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Abstract: North African dust intrusions can contribute to exceedances of the European PM10 and
PM2.5 limit values and World Health Organisation standards, diminishing air quality, and increased
mortality and morbidity at higher concentrations. In this study, the contribution of North African
dust in Mediterranean countries was estimated using the time series clustering method. This
method combines the non-parametric approach of Hidden Markov Models for studying time se-
ries, and the definition of different air pollution profiles (regimes of concentration). Using this
approach, PM10 and PM2.5 time series obtained at background monitoring stations from seven coun-
tries were analysed from 2015 to 2018. The average characteristic contributions to PM10 were esti-
mated as 11.6 ± 10.3 µg·m−3 (Bosnia and Herzegovina), 8.8 ± 7.5 µg·m−3 (Spain), 7.0 ± 6.2 µg·m−3

(France), 8.1 ± 5.9 µg·m−3 (Croatia), 7.5 ± 5.5 µg·m−3 (Italy), 8.1 ± 7.0 µg·m−3 (Portugal), and
17.0 ± 9.8 µg·m−3 (Turkey). For PM2.5, estimated contributions were 4.1 ± 3.5 µg·m−3 (Spain),
6.0 ± 4.8 µg·m−3 (France), 9.1 ± 6.4 µg·m−3 (Croatia), 5.2 ± 3.8 µg·m−3 (Italy), 6.0 ± 4.4 µg·m−3

(Portugal), and 9.0 ± 5.6 µg·m−3 (Turkey). The observed PM2.5/PM10 ratios were between 0.36
and 0.69, and their seasonal variation was characterised, presenting higher values in colder months.
Principal component analysis enabled the association of background sites based on their estimated
PM10 and PM2.5 pollution profiles.

Keywords: African dust; air pollution; hidden Markov models; particulate matter; PM2.5/PM10 ratio;
principal component analysis

1. Introduction

Air pollution is a mixture of particles and gases, which can reach unsafe concentra-
tions for human health, the environment, and vegetation. It has become one of the main
sustainability issues and a concerning topic in atmospheric science. According to the
World Health Organisation (WHO), 90% of the world population lives in highly polluted
environments, and about 7 million deaths are caused every year by outdoor and indoor air
pollution [1].

Particulate matter (PM) is one of the most concerning air pollutants in Europe [2,3]. It
comprises suspended particles in the air with variable composition and size, which results
from several anthropogenic activities. The main sources are industrial facilities, power
plants, traffic emissions, wood stove combustion, dust, and forest fires. PM can be divided
into two main components [4,5]: (i) primary PM emitted directly by pollution sources; and
(ii) secondary PM that is produced in the atmosphere by chemical reactions with primary
gaseous pollutants (e.g., organic compounds, sulphur dioxide, and nitrogen oxides). PM is
usually classified according to its size, with fine particles being designated as PM2.5 (PM
with an aerodynamic diameter <2.5 µm). The group of fine (with an aerodynamic diameter
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less than 2.5 µm) and coarse (with an aerodynamic diameter between 2.5 and 10 µm) parti-
cles is designated as PM10. The monitoring of PM concentrations according to their sizes is
relevant due to the corresponding impact, in particular on human health [6]. Concerning
the respiratory system, the upper respiratory tract is affected by PM10, while fine particles
have the capacity to deeply penetrate in the human respiratory system until lung alveoli
(therefore, more hazardous to human health than the coarser particles) [7]. Besides human
health, PM is associated with environmental concerns (e.g., visibility impairment—haze)
and the damage of ecosystems [8,9]. The impact depends on size, surface, number, and
composition of particles, of which characteristics are mainly affected by anthropogenic and
natural sources, meteorology (that influences their dispersion, transport, and deposition),
and urbanisation level.

The monitoring and the understanding of the temporal and spatial behaviours of PM
concentrations are essential for the implementation of air quality policies and the definition
of effective measures to mitigate PM presence and its effects. Besides the study of PM2.5 and
PM10, the ratio between their concentrations (PM2.5/PM10) may give relevant information
about PM sources and effects [10–13]. High values indicate an increased contribution of
anthropogenic sources, while low values are associated with natural sources due to a high
fraction of coarse particles. In Europe, the Directive 2008/50/EC defines the limits for the
concentrations of several air pollutants, including PM (daily limit of 50 µg·m−3 not to be
exceeded more than 35 times per year for PM10, and the annual limit value of 20 µg·m−3

for PM2.5). However, the limit values for PM concentrations in Mediterranean countries
are not easily fulfilled. The main reason is the strong influence of dust transport from the
Sahara Desert (North Africa). The contribution of this natural source should be known for
each country in order for the European legislation to be fairly applied. The directive allows
the subtraction of daily limit value exceedances of PM10 concentrations (50 µg/m3) when
these episodes are attributed to natural events (articles 2.15 and 20.1). There are several
statistical techniques that were applied to quantify the contribution of this natural source.
Gómez-Losada et al. [14] applied the Hidden Markov Model (HMM) to estimate PM10
contributions using the data of 33 background sites in Spain and Portugal. The model
results were then compared with the method widely accepted to estimate the daily African
PM10 load: the 40th percentile (P40) method introduced by Escudero et al. [15]. The HMM
model presented a better estimation of the Sahara dust contribution in the monitored values
of PM10 concentrations. Stafoggia et al. [16] distinguished PM10 from desert and non-desert
sources in 13 Southern European cities for 2001–2010. They combined modelling tools,
back-trajectories, and satellite data to identify desert dust advection days. In 15% of the
days, PM10 concentrations were influenced by desert dust, with most episodes occurred
in spring–summer. Gama et al. [17] estimated the contribution of desert dust to the PM10
and PM2.5 concentrations in background sites in Portugal during 2016. Two different
approaches were applied: the 40th percentile (P40) method and the WRF-CHIMERE model
(multi-scale chemistry-transport model). The P40 method identified higher African dust
contributions than the modelling approach. The PM10 contributions in most of the regions
were between 0 and 90 µg·m−3, while for PM2.5 this natural source was responsible for 0
to 30 µg·m−3.

This study aims to estimate the particulate matter contributions from desert outbreaks.
Specific objectives are: (i) to characterise PM pollution behaviour in different Mediterranean
counties, (ii) to estimate the different PM10 and PM2.5 pollution profiles from Southern
Europe remote monitoring stations, and once they are obtained, (iii) estimate these air
pollutant contributions from desert dust outbreaks.

2. Data and Methods
2.1. Data

PM10 and PM2.5 validated hourly time series (TS) from background stations of south-
ern regions of Europe were obtained from the European Environment Agency data repos-
itory (DiscoMap, https://discomap.eea.europa.eu) for the 2015 to 2018 period. Only TS
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with time coverage higher than 80% (7008 hourly observations per annual TS) were con-
sidered in this study and independently analysed for each year. The number of analysed
TS from background sites fulfilling this data quality criterion is indicated in Table 1, to-
gether with their distribution by countries and years. A relation of the studied PM10 and
PM2.5 background monitoring sites is provided as Supplementary Material (SM) in two
comma-separated value files. In these files, the typology, main pollution source, and the
geographical coordinates of monitoring stations are given in EPSG 4979 projection. The
length of the analysed TS from each station by year is also provided.

Table 1. Country distribution of PM10 and PM2.5 time series from background stations analysed in
this study.

Country Abbreviation
2015 2016 2017 2018

PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5

Bosnia and
Herzegovina BA - - 1 - 1 - - -

Spain ES 15 8 20 5 22 1 25 9
France FR 22 16 21 15 22 12 25 19
Croatia HR 3 3 3 2 4 3 3 3

Italy IT 7 2 8 3 7 - 11 4
Portugal PT 9 6 10 4 10 4 10 3
Turkey TR 5 - 7 4 7 3 12 6

For the years 2015, 2016, 2017, and 2018, a total of 61, 70, 73, and 86 PM10 TS were
studied, respectively; with respect to PM2.5, 35, 33, 23, and 44 TS, respectively, were
studied for those years. All of these PM10 and PM2.5 TS were obtained from background
monitoring stations. Tables 2 and 3 show summary statistics for dust desert days based
on the exceedance of PM10 and PM2.5 daily average concentrations of 150 and 43 µg·m−3,
respectively. These values were selected as threshold values due to the maximum levels
of these pollutant concentrations in Southern Europe during dust outbreaks [18,19]. They
correspond to a lower bound of ranges typically found in this region.

Table 2. Average concentration by country for PM10 time series during desert and non-desert days
in background monitoring sites (in µg·m−3). n, number of days with exceedance of 150 µg·m−3

PM10 daily average. BA- Bosnia and Herzegovina; ES—Spain; FR—France; HR—Croatia; IT—Italy;
PT—Portugal; TR—Turkey.

Country Year
Dust Days Non-Dust Days

n Min. p50 Max. Min. p50 Max.

ES

2015

2 255.0 291.2 327.4 2.8 13.1 64.6
FR 0 - - - 2.5 12.9 68.4
HR 0 - - - 2.5 15.6 74.3
IT 0 - - - 2.4 17.7 75.7
PT 0 - - - 1.9 13.6 71.9
TR 21 167.0 261.6 444.9 7.0 31.3 125.3

BA

2016

3 158.3 193.0 196.8 2.1 16.1 107.1
ES 10 229.0 241.5 257.1 3.8 14.2 93.0
FR 0 - - - 2.5 10.9 56.2
HR 0 - - - 2.3 13.0 66.4
IT 0 - - - 2.8 14.7 98.2
PT 2 200.9 200.9 200.9 2.7 12.2 82.0
TR 19 263.7 267.2 338.4 4.5 21.4 105.9
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Table 2. Cont.

Country Year
Dust Days Non-Dust Days

n Min. p50 Max. Min. p50 Max.

BA

2017

0 - - - 2.3 13.9 68.9
ES 10 212.9 223.5 226.3 2.8 12.9 78,3
FR 0 - - - 2.3 10.8 55.6
HR 0 - - - 1.0 11.4 70.5
IT 0 - - - 1.9 15.2 72.1
PT 2 451.7 451.7 451.7 3.0 15.4 85.2
TR 24 152.6 232.0 334.3 7.5 27.4 113.1

ES

2018

5 179.7 192.8 202.3 2.7 11.9 63.4
FR 0 - - - 2.1 11.4 49.3
HR 0 - - - 3.1 16.0 77.0
IT 0 - - - 2.9 20.6 74.9
PT 0 - - - 1.9 11.4 70.5
TR 14 180.9 192.3 208.7 5.4 21.1 110.0

Table 3. Average concentration by country for PM2.5 time series as in Table 1. n, number of days
with exceedance of 43 µg·m−3 PM2.5 daily average. ES—Spain; FR—France; HR—Croatia; IT—Italy;
PT—Portugal.

Country Year
Dust Days Non-Dust Days

n Min. p50 Max. Min. p50 Max.

ES

2015

0 - - - 1.4 7.7 30.8
FR 56 47.8 53.9 66.2 1.2 7.4 38.8
HR 24 43.7 49.2 64.0 0.7 10.7 39.6
IT 10 43.4 46.7 57.1 1.0 9.0 34.6
PT 5 75.7 78.1 78.1 1.4 7.7 34.8

ES

2016

2 78.5 78.5 78.5 2.2 5.9 30.1
FR 30 48.5 50.9 54.9 1.6 6.4 35.6
HR 21 51.5 55.8 66.0 1.3 10.1 39.8
IT 11 47.8 51.3 55.9 1.7 8.5 31.7
PT 4 50.7 51.3 51.9 1.4 6.7 31.2
TR 48 44.7 53.6 78.5 4.3 14.6 40.3

ES

2017

0 - - - 1.0 4.8 24.3
FR 42 45.1 51.6 61.0 1.9 6.4 39.7
HR 36 43.6 51.7 72.9 0.3 7.8 42.2
PT 7 48.9 56.6 64.4 2.2 9.4 39.9
TR 71 44.1 50.3 65.1 4.8 19.1 42.6

ES

2018

1 49.8 49.8 49.8 2.0 6.4 29.9
FR 12 47.3 47.8 49.3 1.2 6.4 34.8
HR 32 43.5 51.4 79.3 0.7 10.6 40.1
IT 29 43.6 47.6 61.9 1.7 12.0 36.6
PT 1 43.0 43.0 43.0 0.8 5.1 32.1
TR 60 43.7 47.4 63.8 3.1 14.4 42.5

2.2. Time Series Clustering

In this study, HMM were used to detect clusters in PM10 and PM2.5 TS data. It
represents a model-based strategy for clustering by assuming that each cluster of data
is described by a different probability distribution (components of the mixture). This
methodology is explained in Gómez-Losada et al. [14,20] and illustrated graphically in
Figure 1. A complete definition and elements of HMM are provided in SM1. HMM
represents a flexible method of modelling TS that exhibits dependence over time as those
obtained in air quality monitoring networks. The model estimation lies in finding the
parameter of the HMM that is most likely to have generated a given TS. This is referred



Atmosphere 2021, 12, 5 5 of 18

to as the maximum likelihood estimation problem, which in this study was solved using
the Expectation-Maximisation algorithm [21,22]. The computational implementation of
HMM in this study was accomplished using the depmixS4 package [23] from open-source
software R [24]. The basic script of this implementation is provided in SM2.
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of TS data are assigned to represented different PM concentration ranges (regimes of con-
centration or pollution profiles) in each modelled annual TS. HMM provides, inter alia, 
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Figure 1. Time series (TS) clustering method showing the four pollution profiles (regimes) detected in the PM10 TS from the
ES1517 Spanish station (2017). First to fourth pollution regimes are represented in blue, green, orange, and red, respectively.
(A) TS observations (grey). Below TS, each observation is associated with a cluster. Separately, this grouping is represented
above the TS. Horizontal lines represent the average values of each cluster (µ1, µ2, µ3, µ4). (B) The estimated density of the
mixture of distributions (black line) is superimposed onto the histogram of TS data (grey line). Components of the mixture
are represented for each cluster (coloured shadows). (C) Distribution of values of each TS pollution profile is represented as
box-whisker plots.

For many practical applications, there is often some physical significance attached
to the hidden states of the HMM. For instance, in economics, states of the HMM can be
related to expansion and recession periods and the interest is in studying the dynamics
between them [25]; in developmental psychology, the states of the HMM are used to
quantify knowledge that subjects express in an implicit learning task [26]. In this work,
clusters of TS data are assigned to represented different PM concentration ranges (regimes
of concentration or pollution profiles) in each modelled annual TS. HMM provides, inter
alia, the mean and standard deviation values for each regime. These values represent the
different parameterisation of the Gaussian distributions assigned to the regimes, providing
very useful information as they fully characterise every analysed TS for a given time period
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and monitoring site. Each cluster’s average values were represented as µi (i = 1, . . . , n)
with n the number of detected clusters in the TS data (Figure 1A).

2.3. Time Series Clustering

Once the pollution profiles in the TS data are determined, a meaning for each profile
must be then assigned to estimate the PM10 and PM2.5 contributions from desert outbreaks.
The following definitions are provided for the average values of each profile [14], applied
to the remote stations studied in this work and considering as an example, the PM10 TS
from Figure 1:

• µ1 (16 µg·m−3) represents the underlying or threshold (background) concentration
over which great changes in value are not expected over the years if atmospheric and
pollution conditions remain relatively constant, being a characteristic of the studied
area. Daily average PM10 concentrations assigned to this regime are supposedly not
caused by any direct influence of natural or anthropogenic sources, or if they are, they
are negligible.

• µ2 (22 µg·m−3) is the average PM10 concentration on the days affected by moderate
contributions of anthropogenic sources due to activities that take place in the region.
The value of µ2 is subject to slightly more variation than µ1 between years. The
referenced days may be affected by contributions from natural sources attributable
to African dust transport episodes that have a minor impact on the observed PM10
concentrations.

• µ3 (30 µg·m−3) is the average PM10 concentration on days affected by characteristic,
usual contributions from African outbreaks. These contributions are highly variable in
concentration and are the main factor responsible for the exceedances of the 50 µg·m−3

limit value established by the Directive 2008/50/EC on ambient air quality and cleaner
air for Europe (Directive, 2008) for this pollutant.

• µ4 (40 µg·m−3) is the average PM10 concentration on days with unusual but severe
episodes of natural contributions from North African episodes.

Some useful quantities can be then roughly estimated using these definitions, namely:

• µ2–µ1 (6 µg·m−3): average concentration due to anthropogenic contributions from the
region.

• µ3–µ2 (8 µg·m−3): average concentration associated with characteristic contributions
from dry regions from North Africa when they occur.

• µ4–µ2 (18 µg·m−3): average concentration from severe contributions from dry regions
from North Africa when they occur.

It must be noted that the above definitions coincide from a conceptual point of view
with those of horizontal profiles given by Lenschow et al. [27] when studying the PM10
regimes of concentrations in the Berlin area. These definitions have to be adapted then to
the geographical location under study and adapted to each monitoring network. Given
the transnational scope of this study and it being unfeasible to characterise every PM
regime for each station and country, these definitions were adopted and used generically.
Furthermore, it must also be considered that contributions from other sources of PM such as
those from wildfires or other anthropogenic sources of pollution could also be represented
in the aforementioned defined pollution profiles. In this study, the above definitions are
extended to the PM2.5 case.

As with other available modelling techniques deriving information about pollution
sources and the amount they contribute to ambient air pollution levels (e.g., chemical mass
balance and positive matrix factorisation models), the time series clustering method is also
subject to intrinsic limitations. Among them are that it provides estimates together with
its uncertainties only based on the observed concentrations of pollutants (in this study,
PM10 and PM2.5). To overcome this setback, definitions given to each of the pollution
regimes were incorporated into this method when created (Gómez-Losada et al., 2015) to
provide a reasonable physical explanation to these regimes. However, even though these
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definitions work well in general, it can ignore some local or regional peculiarities from areas
where emission sources originate. In this study, this limitation was partially overcome by
selecting only background monitoring stations from the studied countries when analysing
the contributions from North African arid regions. Another understandable disadvantage
of the time series clustering method is that it does not take into consideration the origin
or location of the emission sources, as air mass trajectory or wind-based models can do.
For that reason, only countries bordering the Mediterranean Sea were selected for this
study (Portugal was included due to being strongly influenced by Saharan dust) due
to their proximity to the North African regions. Having exposed all of the above, it is
also convenient to remember their advantages. As a modelling based on a statistical
clustering technique, it does not require from expensive and time-consuming chemical
assays, modelling outputs are comprehensive and easily interpreted, its computational
implementation requires limited competence and low resources, and can be deployed using
open-source software (R or Python programming languages). Moreover, scripts for the
computational implementation have been provided by the authors on several occasions in
other studies, and again, are available here upon request. Furthermore, the time clustering
method can be used to complement other source apportionment methods, validate their
modelling outputs, or simply used as an exploratory technique for deriving information
from pollution sources.

2.4. Principal Component Analysis

To study the clustering of remote monitoring sites according to the annual average
values of their pollution profiles (µ1, µ2, µ3, µ4) for PM10 and PM2.5, a biplot principal
component analysis (PCA) was performed for each year. To facilitate the analysis, 95%
confidence interval ellipses were calculated by studied country. The computational im-
plementation of PCA was performed using the ggplot2 function from the ggbiplot library
from R [28]. Datasets containing the estimated pollution profiles by year are available upon
request.

3. Results and Discussion
3.1. Behaviour of PM2.5/PM10 Ratio

PM2.5 and PM10 have several sources, thus presenting different physical and chemical
properties. The study of PM2.5/PM10 ratio is a useful tool to identify PM sources and
effects on human health [10,11]. Evolution of the PM2.5/PM10 ratios from 2015 to 2018
is illustrated in Figure 2. Remarkably, the pattern of the ratio in countries is similar to
alternate years (2015 and 2017, 2016 and 2018). Even this analysis is absent for Turkey and
Italy in 2015 and 2017, respectively, due to the lack of data fulfilling the quality criteria
applied in this study; the highest ratios are obtained regularly for Croatia (HR—50% of the
ratios were higher than 0.69 in 2016), followed by Italy (IT—with a median of 0.61 in 2016
and 2018), and the lowest ones for Portugal (PT—50% of the ratios were lower than 0.36
in 2016 and 2018) and Spain (ES—with a median of 0.5 in 2015 and 2017). The achieved
values are in agreement with others already reported in the literature. For instance, Adães
and Pires [9] analysed the PM2.5 concentrations measured at 23 stations distributed in
12 different European cities. Median ratio values were between 0.31 and 0.73 with high
values attributed to sites with high traffic influences. Xu et al. [10] analysed the temporal
and spatial variability of PM2.5/PM10 ratio. Mean values of 0.62 and 0.68 were determined
for urban and background sites, respectively. Munir [11] analysed PM2.5/PM10 ratio at
46 monitoring sites in the UK, where medium values were between 0.4 and 0.8.
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Figure 2. Distribution of the general evolution of PM2.5/PM10 ratios in studied countries as box-whisker plots (2015–2018).
As a reference, medians between countries are joined, and a dotted horizontal line is added at 0.5 ratio.

Figure 3 shows, as a more detailed analysis, a monthly analysis of PM2.5/PM10 ratio.
Higher values (with median higher than 0.65) are indicated with a red median as a reference
in the box-whisker plots. As a general rule, higher ratios are observed in the coldest months
(October to February), in particular for countries like Croatia (HR) and Italy (IT). Other
countries like France (FR) may show the highest ratios in February. This seasonal pattern is
justified by the increase in fuel consumption in this period of the year for domestic and
industrial heating [29]. Additionally, the stable atmospheric conditions promote the dry
deposition of coarse particles, maintaining the fine particles in the air [10,30]. It can be
slightly appreciated that PM2.5/PM10 ratio values higher than the P75 and lower than
the P25 are prone to extending to the maximum and minimum ratios, respectively, in the
warmest month.

3.2. Study of Pollution Profiles over Time

Every PM10 and PM2.5 TS from 2015 to 2018 obtained from the studied countries
(Table 1) was analysed independently with HMM to estimate their regimes of concentra-
tion. Regimes of monitoring stations by countries are illustrated as box-whisker plots in
Figure 4, for PM10 (A) and PM2.5 (B). The first to fourth pollution profiles are shown in
blue, green, orange, and red, respectively. To detect the most representative particulate
matter concentrations (PM10 and PM2.5), outliers (1.5 times below and higher the 25th
and 75th percentile in distributions) were not considered in this study since the aim is to
estimate the general trend of PM contributions quantitatively and not isolated outbreaks
characterised by the highest concentrations. In Figure 4A, the highest pollution profile
(red box-whisker plots) is estimated in Turkey (TR) and Spain (ES), while remaining with
similar concentrations for the rest of countries (approximately around 50 µg·m−3), except
for Italy (IT) in 2016 and Portugal (PT) in 2016 and 2017. Bosnia and Herzegovina (BA)
lacks representativeness regarding its pollution profiles estimation since only one TS from
a single monitoring station was available for this country for 2016 and 2017. The rest of the
pollution profiles (one to three) remains similar to little variations for all countries.
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Figure 3. Monthly distribution of PM2.5/PM10 ratios as in Figure 2. As a reference,
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Turkey.
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Figure 4B shows the same analysis for PM2.5. The distribution of regimes is less
homogenous than for PM10, although Turkey (TR) shows the highest concentration in the
fourth pollution profile (red box-whisker plots) again. Croatia (HR) also exhibits the second
highest concentrations in the fourth regime, followed by Portugal (PT)—2015 to 2017—Italy
(IT)—2015 to 2016, and 2018—and France (FR). Remarkably, Spain (ES) shows the lowest
fourth pollution profile even though it is a country markedly affected by PM contributions
from North African deserts [31,32]. The rest of the regimes show some more variations
with respect to PM2.5 than in the PM10 case. Another interesting profile is represented by
the first (background) profile. Turkey (TR) shows the highest levels of PM2.5 background
pollution (blue box-whisker plots) followed by Italy (IT), Croatia (HR), France (FR), and
Spain (ES), similarly to the behaviour of the fourth pollution profile.
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3.3. Estimation of African Dust Contributions to PM10 and PM2.5

Once pollution profiles were estimated with HMM, PM10 and PM2.5 contributions
(African dust contributions to PM10 and PM2.5) according to the regimes’ average values
were calculated as defined in Section 2.3. These results are illustrated in Figure 5 for
PM10 (A) and PM2.5 (B). Severe dust contributions to PM10 were estimated for Bosnia and
Herzegovina (BA), Spain (ES), and Turkey (TR), although this first country lacks repre-
sentativeness since just TS data from two monitoring sites were studied according to the
quality criteria for data coverage used in this study. From 2015 to 2018, average severe
contributions (µ4–µ2) were quantified as 66.4 ± 42.8 µg·m−3 (BA), 33.2 ± 25.4 µg·m−3

(ES), 22.5 ± 14.5 µg·m−3 (FR), 28.1 ± 16.7 µg·m−3 (HR), 28.4 ± 17.6 µg·m−3 (IT),
28.1 ± 21.2 µg·m−3 (PT), and 73.1 ± 69.8 µg·m−3 (TR). For the same period, average
characteristic concentrations (µ3–µ2) were 11.6 ± 10.3 µg·m−3 (BA), 8.8 ± 7.5 µg·m−3

(ES), 7.0 ± 6.2 µg·m−3 (FR), 8.1 ± 5.9 µg·m−3 (HR), 7.5 ± 5.5 µg·m−3 (IT), 8.1 ± 7.0 µg·m−3

(PT), and 17.0 ± 9.8 µg·m−3 (TR).
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Figure 5. Estimation of annual average dust desert contributions to PM10 (A) and PM2.5 (B) from
2015 to 2018. Anthropogenic contributions and characteristic and severe contributions by deserts are
indicated in green, orange, and red colours, respectively. BA—Bosnia and Herzegovina; ES—Spain;
FR—France; HR—Croatia; IT—Italy; PT—Portugal; TR—Turkey. Uncertainty is indicated by means
of vertical bars. In A, severe contributions (in red) refer to the right Y-axis.

In the case of Spain, the average concentration associated with characteristic contribu-
tions from North African deserts (orange dots in Figure 5A) was estimated as 6.5 ± 7.2,
8.4 ± 10.5, 11.2 ± 6.8, and 9.1 ± 5.4 µg·m−3 from 2015 to 2018, respectively. The same
estimated concentrations following the 40th percentile method [15,31,33] were 2.5, 4.0, 3.2,
and 3.4 µg·m−3, for the same years [34–37]. Higher estimations of the time series clustering
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method in comparison with the 40th percentile method are also in agreement with those of
Wang et al. [38], who estimated a concentration range for Spain of 10–20 µg·m−3 from 2016
to 2017 using the GEOS-Chem model. Highest severe contributions from dust desert to
PM10 (red dots in Figure 5A) are estimated for Bosnia and Herzegovina (BA) and Turkey
(TR).

With respect to PM2.5, the highest (severe) estimated contributions from dust desert to
PM2.5 are slightly differentiated by countries (red dots in Figure 5B). However, Turkey (TR)
and Croatia (HR) reached 32.5 and 38.0 µg·m−3 concentrations in 2017, respectively. The
average concentrations associated with characteristic contributions from North African
deserts (orange dots) were similar among studied countries, although Croatia (HR) and
Turkey (TR) received the highest contributions and to a lesser extent, France (FR) and
Portugal (PT). In the studied period (2015–2018), average severe contributions (µ4–µ2)
were quantified in 13.1 ± 8.6 µg·m−3 (ES), 20.7 ± 12.7 µg·m−3 (FR), 29.7 ± 15.4 µg·m−3

(HR), 15.7 ± 9.1 µg·m−3 (IT), 18.8 ± 13.3 µg·m−3 (PT), and 29.1 ± 16.1 µg·m−3 (TR).
Regarding average characteristic concentrations (µ3–µ2), these were 4.1 ± 3.5 µg·m−3 (ES),
6.0 ± 4.8 µg·m−3 (FR), 9.1 ± 6.4 µg·m−3 (HR), 5.2 ± 3.8 µg·m−3 (IT), 6.0 ± 4.4 µg·m−3

(PT), and 9.0 ± 5.6 µg·m−3 (TR).

3.4. Daily Level Evolution of PM2.5 and PM10 Regimes

To provide a different insight regarding the evolution of the PM2.5/PM10 ratios, from
those TS indicated in Table 1, the one with the highest PM10 and PM2.5 annual concentration
average value for each country was selected (independently for each air pollutant), and
their regimes of concentration were studied considering the hour of the day (analysed
monitoring sites are provided in SM3). These results are graphically presented in Figure 6
for PM10 and in Figure 7 for PM2.5. For the sake of clarity, observations lower and higher
than the 25th and 75th percentile were not represented. Only the selected air quality
monitoring stations in TR coincided for the PM10 and PM2.5 air pollutants. The cases of the
TS from IT for PM10 and PM2.5, and IT and BA for PM2.5 are omitted from this analysis for
not being informative concerning the analysis performed in this section.

Although the interpretation of these results would require an in-depth assessment
of emission sources contributing to air quality at the monitoring stations from which
TS were obtained, in Figure 6, it can be noticed that some of the relative fluctuations
in concentrations detected in Regime 1 to Regime 3 could be showing some patterns of
anthropogenic activity (grey arrows). However, this pattern could be reflected at a different
time of the day depending on the location (distance) of the monitoring station with respect
to the activities responsible for the emission. This could be the case of the TS from TR, BA,
FR, and HR. In these TS, an increase in PM10 concentration can be detected in Regimes
1 and 3 before 12 h and after 18 h. Additionally, this latter activity is detected in the TS
from PT. In the case of the TS from ES, this raise in PM10 concentration is detected just after
12 h. This could suggest that although Regime 3 was typically associated with moderate
contributions from desert outbreaks (Section 2.3), this regime could also be influenced
by contributions from these anthropogenic activities, although to a much lesser extent as
evidenced by the magnitude of the fluctuations estimated in this regime. In this regard,
another more plausible explanation could be related to the evaporation of semi-volatile
organics or semi-volatile inorganic species. This could be similar to the diurnal cycle of the
NO3 [39], in which the simultaneous drop in humidity and the rise of temperature causes
the evaporation of NH4NO3. The case of PM2.5 in Figure 7 shows similarities with the
analysis from Figure 6. Fluctuations around 12 and 18 h can be described for Regimes 1 to 3,
being even more evident for the case of PT. In both, either PM10 or PM2.5 analysis, patterns
of anthropogenic activity could be partially explained by the location of the stations at low
altitude (eight out of ten stations are located below 200 m a.s.l—above sea level; see SM3),
and therefore, more likely to be affected by its emission sources.
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Figure 6. Evolution of the PM10 concentration by regimes and hour of the day. Panels in rows
describe the analysis for a single TS. Grey arrows indicate slight fluctuations in concentrations.
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3.5. PCA

Results of PCA biplot analysis for the different pollution profiles obtained for PM10
and PM2.5 from analysed monitoring stations are illustrated in Figures 8 and 9, respectively.
The importance of the principal components is represented as the proportion of variance (in
percentage) explained (Table 4). In Figure 8, the confidence ellipses indicate a remarkable
grouping of most of the countries during all studied years, except for Turkey (TR—yellow
ellipse), due to the higher dust load that this country receives from North African deserts.
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In particular, for the year 2015, this latter country exhibits a complete dissociation from
the rest of the countries in the five studied stations. Monitoring stations from Spain
(ES), a country typically suffering from desert particulate matter contributions, show
similar behaviour with those from Turkey, since they appear within the TR confidence
ellipse. Other monitoring stations showing similar behaviour to those from TR are from
Portugal (PT) and Italy (IT), and to a lesser extent, from France (FR), indicated by the
ellipse superposition during the studied years. All biplot vectors point to the location of the
Turkey ellipse, indicating that these monitoring stations exhibit a higher magnitude than
all the PM10 regimes estimated, coinciding with the values from Figure 4A. With respect
to PM2.5, the superposition of ellipses is less evident than for the PM10 case, although the
distinct role of Turkey remains regarding the magnitude of the estimated regimes (2016
and 2017). In general, PM10 and PM2.5 confidence ellipses show a similar pattern during
the studied years, although the PM2.5 analysis for TR in 2015 is not available due to the
lack of data.
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Table 4. Proportion of variance explained (in %) by pollutant and principal components (PC1 and
PC2).

Year
PM10 PM2.5

PC1 PC2 PC1 PC2

2015 90.7 7.8 92.2 4.7
2016 80.4 16.1 90.3 7.1
2017 85.5 11.4 87.9 9.2
2018 88.4 10.0 90.9 8.0

4. Conclusions

This study aims to estimate the PM10 and PM2.5 pollution profiles at background
locations in Mediterranean countries and to quantify the contributions to PM10 and PM2.5
caused by dust outbreaks from North African desert regions. The time series clustering
method based on Hidden Markov Models was used to estimate such pollution profiles,
and contributions were obtained according to their given definitions. A discussion on
the advantages and limitations of the time series clustering methods was provided in the
methodological section. Countries like Turkey and Spain show the PM10 profiles with the
highest concentration, and Turkey, Croatia, Portugal, Italy, and France with respect to PM2.5.
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From 2015 to 2018, average characteristic contributions to PM10 (µ3–µ2) were estimated as
11.6 ± 10.3 µg·m−3 (Bosnia and Herzegovina), 8.8 ± 7.5 µg·m−3 (Spain), 7.0 ± 6.2 µg·m−3

(France), 8.1 ± 5.9 µg·m−3 (Croatia), 7.5 ± 5.5 µg·m−3 (Italy), 8.1 ± 7.0 µg·m−3 (Portugal),
and 17.0 ± 9.8 µg·m−3 (Turkey). For the same period and PM2.5, the estimated average
characteristic contributions were 4.1 ± 3.5 µg·m−3 (Spain), 6.0 ± 4.8 µg·m−3 (France),
9.1 ± 6.4 µg·m−3 (Croatia), 5.2 ± 3.8 µg·m−3 (Italy), 6.0 ± 4.4 µg·m−3 (Portugal), and
9.0 ± 5.6 µg·m−3 (Turkey). The analysed evolution of the PM2.5/PM10 ratios in background
stations from 2015 to 2018 was in agreement with other studies in the literature. Later,
principal component analysis grouped the monitoring stations according to the different
estimated PM10 and PM2.5 pollution profiles.

Supplementary Materials: The description of the applied methods and the list of monitoring stations
are available online at https://www.mdpi.com/2073-4433/12/1/5/s1.
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