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A B S T R A C T   

Lithium (Li) was recently added to the list of critical raw materials by the European Union due to its significance 
for the green energy transition. Thus, the development of new toolchains to make Li exploration more economic 
and more effective is needed. Stream sediment analysis can play an important part in these new tool chains. In 
this work, two historical stream sediment datasets covering parts of the Fregeneda-Almendra pegmatite field in 
the Douro region (Portugal) were reprocessed considering two distinct approaches: spatial interpolation through 
inverse distance weighting (IDW) and the catchment basin approach using the concentration area (C-A) fractal 
analysis. The following objectives were delineated: (i) determine pathfinder elements for Li, considering relevant 
associations in the mineralization sources; (ii) compare the performance of both approaches; (iii) identify new 
target areas for Li. In the case of spatial interpolation, the highest Li values were associated to granites although 
the use of key elements allowed lithological discrimination and the delineation of target areas. In the catchment 
basin approach, fractal analysis proved to be effective in decreasing the number of areas of interest with high 
accuracy (>75%) when considering the previously mapped Li-pegmatites. One of the limitations identified was 
the number of anomalous basins related to the granites, despite the use of pathfinder elements allowing 
discriminating granite- from pegmatite-related Li anomalies. Comparing the two approaches, the spatial inter-
polation method is more adequate for the early stages of exploration (reconnaissance), while the catchment basin 
approach is more suited for prospect-scale exploration. Field validation of the results identified one pegmatite 
containing Li mineralization and three others with favorable signs for Li mineralization in the Douro region.   

1. Introduction 

Stream sediment analysis and separation of anomalous samples from 
the background are a common and well-accepted tool employed in 
mineral exploration, especially to target metallic mineral occurrences, 
namely gold (Au) and copper (Cu), where the pathfinder elements and 
their mobility are well-known (Carranza and Hale, 1997; Cheng et al., 
1994; Ghezelbash and Maghsoudi, 2018; Hawkes, 1976; Mokhtari and 

Garousi Nezhad, 2015; Shahrestani and Mokhtari, 2017; Zuo, 2011). 
Stream sediment sampling is mainly employed in the reconnaissance 
stage of an exploration campaign allowing to delineate target areas and 
to reduce the number of favorable regions to conduct more detailed 
studies in the subsequent exploration stages (Carranza and Hale, 1997; 
Mokhtari and Garousi Nezhad, 2015). The analysis of this source of data 
can either rely on spatial interpolation techniques that include moving 
averages or kriging techniques, for example (Ghezelbash et al., 2019; 
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Zuo, 2011), or on the sample catchment basin approach (Bonham-Carter 
et al., 1987; Mokhtari and Garousi Nezhad, 2015). 

In the past decade, there has been an increasing demand for other 
raw materials that became essential for the green energy transition. This 
is the case of lithium (Li), which was recently considered critical by the 
European Union based on its economic importance and supply risk 
(European Commission: DG Internal Market Industry Entrepreneurship 
and SMEs, 2020). According to Kesler et al. (2012), the major hard-rock 
Li-deposits in Europe are hosted in pegmatites. Currently, there is only a 
few number of studies concerning the use of stream sediments to target 
pegmatite deposits, most of them related to lithium-cesium-tantalum 
(LCT) pegmatites (Dill et al., 2014; Frick and Strauss, 1987; Steiner, 
2018). Kaeter et al. (2019) investigated tin (Sn), cesium (Cs), tantalum 
(Ta), and tungsten (W) stream sediment anomalies in Leinster (southeast 
Ireland), being Ta and Sn anomalies associated with LCT pegmatites. 
Similar studies showed the potential of combined geochemical and 
mineral approaches to stream sediment samples in the identification of 
anomalous Sn-W-Li-Cs-Ta geochemical associations related to granites 
in the Vosges Mountains, in northeast of France (Steiner, 2019; Steiner 
et al., 2019). Fyzollahhi et al. (2018) and Saadati et al. (2020) have 
successfully used stream sediment data for Li exploration in Iran to 
identify prospects related to both granitic rocks and pegmatites and 
sedimentary hectorite deposits. However, Li is a mobile cation, in 
contrast with Sn, Nb, and Ta which are immobile ions in stream sedi-
ments which might pose a constraint for the use of this kind of 
geochemical exploration technique (Rose et al., 1979). Despite this, 
other geochemical approaches, using agricultural soil samples, show 
that it is possible to identify areas of interest for high-tech elements such 
as Li at a continental scale, being most anomalous areas related to 
granites or LCT pegmatites (Négrel et al., 2019). 

In the framework of the “Lightweight Integrated Ground and 
Airborne Hyperspectral Topological Solution” (LIGHTS; http://lights. 
univ-lorraine.fr/) project, one of the main aims is to create a toolchain 
to make Li exploration more economically sustainable and effective 
(Cardoso-Fernandes et al., 2020b; Köhler et al., 2021). To achieve this, 
historical stream sediment datasets covering the Douro region and the 
Portuguese portion of the Fregeneda-Almendra aplite-pegmatite field 
were reprocessed. Distinct methodological approaches employed by the 
project partners were confronted in this study. Additionally, to better 
understand the mobility of Li and related elements, this study compares 
for the first time the elemental associations observed in stream sediment 
samples with the ones observed at the mineralization source, i.e. 
pegmatite dykes and leucogranitic cupolas from the Iberian Peninsula. 
Taking this into account, the following objectives were defined for this 
study: (i) determine relevant pathfinder elements for Li in stream sedi-
ment samples; (ii) compare the results obtained with both spatial 
interpolation and catchment basin approaches and establish their utility 
in relation to traditional exploration stages; and (iii) delineate new Li 
prospects in the Douro region. Therefore, the findings presented in this 
work are a valuable contribution to the state of the art, since they can 
help in future and similar geochemical exploration campaigns for Li in 
other locations. 

2. Study area and geological setting 

The Li-mineralization in the Iberian Peninsula occurs along a belt 
with around 500 km in length and 150 km in width, mainly in aplite- 
pegmatite dykes but also in leucogranitic cupolas (Roda-Robles et al., 
2016, 2018). This belt is located within the Central Iberian Zone (CIZ), 
which occupies a central portion of the Iberian Massif, one of the biggest 
and most complete fragments of the European Variscan Belt (Pérez- 
Estaún et al., 2004). The CIZ is mainly composed of a Neoproterozoic to 
Paleozoic metasedimentary succession, intruded by several Variscan 
granitoids (Martínez Catalán et al., 2004; Roda-Robles et al., 2018). 
Other important Li-occurrences are located in the Galicia-Trás-os- 
Montes Zone (GTMZ), a terrane accreted over the CIZ, that have similar 

ages and features to those in the CIZ (GTMZ: 310 ± 5 Ma; CIZ: 301 ± 3 
Ma by U–Pb dating of columbite-group minerals) (Melleton et al., 2011; 
Roda-Robles et al., 2016, 2018). 

The Fregeneda-Almendra aplite-pegmatite field corresponds to one 
of the Li-occurrences within the CIZ (Fig. 1). The field is divided into two 
sectors: an eastern side in the Salamanca province (Spain) and a western 
sector in Vila Nova de Foz Côa (Portugal). This study focuses on the 
Portuguese side of the field, where historical stream sediment 
geochemical data is available covering not only the Portuguese sector of 
the pegmatite field, but also a larger extent of the Douro region. The Li- 
pegmatites are emplaced in the Douro Group (Sousa, 1982, 1983, 1984) 
of the Dúrico-Beirão Super Group (Silva et al., 1989), previously known 
as “Complexo Xisto-Grauváquico” (CXG) (Costa, 1950; Teixeira, 1955). 
The CXG corresponds to a monotonous pre-Ordovician pelitic-sandy 
flysch series of Upper Proterozoic to the Lower Cambrian age (Díez 
Balda et al., 1990; Rodríguez Alonso et al., 2004; Sousa, 1984). The 
series resulted from the accumulation of a thick sediment column (8000 
m to 11,000 m), under a regime of tectonic instability, in a foreland type 
basin created by the CIZ's compartmentation in fault-delimited blocks, 
during the Cadomian orogeny (Rodríguez Alonso et al., 2004; San José 
et al., 1990). In its turn, the Douro Group corresponds to a stratigraphic 
succession, characterized by interlayered phyllites and metagreywackes 
with turbiditic features, divided into six different formations that are, 
from the base to the top: Bateiras, Ervedosa, Rio Pinhão, Pinhão, Dese-
josa, and S. Domingos (Sousa, 1982, 1983). Based on facies analysis, the 
basal formations present a distal turbiditic character, while the top 
formations present a proximal turbiditic character (Sousa, 1982, 1983). 
In the northeastern part of the study area, the Desejosa formation is 
overlayed by the Lower Ordovician quartzites from the Poiares' syncline 
and contacts with the alternating Ordovician quartzites and phyllites 
from the Castelo Melhor's syncline (Fig. 1) (Silva et al., 1990a,b; Silva 
and Ribeiro, 1991, 1994). To the south of the study area, a more local 
CXG formation was also identified – the Excomungada formation 
(Ribeiro, 2001; Ribeiro and Silva, 2000). This formation belongs to the 
Arda-Marofa group proposed by Silva et al. (1995) and represents the 
culmination of the sedimentation in the basin and is characterized by the 
presence of modified-wave turbidites sedimented in a siliciclastic plat-
form with strong subsidence (Silva, 2005). The Excomungada formation 
is mainly composed of chloritic phyllites and quartzphyllites overlaying, 
by sedimentary progradation, upon the Rio Pinhão formation (Ribeiro 
and Silva, 2000; Silva, 2005). North of the Lower Ordovician quartzites 
from Poiares-Figueira de Castelo Rodrigo formation and the Middle to 
Upper Ordovician grey to black phyllites of the Santo Antão formation, 
the Excomungada formation suffered intense metamorphism (ultra-
metamorphism) leading to the formation of migmatites (Carvalhosa, 
1960; Ribeiro, 2001; Ribeiro and Silva, 2000). 

The metasedimentary sequences of the CXG were intruded by several 
granitoid rocks (Fig. 1), mainly in the south of the area, in the Figueira 
de Castelo Rodrigo–Lumbrales Anatectic Complex (FCR–LAC; Pereira 
et al. (2017)). These correspond essentially to syn-Variscan (concomi-
tant with the third deformation phase – D3), S-type, two-mica granites 
ranging from fine- to coarse-grained, depending on the distinct facies 
(Ferreira et al., 2019; Pereira et al., 2017; Silva and Ribeiro, 1991, 
1994). Fine-to-medium-grained, essentially biotitic, granodiorite is also 
present in the FCR–LAC (Ferreira et al., 2019; Ribeiro, 2001; Silva and 
Ribeiro, 1991, 1994), as well as some late-D3 two-mica granites with 
smaller cartographic expression (Silva and Ribeiro, 1991, 1994). Recent 
U–Pb zircon data show that the granitoids of the FCR-LAC yield ages 
between 300 and 317 Ma (Ferreira et al., 2019). The FCR-LAC exhu-
mation was assisted by first-order shear zones (Ferreira et al., 2019; 
Pereira et al., 2017). In the northeast and northwest of the study area, 
the late- to post-D3 Saucelle and Freixo de Numão two-mica granites 
crop out (Silva and Ribeiro, 1991, 1994). Finally, a non-outcropping, 
leucocratic, fine-to-medium-grained with muscovite ≫ biotite granite 
was detected by drilling surveys between the Riba D'Alva mine and Feli 
mine (305.0 ± 3.3 Ma) (Vieira, 2010). Locally, there are several 
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Cenozoic sedimentary deposits including fluvial and slope deposits, al-
luvions, and fault-related arkoses covering both granitoids and meta-
sediments (Silva and Ribeiro, 1991, 1994). 

Regarding the Li-mineralization, there are four evolved dyke-types 
containing Li-minerals: (i) petalite-bearing aplite-pegmatites, (ii) 
spodumene-bearing aplite-pegmatites; (iii) lepidolite and spodumene- 
bearing aplite-pegmatites; and (iv) lepidolite-bearing aplite-pegmatites 
(Roda-Robles et al., 1999; Vieira, 2010). These are Li, F, Sn, Rb, Nb > Ta, 
B, and P enriched bodies (Roda-Robles et al., 1999; Roda, 1993; Vieira, 
2010) that are emplaced in the CXG metasediments (Fig. 1). The mineral 
association includes quartz, feldspar, Li-muscovite, spodumene, petalite, 
cassiterite, montebrasite, and accessory apatite, Nb–Ta oxides, Fe–Mn 
phosphates, and eucryptite (Roda-Robles et al., 2018; Vieira, 2010; 
Vieira et al., 2011). Moreover, there are also several types of barren 
dykes, most emplaced within or near the granites of the FCR-LAC 
(Fig. 1). Therefore, there is an increasing fractionation degree to 
northwards as the distance to the granites increases (Vieira, 2010; Vieira 

et al., 2011). Similarly, since the metamorphic isogrades are parallel to 
the granites' contact, barren dykes occur in the higher-grade meta-
morphic zones; petalite-bearing aplite-pegmatites only occur in the 
andalusite-sillimanite; and spodumene-bearing dykes are emplaced in 
the biotite and/or chlorite zones (Vieira, 2010; Vieira et al., 2011). 

3. Data and methods 

3.1. The stream sediment geochemical dataset 

In this work, a previous geochemical stream sediment campaign 
covering the study area (>1250 km2) was reprocessed. The historical 
dataset was acquired in the early 1980s by the Douro consortium 
composed by the French Bureau de Recherches Géologiques et Minières 
(BRGM) and the Portuguese institution, Serviço de Fomento Mineiro 
(SFM). The dataset is composed of a regional campaign containing 3417 
stream sediment samples, covering the 15-A, 15-B, and part of the 15-C 
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and 15-D sheets of the Portuguese Geological Maps at the scale of 
1:50000 representing a density of four samples/km2 (Viallefond, 1981; 
Viallefond and Angel, 1981). Moreover, there is a detailed, prospect- 
scale campaign in the Almendra region that was conducted for tin 
(Sn) and tungsten (W) exploration, where 298 samples were collected in 
a 43 km2 area, representing an average density of about seven samples/ 
km2 (Angel and Viallefond, 1981). This smaller, prospect scale 
campaign covers various lepidolite- and petalite-bearing dykes 
including the Bajoca pegmatite (currently exploited as an open-pit 
mine), which corresponds to a petalite-bearing dyke that reaches 30 m 
in thickness and over 700 m in length (Almeida, 2003; Roda-Robles 
et al., 2010; Vieira, 2010). The regional campaign also covers known Li- 
mineralized dykes. 

Similar sample collection and analytical procedures were employed 
in both regional and prospect scale campaigns. For the regional 
campaign, in each location, a sample of around 800 g. of fine sediments 
was collected off-stream. If the fine fraction was unavailable, gravel was 
sieved in situ to 1 mm particle size (Marroncle, 1980b). Each sample was 
divided into two equal parts, one for keeping and another to be dried at 
30 ◦C in a muffle furnace. The dried part was then milled using a por-
celain mortar and sieved to 100 mesh particle size (0.125 mm) in the 
laboratory (Marroncle, 1980b). From the sieved fraction, 20 g. were set 
aside as duplicate while around 40 g. of the sample were destined for 
geochemical analysis. Regarding the prospect scale campaign, the 
samples were previously collected off-stream, dried, and sieved to a 
particle size less than 80 mesh (0.177 mm) (Marroncle, 1980a; Viegas 
et al., 1983–85). All samples from the SFM and BRGM datasets were 
analyzed at the BRGM facilities using optical emission spectrometry or 
quantometer (Angel and Viallefond, 1981; Viallefond, 1981; Viallefond 
and Angel, 1981). This multi-element technique provided the simulta-
neous quantification of 34 elements and compounds, namely SiO2, 
Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, MnO, P2O5, Ag, As, B, Ba, Be, 
Bi, Cd, Co, Cr, Cu, La, Li, Mo, Nb, Ni, Pb, Sb, Sn, Sr, V, W, Y, Zn and Zr. 
However, the reports do not specify details on the digestion methods and 
analytical precision of the analyses. 

3.1.1. Pre-analysis of the dataset 
Before basin delimitation and anomaly definition, exploratory data 

analysis (EDA) was conducted. First, descriptive statistics of measured 
and log-transformed data were computed to understand the element 
distribution of both campaigns separately and as a whole (Table 1). 

Additionally, graphic tools such as histograms, boxplots, and normal Q- 
Q plots were used. The analysis of the results shows that despite having 
similar trends for most elements, their distributions can differ between 
the two campaigns. Most of the elements/oxides have negatively skewed 
distributions (except Ba, SiO2, Al2O3, Fe2O3, MgO, Na2O, K2O). How-
ever, BRGM shows element distributions more asymmetric than SFM 
except for Fe2O3, Na2O, TiO2, MnO, P2O5, Li, Be, and Nb. In both 
datasets, As, Sn, W, and Pb show a standard deviation higher than the 
mean. This is also the case of B, Cu, and Nb in the BRGM campaign. The 
SFM dataset shows: (i) a higher mean for Be, B, Cu, As, Sr, Sn, Ba, and W; 
(ii) higher standard deviation for SiO2, Al2O3, Fe2O3, TiO2, MnO, B, Cu, 
As, Sn, and W; (iii) a higher maximum content for Fe2O3, MgO, TiO2, and 
MnO; and (iv) a higher minimum content for Al2O3, Fe2O3, MgO, CaO, 
Na2O, K2O, MnO, Be, B, Cu, Zn, Sr, and Ba. Moreover, the analysis of the 
results obtained with the graphical tools allowed to observe two pop-
ulations in the distributions of: (i) As, Ba, Cu, Li, Sn, Sr, and W for both 
datasets, (ii) Pb and Zn for the SMF campaign, and (iii) Nb for the BRGM 
campaign. In the case of As, Li, Pb, Nb, Sn, and W, the first population is 
associated with values near the detection limit. For Sn and W, this 
population near the detection limit corresponds to the largest one. Also, 
for CaO, MgO, and Be, their respective distributions are almost exclu-
sively related to values around the detection limit. Compared with the 
raw data, most element distributions approached a normal-like shape 
distribution after the logarithmic transformation. However, Be, K2O, Nb, 
Sn, and W distributions did not change significantly after the trans-
formation, Li distribution changed to positively skewed, and Na2O and 
SiO2 distributions became more asymmetric. Overall, when analyzing 
Table 1, it is possible to recognize that the differences between the SFM 
and BRGM campaigns are usually residual, within ten potencies, and 
mainly corresponding to the differences in the geology of the area 
sampled. 

In a second stage, the same EDA tools were used to understand how 
the elementary distributions changed according to the lithology. Over-
all, granites have higher values of Na2O, K2O, Li, Nb, and Sn when 
compared to metasedimentary rocks. Oppositely, the metasediments 
show higher contents of Fe2O3, B, Cu, Sr, Ba, and W when compared 
with granitoid rocks. The difference among samples located on granites 
and metasedimentary rocks is more prominent on the BRGM campaign, 
which has a higher number of samples. These differences in average 
concentrations are critical for the correct anomaly definition as 
demonstrated in the following chapters. 

Table 1 
Descriptive statistics for all the stream sediment samples and separate datasets. Min – minimum; Max – maximum; St. Dev. – standard deviation; Skew. – skewness.  

Element All data (n = 3445) Local campaign (SFM; n = 298) Regional campaign (BRGM; n = 3417) 

Min Max Mean St. Dev. Skew. Min Max Mean St. Dev. Skew. Min Max Mean St. Dev. Skew. 

SiO2 (%)  59  91  76.26  4.90  − 0.32  59  84  72.62  5.56  − 0.34  59  91  76.60  4.65  − 0.23 
Al2O3 (%)  4  24  12.20  3.12  0.49  6  23  13.66  3.53  0.34  4  24  12.03  3.03  0.49 
Fe2O3 (%)  1  11  3.95  1.63  0.19  3  11  5.68  1.57  0.53  1  8  3.82  1.53  0.03 
MgO (%)  0.5  4  1.60  0.64  0.49  1  4  2.30  0.59  0.30  0.5  3  1.55  0.60  0.43 
CaO (%)  0.5  8  0.55  0.24  12.51  0.5  1.  0.53  0.13  3.48  0.5  8  0.55  0.24  12.54 
Na2O (%)  0.1  3.6  1.88  0.62  − 0.10  0.5  2.6  1.56  0.29  − 0.20  0.1  3.6  1.89  0.63  − 0.16 
K2O (%)  0.9  5.1  2.83  0.58  0.06  1.3  3.7  2.69  0.39  − 0.81  0.9  5.1  2.84  0.58  0.07 
TiO2 (%)  0.12  3.92  0.74  0.32  1.76  0.43  3.92  0.98  0.45  2.89  0.12  3.24  0.72  0.29  1.17 
MnO (%)  0.01  0.31  0.05  0.03  2.20  0.02  0.40  0.08  0.05  3.40  0.01  0.27  0.05  0.02  1.70 
P2O5 (%)  0.01  1.20  0.18  0.11  1.22  0.01  0.73  0.10  0.07  3.92  0.02  1.20  0.18  0.11  1.17 
Li (ppm)  1  619  72.40  68.11  1.36  1  353  63.85  52.64  1.46  1  619  72.55  68.75  1.35 
Be (ppm)  0.5  12  0.93  0.62  5.33  1  7  1.12  0.53  6.67  0.5  12  0.92  0.63  5.44 
B (ppm)  7  1316  77.70  80.88  6.29  25  920  137.56  119.35  2.52  7  1316  74.41  76.61  6.94 
Cu (ppm)  1  608  21.97  24.73  7.58  8  209  52.41  36.95  1.16  1  608  20.97  23.81  8.47 
Zn (ppm)  32  2804  158.03  78.26  14.11  65  793  146.81  65.48  5.38  32  2804  158.01  78.25  14.62 
As (ppm)  1  1589  43.42  97.64  6.73  1  1379  150.45  238.31  2.33  1  1589  35.34  71.65  8.16 
Sr (ppm)  14  458  64.72  45.85  2.72  37  293  107.16  40.83  1.34  14  458  61.89  44.43  3.06 
Nb (ppm)  1  137  2.31  4.69  9.17  1  16  1.05  0.87  17.26  1  137  2.37  4.79  8.98 
Sn (ppm)  1  139  3.27  5.62  9.42  1  101  4.18  8.57  6.29  1  139  3.18  5.23  9.88 
Ba (ppm)  21  2017  285.79  148.65  0.86  141  667  396.83  101.20  0.47  21  2017  277.20  146.13  0.99 
W (ppm)  1  1034  4.17  32.60  19.46  1  786  20.58  67.99  6.71  1  1034  2.86  26.80  26.75 
Pb (ppm)  1  3000  19.14  77.08  33.00  1  724  24.80  51.76  9.18  1  3000  18.45  77.68  33.75  
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Finally, association measures such as Pearson's and Spearman's cor-
relation coefficients and multivariate analysis techniques such as Cluster 
analysis and Principal Component Analysis (PCA) were also employed to 
determine relevant element associations with Li. Both the Pearson's and 
Spearman's correlation coefficients were employed to analyze different 
element associations within the geochemical datasets: (i) the Pearson's 
coefficient allows evaluating linear correlations while (ii) the Spear-
man's coefficient measures monotonous associations between variables. 
Moreover, the Spearman coefficient is a non-parametric measure and 
therefore is not affected by the presence of outliers in the populations 
(unlike the Pearson's coefficient). Therefore, the two measures were 
employed as an exploratory tool to evaluate any kind of relevant 
element association to be further employed in the multivariate statistical 
analysis. When considering the raw data from both datasets, for most 
elements the correlation with Li is negligible (Pearson r < 0.3), but P2O5 
showed a moderate correlation with Li (0.5 ≤ Pearson r < 0.7), while 
K2O, Na2O, Al2O3, Sn, Be, and As show weak correlations (0.3 ≤ Pearson 
r < 0.5; thresholds from Mukaka (2012)). Nevertheless, the element 
associations are distinct for each campaign. In the SFM campaign, a 
weak correlation (based on Pearson's coefficient) was found between Li 
and Sn, As, Be, K2O, B, and Pb. Considering Spearman's coefficient, the 
correlation with Sn, Pb, and As is moderate and there is an additional 
weak correlation between P2O5, W, and Li. For the BRGM campaign, 
there was only a moderate correlation between Li and P2O5, and weak 
correlations with K2O, Na2O, Al2O3, Sn, As, Be, when using the Pearson 
association measure. With Spearman's coefficient, there is also a weak 
correlation between Li and Zn, and the correlation with Sn, K2O, and 

Na2O increases to moderate. This shows that the Spearman's coefficient 
allowed to identify associations not highlighted by the Pearson's coef-
ficient and, for several elements, there are changes in the strength of the 
associations. 

The multivariate analysis was only employed for the Li-correlated 
elements, after standardization using the interquartile range (IQR), 
following Eq. (1): 

Zij =
(
Xij − medianj

)/
IQRj (1)  

where Zij corresponds to the standardized value for population j, and Xij 
is the original value i in population j. Fig. 2 shows the effect of the 
standardization on oxide/element distribution. 

3.2. Geochemical pathfinder analysis 

The same multivariate statistical analysis (described in Section 3.1) 
was employed to determine relevant element associations in the Li- 
mineralization sources in the Iberian Peninsula. For this particular 
purpose, an external geochemical dataset was used, containing a total of 
168 whole-rock analyses from lepidolite-rich (n = 41), spodumene/ 
petalite-rich (n = 25), and simple aplite-pegmatite dykes and leucog-
ranitic cupolas (n = 102). The available geochemical dataset consists of 
37 analyses performed by Roda-Robles et al. (2018), while the 
remaining analyses were compiled by the same authors based on exis-
tent research about the Argemela, Castillejo de Dos Casas, and Pinilla de 
Fermoselle lecogranitic cupolas, and about the Barroso-Alvão, 

Fig. 2. Boxplot comparing selected oxide/element distributions before and after standardization using the IQR method (Eq. (1)), for both SFM and BRGM campaigns. 
For the raw data, oxides are in weight % and elements are in ppm. In the case of cluster analysis, the distance metric employed was always the Euclidian distance, but 
different linkage methods were tested (Ward's, single, complete, average, centroid, and median). The cophenetic correlation coefficient was computed to evaluate the 
hierarchical clustering. The dendrograms' cutoff value was set to the median of the third-from-last and second-from-last linkages. Moreover, PCA was employed on 
both Pearson's and Spearman's correlation matrices for Li-correlated elements. The dendrograms evidenced a Li-K2O-B-As-P2O5 cluster for the SFM campaign and a 
Be-Al2O3-K2O-Na2O-Li-P2O5 for the BRGM dataset. PCA revealed more complex associations, but overall there are associations between Li and Pb, As, Sn, K2O, and 
P2O5 in the SFM campaign, and associations between Li and P2O5, Na2O, K2O, Sn, Be, and As in the BRGM dataset. 
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Fregeneda-Almendra, Gonçalo, Lalín-Forcarei, Las Navas, Segura, 
Seixoso-Vieiros, Serra de Arga, Jalama, and Tres Arroyos pegmatite- 
fields (Almeida, 2003; Antunes et al., 2013; Charoy and Noronha, 
1996; Fuertes Fuente and Martin Izard, 1998; Gallego Garrido, 1992; 
Helal, 1992; Leal Gomes, 1994; Martín-Izard et al., 1992; Neiva and 
Ramos, 2010; Roda-Robles et al., 2012; Von Knorring and Vidal Romani, 
1981). In this work, the whole-rock data were only employed for the 
determination of relevant pathfinders. 

As a consequence of the very heterogeneous whole-rock geochem-
istry dataset (distinct analytical packages for each studied location), two 
subsets were considered in the multivariate analysis to create a balance 
between preserving the largest number of samples and elements 
possible: i) 100 analyses for 16 elements (Al2O3, CaO, Fe2O3, K2O, MgO, 
Na2O, P2O5, SiO2, Ba, Cs, Li, Nb, Rb, Sn, Sr, Ta); ii) 51 analyses for 22 
elements (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2, TiO2, 
Ba, Cs, F, Ga, Nb, Rb, Sn, Sr, Ta, Zn, Zr). For additional information on 
the external whole rock dataset, please refer to Roda-Robles et al. (2018) 
and references therein. The correlation analysis was employed on the 
entire whole-rock geochemical dataset. 

The multivariate approach allowed defining a general Li-Rb-F-Sn-Cs- 
Al2O3-K2O-MnO association. The multielement associations can vary 
according to the chosen subset and technique. For the first subset, cluster 
analysis evidenced a K2O-Rb-Sn-Li-Al2O3-Na2O association similar to 
the Rb-Cs-Li-Sn-(Al2O3) association identified through PCA (-A). In the 
second subset, an Al2O3-K2O-MnO-Zn-Sn-Li-Rb-F cluster was observed 
(-B) while PCA highlighted an F-Cs-Li-Rb-Sn-MnO-(Zn) association. In 
detail, for the first dataset, the first three principal components (PCs) 
explain almost 95% of the observed variance: (i) PC1 explains 61.8% of 
the total variance, representing a Na2O-SiO2-Fe2O3-Ba association 
antipathetic with a Li-Rb-Cs-Sn association; (ii) PC2 explains 27.5% of 
the total variance and is dominated by Al2O3-Na2O association antipa-
thetic with K2O-SiO2; and (iii) PC3 explains a smaller portion of the total 
variance (5.6%), representing a weak association between SiO2-Na2O 
antipathetic with Fe2O3 and Ba. By plotting the loads of each PC into 
distribution diagrams (Fig. 3-A), it is easier to observe element associ-
ations. For example, although there is a clear Li-Cs-Rb-Sn association, it 
is visible that the association between Li and Sn has less strength than 
with Cs or Rb (Fig. 3-A). This and the remaining associations observed in 
the distribution diagram of Fig. 3-A are interpreted as reflecting the 
control of distinct mineral assemblages within the analyzed pegmatites 
and leucogranitic cupolas of Iberia. Similarly, for the second dataset, the 
dendrogram of Fig. 3-B is the visual representation of the hierarchical 
clustering of the distinct geochemical variables. Therefore, related 
geochemical variables (with linkage distances below the defined 

threshold) are grouped together in the same clusters. In this case, Cs is 
no longer grouped with Li and forms a cluster separated from the 
remaining variables. On the other hand, there is an important associa-
tion between Li and F in Cluster 3, although the relation with MnO or Zn 
is more difficult to explain and interpret. Finally, Spearman's correlation 
measure also identified a weak correlation between Li and B. In a pre-
liminary study where only Li-rich pegmatites and leucogranitic cupolas 
were considered (Cardoso-Fernandes et al., 2020a), a strong correlation 
was found with B, but the correlation between Li and Sn was not as 
relevant as the one observed using the whole dataset. 

Overall, B together with Rb, Sn, Cs, and F are common elements that 
define the geochemical signature of the Rare-Element pegmatite class, 
namely of Li-rich pegmatites worldwide (Černý and Ercit, 2005; Sim-
mons and Webber, 2008). However, no association was found with other 
typical elements found in Li-rich bodies such as Ta and Nb (Černý and 
Ercit, 2005; Roda-Robles et al., 2018; Simmons and Webber, 2008). This 
could be explained by difficulties in acquiring representative samples for 
the accessory Ta–Nb phases or it could reflect the occurrence of a 
nugget effect (Cardoso-Fernandes et al., 2020a). Although Be could also 
be an important pathfinder element for Li-mineralizations, no associa-
tion with Li was found through the multivariate approach which would 
be expected since beryl is less common in the Li-rich bodies of the Ibe-
rian Peninsula (Cardoso-Fernandes et al., 2020a; Roda-Robles et al., 
2018). Finally, the association between Li and major oxides such as 
MnO, K2O, and Al2O3 can be explained by the co-occurrence of Mn 
oxides in Li-rich bodies of the CIZ-GTMZ and due to the presence of K 
and Al in the structure of Li-minerals (Cardoso-Fernandes et al., 2020a; 
Roda-Robles et al., 2018). 

Next, a correspondence between the Li-correlated elements in the Li- 
rich bodies of the CIZ-GTMZ and the elements available in the stream 
sediment datasets was made. Comparing these results with the ones 
obtained in Section 3.1, it is evident that the Li association with elements 
such as Pb or As in the stream sediment samples do not represent the 
typical associations found in Li-rich bodies. Despite elements/oxides 
such as Be and P2O5 (that show a positive correlation with Li in the 
stream sediment dataset) may be present in Li-pegmatites, there was no 
significant correlation with Li in the CIZ's Li-rich bodies. Important 
pathfinders for Li-pegmatite exploration, namely Rb, Cs, and F were not 
analyzed in the stream sediment campaigns. Nonetheless, other relevant 
pathfinders can be used to pin-point Li-pegmatites in the Douro region: 
Sn, B, Al2O3, MnO, and K2O. All these pathfinder elements have shown 
correlations with Li in both CIZ's Li-rich bodies and the stream sediment 
samples. 
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Fig. 3. Multivariate analysis for the identification of associations in Li-rich bodies from the CIZ-GTMZ: (A) Projection of the selected elements/oxides loadings on the 
plane PC3 vs PC1 for the first subset (n = 100); (B) Dendrogram showing the hierarchical clustering of selected elements/oxides for the second subset (n = 51). 
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3.3. Automatic extraction of drainage network and basin creation 

The extraction of the drainage network was performed automatically 
using ArcGIS Spatial Analyst tools (Hydrology and Conditional menus) 
(Environmental Systems Research Institute, 2020). Different data sour-
ces covering the study area and methods were applied to determine 
which combination was more effective (Table 2). 

For each pair of data source/extraction method, the number of 
streams, total length of streams, and drainage density were calculated. 
The drainage density was calculated by dividing the total stream length 
by the area in which the drainage network was extracted. For the 
drainage networks extracted with the stream order method, it was also 
computed for each order the number of streams, their length, and the 
drainage density. In this case, the drainage density was calculated by 
dividing the length of streams in each order by total area. The drainage 
network chosen was the one obtained using the DFM and the Stream 
Order method, since it presented the least number of artifacts. 

Each sampling point was manually corrected to intersect the 
extracted drainage network, but always considering the original sam-
pling maps from the 1980s. Basin creation was performed using the 
Watershed tool in the Hydrology menu (ArcGIS Spatial Analyst tools), 
which takes into account the flow direction as well as the stream sedi-
ment points. However, the automatically delineated catchment basins 
presented major topology problems (Fig. 4) such as: (i) polygons without 
true catchment area, (ii) existing polygons of major streams, and (iii) 
many polygon artifacts (irregular shapes or smaller catchment basins 
inside larger ones). Most of the identified problems are related to the 
resolution of the primary raster data set. The following correction of 
catchment data was done through: (i) improvement of the drainage 
network and contour line creation for data validation; (ii) position 
correction of the stream sediment samples; (iii) manually correction of 
irregular polygons; and (iv) catchment basins related to major streams 
(>1.5 km2) were excluded from the dataset due to their low represen-
tativeness since these samples correspond to a mixed signal and it is not 
possible to assign a source (due to a large number of tributaries in the 
upper course). 

3.4. The spatial interpolation method 

Since the interpolation method is not dependent on the catchment 
area and the differences between the SFM and BRGM populations are 
mainly due to changes in lithology, it was possible to treat the two 
campaigns together. In preparation, the SFM and BRGM datasets were 
merged (after comparison of values) and overlapping polygons were 
adjusted. The values/units for the elements of interest (Li, Sn, W, As, 
etc.) were harmonized (% into mg/kg) and logarithmized. In the next 
step, the center of each polygon was projected using the Feature to 
Point-tool in ArcGIS v10.6 software. 

In this work, to analyze the stream sediment data and estimate 

elemental concentrations in unsampled areas the inverse distance 
weighting (IDW) was employed. IDW is one of the most used moving- 
average interpolation techniques, with the advantage of intuitive and 
straightforward implementation (Carranza, 2009a; Ghezelbash and 
Maghsoudi, 2018; Spadoni, 2006; Zuo, 2011). The interpolation method 
estimates unknown values between known values based on the 
assumption that closer values are more related than distant values 
(Shepard, 1968). Taking this into account, a weight (power coefficient) 
is assigned to each known point used in the prediction of unknown 
points that will decrease with the distance (Johnston et al., 2004). 

In this work, the IDW interpolation was conducted with a cell size of 
20 × 20 m, exponent of distance (power) of 2, and a search radius of 20 
m. The catchment centers represented the reference points for the 
interpolation using IDW. To limit the interpolation area, the center 
points were buffered by 1000 m, a polygon was assembled from all the 
single buffer polygons, and the edge of the resulting polygon was used as 
a mask. The interpolation itself was done using ArcPy running on ArcGIS 
10.6 and the results were saved as a raster file format. Besides Li, other 
elements were interpolated via the IDW method, namely As, Sn, and Cu. 
These elements were selected based on the interrelationship with Li in 
the stream sediment dataset and the potential for lithological discrimi-
nation previously evaluated in Section 3.2. 

3.5. The catchment basin method 

Unlike the spatial interpolation approach, for the catchment basin 
method, the two campaigns (BRGM and SFM) were treated separately 
due to different sampling densities and distinct element distributions 
observed in the two populations. Since this approach relies on several 
area-dependent calculations, it is crucial to treat the campaigns 
independently. 

3.5.1. Determination of the lithological background and dilution correction 
Because lithological variations can have a great influence on element 

content in each sample, it is necessary to estimate the background 
concentration of each lithologic unit. This is particularly important 
since, as stated in Section 3.1, the granites are more enriched in elements 
such as Li, Cs, Rb, Nb, and Sn when compared to the metasedimentary 
units (Ferreira et al., 2020; Roda-Robles et al., 2018). The lithological 
background was estimated through the weighted average method which 
considers the area of lithologic units in every sample catchment basin 
(Bonham-Carter et al., 1987; Carranza, 2009b; Carranza and Hale, 
1997). The local background content due to lithology in every sample 
catchment basin was then estimated in two steps. First, a weighted 
average element concentration Mj (j = 1, 2… m) for the jth (j = 1, 2… n) 
lithologic units was determined using Eq. (2) (Carranza, 2009b): 

Mj =
∑n

i=1
CiAij

/
∑n

i=1
Aij (2)  

where Aij is the area of the jth lithologic unit in the sample catchment 
basin i (i = 1, 2… n), Ci represents the element concentration of the 
sample at the basin outlet, and the sum term in the denominator is the 
total area of lithology j. Then, the local background concentration of the 
element (C′

i) due to lithology was estimated through Eq. (3) (Carranza, 
2009b): 

C
′

i =
∑m

j=1
MjAij

/
∑m

j=1
Aij (3)  

where the sum term in the denominator is equal to the total area of the 
ith sample catchment. The estimated local background values for every 
lithological unit in the SFM and BRGM campaigns are presented in 
Appendix A, Tables A1 and A2, respectively. 

Finally, another key aspect to consider when applying the catchment 
method is the dilution effect which results from the mixing of eroded 

Table 2 
Description of the distinct data sources and drainage extraction methods 
employed.  

Data source Resolution Extraction 
method 

Description 

Digital 
Elevation 
Model (DEM) 

20 m Set Null A threshold is applied to the flow 
accumulation model and only the 
cells with a flow accumulation 
higher than the stipulated 
threshold are classified as part of 
the drainage network. 

Digital Flow 
Model (DFM) 

25 m Stream 
Order 

The stream segments are 
classified based on the number of 
upstream tributaries (Strahler, 
1952). Stream order only 
increases when streams of the 
same order intersect.  
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sediments from non-anomalous locations with sediments from miner-
alized sources (Carranza and Hale, 1997; Hawkes, 1976; Mokhtari and 
Garousi Nezhad, 2015). Both the Hawkes' (Eq. (4), when n equals 0) and 
the Hawkes' modified methods (Eq. (4)) were evaluated for the dilution 
correction, considering that the dilution effect is a function of the 
catchment area and that the area of the mineralized source (pegmatite) 
is negligible (0.01 km2): 

Ca = (100Ai)
1+n( Ci − C′

i

)
(4)  

where Ca represents element concentration due to anomalous sources, Ai 
is the area of the catchment basin, Ci corresponds to the measured 
concentration of the element at the basin outlet, C'i represents the lith-
ological background value of the element, and n corresponds to arbi-
trary equidistance values of 0, − 0.25 and − 0.5 (Carranza and Hale, 
1997; Hawkes, 1976; Mokhtari and Garousi Nezhad, 2015). The final 
term of Eq. (4) represents the uni-element residuals. In this work, the 
residuals were standardized through the IQR method (Eq. (1)) before the 
dilution correction as suggested by Carranza (2009b). The best results 
were obtained with the original Hawke's equation (n = 0). 

3.5.2. Anomaly definition through fractal analysis 
Several statistical techniques are available to separate and classify 

geochemical anomalies from the background population, namely the 
percentile method (Carranza, 2004), the median absolute deviation 
(Shahrestani and Mokhtari, 2017), or fractal analysis (Fyzollahhi et al., 
2018; Mokhtari and Garousi Nezhad, 2015). However, the concentra-
tion area (C-A) fractal method proposed by Cheng et al. (1994) is one of 
the most popular methods for the definition of geochemical anomalies 
(Ghezelbash et al., 2019; Gonçalves et al., 2001). With the C-A method, 

for each concentration threshold there is a corresponding occupied area 
with values greater than the threshold (Cheng et al., 1994). The fractal 
dimensions correspond to the slopes of the straight lines fitted by the 
least square method on the log-log plot of A(ρ) versus ρ (Carranza, 
2009a). Breaks between straight-line segments on the log-log plot 
determine the thresholds between distinct geochemical populations 
(Carranza, 2009a; Cheng et al., 1994). 

In this study, the C-A fractal method was employed to identify uni- 
and multi-elemental anomalies in each stream sediment dataset. For 
this, the diluted-corrected residuals of Li and the diluted-corrected re-
siduals of the remaining pathfinder elements (list of elements available 
in Section 3.2) were used. The area was estimated through the box- 
counting method where a grid with distinct cells was superimposed on 
the areas covered by each campaign (Cheng et al., 1994). Different cell 
sizes were tested, ranging from the computed average nearest neighbor 
(avgnn) to a maximum of 2.5 times the avgnn, in equally spaced 
intervals. 

In the case of uni-elemental anomaly determination, the chosen cell 
size for the box-counting method was 443.32 m and 140.54 m, and the 
number of concentration classes was 35 and 30 for the BRGM and SFM 
campaigns, respectively. Different populations and thresholds were 
recognized in the C-A log-log plots (representative graphs are presented 
in Appendix B, Fig. B1-A, B). 

In what concerns the multi-element anomaly definition, only the 
stream sediment samples with positive diluted-corrected residuals at 
least for Li were selected, as suggested by Carranza (2009b), to ensure 
that the element associations related to the background population were 
not mapped. A rank-ordering approach was employed to the n positive 
diluted-corrected residuals, assigning descendent ranks from n to 1 
(with averaged tied ranks) to after applying a Spearman rank correlation 

Fig. 4. Examples of basin artifacts that had to be manually corrected: (A–D) irregular polygon shapes; (D) smaller catchment basin inside a larger one.  
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matrix on the rank-transformed diluted-corrected residuals (Carranza, 
2009b; Carranza and Hale, 1997; George and Bonham-Carter, 1989). 
Finally, the PCA was carried out on the resultant Spearman correlation 
matrix of the stream sediment samples with positive diluted-corrected 
residuals at least for Li. The existing multi-element associations on 
each PC were evaluated based on the resultant eigenvector loadings, 
allowing the selection of key PCs for Li-exploration (Appendix B, 
Tables B1 and B2). As observed, the selected PCs explained most of the 
total variance of the datasets (around 91% for the SFM campaign and 
around 97% for BRGM). Also, the values highlighted in bold in Tables B1 
and B2 represent key positively or negatively correlated geochemical 
variables with each PC, with values close to one representing high cor-
relations and values close to zero representing irrelevant or non-existing 
correlations. This means that, for SFM, Li is highly and positively 
correlated with PC2 while Sn is weakly and positively correlated 
(Table B1). In the case of PC1, B is highly positively correlated, and Sn is 
moderately and positively correlated. For the BRGM campaign, Li is 
correlated moderately and positively with PC4, while Sn is correlated 
moderately and negatively with PC2 (Table B2). 

Afterward, the PC scores of the rank-transformed dilution-corrected 
stream sediment residuals were computed according to Eq. (5) (George 
and Bonham-Carter, 1989): 

Sci =
∑k

j=1
Lcjrij (5)  

where Sci corresponds to the score for sample i (=1,2, …, n) on PC c, Lcj is 
the loading of variable j (=1,2, …, k) on PC c, and rij is the rank of sample 
i for variable j. The resultant scores were plotted along with the 
geochemical variables on the PCA biplots of Fig. B2 (Appendix B). The 
biplots allow to quickly understand the relation between the geochem-
ical variables, stream sediment samples, and the selected PCs. For 
example, Li is most correlated with PC2 for SFM (Fig. B2-A) and with 
PC4 for BRGM (Fig. B2-B), due to the small angle between the Li vector 
and the respective PC axes, which is in accordance with Tables B1 and 
B2. Also, the length of the vectors (arrows) provides information on the 
proportion of variance explained by the two PCs for that variable. For 
SFM (Fig. B2-A), the length of the vectors is similar, meaning that PC1 
and PC2 contain considerable information on all geochemical variables, 
while for BRGM (Fig. B2-B), the Li vector shows the greatest length, 
followed by MnO and Sn, which means that these variables are well 
represented by PC2 and PC4. Moreover, the angle between variable 
vectors provides insights on the correlation between variables: (i) for 
SFM (Fig. B2-A) Li is positively correlated with Sn, Sn is strongly and 
positively correlated with B, due to the small acute angle, and Li is 
weakly negatively correlated with B, due to the obtuse angle between 
the respective vectors; (ii) for BRGM (Fig. B2-B) it is visible that Li has a 
very low correlation with Sn because the respective vectors are almost 
orthogonal. Finally, biplots can also be useful to visualize clusters or 
groups of samples evidenced by the PCA transformation. In this case, it 
was not possible to distinguish separate, independent clusters, although 
stream sediment samples with high rank values are more frequently 
plotted in the positive quadrants of PC2 for SFM (Fig. B2-A) and PC4 for 
BRGM (Fig. B2-B). 

Lastly, the individual PC scores were subjected to the C-A fractal 
analysis. Taking into account the PCA matrices and biplots (Tables B1, 
B2, and Fig. B2) and to better define multi-element anomalies, two PCs 
of interest were integrated (through multiplication), after normalization 
of the individual scores, and before fractal analysis. The process to 
decompose the multi-elemental stream sediment anomalies from the 
background was similar to the one employed for uni-element anomaly 
definition. The number of concentration classes was the same for each 
campaign, but due to a smaller number of samples, the cell size used in 
the box-counting method changed to 576.47 m and 192.56 m for the 
BRGM and SFM, respectively. The representative log-log plots are shown 
in Appendix B, Fig. B1-C, D. 

3.6. Field validation 

Two portable pieces of equipment were used to assess the dykes' 
potential to be mineralized in Li, namely the S1 Titan 600 portable X- 
Ray Fluorescence (XRF) from Bruker and Z300 Laser-Induced Break-
down Spectroscopy (LIBS) from SciAps© instruments. The former was 
employed to measure the content of Rb in potassium (K) feldspar crystals 
since the enrichment in this metal during crystallization reflects the 
fractionation degree of the pegmatites and consequently, their economic 
potential for Li (Cerny et al., 1985; Smeds, 1992). A threshold of 2000 
ppm was set to discriminate the more evolved dykes with the potential 
to bear Li minerals (Ribeiro et al., 2018). The XRF equipment works with 
a rhodium anode and an excitation source of 4 W, with a voltage of 15 to 
50 kV and a current of 5 to 100 μA. A factory calibration for K2O and Rb 
has a detection limit of 55 ppm and 1 ppm, respectively, when operating 
with the GeoExploration mode according to the manufacturer. The XRF 
performance has been tested against certified samples in previous work 
(Ribeiro et al., 2018). On the other hand, the portable LIBS was 
employed to assess the Li content on micas and to confirm the existence 
of Li aluminum silicates (petalite or spodumene), using two specific in- 
house calibrations for the GeoChem mode, or phosphates (montebrasite- 
amblygonite), through the equipment's Element-Pro elemental detection 
method. The SciAps Z-300 spectrometer range goes from 190 to 950 nm 
(Li peaks are located around 610 and 670 nm), with a laser excitation 
source of 5 to 6 mJ/pulse, 10 to 50 Hz repetition rate and uses argon at 
13 psi as a purge gas. More information on the use of the LIBS equipment 
and its use to analyze Li-rich minerals can be found in Fabre et al. 
(2021). 

4. Results and discussion 

4.1. The spatial interpolation approach 

The final interpolation maps created with IDW are presented in 
Fig. 5. As visible in Fig. 5-A, the highest Li values are mainly related to 
the granites from the Numão Massif (top left corner) and the FCR-LAC 
(E-W belt), thus outlining a major structural feature – the Vilariça 
Fault zone. Nonetheless, there is also a high Li-value area near the Riba 
D'Alva mine, where lepidolite dykes are known (top right corner, below 
the Poiares syncline). In the Almendra region, covered by the SFM 
campaign (highest density of sampling), where several Li-rich dykes are 
mapped, an enrichment in Li is noticeable. However, this enrichment is 
overshadowed by the Li content of the granites to the south. Pathfinder 
elements, such as Sn (Fig. 5-B), proved to be useful in the delineation of 
target areas. Despite some anomalies related to granites (especially to 
the East), it is possible to delineate three smaller areas of interest: (i) 
near the Riba D'Alva mine, (ii) near Almendra (coinciding with a known 
petalite-rich dyke exploited in the Bajoca mine), and (iii) near Castelo 
Melhor (south of the area not sampled) where there are no known 
pegmatites. Important As enrichments were observed (Fig. 5-C) in the 
Castelo Melhor and Riba D'Alva areas, as well as in the granites to the 
East. Intermediate As contents were observed in Almendra. Finally, the 
interpolation of elements such as Cu (Fig. 5-D), proved to be helpful for 
lithological discrimination. As seen in Section 3.1, the metasedimentary 
rocks present higher Cu contents compared to granitoid rocks, thus 
allowing to properly discriminate the granites from the FAR-LAC. 
Oppositely, the granites from the Numão Massif show a higher Cu 
content not allowing their discrimination. 

Elemental interpolation using the IDW method turned out to be a 
simple and expeditious approach. Overall, the results show the influence 
that granitoids have on the Li content and proper definition of interest 
areas. This influence could be reduced through masking (using the 
existent geological maps) or the removal of lithological background (as 
performed in the catchment basin approach) prior to interpolation. 
Notwithstanding, the use of key pathfinder elements also allowed to 
decrease the granites' impact and was crucial to delineate target areas. In 
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previous studies focusing on Li exploration through stream sediment 
analysis, interpolation techniques were also used to estimate the dis-
tribution of relevant factor scores of geochemical samples (Fyzollahhi 
et al., 2018; Saadati et al., 2020). The authors have concluded that such 
an approach is effective for reconnaissance campaigns and regional 
exploration (Saadati et al., 2020). The results obtained in this work also 
indicate that the interpolation approach is more suitable for early stages 
of exploration that focus on a regional (or district) scale since the 
inherent smoothing of the anomalies results in a loss of detail that is 
crucial in the final stages of exploration. 

4.2. The catchment basin approach 

As mentioned before, the two campaigns were treated separately in 
this approach. In the first stage, only uni-elemental anomalies were 
determined. The anomalous catchment basins for Li are depicted in 
Fig. 6, where both campaigns are presented. In the case of BRGM, 68 out 
of 3362 basins were identified as anomalous, which corresponds to 
approximately 2% of all basins. This indicates that the C-A fractal 
method was effective in reducing possible interest areas to visit in the 
field, and thus the duration and costs of field campaigns, which is of 
particular interest for exploration companies. Some of the anomalies 
shown in Fig. 6 correspond to the Riba D'Alva area or are related to 
known pegmatite dykes North of Escalhão (near the border with Spain). 

Table 3 summarizes the performance of the catchment basin approach, 
with the C-A fractal method achieving an overall accuracy (OA) of 93% 
considering the overlap of anomalous basins with known Li-pegmatites. 
Despite this, a large number of anomalous basins are still related to the 
outcropping granites, which is one of the main limitations found. After 
the removal of the lithological background, it was expected to eliminate 
the influence of granitoid rocks. Although it was not possible to elimi-
nate their influence altogether, the impact of granites was reduced when 
compared with the spatial interpolation results (Fig. 5-A). 

For the SFM campaign, 22 out of 289 basins were identified as 
anomalous (approximately 7.6%). The higher percentage of anomalous 
basins is a consequence of the lower threshold identified in the log-log 
plot (Fig. B1-A). It also might be related to the smaller size of the ba-
sins, meaning that one source can contribute to multiple basins as 
observed around the Bajoca pegmatite (red triangle on the bottom of 
Fig. 6). There is still some influence of granitoid rocks (resulting in 
anomalous basins) that is a result of the lower estimated lithological 
backgrounds for granites (Tables A1 and A2). This is linked with fewer 
availability of samples covering granites in the SFM campaign. Looking 
at Table 3, the OA of the fractal analysis drops to 75%. To improve these 
results, pathfinder elements were employed for multi-element 
definition. 

The anomalous multi-element associations are represented in Fig. 7. 
For the BRGM campaign, the number of highly anomalous basins, 
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Fig. 5. Final interpolation maps obtained with the IDW: (A) Li; (B) Sn; (C) As; and (D) Cu. The location of the stream sediment samples is also shown.  

J. Cardoso-Fernandes et al.                                                                                                                                                                                                                   



Journal of Geochemical Exploration 236 (2022) 106978

11

representing a Sn–Li association, was 101 (around 3% of all catchment 
basins). The higher percentage of highlighted basins coupled with the 
lower OA of 91% indicates that the multi-elemental analysis did not 
produce the expected results, i.e., a decrease in the number of 

anomalous basins and reduce granite influence. However, intersecting 
anomalous Sn–Li basins with the previously identified Li-anomalous 
areas, the total number of highlighted catchments drops to 39. 

Oppositely, in the SFM campaign, the number of highly anomalous 
basins, representing a Sn-Li-B association, was only 13 (around 4.5% of 
all catchment basins). This multi-element strategy not only allowed to 
eliminate anomalous areas related to the granites but also to increase the 
number of anomalous basins intersecting known Li-pegmatites (Fig. 7). 
Consequently, the OA of the C-A fractal method employed to the PCA 
results of Li pathfinder elements increased to 87% comparing to 75% 
obtained in the uni-elemental anomaly definition. The importance of 
using multi-elemental strategies for Li-exploration had already been 
demonstrated in the works of Fyzollahhi et al. (2018), Saadati et al. 
(2020), where the association with elements such as Cs, Rb, F, Be, Sn, 
and Nb not only allowed to identify Li anomalous areas but also to 
discriminate two distinct Li-sources: (i) related to granites and pegma-
tites, and (ii) associated with Li-clays. The fact that the multi-elemental 
strategy was not equally successful in reducing the granites' influence in 
the BRGM campaign may indicate that in some cases the anomalous 
values are not just a consequence of the lithological background and that 
there can be anomalous areas inside the granites. This is out of the scope 

Fig. 6. Spatial distribution of diluted-corrected Li residuals for the BRGM (top) and SFM (bottom) campaigns. The thresholds used to identify distinct populations 
and define the anomalies are based on the log-log plots of Fig. B1. A simplified geological map is presented for reference. 

Table 3 
Performance matrix for uni- and multi-elemental anomaly definition consid-
ering the mapped pegmatites.   

BRGM (catchment basins = 3362) SFM (catchment 
basins = 289)  

Intersecting 
known 
pegmatites 

Intersecting 
known 
pegmatites 

Li- 
rich 

Barren Li- 
rich 

Barren 

Uni-elemental Anomalous 4 5 5 6 
Non-anomalous 3 98 8 36 
Overall accuracy (OA) 93% 75% 

Multi- 
elemental 

Highly Anomalous 1 4 7 1 
Other 6 99 6 41 
Overall accuracy (OA) 91% 87%  
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of this work, but it is worth further investigation in future studies to try 
to evaluate if there is any economic interest within the granites. 

The OA reflects the ability of the employed approach to highlight 
anomalous basins with known Li-pegmatites and disregard areas with 
barren dykes. However, the anomalous basins intersecting barren peg-
matites are of interest and should be validated in the field in the case of 
hidden Li-mineralization, that is, in the case that Li-minerals are not 
observed in the pegmatite surface but occur at depth. 

Comparing both approaches, it is evident that the catchment basin 
approach is more suitable for prospect scale exploration, since it allows 
to only target the areas covered by the catchment basins (lesser area 
than the clusters of Fig. 6). Nonetheless, this catchment method proved 
to be very time-consuming, dependent on distinct processing steps, and 
the anomaly definition through fractal analysis was not straightforward. 
Ideally, such an approach could only be employed in the target areas 
defined through the spatial interpolation method, thus optimizing the 
chain process along the different stages of exploration. 

4.3. Field validation 

Two field campaigns were conducted to validate the results of the 
spatial interpolation and catchment basin approaches. This validation 
was affected by three main constraints: (i) poor road accesses to the 
interest areas (that implied traveling great distances to visit nearby 
places); (ii) several interest areas were located inside fenced private 
propriety; and (iii) the rough terrain of the region that did not allow to 
check every pegmatite dyke within anomalous basins. Despite this, 
eleven basins were checked in the field. Due to the time limitation, 
preference was given to anomalous basins where the existence of 
pegmatite dykes is known. Consequently, 17 pegmatite dykes were 
inspected for possible Li-mineralization. Table 4 shows Rb and K/Rb 
values for measured K-feldspar crystal in the inspected pegmatite dykes, 
being high Rb contents and low K/Rb values indicative of higher frac-
tionation degree of the pegmatite, and of high mineralization potential 
(Smeds, 1992). 

In the region covered by the SFM campaign, it was possible to 
identify, in an anomalous area, one pegmatite dyke (previously mapped 
as barren) containing mineralization in Li and Sn (in the transition 

Fig. 7. Spatial distribution of integrated multi-elemental associations for the BRGM (top) and SFM (bottom) campaigns, obtained through the product of negated PC2 
scores with PC4 scores, and the product of PC1 and PC2 scores, respectively (Tables B1 and B2). The thresholds used to identify distinct populations and define the 
anomalies are based on the log-log plots of Fig. B1. A simplified geological map is presented for reference. 
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between basins no. 4361 and 4358 of Table 4). The first occurs mainly in 
pink microcrystalline masses of Li-micas with occasional petalite skel-
etal relics (boxworks) visible in Fig. 8. The latter occurs in millimetric to 
centimetric cassiterite crystals containing small amounts of Nb and Ta. 
Iron and manganese phosphates were also found. Additionally, two 
other pegmatites in anomalous basins presented favorable evidence for 
Li-mineralization (Rb > 2000 ppm in K-feldspars), although no Li- 
mineralization was observed at the surface. Most pegmatite dykes 
were almost entirely covered by lichens which difficulted the recogni-
tion of possible Li-mineralization. It can also be the case that Li-minerals 
only occur at depth thus not allowing its recognition on outcrops even 
after using a hammer and sledgehammer to obtain vegetation-free 
samples. Moreover, the field campaigns allowed to identify a pegma-
tite dyke that was previously unknown (Fig. 8). These findings show the 
importance of stream sediment analysis and the use of portable tools in 

Li-pegmatite exploration. 
For the BRGM campaign, less evidence of the source Li anomalies 

was found: all pegmatite dykes within anomalous basins visited in the 
field did not show favorable Rb and Li contents in K-feldspars (Table 4) 
and micas, respectively. Despite this, one pegmatite with the potential to 
be Li mineralized was identified within a catchment basin highlighted as 
high background through the uni-elemental C-A fractal analysis (basin 
no. 2277 of Table 4). To the south of the study area, the validated 
anomalous basins corresponded to: (i) urbanized areas, which may 
indicate human contamination, and (ii) granite-related areas. In the 
latter, intragranitic pegmatite dykes were observed, but presenting low 
Rb content in the K-feldspars and low Li content on the micas. Oppo-
sitely, the biotite in the granites showed higher relative Li contents than 
the ones observed in the pegmatites. Further studies may be employed in 
the future to assess the economic potential of Li within the granitoid 

Table 4 
Comparison of the K2O, Rb and K/Rb values obtained in K-feldspars of the analyzed aplite-pegmatite dykes with the measured and diluted-corrected residuals of Li in 
the respective catchment basin. For this purpose, only fresh K-feldspar crystals were considered (K2O > 8%). Rb contents above 2000 ppm are highlighted in bold 
indicating favorable evidence for Li-mineralization.  

Basin no. Campaign Measured Li (ppm) Diluted-corrected residuals K2O (%) Rb (ppm) K/Rb 

597 BRGM 177 59.78  12.06  1605  62.38  
9.33  1111  69.74  
8.99  1509  49.48  

11.55  899  106.64  
8.47  1751  40.13  
9.93  1657  49.77 

2277a 208 55.67  13.53  2798  40.14 
4083 135 4.07  10.21  1940  43.70 
4102 130 35.87  14.84  820  150.25  

12.17  1099  91.94 
4358 SFM 73 49.95  10.66  698  126.82  

8.14  2934  23.03  
8.53  2712  26.12 

4361/4358 95/73 28.43/49.95  10.47  3688  23.58 
4361 95 28.43  9.05  4376  17.16  

8.29  2416  28.48  
9.50  2575  30.63  

14.74  1761  69.46  
13.65  2737  44.00  

a Classified as high background through the uni-elemental C-A fractal analysis. 
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rocks. 

5. Conclusions 

The performance of two distinct approaches to the geochemical 
exploration of Li-pegmatites was evaluated and the results have 
demonstrated their usefulness for this purpose:  

1. The spatial interpolation method is a simple and expeditious 
approach for the early stages of mineral exploration (regional 
exploration). Despite the influence of granitoid rocks that can over-
shadow Li anomalous areas due to the occurrence of evolved peg-
matites, it was possible to delineate smaller areas of interest for 
detailed studies. Future works should consider masking or other 
techniques to decrease the granites' influence.  

2. Oppositely, the catchment basin approach proved to be an important 
tool for prospect scale exploration, allowing to mark smaller areas 
for field verification. Removing the influence of the geological 
background reduced the anomalous areas related to granites. To 
optimize the exploration campaigns, this approach could be 
employed in the areas previously defined through the spatial inter-
polation method, due to the great computational cost and complexity 
involved in this catchment area approach.  

3. In both approaches, the use of key pathfinder elements was crucial to 
delineate target areas and discriminate granite-related from 
pegmatite-related Li anomalies. This was particularly true for the 
SFM campaign, where the elements selected showed correlations 
with Li in both CIZ's Li-rich bodies and the stream sediment samples, 
highlighting an important Sn-Li-B association. Other pathfinder el-
ements could be used for Li exploration worldwide, namely Rb, Cs, 
and F.  

4. Finally, the C-A fractal method was very effective in reducing the 
number of catchment basins to validate in the field which can be of 
great interest for exploration companies, allowing to reduce the costs 
and duration of field campaigns. The accuracy of this approach was 
high (>75%) when considering the previously mapped Li- 
pegmatites. The performance of the method was also confirmed 
through field validation. The fractal analysis allowed the identifi-
cation of a pegmatite containing Li and Sn mineralization in one of 
the anomalous basins and highlights three other pegmatites with 
favorable evidence for possible hidden Li-mineralization.  

5. Although multiple strategies were employed to reduce the granites' 
influence in the definition of anomalous basins, several areas per-
sisted as anomalous. Therefore, further studies are needed to assess if 
there is any economic interest within the granites for Li. 
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Martin Köhler: Methodology, Software, Formal analysis, Investigation, 
Data curation, Writing – review & editing. Stefan Schaefer: Method-
ology, Software, Formal analysis, Investigation, Data curation, Writing – 
review & editing. Andreas Barth: Methodology, Project administration. 
Andreas Knobloch: Methodology, Supervision, Project administration, 
Funding acquisition. Mário A. Gonçalves: Methodology, Software, 
Writing – review & editing. Filipe Gonçalves: Validation, Investigation, 
Writing – review & editing. Ana Cláudia Teodoro: Conceptualization, 
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Novembro 1980), p. 44. Unpublished.  
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