slip condition at 
lateral boundaries, a boundary layer forms near 
each mentioned boundary and its thickness 

becomes larger with decreasing Reynolds 
number. Therefore, the no-slip boundary 
condition at the lateral boundaries can be 
effective to accelerate the velocity at the outlet 
section in this case. 
In the present study, the computation time (CPU 
time) was also analyzed to assess the efficiency 
of two formulations. At the first stage, initial 
velocity components, vorticity and stream 
function, were set equal to zero. The 
corresponding CPU time and the number of time 
steps to obtain the steady-state results are 
presented in Table 1. Furthermore, in the second 
stage, u-velocity was considered equal to the 
inlet flow velocity only for u, v-p formulation as 
the initial condition (u=Uin, v=0). The 
corresponding results are also presented in Table 
1. 
The obtained results show that the initial 
condition affects the number of inner iterations 
(SOR method) and also the total number of time 
steps required to achieve the steady-state results 
in u, v-p formulation. When initial u-velocity 
was changed from zero to Uin, the u, v-p 
formulation became approximately 1.5 times 
faster, while the results were nearly the same 
(less than 0.1% deviation). Nevertheless, the ߱-
߰ formulation was still much faster than u, v-p 
formulation for simulating 2-D laminar flow 
based on the algorithms used in the present 
study.  

 

 

 

Fig. 9. Non-dimensional stream-wise velocity at the wake 
centerline downstream of the pile (No-slip condition at lateral 
boundaries). 
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Fig. 10.  The stream-wise velocity in the whole computational domain for different lateral boundary conditions. 

 

 
Fig. 11.  The stream-wise velocity at the wake centerline for different lateral boundary conditions. 

 
Table 1. Comparison of the CPU time and number of time steps for u,v-p and ω- 𝜓 formulations. 

 
 𝝎-𝝍 formulation u, v-p formulation 

Re No. Time 
Steps CPU Time (s) No. Time Steps CPU Time (s) 

u=0, v=0 u=Uin, v=0 u=0, v=0 u=Uin, v=0 

10 6188 143 4579 4363 2972 2029 
20 7017 142 4898 4764 3048 1978 
30 6859 139 5089 5026 3191 1872 
40 16552 210 5413 5316 3147 1892 

 
 
Finally, in the third stage, the steady-state results 
were considered as initial data and two 
mentioned formulations were solved just for one 

time step at Re=40. In other words, the 
simulations were restarted just for the one time 
step after achieving the steady-state results. The 
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corresponding CPU time was 3.125 × 10-2 and 
6.25 × 10-2 seconds for the ω-𝜓 and u, v-p 
formulations, meaning that, after achieving the 
steady-state results, the ω-𝜓 formulation is still 
two times faster than the u, v-p formulation. This 
can be due to the fact that in the ω-𝜓 
formulation, fewer equations are solved at each 
time step.  
It should be noted that in a 2-D case, the 
primitive variable (u, v-p) formulation requires 
three unknown parameters in contrast to the 
single stream function and vorticity. But in a 
three-dimensional case (Re>190 for the circular 
cylinder [11]), the primitive variable formulation 
has four unknowns, while the 𝜔-𝜓 formulation 
has three components for vorticity and three for 
vector stream function [12, 13].  
 
6. Conclusions 
 
In the present study, the flow behavior around a 
two-dimensional square pile was simulated 
employing two different formulations of the 
Navier-Stokes equations, namely (i) velocity-
pressure and (ii) vorticity-stream function. A 
staggered grid system was used in the first 
method, whereas in the latter method, all 
variables (u, v, 𝜔 and 𝜓) were calculated at the 
same location (intersection of the grid lines). 
Computational domain, the location of the 
square pile, grid spacing and boundary 
conditions were considered the same for both 
formulations.  
Using the Finite difference method, two 
mentioned formulations were solved for various 
Reynolds numbers (10~40). Both formulations 
could present nearly the same results. Moreover, 
both formulations were shown to be adequate to 
study the present 2-D case with a reasonable 
accuracy. Performed simulations did also show 
that the vorticity-stream function formulation is 
faster than the velocity-pressure formulation. 
Nevertheless, the pressure term is absent in the 
vorticity-stream function formulation and that is 
often required in engineering studies.  
 
References 
[1] S. V. Patankar, and D. B. Spalding, “A 

calculation procedure for heat, mass and 
momentum transfer in three-dimensional 

parabolic flows,” Int. J. Heat Mass 
Transf., Vol. 15, No. 10, pp. 1787-1806, 
(1972). 

[2] H. K. Versteeg, and W. Malalasekera, An 
Introduction to Computational Fluid 
Dynamics - The Finite Volume Method. 
Longman Scientific & Technical, (1995). 

[3] A. J. Chorin, “Numerical solution of the 
Navier-Stokes equations,” J. Math. 
Comput.,Vol. 22, No. 104, pp. 745-762, 
(1968). 

[4] J. Kim, and P. Moin, “Application of a 
Fractional-step method to incompressible 
Navier-Stokes equations,” J. Comput. 
Phys., Vol. 59, No. 2, pp. 308-323, 
(1985). 

[5] P. Majander, and T. Siikonen, “A 
comparison of time integration methods 
in an unsteady low-Reynolds-number 
flow,” Int. J. Numer. Methods Fluids, 
Vol. 39, No. 5, pp. 361-390, (2002). 

[6] J.-G. Liu, and C. Wang, “High order 
finite difference methods for unsteady 
incompressible flows in multi-connected 
domains,” J. Comput. Fluids, Vol. 33, 
No. 2, pp. 223-255, (2004). 

[7] S. Biringen, and C.-Y. Chow, An 
introduction to computational fluid 
mechanics by example. John Wiley & 
Sons, (2011). 

[8] A. Sohankar, C. Norberg, and L. 
Davidson, “Low-Reynolds-number flow 
around a square cylinder at incidence: 
Study of blockage, onset of vortex 
shedding and outlet boundary condition,” 
Int. J. Numer. Methods Fluids, Vol. 26, 
No. 1, pp. 39-56, (1998). 

[9] J. F. Ravoux, a. Nadim, and H. Haj-
Hariri, “An embedding method for bluff 
body flows: interactions of two side-by-
side cylinder wakes,” Theor. Comput. 
Fluid Dyn., Vol. 16, No. 6, pp. 433-466, 
(2003). 

[10] A. Sharma, and V. Eswaran, “Heat and 
fluid flow across a square cylinder in the 
two-dimensional laminar flow regime,” 
Numer. Heat Transf. Part A Appl., Vol. 
45, No. 3, pp. 247-269, (2004). 

[11] B. S. Carmo, and J. R. Meneghini, 
“Numerical investigation of the flow 



JCARME                                                        M. Alemi, et al.                                                  Vol. 6, No. 2 
 

12 
 

around two circular cylinders in tandem,” 
J. Fluids Struct., Vol. 22, No. 6-7, pp. 
979-988, (2006). 

[12] E. Weinan, and L. Jian-Guo, “Finite 
difference methods for 3D viscous 
incompressible flows in the vorticity-
vector      potential       formulation      on  

 
 
 
 

nonstaggered grids,” J. Comput. Phys., 
Vol. 138, No. 1, pp. 57-82, (1997). 

[13] T. Hou, and B. Wetton, “Stable fourth-
order stream-function methods for 
incompressible flows with boundaries,” 
J. Comput. Math., Vol. 27, No. 4, pp. 
441-458, (2009). 

 
 
 
 

 

How to cite this paper: 
M. Alemi and R. Maia, “A comparative study between two numerical solutions 
of the Navier-Stokes equations”, Journal of Computational and Applied 
Research in Mechanical Engineering, Vol. 6. No. 2, pp. 1-12 
 
DOI:  10.22061/jcarme.2017.580 
 
URL:  http://jcarme.srttu.edu/?_action=showPDF&article=580 

 

 




