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Abstract 

Dementia is one of the brain diseases with serious symptoms such as memory loss, and thinking 

problems. According to the World Alzheimer Report 2016, in the world, there are 47 million people having 

dementia and it can be 131 million by 2050. There is no standard method to diagnose dementia, and 

consequently unable to access the treatment effectively. Hence, the computational diagnosis of the disease 

from brain Magnetic Resonance Image (MRI) scans plays an important role in supporting the early 

diagnosis. Alzheimer’s Disease (AD), a common type of Dementia, includes problems related to 

disorientation, mood swings, not managing self-care, and behavioral issues. In this article, a new 

computational method is presented to diagnose AD from 3D brain MRI. The efficient approach comprises 

two phases: I) segmentation and II) classification, both based on deep learning. After the brain tissues are 

segmented by a model that used Gaussian Mixture Model (GMM) as an additional input for Convolutional 

Neural Network (CNN), a new model for combining Extreme Gradient Boosting (XGBoost) and Support 

Vector Machine (SVM) is used to classify Alzheimer’s disease based on the segmented tissues. For 

comparison, the new method was evaluated using the AD-86 and AD-126 datasets leading to Dice 0.96 for 

segmentation in both datasets and accuracies 0.88, and 0.80 for classification, respectively.  
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1. Introduction 

Dementia, one of the serious diseases affecting mental cognitive tasks, can lead to the death of 

many people [1]. Around the world, 9.9 million new cases of dementia were estimated in 2015, 

corresponding to one new case every 3 seconds, and the total estimated cost of dementia worldwide was 

US$ 818 billion. Now dementia is called a trillion-dollar disease rising to US$ 2 trillion by 2030 [2]. 

Alzheimer's Disease (AD), one of the common types of dementia, develops slowly and becomes severe 

with daily tasks related to memory, thinking, and behavior problems [3].  

People developing the disease present seven different stages including three main stages: pre-

clinical Alzheimer’s disease stage, Mild Cognitive Impairment (MCI), and AD [4]. In the AD stage, the 

symptoms of patients are clear and they are difficult to function normally in daily life. Recently, many 

methods have been proposed for AD diagnosis from Magnetic Resonance Image (MRI) [4, 5, 6-14] and we 

divided into 3 groups (Figure 1): 

 
Fig. 1. Categories of current methods for AD diagnosis from 3D Brain MRI scans. 

 

a) Traditional methods: A well-known approach is voxel-based morphometry (VBM) [15]. 

VBM uses a voxel-wise comparison of tissue densities. In brain MRI, VBM segments input data into many 

tissues such as white matter (WM), grey matter (GM), and Cerebrospinal Fluid (CSF) [6, 16]. Besides, there 

are other methods in this category to diagnosis the AD disease, such as the ones based on the measurement 

of the cortical thickness [17-18], or deformation assessment used as a biomarker [19-20]. Querbes O et al. 

[17] proposed for each subject, cortical thickness was measured on the MRIs volume. The resulting cortical 

thickness map was divided into 22 regions and a normalized thickness index was computed using the subset 

of regions (right medial temporal, left lateral temporal, right posterior cingulate) that distinguished stable 

mild cognitive impairment from progressive mild cognitive impairment. Hidetaka Arimura et al. [18] 

proposed an automated method for 3D measurement of cerebral cortical thicknesses based on fuzzy 

membership maps for evaluation of AD. The cerebral cortical thickness was measured by using a localized 

gradient vector trajectory in a fuzzy membership map. Alexandre Savio et al. [19] performs the non-linear 

registration of a subject’s structural MRI volume to a reference template. Then, computes scalar measures 

of the registration’s deformation field and performs across volume statistical group analysis of these scalar 

measures to detect effects. Long X et al. [20] proposed a deformation-based machine learning method for 

discrimination of AD. The method computed and analyzed the regional morphological differences of the 

brain between groups. Distance between each pair of subjects was quantified from asymmetric diffeomorphic 

registration, followed by an embedding algorithm and a learning approach for classification 

b) Feature-based methods: Scale-Invariant Feature Transform (SIFT) [21] is an algorithm 

commonly used to detect local features in the input images. They are invariant in transforming the images 

such as scale, translation, and rotation because they are associated with key points of structures in the input 
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image. Thus, SIFT has been commonly used as a feature extractor for AD diagnosis [22-23]. Other local 

features that are commonly used for AD diagnosis is the histogram of oriented gradient (HOG) [24-25]. 

HOG decomposes an image into small squared cells, computes a histogram of the oriented gradient in each 

cell, normalizes the result, and returns a descriptor as a feature for each cell. 

c) Machine learning methods: Support vector machine (SVM) is a classifier frequently used 

to diagnosis the disease from extracted features [12-13, 26]. Recently, many methods based on deep learning 

are proposed to diagnose AD from MRI scans [27-28]. 

Besides knowing the condition of a disease, the physician usually examines the tissues to attain 

more information about the size, location, and other characteristics of brain components. Therefore, in this 

study, we focus on tissue segmentation before classification to also assist the doctors in diagnosing brain-

related diseases visually. The common methods for such a goal usually include four main steps: 

- Preprocessing: skull stripping (brain segmentation) is the important step before tissue segmentation 

from 3D brain MRI [6,29]; 

- Segmentation: brain tissues such as WM, GM, CSF [16, 30], or Hippocampus [7,31] are used to 

segment from the images under analysis to predict the disease. 

- Feature Extraction: different features are extracted from the segmented tissues by many techniques 

such as Principal component analysis (PCA) [8-9], and Gray-Level Invariant Features [10], to be used in 

the classification step; 

- Classification: the diagnosis can be achieved using techniques of machine learning like SVM, 

which has been frequently used [11-13]. 

In this study, we propose a model that combines Gaussian Mixture Model (GMM) and Convolutional 

Neural Network (CNN) for WM, GM, and CSF tissues segmentation since these tissues are highly relevant 

on the disease diagnosis [14,32], and a new model that combines Extreme Gradient Boosting (XGBoost) 

and Support Vector Machine (SVM) to classify the patient Normal or AD. 

This article is organized as follows: Section 2 reviews AD diagnosis methods and presents in detail 

the proposed method, section 3, presents the evaluation of the proposed method using two 3D brain MRI 

datasets, and the last section, provides the conclusions and perspectives of future works. 

 

2. Methods  

Our proposed method for tissue segmentation and AD diagnosis from MRI is depicted in Figure 

2. In the preprocessing step, the 3D Brain MRI input is transformed into 2D slices and the skull stripping 

method is used [33]. Our approach comprises two main steps: segmentation and classification. In the 

segmentation step, a CNN model is used to segment the WM, GM, and CSF tissues in each slice. The 

model used 2D slices input and Gaussian Mixture Model (GMM) as an additional input for segmentation. 

In the classification step, 2D slices including the WM, GM, and CSF tissues are the input for another 

CNN. The model is trained to extract features to predict disease probability in each slice. From the 

prediction of each slice, XGBoost is used to predict a person into two classes: AD or Normal Control. 

After that, we select the important slices by using importance scores from XGBoosts and use SVM to 

predict person disease. 
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Fig. 2. Overview of the proposed method for AD diagnosis from 3D brain MRI scans. 

2.1 Tissues Segmentation 

Nowadays, many useful algorithms for localizing structures in MRI have been proposed [34]. 

Recently, the methods based on machine learning have become a prime trend in technology for image 

analysis nowadays. Based on CNN, there are several methods have been proposed to perform image 

segmentation such as Fully Convolutional Neural Networks [35] and Deep Convolutional Encoder-

Decoder Neural Networks [36].  2D CNN models which take each 2D slice as input gives the best result 

with few parameters and time-consuming in the model. However, because 2D CNNs gets one slice as input, 

they fail to take the context from adjacent slices. The information from adjacent slices is very useful for the 

prediction of any label. However, the disadvantage of using 3D CNN is the required power of the machine 

and the number of data. To overcome this disadvantage, we propose the use of the Relationship Probability of 

Pixel (RPP) as an additional input to the CNN model. Hence, the proposed RPP is computed from the n slices 

of the 3D MRI scan instead of being computed only from the slice to which the pixel under analysis belongs to. 

The illustration of the proposed tissue segmentation approach is presented in Figure 3.  
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Fig. 3. A proposed method to segment brain tissues in brain MRI slices. 

 

The CNN based segmentation of image X into image Y can be represented as a function 𝑓: 𝑋 → 𝑌. Here, 

we define a new input 𝑋& = ()𝑥+,+, 𝑝+,+.,… , )𝑥0,1, 𝑝0,1.2, where (a, b) is the size of the original slice, to combine 

the information in the slice and the RPP of each of its pixels. RPP of each pixel in a slice is denoted as 

𝑃4,5(𝑝7,… , 𝑝8), where 𝑖 = 1…𝑎=======, 𝑗 = 1…𝑏=======, and m is the number of classes to segment and can be calculated by 

using the Gaussian Mixture Model on the intensity of the pixels of all slices of the 3D MRI scan. GMM is a 

probabilistic model that assumes that all the data points are generated from a mixture of a finite number of 

Gaussian distributions with unknown parameters [24]. It implements the expectation-maximization (EM) 

algorithm for fitting the mixture-of-Gaussian model. 

 

2.2 Disease Classification 

From the result of previous segmentation, we proposed using a CNN model for AD classification. With 

the model, we do not need RPP as an additional input because it inherits global features from previous 

segmentation results. If a 3D CNN model for 3D MRI classification is used, the result will not good because of 

the amount of data and the complexity of images, especially in the medical field. Instead of using a 3D CNN 

model for 3D MRI classification, we proposed using a typical CNN for each slice classification and then using 

classifier methods for 3D MRI classification from the slice prediction. Figure 4 shows a CNN model used for 

classification; this model as Convolution kernels of size 3x3, MaxPooling kernels of size 2x2, and Full Connected 

layers act as feature extractor and classifier. 
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Fig. 4. A CNN model used for classification 

 
There are many classifier methods such as SVMs, Decision tree, Random forest, XGboost. Like random 

forests, gradient boosting is a set of decision trees. However, Random forest builds each tree independently while 

gradient boosting builds one tree at a time. This additive model (ensemble) works in a forward stage-wise manner, 

introducing a weak learner to improve the shortcomings of existing weak learners. Random forests combine results 

at the end of the process while gradient boosting combines results along the way. Therefore, we used XGboost 

for the first prediction. XGBoost give a better result. Another reason is that each MRI has more than a hundred of 

2D slices and there are many slices that do not necessary of disease prediction. The XGboost is used as a slice 

selection. It uses features of each slice to train and evaluate the importance score indicates how valuable the related 

feature was in the building of the boosted decision trees within the model. XGBoost [37] efficiently deals with 

sparse data and is suitable for large-scale datasets. It also implements distributed and parallel computing 

flexibility. XGBoost estimates the target feature by a series of decision trees and defining quantized weight for 

each leaf node. The prediction function is defined as: 

 

𝑦A4 = ∑ 𝑓C(𝑥4)D
CE7 ,          (1) 

 

where 𝑦A4 is the predicted class of the i−th observation, 𝑥4 is the corresponding feature vector, K is the total number 

of decision trees. The function 𝑓C  is defined as: 

 

𝑓C(𝑥4) = 𝜔GC(HI),          (2) 

 

where 𝑞𝑘(𝑥4) is the structure function of the k−th decision tree that map 𝑥4 to the corresponding leaf node and 𝜔 

is the vector of the quantized weight. 

A proposed method for AD prediction by using XGBoost on WM, GM and CSF tissues segmented in 

3D brain MR images are shown in Figure 5 
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Fig. 5. A proposed method for AD prediction by using XGBoost on WM, GM, and CSF tissues segmented in 

3D brain MR images. 

SVMs are supervised learning models that analyze the data used for classification [38]. The use of SVMs 

combined with CNN has proved to be promising for classification. SVMs and boosting are two techniques for 

learning both having received considerable attention in recent years and many successful applications have been 

described in the literature. The objective of SVMs is to maximize the separation between the classes. By using a 

kernel trick to map the training samples from an input space to a high dimensional feature space, SVM finds an 

optimal separating hyperplane in the feature space and uses a regularization parameter to balance model 

complexity and training error. Therefore, with a suitable kernel, the SVM can be better. With our approach, we 

combine two classifiers, the classification accuracies obtained on the two dataset groups may not be the highest 

ones, but the obtained results are more robust for the two groups than the ones obtained by the related methods.  

In this work, the disease probability of each slice prediction is used as the feature for disease prediction 

based on an SVM classifier. SVM computes the discriminant function as a linear combination of the similarity 

scores with learned weights 𝛼4, where many of them may be zero: 

𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝑦4𝛼4𝐾(𝑥4, 𝑥) + 𝑏4 ),     (3) 

where the kernel function 𝐾 = (𝑥4, 𝑥) measures the similarity between the input pattern 𝑥 and the training sample 

𝑥4, and the samples 𝑥4 for which the corresponding 𝛼4 are non-zero are the support vectors. 

Instead of using all the features for classification, is common to use methods for feature selection to get 

better accuracy and performance, particularly on high-dimensional datasets. With the disease probability 

computed from each slice, we use an SVM on the features selected using XGBoost to classify the 3D brain MRI 

scan under analysis into two classes: AD or Normal Control (NC).  

The advantage of using XGBoost is after the boosted trees are built, importance scores for each attribute 

can be calculated. The importance score indicates how valuable the related feature was in the building of the 

boosted decision trees within the model. The proposed classification method for the combination is shown in 

Figures 6. 
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Fig. 6. A proposed method for AD prediction by using an SVM classifier from XGBoost selected features. 

 

 

I: Let the segmentation result of a 3D brain MRI scan be 𝑋 = {(𝑥7, 𝑙7), (𝑥T, 𝑙T),… , (𝑥U, 𝑙U)}, where 𝑥4 denotes 

each 2D slice and 𝑙4 the brain tissue labels. Let Y= {𝑦7, 𝑦T,… , 𝑦U} be the probability of disease for each 2D slice, 

CNN is a function 𝑔: 𝑋 → 𝑌 used for prediction.  

II: With n persons, each person has 𝑚 features, each feature is the probability of disease in a 2D slice, 𝐷 =

{𝑥4, 𝑦4}	(|𝐷| = 𝑛, 𝑥4 ∈ ℝ8) is a tree ensemble model that uses K additive functions to predict the output: 

 

𝑦]̂ = 𝜙(𝑥4) = ∑ 𝑓C(𝑥4)D
CE7 , 𝑓C ∈ ℱ,      (4) 

 

where ℱ = (𝑓(𝑥) = 𝜔G(H)2(𝑞:ℝ8 → Τ,𝜔 ∈ 	ℝ8) is the space of the regression trees, q represents the structure 

of each tree that maps a sample to the leaf index, and 𝜔 is the weight vector of each leaf. 

III: Using m features {𝑦7,𝑦T,… , 𝑦8} to build a tree ensemble model, feature importance 𝑌′ =

{𝑦′7,𝑦′T,… , 𝑦′U} is calculated by counting the number of times each feature is used in all generated trees. Then, 

using an SVM classifier on features Y’, the disease is predicted. 

 

3. Results and discussion 

There are many public image datasets available that could be used to evaluate the proposed method such 

as the Open Access Series of Imaging Studies (OASIS) and Alzheimer’s disease Neuroimaging Initiative 

(http://adni.loni.usc.edu/) datasets. ADNI and OASIS both are well-known datasets about AD. ADNI is a 

longitudinal multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the 

early detection and tracking of AD. Three overarching goals of the ADNI study are detecting AD at the earliest 

possible stage (pre-dementia) and identify ways to track the progression of the diseases with biomarkers; 

supporting advances in AD intervention, prevention, and treatment through the application of new diagnostic 

methods at the earliest possible stages (when intervention may be most effective); continually administer ADNIs 

innovative data-access policy, which provides all data without embargo to all scientists in the world. However, 

there is no WM, GM, and CSF ground truth for segmentation comparison in the ADNI dataset. Therefore, we 

choose the OASIS dataset to evaluate the segmentation method and classification method. We evaluate the 

segmentation method against the corresponding ground truth on OASIS dataset [39], which contains 3D brain 
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MRI scans of 98 normal control (NC) subjects and 99 probable AD subjects aged between 60 and 96 years. In 

this research, the subjects were divided into two subsets by their age and dementia status according to Clinical 

Dementia Rating (CDR) [40]. CDR is a numeric scale commonly used to quantify the severity of symptoms of 

dementia based on the patient's cognitive and functional performance in six areas: memory, orientation, judgment 

& problem solving, community affairs, home & hobbies, and personal care. Then, the two groups built were: 

- AD-86: 86 subjects aged between 60 and 80 years, including 20 patients mild AD (CDR = 1) and 66 

healthy subjects (CDR = 0); 

- AD-126: 126 subjects aged between 60 and 96 years, including 28 patients mild AD (CDR = 1) and 98 

healthy subjects (CDR = 0). 

In the OASIS dataset, the 3D brain MRI scans were first averaged and gain-field corrected to improve 

the signal/noise ratio, then registered to the Talairach space [41] via an affine transform and finally, the skull was 

masked out. 

3.1 Segmentation comparison 

We evaluated the performance of the segmentations obtained by the proposed method using a Dice 

Similarity Coefficient (DSC): 

𝑆(𝑋, 𝑌) = T|d∩f|
|d|	g	|f|

,          (5) 

where |X| and |Y| are the number of pixels in the sets under comparison, X and Y, respectively, and |X∩Y| is the 

number of pixels shared by the two sets. 

We implemented the proposed method in Python and used the Keras [42] and scikit-learn [43] library 

toolkits for deep neural networks. We adopted UNET [44] as the original CNN model. Each 3D brain MRI scan, 

with the original size of 208x176x17, was converted to 208 2D images, i.e. slices, with the size of 176x176 pixels. 

Then, after applying the correspondent skull stripping mask included in the dataset, the input to the CNN is 2D 

slices, and then the three brain tissues: WM, GM, and CSF, were segmented as the output of the network. The 

optimizer used in the CNN was the ‘Adam(lr=1e-4)’ [45], and the loss was 'binary_crossentropy' [46]. We used 

model checkpoint, early stopping to avoid overfitting. We adopted 3-Fold validation [47]. The model is trained 

with 2D slices input and Gaussian Mixture Model (GMM) as an additional input. The output is 3 tissues 

segmentation ground truth. Because the developed implementation is an enhancement of the UNET method, we 

compared it against the original one. The brain tissue segmentation is presented in Table 1 and Figure 7. The main 

advantage of our proposed method is the use of the relationship probability of each pixel computed taken into 

account all slices include in the 3D MRI scan under study. However, these features do not lead to better results in 

all cases, particularly when the structures to be segmented are very small or when there are not enough data for 

training such was the case of the CSF tissue segmentation in the AD-86 dataset group (Table 1).  
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Fig. 7. An example of the segmentation results obtained by the proposed method. From the left to right are the 

results of UNET, of the proposed method, and the corresponding ground truth. The main visible difference is on 

the border of the tissues inside the red rectangle. 

 
Table 1. Results of the proposed segmentation method and the ones obtained using the traditional UNET 

method in terms of DSC. 

Dataset 

groups 

Method WM GM CSF Average 

AD-86 UNET 0.96 0.94 0.95 0.95 

Proposed method 0.97 0.95 0.95 0.96 

AD-126 UNET 0.95 0.94 0.95 0.95 

Proposed method 0.96 0.95 0.96 0.96 

 

3.2 Classification Result 

We evaluated the proposed classification approach based on EER accuracy [16,48]. EER is calculated 

by choosing a threshold so that the false positives rate is equal to the false-negative rate and calculating the 

classification accuracy with the chosen threshold. We evaluate the method with 10-fold cross-validation [47]. 

In the classification, all slices that contained the brain tissues WM, GM, and CSF previously segmented 

were used for disease prediction. We implemented the proposed classification method using a typical CNN with 

28 layers, including Convolution, Max-pooling, and Full Connected before using softmax activation for 

classification. are used to avoid overfitting. The slices which contain no brain tissues were not used. XGBoost 

was used with the parameters, i.e. objective': 'binary:logistic', "max_depth": 6, "eta": 0.3, “seed”:1, number of 

three: 1000. The feature importance is the counting number of times that feature was used in all trees. The SVM 

classifier was used with the default parameters. In the CNN model, the input is 3 tissues of each slice (we get the 

feature from the segmentation step) and the output is AD or NC (0 or 1). The accuracies from our proposed 

classification method and the ones obtained by related methods for the two groups of 3D brain MRI scans, AD-

86, and AD-126, are presented in Table 2. 
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Table 2. Classification accuracies were obtained by the proposed method and by common methods for AD 

classification in 3D brain MRI scans in terms of ACC. 

Methods AD-86 AD-126 

Segmentation Classification   

U-Net+GMM CNN + XGBoost + SVM 88% 80% 

U-Net CNN + XGBoost + SVM 88% 79% 

 CNN + XGBoost 89% 76% 

 CNN + SVM 83% 81% 

State of art [49] methods: 

- Toews et al. 

- Daliri 

- Chen et al. 

- Wang et al. 

- Tao Li et al. 

 

80% 

86% 

83% 

80% 

88% 

 

76% 

78% 

71% 

79% 

78% 

 

When using only U-Net+GMM for segmentation and using CNN+XGBoost or CNN+SVM for 

classification, the final result is not better. However, when using U-Net+GMM for segmentation and using CNN+ 

XGBoost+SVM for classification, the accuracy is better. Although the U-Net+GMM segmentation result is better 

than U-Net 1%, there are many slices that play important roles in disease classification. XGboost evaluate the 

importance score of each slice and get the feature of important slices. After that, SVM is used to classify these 

slices. Therefore, if having more data and the images are complex, the improvement of segmentation is necessary 

before the disease classification when using the combination of classifiers. 

According to the classification findings (Table 2), the XGBoost based approach achieved good results 

because its decision is based on several decision trees. However, in some cases, SVM with a suitable kernel can 

obtain better results, here the Radial Basis Function (RBF) kernel gave a better result than XGBoost as to the AD-

126 dataset group. With our approach, we combine two classifiers, the classification accuracies obtained on the 

two dataset groups may not be the highest ones, but the obtained results are more robust for the two groups than 

the ones obtained by the related methods. This higher classification robustness is possible because, with the 

combination of the two classifiers, the limitations of each one are overcome. On the other hand, the AD-126 

dataset group contains brain 3D MRI scans of older patients that are very difficult to classify: many images of old 

AD patients are complex to analyze because of the anatomical changes due to normal aging additionally to the 

anatomical abnormalities due to the disease. Therefore, the classification accuracy obtained for the AD-126 group 

was lower than for the AD-86 group. From the classification results presented in Table 2, one can confirm that 

the proposed classification method has a very promising performance. 

 

4. Conclusion 

In this article, a feature from the GMM method is used as an additional feature for the CNN model to 

segment the brain tissues, and then, the other CNN model is used to extract the features for classification. XGBoost 

is used as a feature selection for SVM to enhance the classification accuracy achieved. The proposed method was 
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evaluated using the public OASIS image dataset and show high accuracy. With deep learning, the diagnosis gives 

better results if the training dataset is enlarged or data augmentation is used in a suitable way.  

The method should be improved by segmenting more brain tissues in the future such as the hippocampus. 

With more tissue segmentation, more features can lead to high classification accuracy. We can concentrate on the 

algorithm inside the model such as reducing loss information in down-sampling to enhance the architecture of the 

CNN model. 
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