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Statistical analysis of complex survival data: new contributions in statistical

inference, software development and biomedical applications

by Gustavo SOUTINHO

Multi-state models are a useful way of describing complex processes in which the in-

dividual moves through a number of finite states in continuous time. Since simulation

studies play an important role in the evaluation of the performance of a variety of sta-

tistical methods, in this dissertation, we present a collection of practical algorithms for

simulating multivariate data from a wide class of copulas and survival data in a variety

of scenarios of multi-state models.

One other major goal in clinical applications is the estimation of transition probabil-

ities because they allow to long term predictions of the disease progression of a patient.

These quantities are usually estimated by the Aalen-Johansen estimator, which assumes

the process to be Markovian. The consistency of this estimator is not guaranteed when the

process is non-Markovian leading in these cases to biased estimators. To tackle this, we

also review the most important nonparametric methods for the estimation of transition

probabilities and introduce a new proposal for these quantities in multi-state settings that

are not necessarily Markovian, in a form of counting process.

Recently, alternative estimators were introduced in the literature based on subsam-

pling (also known as landmarking) that are consistent regardless the Markov assump-

tion. The computation of their estimators is performed in small sample sizes providing

large standard errors in some cases. To avoid this issue, we propose estimators based on

presmoothing which are obtained by replacing the censoring indicator variables in the

classical definitions by values of regression estimator.
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We also introduce feasible estimation methods for the transition probabilities condi-

tionally on covariates observed with repeated measures. To this regard, we use the land-

mark methodology and existing methods for joint modeling of longitudinal and survival

data. This way, we can take into account the effect of the longitudinal marker and not

only a single value of the covariates as occurs using the standard Breslow’s method.

Once the checking of the Markovian assumption is a relevant issue for the inference

in multi-state models, we also present new tests based on measuring the discrepancy of

the Aalen-Johansen estimator and recent approaches that do not rely on this assumption,

and compared them with the other existing approaches in the literature.

The validity and behavior of the proposed methods were evaluated through simu-

lation studies and illustrated using data sets as examples of application. We have also

developed several R packages covering all the methods described in this dissertation, as

well as an interactive web application to be used by any user to perform a dynamic anal-

ysis independently of their knowledge of informatics.
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Análise estatı́stica de dados de sobrevivência complexos: novos contributos em

inferência estatı́stica, desenvolvimento de software e aplicações biomédicas

por Gustavo SOUTINHO

Os modelos multiestado são uma forma útil de descrever processos complexos nos

quais os indivı́duos se podem mover entre um número finito de estados ao longo do

tempo. Uma vez que os estudos de simulação desempenham um importante papel na

avaliação da qualidade de uma variedade de métodos estatı́sticos, nesta dissertação apre-

sentamos um conjunto de algoritmos para a realização de simulações, a partir de uma

vasta classe de cópulas e de dados multivariados e de sobrevivência.

Ao nı́vel das aplicações clı́nicas, no que se refere a modelos multiestado, a estimação

de probabilidades de transição reveste-se da maior importância. uma vez que as mes-

mas possibilitam previsões a longo prazo da progressão das doenças. Estas quantidades

são habitualmente estimadas através do estimador de Aalen-Johansen que assume que

o processo é Markoviano. No entanto, a consistência deste estimador não é garantida

para casos em que processo é não-Markoviano o que origina um natural enviesamento

das estimativas. Nesse sentido, ao longo da tese, procedemos a uma revisão dos mais

importantes métodos não-paramétricos para a estimação de probabilidades de transição

e introduzimos uma nova proposta de estimação, em modelos multiestado não necessa-

riamente Markovianos, obtida através de processos de contagem.

Recentemente, surgiram na literatura estimadores alternativos para probabilidades de

transição baseamos em amostras (também designados por landmarking) que são consisten-

tes mesmo em situações em que não se verifica o prossuposto de Markov. Uma vez que em

muitas situações as estimativas são obtidas a partir de amostras de pequenas dimensões

este facto implica erros-padrão grandes. De forma a evitar esta situação, nesta dissertação
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propomos estimadores baseados em pressuavização, os quais são obtidos substituindo a

variável indicadora nos estimadores clássicos por valores obtidos através de regressão.

Em termos das probabilidades de transição, é, igualmente, proposto um método de

estimação condicional a covariáveis representando medidas repetidas. Nesse sentido, é

utilizada a abordagem landmark e a adaptação da modelação conjunta de dados longi-

tudinais e de sobrevivência. Deste modo, é possı́vel ter em consideração no processo de

estimação o efeito de marcadores longitudinais e não apenas um único valor como ocorre

através do habitual método de Breslow.

Considerando a importância do pressuposto de Markov para a inferência em modelos

multiestado, nesta dissertação são apresentados novos testes, baseados na quantificação

das discrepâncias entre as estimativas obtidas usando o estimador de Aalen-Johansen e

as recentes abordagens que não se sustentam na Markovianidade do processo.

A validade e o comportamento dos métodos propostos foram avaliados através de es-

tudos de simulação, bem como exemplificados a partir de bases de dados. Foram, igual-

mente, elaboradas diversas bibliotecas usando a linguagem R, que abordam os métodos

descritos nesta dissertação, assim como uma aplicação web que permite que qualquer uti-

lizador, independentemente dos seus conhecimentos informáticos, realizar uma análise

interativa de dados envolvendo a sobrevivência e modelos multiestado.



Keywords

Kaplan-Meier, Multi-state model, Nonparametric estimation, Presmoothing, ROC curves,

Survival Analysis.





Contents

Acknowledgements iii

scientific vii

Abstract xi

Resumo xiii

Contents xvii

List of Figures xxi

List of Tables xxvii

Glossary xxix

1 Introduction 1
1.1 General concepts in survival analysis . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Multi-state models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Main goals in Multi-state models and the Markov condition . . . . . . . . . 6
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Main objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Some of the most common copulas for simulating complex survival
data 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Most common bivariate copulas: Definitions and properties of copulas . . . 13
2.3 Copulas and random number generation . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Conditional distribution algorithm . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Bivariate distribution algorithm . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Laplace transform algorithm . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Survival data and random number generation . . . . . . . . . . . . . 21

2.4 Software developement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xvii



3 Estimation of the Transition Probabilities in Multi-state Survival Data: New De-
velopments and Practical Recommendations 27
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Transition probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Nonparametric estimation of the transition probabilities . . . . . . . . . . . 31

3.3.1 Aalen-Johansen estimator . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Kaplan-Meier weighted estimators (LIDA) . . . . . . . . . . . . . . . 33
3.3.3 Landmark Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.4 Weighted Cumulative Hazard Estimators . . . . . . . . . . . . . . . . 36

3.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Example of application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 A comparison of Presmoothing methods in the estimation of transition proba-
bilities 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Presmoothing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Real data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Software development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Joint models of longitudinal and multistate survival data: estimation of the con-
ditional transition probabilities 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Joint model specification . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Application to a data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Goodness-of-fit test statistics for the Markov condition 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Tests for the markov assumption . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Colon cancer study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.2 Breast cancer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.3 Liver cirrhosis data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 survidm: An R package for Inference and Prediction in an Illness-Death Model 115
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 Methodology background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3 survidm in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.1 Regression models for transitions intensities . . . . . . . . . . . . . . 120
7.3.2 The Markov assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3.3 Occupation probabilities and transition probabilities . . . . . . . . . 127



7.3.4 Cumulative Incidence Function . . . . . . . . . . . . . . . . . . . . . . 134
7.3.5 Sojourn distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8 MSM.app: a Web-Based Tool for the Analysis of Multi-state Survival Data 139
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2 About Shiny applications architecture . . . . . . . . . . . . . . . . . . . . . . 142
8.3 The MSM.app web application in practice . . . . . . . . . . . . . . . . . . . . 143

8.3.1 About the Introduction web page . . . . . . . . . . . . . . . . . . . . 143
8.3.2 The input file page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.3 Survival analysis pages . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.3.3.1 Kaplan-Meier estimator . . . . . . . . . . . . . . . . . . . . . 147
8.3.3.2 Compare survival curves . . . . . . . . . . . . . . . . . . . . 148
8.3.3.3 Cox PH models . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.3.3.4 Parametric models . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3.4 IDM-Analysis pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.3.4.1 Number of events . . . . . . . . . . . . . . . . . . . . . . . . 150
8.3.4.2 Regression models . . . . . . . . . . . . . . . . . . . . . . . . 150
8.3.4.3 Transition probabilities . . . . . . . . . . . . . . . . . . . . . 151
8.3.4.4 Cumulative Incidence Function (CIF) . . . . . . . . . . . . . 154

8.3.5 MSM-Analysis pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.3.5.1 Number of events . . . . . . . . . . . . . . . . . . . . . . . . 156
8.3.5.2 Regression models . . . . . . . . . . . . . . . . . . . . . . . . 156
8.3.5.3 Transition probabilities . . . . . . . . . . . . . . . . . . . . . 158

8.3.6 Tests for the Markov condition pages . . . . . . . . . . . . . . . . . . 159
8.3.6.1 Local tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3.6.2 Global tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9 Conclusions and future research 165

A Supplementary material 171
A.1 survCopula: a R package for multivariate Dependence Modeling with Cop-

ulas for survival data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.2 presmTP: a R package for obtaining unsmoothed and presmoothed esti-

mates of the transition probabilities in the illness-death model . . . . . . . . 177
A.3 markovMSM: a R package for testing Markovianity . . . . . . . . . . . . . . 180

A.3.1 Data manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.3.2 Methods for testing the Markov condition in the illness-death model 183
A.3.3 Extending the Tests for Markov assumption to more complex multi-

state models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B Other submitted papers 195

Bibliography 201





List of Figures

1.1 Illness-death model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Copulas and Random Number Generation . . . . . . . . . . . . . . . . . . . 13
2.2 Simulated samples from copulas (cut at a level of 7). . . . . . . . . . . . . . . 15
2.3 Schematic representation of some common multi-state models. Mortality

model for survival analysis (top); recurrent events model (second row);
competing risks model (third row) and progressive illness-death model
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Boxplots of the M = 1000 estimates of the transition probabilities of the p̂AJ12 ,
p̂LIDA12 , p̂cLIDA12 and p̂WCH12 with two different samples sizes for semi-Markovian
scenario. Censoring times were generated from an uniform distribution on
[0, 30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Boxplots of the M = 1000 estimates of the transition probabilities of the p̂AJ22 ,
p̂LIDA22 , p̂cLIDA22 , p̂LM22 and p̂WCH22 with two different samples sizes for Markovian
scenario. Censoring times were generated from an uniform distribution on
[0, 30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Boxplots of the M = 1000 estimates of the transition probabilities of the
p̂AJ22 , p̂LIDA22 , p̂cLIDA22 , p̂LM22 and p̂WCH22 with two different samples sizes for semi-
Markovian scenario. Censoring times were generated from an uniform dis-
tribution on [0, 30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Boxplots of the M = 1000 estimates of the transition probabilities of the
p̂AJ22 , p̂LIDA22 , p̂cLIDA22 , p̂LM22 and p̂WCH22 with two different samples sizes for non-
Markovian scenario. Censoring times were generated from an uniform dis-
tribution on [0, 30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Local graphical test for the Markov condition, for s = 365 (top), s = 730
(middle) and s = 1095 (bottom). Test based on the discrepancy between
the Aalen-Johansen estimator (Markovian) and the Markov-free estimator
(LM). Colon cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Estimated transition probabilities for p12(s, t) and p22(s, t), s = 365 (top),
s = 730 (middle) and s = 1095 (bottom). Colon cancer data. . . . . . . . . . 53

4.1 Theoretical characteristics of the binary regression functions p0n(t) (letf)
and p1n(t) (right) for censoring times uniformly distributed between 0 and 4. 60

4.2 Boxplots of the M = 1000 estimates of the transition probabilities. Horizon-
tal solid red line correspond to the true value of the transition probability.
Censoring times uniformly distributed between 0 and 3. . . . . . . . . . . . 65

xxi



4.3 Boxplots of the M = 1000 estimates of the transition probabilities. Horizon-
tal solid red line correspond to the true value of the transition probability.
Censoring times uniformly distributed between 0 and 4. . . . . . . . . . . . 66

4.4 Number of individuals observed in State 0 and State 1 along time. PROVA
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Estimated transition probabilities for s = 90 and s = 365. PROVA data. . . . 70
4.6 p-values for the Hosmer and Lemeshow test for logistic regression model

for all possible landmarking times. PROVA data. . . . . . . . . . . . . . . . . 71

5.1 Spaghetti plot for marker values for the subsets S0 and S1 (first line) and
the marker progression of selected individuals belong to the same S0 and
S1 subsets (second line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Spaghetti plot for transition probabilities p̂i
00(8, t | Yi), for all individuals

belong to the subset S0, using the proposed JMLM estimator (First row, left
column) and the BRES estimator (First row, right column). Transition prob-
abilities p̂i

00(8, t | Yi) using the JMLM estimator (Second row, left column)
and the BRES estimator (Second row, right column) for selected individuals
belong to the subset S0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Spaghetti plot for transition probabilities p̂i
11(8, t | Yi), for all individuals

belong to the subset S1, using the proposed JMLM estimator (First row, left
column) and the BRES estimator (First row, right column). Transition prob-
abilities p̂i

11(8, t | Yi) using the JMLM estimator (Second row, left column)
and the BRES estimator (Second row, right column) for selected individuals
belong to the subset S1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Rejection probabilities for testing the null hypothesis of the Markov con-
dition for the three tests for nominal level 5%. Markov, semi-Markov and
non-Markov scenarios (upper, middle, and lower panels, respectively), for
n = 250 and n = 500 (left and right panels, respectively). Results for the
transition probability p̂23(s, t). Censoring times uniformly distributed be-
tween 0 and 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Rejection probabilities for testing the null hypothesis of the non-Markov
condition for the three tests for nominal level 5%. Non-Markovian scenario,
hazard with a quadratic predictor. Results based on different censoring
percentages (C ∼ U[0, 8.1] - upper, C ∼ U[0, 4.6] - bottom), for n = 250
and n = 500 (left and right panels, respectively). Results for the transition
probability p̂23(s, t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Estimates of the transition probabilities for the Aalen-Johansen (AJ) and
Markov-free estimators (landmark and landmark Aalen-Johansen), for s
equal to 1, 2, 3 and 4 years since entry in study. Colon cancer data. . . . . . 106

6.4 Graphical test for the Markov condition, s = 365 (First row). Transition
probabilities of p̂23(s = 365, t) from the landmark Aalen-Johansen estima-
tor with 95% pointwise confidence limits (black lines) and Aalen-Johansen
estimator (red line) (Second row). Colon cancer study. . . . . . . . . . . . . . 107

6.5 Local graphical test for the Markov condition, for s equal to 1, 2, 3 and
4 years since entry in study. Test based on the discrepancy between the
Aalen-Johansen estimator (Markovian) and the Markov-free estimator (LM).
Colon cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



6.6 Estimates of the transition probabilities for the Aalen-Johansen (AJ) and
Markov-free estimators (landmark and landmark Aalen-Johansen), for s
equal to 1, 2, 3 and 4 years since entry in study. Breast cancer data. . . . . . 109

6.7 Local graphical test for the Markov condition, for s equal to 1, 2, 3 and
4 years since entry in study. Test based on the discrepancy between the
Aalen-Johansen estimator (Markovian) and the Markov-free estimator (LM).
Breast cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.8 The reversible illness-death model for patients with liver cirrhosis. . . . . . 111
6.9 Estimates of the transition probabilities for the Aalen-Johansen (AJ) and

Markov-free estimators (landmark Aalen-Johansen), for some s equal to
180, 365, 730 and 1095 days since entry in study. Liver cirrhosis data. . . . . 111

6.10 Local graphical test for the Markov condition, for s equal to 180, 365, 730
and 1095 days since entry in study since entry in study. Test based on the
discrepancy between the Aalen-Johansen estimator (Markovian) and the
Markov-free estimator (LMAJ). Liver cirrhosis data. . . . . . . . . . . . . . . . 112

7.1 Predicted values of the smooth log hazard based on penalized splines (black
line) with pointwise 95% confidence intervals obtained from the partial
residuals for nodes (recurrence intensity), using the colon cancer data. . . . 126

7.2 Transition probability estimates using the AJ (left hand side) and LM (right
hand side) method, using the colon cancer data. . . . . . . . . . . . . . . . . 130

7.3 Graphical test for the Markov condition, s = 365. The second row shows
the landmark (Markov-free) estimator with 95% pointwise confidence lim-
its (black lines) and Aalen-Johansen estimator (red line) for the transition
probability p12(365, t), using the colon cancer data. . . . . . . . . . . . . . . . 131

7.4 Conditional transition probabilities given that the subject is alive and disease-
free at s = 365 days for a 48-years-old patient, using the colon cancer data. . 132

7.5 Cumulative incidence function in the recurrence state with 95% bootstrap
confidence bands, using the colon cancer data. . . . . . . . . . . . . . . . . . 135

7.6 Conditional cumulative incidence function for the colon cancer data for
nodes = 1 and nodes = 9, using the colon cancer data. . . . . . . . . . . . . 137

8.1 Introduction web page: Through four check boxes, the user can see a brief
description of the mathematical background underlying MSM.app. The main
goals of the web application are also included. . . . . . . . . . . . . . . . . . 144

8.2 The input file page with the data table with some results for the aml data
set and three radio buttons for each type of model. . . . . . . . . . . . . . . . 144

8.3 The event time and status variables for the survival analysis from the aml
data set (left); indication of the two event times and their corresponding
status for the illness-death model given by the colonIDM data (center); and
a description of the MSM model through the number and the state names,
the transition schema, and the event times and corresponding status for the
ebmt4 data (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.4 Input file page: A partial view of the web form to select the index of vari-
ables to change the classes or delete them from the data set (left). Structure
of the variables for the ebmt4 data set (Right). . . . . . . . . . . . . . . . . . . 146

8.5 Three examples of data set representing each of type of analysis. . . . . . . . 146
8.6 Output with the tabPanels shiny elements for the pages to obtain the sur-

vival analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



8.7 The output of the survival estimation for the categorical covariate “x” of
the aml data set using the Kaplan-Meier estimator. Survival curves for each
group with confidence intervals are also shown at the bottom. . . . . . . . . 147

8.8 The output of the Log-rank test for the categorical covariate “x” of the aml
data set for testing the null hypothesis of no difference in survival between
the two groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.9 Results of the Cox model for the variable “x” of the aml data set. . . . . . . . 149
8.10 The outputs of the parametric models page with the results of the fitted

model for the categorical variable “x” of the aml data set using the expo-
nential distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.11 TabPanels shiny elements for the pages to obtain the illness-death model
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.12 The number of transitions among the three states of the colonIDM data set. . 150
8.13 Results of the application of the Cox PH model with the following covari-

ates: rx, sex, age, obstruct and perfor. Results for each of the three transition
intensities of the colonIDM. A Markovian process is assumed. . . . . . . . . 151

8.14 ANOVA results for transitions 0 −→ 1 and 0 −→ 2 with the following
covariates: rx, sex, age, obstruct and perfor of the colonIDM. A Markovian
process is assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.15 The proportional hazards assumption was tested for the transitions 0 → 1
and 0 → 2 with the following covariates: rx, sex, age, obstruct and perfor of
the colonIDM. A Markovian process is assumed. . . . . . . . . . . . . . . . . 152

8.16 Results of the estimates of the transition probabilities and the correspond-
ing confidence intervals for s = 365 and times 730, 1090, 1460, and 1825 days
for the colonIDM data set using the landmark estimators. . . . . . . . . . . . 153

8.17 Transition probability estimates with confidence intervals for each transi-
tion for s = 365 using the landmark estimators. . . . . . . . . . . . . . . . . . 154

8.18 Results of the estimates of the transition probabilities and the correspond-
ing confidence intervals for s = 365 and times 730, 1090, 1460, and 1825 days
for the colonIDM data set using the IPCW estimator. . . . . . . . . . . . . . . . 155

8.19 Results of the estimates of the transition probabilities and the correspond-
ing confidence intervals for s = 365 and times 730, 1090, 1460, and 1825 days
for the colonIDM data set using the Breslow estimator. . . . . . . . . . . . . . 156

8.20 Cumulative recurrence incidence with 95% bootstrap confidence intervals.
Data from a colon cancer study. . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.21 TabPanels shiny elements that were used for the pages to obtain the multi-
state models (MSM) analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.22 The number of transitions among the states of the ebmt4 data set. . . . . . . 158
8.23 The output of the Cox regression model for the transition 1 → 2 that in-

clude the ‘year”, “age” and “proph” covariates. ebmt4 data set. . . . . . . . . 158
8.24 Estimates of all possible transition probabilities from the state 1 to 5, for s

= 365 and times equal to 730, 1095, 1460, and 1825 using the AJ estimators.
ebmt4 data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.25 TabPanels shiny elements for the local and global tests pages for the tests for
the Markov condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.26 Results of the local test for the illness-death model using the colon cancer
data set, for s = 365, 730, 1095, 1460, and 1825 days, using the AUC test, from
state 1 to state 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



8.27 Results for this global test given by the Cox PH model to our data indicated
that the effect of the time spent in State 1 is not significant (p-value of 0.154),
revealing no evidence against the Markov model for the colon data set. . . . 162

8.28 Outputs of the global test for the illness-death model based on the ebmt data
set using the AUC test, from state 1 to state 5. Results for the AUC local test
are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.1 Transition probabilities estimates using unsmoothed estimator for the tran-
sitions 0→1, 0→1 and 0→2. Colon cancer data. . . . . . . . . . . . . . . . . . 179

A.2 Estimates of the transition probabilities for the Aalen-Johansen (AJ) and
Markov-free estimators (landmark and landmark Aalen-Johansen) for s =
180. Colon cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.3 Local graphical test for the Markov condition, for s = 180. Test based on
the discrepancy between the Aalen-Johansen estimator (Markovian) and
the Markov-free estimator (LM). Colon cancer data. . . . . . . . . . . . . . . . 185

A.4 Local graphical test for the Markov condition, for s equal to 173 (2nd per-
centil sojourn time in State 0. Colon cancer data. . . . . . . . . . . . . . . . . 187

A.5 A six-states model for leukemia patients after bone marrow transplantation. 189
A.6 The reversible illness-death model for patients with liver cirrhosis. . . . . . 190





List of Tables

2.1 Generators and their inverses for one-parameter Archimedean copulas. . . 14
2.2 Copulas and their measures of dependence. Dk(x) = k

xk

∫ x
0

tk

et−1 dt denotes

the “Debye” function; a∗ = 12(1+θ)dilog(1−θ)−24(1−θ) ln(1−θ)
θ2 − 3(θ+12)

θ ; dilog(x) =∫ x
1

ln t
1−t dt; EJ(θ) =

∫ 1
0

(1−tθ) ln(1−tθ)
tθ−1 dt. . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Bias and standard deviation (SD) for the three estimators of p13(s, t). Markov
scenario with two sample sizes and two censoring levels. . . . . . . . . . . . 41

3.2 Bias and standard deviation (SD) for the three estimators of p13(s, t). Semi-
Markov scenario with two sample sizes and two censoring levels. . . . . . . 42

3.3 Bias and standard deviation (SD) for the three estimators of p13(s, t). Non-
Markov scenario with three sample sizes and two censoring levels. . . . . . 42

3.4 Bias and standard deviation (SD) for the five estimators of p22(s, t). Markov
scenario with two sample sizes and two censoring levels. . . . . . . . . . . . 44

3.5 Bias and standard deviation (SD) for the five estimators of p22(s, t). Semi-
Markov scenario with two sample sizes and two censoring levels. . . . . . . 45

3.6 Bias and standard deviation (SD) for the five estimators of p22(s, t). Non-
Markov scenario with three sample sizes and two censoring levels. . . . . . 45

4.1 Bias and standard deviation (SD) for estimators of pij(s, t). The relative
MSEs are also given. Scenario 1: illness-death model with correlated expo-
nential gap times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Bias and standard deviation (SD) for estimators of pij(s, t). The relative
MSEs are also given. Scenario 2: progressive three-state model. . . . . . . . 64

6.1 Rejection proportions for nominal level of 5% of the local tests for fixed
values s = 1, s = 2, s = 4, s = 6 and s = 8 (AUC(s) and LR(s)). Rejection
proportions for the global tests (AUC and Cox) are also included. Censor-
ing times uniformly distributed between 0 and 30, and between 0 and 60.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Rejection proportions for nominal level of 5% of the local tests for fixed

values s = 0.2, s = 0.6, s = 1, s = 1.2, s = 1.4 and s = 1.6 (AUC(s) and
LR(s)). Rejection proportions for the global tests (AUC and Cox) are also
included. Non-Markovian scenario, hazard with a quadratic predictor. . . . 98

6.3 Probability values of the local test for several fixed values of s (measured
in days). Rejection proportions for the global tests also included. Colon
cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Probability values of the local test for s = 365 days by treatment for AUC
local test. Rejection proportions for the test based on the Cox model also
included. Colon cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xxvii



6.5 Probability values of the local test for several fixed values of s (measured
in days). Rejection proportions for the global tests also included. Breast
cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Probability values of the local test for several fixed values of s (measured
in days). Rejection proportions for the global tests also included. Liver
cirrhosis data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Summary of functions in the survidm package. . . . . . . . . . . . . . . . . . 119

A.1 Summary of the arguments of the function dgCopula. . . . . . . . . . . . . . 172
A.2 Summary of the arguments of the function copula. . . . . . . . . . . . . . . 173
A.3 Summary of the arguments of the function rcopula. . . . . . . . . . . . . . . 175
A.4 Summary of the arguments of the function invF. . . . . . . . . . . . . . . . . 176
A.5 Summary of the arguments of the function presmTP. . . . . . . . . . . . . . . 177
A.6 Summary of the arguments of the function summary.pstp. . . . . . . . . . . 177
A.7 Summary of the arguments of the function plot.pstp. . . . . . . . . . . . . 178
A.8 Summary of functions in the markovMSM package. . . . . . . . . . . . . . . . 180
A.9 Summary of the arguments of the function PHM.test. . . . . . . . . . . . . . 183
A.10 Summary of the arguments of function AUC.test. . . . . . . . . . . . . . . . 193
A.11 Summary of the arguments of the function LR.test. . . . . . . . . . . . . . . 194



Glossary

AFT Accelerated Failure Time Model

AIC Akaike Information Criterion

AIDS Acquired Immune Deficiency Syndrome

AJ Aalen-Johansen

AMH Ali, M.M., Mikhail and Haq

ANOVA Analysis of Variance

APP Aplication

AUC Area Under the Curve

BRES Breslow

CD4 Cluster of differentiation 4

CIF Cumulative Incidence Function

COPD Chronic Obstructive Pulmonary Disease

CPHM Cox Proportional Hazards Model

CRAN The Comprehensive R Archive Network

CSS Cascading Style Sheets

EBMT European Group for Blood and Marrow Transplantation

EM Expectation-Maximization

FGM Farlie-Gumbel-Morgenstern

GAM Generalized Additive Logistic

GPL-2 General Public License Version 2.0

GT Global Test

xxix



HIV Human Immunodeficiency Virus

HTML Hypertext Markup Language

IDM Illness-death model

IPCW Inverse Probability of Censoring Weighting

JM Joint Modeling / Joint Model

JMLM Joint Modeling Landmark

KM Kaplan-Meier

KMW Kaplan-Meier Weights

LIDA Lifetime Data Analysis

LM Landmarking / Landmark Model

LMAJ Landmark Aalen-Johansen

LR Log-rank

LT Laplace Transform

LT Local Test

MLE Maximum Likelihood Estimation

MSE Mean Square Error

MSM Multistate model

NP Nonparametric Presmoothing

PAJ Presmoothed Aalen-Johansen

PDF Portable Document Format

PH Proportional Hazard

PLM or PrLM Presmoothed Aalen-Johansen

PLMAJ Presmoothed Landmark Aalen-Johansen

PrKM Presmoothed Kaplan-Meier

PSA Prostate Specific Antigen

R R Language

ROC Receiver Operating Characteristic



SD Standard Deviation

TCP Transmission Control Protocol

TP Transition Probability

UI User Interface

WCH Weighted Cumulative Hazard





Chapter 1

Introduction

1.1 General concepts in survival analysis

Survival analysis can be seen as a set of statistical procedures for data analysis for which

the outcome variable of interest is time until an event occurs. Such events are generally

referred to as ‘failures’ that can be time until an electrical component fails, time to learning

a professional skill, or promotion times for employees. In biomedical applications, some

examples of events may be time to death or time to first recurrence of a tumor after an

initial treatment. Among the wide existing literature concerning survival analysis, the

contents of this section are mainly based on the books of Hougaard (2000) [1]; Klein and

Moeschberger (1997) [2]; Tableman and Kim (2003) [3]; Kleinbaum and Klein (2012) [4];

and Hosmer, Lemeshow and May (2008) [5].

In a survival analysis, we usually refer to time variable as lifetime or survival time (T)

which denote a non-negative random continuous variable that represents the lifetimes

of individuals from a homogeneous population. The cumulative distribution function

(c.d.f.) for the survival time is given by

F(t) = P(T ≤ t) =
∫ t

0
f (x) dx (1.1)

where f (·) represents the probability density function (p.d.f.).

The probability of an individual survives to time t is given by the survivor function

S(t) = P(T ≥ t) = 1− F(t) =
∫ ∞

t
f (x) dx, (1.2)

being S(t) a monotone non-increasing function with S(0) = 1 and S(∞) = limt→∞ S(t) =

0.
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Conversely, we can express the p.d.f. as

f (t) = lim
4t→0+

P(t ≤ T < t +4t)
4t

=
dF(t)

dt
= −dS(t)

dt
(1.3)

The hazard function (λ(t)) gives the instantaneous rate of occurrence of the event or

failure at T = t, given that the individual has survived up to time t. This can be defined

as

λ(t) = lim
4t→0+

P(t ≤ T < t +4t | T ≥ t)
4t

=
f (t)
S(t)

= −dS(t)/dt
S(t)

= −
d log

(
S(t)

)
dt

(1.4)

Accordingly, the cumulative hazard or cumulative risk is defined by

Λ(t) =
∫ t

0
λ(x) dx = − log

(
S(t)

)
(1.5)

Thus, survival and hazard functions provide an alternative but equivalent characteri-

zations of the distribution of T. From (1.5), survival function can also be given by

S(t) = exp
(
−Λ(t)

)
= exp

(
−
∫ t

0
λ(x) dx

)
(1.6)

Taking into account the dynamic nature of survival data, in practice, time to an event

cannot be observed due to a deliberate design or random censoring. In particular, right

censoring occurs if the event of interest has not been observed when the data was evalu-

ated. Some reasons for that may be a loss of follow-up, drop out or termination of study.

Other types of censoring are left-censoring or interval-censoring. This happens, re-

spectively, when the event of interest has already occured when observation of the indi-

vidual begins (i.e., the time-to-event is lower than a given value) or that the lifetime is

known only to lie within an interval instead of being observed exactly.

The concept of truncation is the major importance in survival analysis. This is a pro-

cedure in which another condition beyond the main event of interest is used to select

patients. In case of left-truncation, only individuals with lifetime higher than truncation

condition are included in the sample. As an example of right-truncation, we can consider

the sampling scheme that only infected individuals who have developed AIDS prior to

the end of the study are included in the study. In this case the time-to-event is the waiting

in years from HIV infection to development of AIDS (Klein and Moeschberger (1997) [2]).
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So far, we have dealt with independent and identically distributed survival data but

without refering other possible factors that may have influence in the lifetime. In general,

this can be done fitting regression models over the hazard function. Among the models,

the Cox proportional hazard model (Cox (1972) [6]) is the most frequently used in the

literature. This can be defined as follows

λ(t, xi) = λ0(t) exp
( q

∑
j=1

β jxij

)
(1.7)

where λ0 is the baseline hazard function, β = (β1, · · · , βq)′ is the vector of unknown

coefficients and X = (x1, · · · , xq)′ is the vector of the covariates.

As we can see, the hazard function is given by the product of two functions. The

first one characterizes how the hazard function changes as a function of survival time,

while the second changes as a function of subjects covariates. Traditionally, λ0(t) remains

unspecified and the coefficients β are obtained through partial likelihood (Cox (1975) [7])

without specifying the baseline hazard function. It is also possible to consider parametric

models of the baseline hazard from standard survival distributions such as exponential,

weibull or gamma.

Part of the generalization of the Cox model, as a standard in biomedical applications,

is due to the easy interpretation of the ratio of two hazard functions. For instance, let us

consider a Cox model with only one covariate for two subjects with values x1 and x2. In

this case, the hazard ratio function is obtained cancelling out λ0(t) as follows

HR(t, x2, x1) =
λ(t, x2))

λ(t, x1)
=

λ0(t) exp(βx2)

λ0(t) exp(βx1)
= exp

(
β(x2 − x1)

)
(1.8)

If X is a dichotomous covariate, such gender, with value of x2 = 1 for males and x1 = 0

for females, the hazard ratio in (1.8) becomes HR(t, x2, x1) = exp(β). This means that

males die at twice the rate of females (exp(β) = 2), taking β = ln(2) (Hosmer, Lemeshow

and May (2008) [5]). In case of continuous covariates, two assumption are required to

use a Cox model: the effect of the covariates should not vary over time (in accordance of

the proportional hazard assumption that allows to simplify the expression (1.8)) and the

effect of covariates must have a linear functional shape (or log-linear). On the presence of

nonlinear effect, this may lead to the risk of a misspecified model with consequences in

terms of bias or a decreasing power of tests (Struthers and Kalbfleish (1986) [8]; Anderson

and Fleming (1995) [9]).
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The lack of flexibility of the Cox model specification has conducted over the last

decades to the development of a variety of nonparametric regression methods such as

additive hazard regression model (Martinussen and Scheike (2006) [10] and the Cox mod-

els with additive predictors (Hastie and Tibshirami (1990) [11]). Several presmoothed

approaches have been proposed to render the Cox models more flexible. Among them,

penalized splines (Eilers and Marx (1996) [12]) are more commonly used where the non-

parametric problem is replaced by a parametric equivalent, in which a vector of regression

coefficients is estimated under a smoothness penalty.

1.2 Multi-state models

Multi-state models (Andersen et al. (1993) [13], Hougaard (1999) [14], Meira-Machado et

al. (2009) [15], Meira-Machado and Sestelo (2019) [16]) are models for a time continuous

stochastic process, which at any time occupies one of a set of discrete states. These mod-

els provide a relevant modeling framework to deal with complex longitudinal survival

data in which individuals may experience more than one single event type. In such sur-

vival studies, besides overall survival, more than one endpoint can be observed making

the use of multi-state models preferable over traditional survival methods (e.g., the Cox

model and the Kaplan-Meier estimator of survival). The state structure of a multi-state

model identifies the states and the transitions allowed among states. This structure can

be represented schematically through diagrams with boxes representing the states and

arrows the possible transitions that can occur. The complexity of a multi-state model

greatly depends on the number of states defined and on the transitions allowed between

these states. The simplest form of a multi-state model is the mortality model which con-

sists of just two states (usually ‘alive’ and ‘dead’) and a single transition allowed between

them. This corresponds to the usual survival analysis situation. Splitting the ‘alive’ state

from the simple mortality model for survival data into two transient states, we therefore

obtain the simplest progressive three-state model. The competing risks model (Andersen

and Keiding (2002) [17]; Putter, Fiocco and Geskus (2007) [18]) can be seen as an extension

of the simple mortality model for survival data in which each individual may ‘die’ due to

any of several causes.

A well-known and more complex multi-state model is the illness-death model. This

model, also known as the disability model, can be used to study the incidence of the
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disease and the rate of death. Figure 1.1 shows the schematic diagram of transitions in-

volved in the model. In this irreversible version of the model, individuals may pass from

the initial state (‘health’), to the intermediate event or disease state and then to the ab-

sorbing state (‘dead’). Individuals are at risk of death in each transient state (States 1 and

2). Many time-to-event data sets from medical studies with multiple end points can be

reduced to this generic structure. There exists an extensive literature on multi-state mod-

els. Main contributions include books by Andersen et al. (1993) [13] and Hougaard (2000)

[1]. Recent reviews on this topic may be found in the papers by Putter, Fiocco and Geskus

(2007) [18], Meira-Machado et al. (2009) [15], and Meira-Machado and Sestelo (2019) [16].

Several other structures of multi-state models and corresponding biomedical examples of

application can be found in Hougaard (1999) [14] and Hougaard (2000) [1].

1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased

3. Dead
 

Figure 2: Illness-death model. 

 More examples of multi-state models can be found in books by Andersen et al. 

(1993) and Hougaard (2000), or in papers by Putter et al. (2007) and Andersen and 

Perme (2008).   

 Despite its potential, multi-state modeling is not used by practitioners as 

frequently as other survival analysis techniques. It is our belief that lack of knowledge 

of available software and non-implementation of the new methodologies in user-

friendly software are probably responsible for this neglect. One important contribution 

to this issue was given by the R/S-PLUS survival package. Thanks to this package, 

survival analysis is no longer limited to Kaplan-Meier curves and simple Cox models. 

Indeed, this package enables users to implement the methods introduced by Therneau 

and Grambsch (2000) for modeling multi-state survival data. In R (R Development Core 

Team 2008), multi-state regression can also be performed using the msm package 

(continuous-time Markov and hidden Markov multi-state models), the changeLOS 

package (Wrangler et al. 2006) implements the Aalen–Johansen estimator for general 

multi-state models, and the etm package has recently enabled the transition matrix to be 

computed, along with a covariance estimator.   

 This paper describes the R-based p3state.msm package's capabilities for 

analyzing survival data from an illness-death model. It extends existing semi-parametric 

regression capabilities included in many statistical software programs, such as R, S-

PLUS, SAS, etc. Moreover, p3state.msm enables several quantities of interest to be 

estimated, such as transition probabilities, bivariate distribution function, etc. In 

FIGURE 1.1: Illness-death model.

A wide range of biomedical situations have been modeled using multi-state meth-

ods, for example, HIV infection and AIDS (Gentleman et al. (1994) [19]), liver cirrhosis

(Andersen and Esbjerj and Sorensen (2000) [20]), breast cancer (Pérez-Ocón et al. (2001)

[21]; Putter, Fiocco and Geskus (2007) [18]) and problems following heart transplantation

(Meira-Machado et al. (2009) [15]). The states are usually based on clinical symptoms

(e.g., bleeding episodes), biological markers (CD4 T-lymphocyte cell counts, serum im-

munoglobulin levels), some scale of the disease (e.g., stages of cancer or HIV infection)

or a non-fatal complication in the course of the illness (e.g., heart transplantation, cancer

recurrence, etc.). In cancer studies, besides death other endpoints such as locoregional

recurrence and distant metastasis are often observed. They have also been used in other

areas of application including epidemiology, clinical trials, reliability studies in engineer-

ing, etc.
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1.3 Main goals in Multi-state models and the Markov condition

The multi-state process can be fully characterized through transition intensities or transi-

tion probabilities. The transition intensities are the instantaneous hazards for movement

from one state to another. These functions can be used to estimate the mean sojourn time

in a given state and to determine the number of individuals in different states at a certain

moment. Covariates may be incorporated in the models in order to explain differences

among individuals in the course of the illness. In fact, an important goal in multi-state

modeling is to study the relationships between the different predictors and the outcome.

To this regard, several models have been used in literature. A common simplifying strat-

egy is to decouple the whole process into various survival models by fitting separate

intensities to all permitted transitions using semiparametric Cox proportional hazard re-

gression models (Cox (1972) [6]), while making appropriate adjustments to the risk set.

To perform the inference of these quantities is essential to check the Markov assump-

tion, which states that the relevant information for the future evolution of the process is

provided by its current state, independently of the states previously visited and the tran-

sition times among them. Traditionally, the Markov condition is verified by modeling

particular transition intensities on aspects of the history of the process using a propor-

tional hazard model (Kay (1986) [22]). In the progressive illness-death model, the Markov

condition is only relevant for the transition from the intermediate state ‘disease’ (State

2) to ‘death’ (State 3). Under this model, we can examine whether the time spent in the

initial state (State 1) is important on the transition from the disease state to death or not.

Therefore, unlike the mortality or the competing risks models, the illness-death model is

not necessarily Markovian, since the prognosis for an individual in the intermediate state

may be influenced by the subject specific arrival time.

Taking into consideration the Markov condition, the most common models for the in-

ference of transition intensities are characterized through one of the two model assump-

tions that can be made about the dependence of the transition intensities and time: In

first case, they may be modeled using separated Cox models assuming the process to be

Markovian (also known as the clock forward modeling approach), which states that past

and future are independent given the present state. In second one, they are modeled using

a semi-Markov model in which the future of the process does not depend on the current

time but rather on the duration in the current state. Semi-Markov models are also called

’clock reset’ models because each time the patient enters a new state the time is reset to 0.
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Multi-state models are also very useful to obtain prediction probabilities of future

events such as the state occupation probabilities or the transition probabilities. These tran-

sition probabilities can be seen as a generalization of the occupation probabilities as far

they permit predictions of the clinical prognosis of a patient at a certain point in his/her

recovery or illness process. We are also interested to identify the effect of a covariate

(or a vector of covariates) for the transition probabilities among states. One standard

method, particularly well-suited to the setting with multiple covariates, is to consider

estimators based on a Cox’s regression model (Cox (1972) [6]) fitted marginally to each

transition, with the corresponding baseline hazard function estimated by the Breslow’s

method (Breslow (1972) [23]). One alternative and flexible nonparametric approach is to

consider local smoothing by means of kernel weights based on local constant (Nadaraya-

Watson) regression. Right censoring is handled by applying inverse probability of cen-

soring weighting. This is a fully nonparametric approach which provides flexible ef-

fects of the continuous covariates (Meira-Machado, de Uña-Álvarez and Datta (2015) [24],

Rodrı́guez-Álvarez, Meira-Machado and Abu-Assi (2016) [25], Meira-Machado and Ses-

telo (2019) [16]).

1.4 Organization of the thesis

1.4.1 Main objectives

This thesis has five main objectives: (i) to describe a set of algorithms for simulating data

from different classes of copulas and provide sampling algorithms to simulate multivari-

ate survival data in a variety of scenarios; (ii) to review the most important nonparamet-

ric methods for the estimation of transition probabilities and develop new methods for

estimating these quantities in illness-death models that are not necessarily Markovian;

(iii) to propose new estimators for transition probabilities that combine landmarking and

the joint modeling approach of longitudinal analysis with survival data sets to include

repeated measures as covariates; (iv) to introduce new methods for testing the Markov

condition in multi-state models involving ‘global’ and ‘local’ tests that are based on mea-

suring the discrepancy between the Aalen-Johansen estimator (consistent in Markov pro-

cesses) and recent approaches that do not rely on this assumption; (v) to develop software

in form of R packages to implement the methods addressed in this thesis to be used in

biomedical applications.
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1.4.2 Thesis outline

In Chapter 2, we introduce the concept of copula, their properties and present different

choices of generator for several families of copulas. We also describe dependence mea-

sures involving copulas given by Kendall’s τ or Spearman’s ρ. Due to the importance

of simulation studies in statistical inference, we also present algorithms based on three

of the most techniques for generating multivariate data from copulas: the conditional

distribution method; methods based on the bivariate distribution of the copula or sam-

pling algorithms based on numerical inversion of Laplace transforms. Finally, algorithms

for generating survival data in time-to-event, recurrent, competing risk and illness-death

models are also described.

In Chapter 3, we revisit different methods for nonparametric estimation of transi-

tions probabilities in multi-state models and report recent contributions to deal with non-

Markov settings in which the standard estimator Aalen-Johansen estimator does not pro-

vide consistent estimations. To tackle this issue, we propose estimators that are con-

structed using the cumulative hazard of the total time given a first time but where each

observation has been weighted using the information of the first duration. Simulation

studies have confirmed the good accuracy of these estimators providing similar behavior

when comparing to the landmark estimators.

Chapter 4 is devoted to introduce a new method for improving the accuracy of the

transition probabilities estimates under the landmark approach. In fact, these types of

estimators provide high variability since they are built by considering subsets of indi-

viduals that usually have small size, in particular, at the last moments of the survival

studies. To this regard, we present a new estimator based on presmoothing method by

replacing the indicator variable of the landmark estimators using logistic or generalized

additive logistic models. Nonparametric presmoothing was also considered given by the

Nadaraya-Watson kernel estimator. Simulation studies and the application to real data

sets have provide good results with less variability of the estimates.

In Chapter 5, we propose new estimators for the estimation of the transition proba-

bilities given a continuous covariate repeatedly measured over time. To this purpose, we

combine the joint modeling analysis of longitudinal and survival data with the landmark

approach in order to deal with several biomarkers for each individual instead of one sin-

gle value as occurs using the classical Breslow’s methods. Results have confirmed the
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ability of the proposed methods to reflect the evolution of the longitudinal measures on

the transition probabilities among states.

In Chapter 6, we use contributions of the landmark approach for estimating transition

probabilities to introduce new methods for testing the Markov condition. To be specific,

we consider a ‘local’ test to check the existing of any moments that enable us to suspect

that the process may be non-Markovian. We also developed a ‘global’ test which is ob-

tained by combining results from ‘local’ tests over times. The proposed methods have

been compared to the traditional global test given by Cox models that includes covariates

depending on the history of the process, and the local test given by the log-rank statistics.

Results from simulation studies and the application to real data sets have demonstrated

the accuracy of the proposed test to detect the lack of Markovianity.

Chapter 7 contains a detailed description of the main functionalities associated to

survidm R package. This software allows the inference for illness-death models of transi-

tion probabilities, occupation probabilities and sojourn distributions, as well as, the coef-

ficients of intensities transitions and a graphical inspection of Markovianity. Other soft-

ware developments covering the proposed methods in this thesis are also introduced as

supplementary material [A].

Chapter 8 introduces the MSM.app web application, developed using the shiny pack-

page, which interactively enables us to show outputs and graphs of multi-state survival

data analysis that can be used by everyone, even without any knowledge of the R lan-

guage.





Chapter 2

Some of the most common copulas

for simulating complex survival

data

Simulation studies play an important role in the evaluation of the performance of a va-

riety of statistical methods. Such assessment is performed under computer intensive

procedures and cannot be achieved with studies of real data alone. These studies are

increasingly employed in evaluating the properties of the proposed methods being the

generation of data the most fundamental and important component. However, only a

few of published studies provide sufficient details to allow readers to understand fully

all the processes to generate the data. In this chapter, we present a collection of prac-

tical algorithms for simulating multivariate data from a wide class of multivariate cop-

ulas. This chapter also details important considerations necessary when generating the

survival data in a variety of scenarios. A software application for R was developed to

implement all the methods.

The contents of this chapter are mainly based on the paper published in International

Journal of Mathematics and Computers in Simulation by Soutinho and Meira-Machado (2020)

[26]

2.1 Introduction

Recent advances in computer and software technology have allowed simulation studies

to be more accessible. However, performing simulations is not a simple issue. Important

11
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guidelines to achieve a good quality simulation study are given by Burton et al. (2006)

[27]. Data generation is probably the most important step to achieve a good quality simu-

lation study and require a rigorous planning. Unfortunately, only few published articles

provide sufficient details to assess the integrity of the study design or to allow readers to

understand fully all the processes required when designing their own simulation study.

In addition, it is important to obtain simple and high-quality simulations that reflect the

complex situations seen in practice, such as, for example, for survival data.

Longitudinal survival data often require the joint modeling of two or more random

variables. For example, to model the relationship between survival time of a patient and

the hemoglobin level; to model the relationship between two consecutive events of the

same nature (recurrent events) or to model different stages in the evolution of an illness

(multi-state models). Simulating data for such studies is a challenging issue that can be

performed using copulas that provide a useful method for deriving joint distributions

given the marginal distributions, especially when the variables are non-normal as in the

case of time-to-event variables. In addition, in a bivariate context, copulas can be used to

easily control the measures of dependence for the pairs of random variables.

A copula C is a multivariate distribution function that links a univariate marginal dis-

tribution to their full multivariate distribution. Copulas were first introduced by Sklar

(1959) [28] and its terminology is derived from the Latin word copulare, to connect or

to join. In this chapter we explore the topic of random generation in several families

of copulas and, in particular, we present algorithms to generate 2-dimensional random

vectors (X, Y) whose distribution is H(x, y) = C(F(x), G(y)) where F and G denote the

marginal distribution functions and C is a copula. These algorithms are based on three of

the most used techniques for generating multivariate data from copulas: (1) conditional

distribution method; (2) based on the bivariate distribution of the copula and (3) sampling

algorithms based on numerical inversion of Laplace transforms. A conceptual framework

of these three methods and algorithms for generating survival data is presented in Fig-

ure 2.1.

The organization of this chapter is as follows. In Section 2.2, we discusses properties

of copulas, their relationships to measures of dependence, and some of the most known

families of copulas that have appeared in the literature. Section 2.3 provides practical

algorithms for simulating data from a wide class of multivariate copulas. Sampling al-

gorithms are also given to simulate multivariate survival data in a variety of scenarios.
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FIGURE 2.1: Copulas and Random Number Generation

Software developments are presented in Section 2.4. Finally, a discussion of the main

conclusions are reported in Section 2.5.

2.2 Most common bivariate copulas: Definitions and properties

of copulas

Copulas are functions that link multivariate distributions to their one-dimensional mar-

gins. These functions are restrictions to [0, 1]2 of bivariate distribution functions whose

margins are uniform in [0, 1]. Sklar (1959) [28] showed that if H is a bivariate distribution

function with margins F(x) and G(y), then there exists a copula C such that H(x, y) =

C(F(x), G(y)). Sklar also showed that if the marginal distributions are continuous, then

there is a unique copula representation. In the multivariable case, if H is an p-dimensional

cumulative distribution function with univariate margins F1, ..., Fp, then there exists an p-

dimensional copula C such that F(x1, ..., xp) = C(F1(x1), ..., Fp(xp)). The case p = 2 has

attracted special attention and will be considered from now on.

A function ϕ : [0, 1]→ [0, ∞] is called a generator if it is convex, decreasing and ϕ(1) =

0. The generalized inverse of ϕ (also known as pseudo-inverse) is denoted by ϕ[−1] =

inf{u ∈ [0, 1] | ϕ(u) ≤ t}, t ∈ [0, ∞].

A copula C is called Archimedean if there exists a generator ϕ such that C(u, v) =

ϕ]−1[(ϕ(u) + ϕ(v)), (u, v) ∈ [0, 1]2. The copula C determines the generator ϕ uniquely up

to a multiplicative constant. In Table 2.1 we present the different choices of generator for

several important families of Archimedean copulas.
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Family Space Parameter Generator ϕ(t) Generator inverse ϕ−1(s) Bivariate copula C(u, v)
Clayton (1978) [29] θ ∈ (0, ∞] 1

θ (t
−θ − 1) (1 + θs)−1/θ (u−θ + v−θ − 1)−1/θ

Frank (1979) [30] θ ∈ R \ {0} − ln
[

e−θt−1
e−θ−1

]
− 1

θ ln(1 + e−s(e−θ − 1)) −θ−1 ln
[

1 + (e−θu−1)(e−θv−1)
e−θ−1

]
Gumbel (1960) [31] θ ∈ [1, ∞) (− ln t)θ e−s1/θ

exp{−[−(− ln u)θ + (− ln v)θ ]1/θ}

Ali, M.M., Mikhail and Haq (1978) [32] θ ∈ [−1, 1) ln
[

1−θ(1−t)
t

]
1−θ
es−θ

uv
1−θ(1−u)(1−v)

Joe (1997) [33] θ ∈ [1, ∞) − ln[1− (1− t)θ ] 1− (1− e−s)1/θ 1− [(1− u)θ + (1− v)θ + (1− u)θ (1− v)θ ]1/θ

TABLE 2.1: Generators and their inverses for one-parameter Archimedean copulas.

Archimedean copulas are popular because they are easily derived and are capable of

capturing wide ranges of dependence. Given a pair of variables (X, Y) whose distribution

is H, and C the associated copula, this dependence can be measured by Kendall’s tau τ

or Spearman’s ρ. Kendall’s tau can be defined as the difference between the probabilities

of concordance and discordance for any two independent pairs. In terms of copulas,

Kendall’s τ is defined by

τC = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1. (2.1)

The Spearman’s ρ coefficient is defined as

ρC = 12
∫ 1

0

∫ 1

0
(C(u, v)− uv)dudv. (2.2)

Table 2.2 illustrates the calculation of these correlation measures.

Modeling the multivariate dependence also involves quantifying tail-dependence. Tail-

dependence describes the concordance between extreme values of the random variables

X and Y. Lower tail-dependence λL and the upper tail-dependence λU can also be ex-

pressed in terms of bivariate copulas

λL = lim
u→0+

C(u, u)
u

andλU = lim
u→1−

1− C(u, u)
1− u

. (2.3)

Family Kendall’s τ τ ∈ Ω Spearman’s ρ

Clayton (1978) [29] θ
θ+2 [0, 1) No simple form

Frank (1979) [30] 1− 4
θ {D1(−θ)− 1} [−1, 1] \ {0} 1− 12

θ {D2(−θ)− D1(−θ)}
Gumbel (1960) [31] θ−1

θ [0, 1) No simple form
Ali, M.M., Mikhail and Haq (1978) [32] 1− 2

3θ −
2

3θ2 (θ − 1)2 ln(1− θ) [−0.181726, 1
3 ] a∗

Joe (1997) [33] 1 + 4
θ EJ (θ) [0, 1) No simple form

FGM 2
9 θ [− 2

9 , 2
9 ]

θ
3

TABLE 2.2: Copulas and their measures of dependence. Dk(x) = k
xk

∫ x
0

tk

et−1 dt denotes

the “Debye” function; a∗ = 12(1+θ)dilog(1−θ)−24(1−θ) ln(1−θ)
θ2 − 3(θ+12)

θ ; dilog(x) =
∫ x

1
ln t
1−t dt;

EJ(θ) =
∫ 1

0
(1−tθ) ln(1−tθ)

tθ−1 dt.
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One of the most popular families of copulas, that were studied by Farlie (1960) [34],

Gumbel (1960) [31] and Morgenstern (1956) [35], is the Farlie-Gumbel-Morgenstern (FGM)

family that is defined by

C(u, v) = uv(1 + θ(1− u)(1− v)),−1 ≤ θ ≤ 1. (2.4)

The FGM copula can be seen as a perturbation of the product copula which is obtained

for θ = 0. This copula is attractive because of its simplicity but is restrictive since is only

useful when dependence between the two marginals is small. A maximum correlation

of 33% is attained for the Spearman’s coefficient while this correlation is limited to the

interval [− 2
9 , 2

9 ] for Kendall’s τ correlation.

To demonstrate the dependence properties of different copulas we simulate 500 pairs

of exponential random variables (with rate 1) from the Clayton, Frank, Gumbel, AMH,

Joe, and FGM copulas using the approaches outlined in next section. This is illustrated in

Figure 2.2.
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Frank copula, theta = 2
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FIGURE 2.2: Simulated samples from copulas (cut at a level of 7).
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The pairs of exponential variables are plotted in order to illustrate dependence prop-

erties of the copulas. For four of the six copulas, the dependence parameter θ is set to 2.

For the remaining copulas the dependence parameter was set to 1. Note that the depen-

dence parameter in FGM, is set such that the dependence between the two variables are

maximized (the FGM is unable to accommodate larger dependencies).

2.3 Copulas and random number generation

Simulations have an important role in statistical inference. They are particularly useful to

investigate properties of estimators and to study the quality of a model. Moreover, they

are also necessary to understand the underlying multivariate distribution. The copula

construction allows us to simulate outcomes from many multivariate distributions easily.

The goal of this section is to present practical algorithms to simulate bivariate random

variables for all copulas mentioned in the previous section. Assume that (X, Y) is a 2-

dimensional random vector whose distribution is

H(x, y) = C(F(x), G(y)) (2.5)

where F denotes the marginal distribution of X, G the marginal distribution of Y and C is

a copula.

2.3.1 Conditional distribution algorithm

One popular algorithm for simulating random variables is based on the conditional dis-

tribution approach. This approach separates the copula into several univariate compo-

nents, each of which can be easily sampled. This method can be used in many copulas

(Clayton, Frank, FGM, AMH). Assume that (X, Y) has a bivariate distribution function

based on the two-dimensional Archimedean copula (Clayton, Frank, FGM or AMH). To

generate data from a bivariate distribution function (X, Y) we first sample (u1, u2) from

the copula-based distribution C(u1, u2) with uniform margins and then we have to invert

each ui using the marginal distributions to obtain the data for the (X, Y). The procedure

is to generate the observation of one margin, say U1, and then to generate an observa-

tion for U2 from its distribution given U1. Consider two uniform random variables U1

and U2 with known copula C. Assuming sufficient regularity conditions, we obtain the

conditional cumulative distribution function (c.d.f.)
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C2|1(u2 | u1) = P(U2 ≤ u2 | U1 ≤ u1) =
∂C(u1, u2)

∂u1
(2.6)

Thus, the procedure to sample (u1, u2) from a copula-based distribution C(u1, u2) is

based on the algorithm 1 shown below.

Algorithm 1

(1) Simulate two independent uniform U(0, 1) random variables, say (v1, v2).

(2) Set u1 = v1.

(3) Find the conditional distribution C2|1(v2 | v1) and its quasi-inverse C−1
2|1(v2 | v1). Set

u2 = C−1
2|1(v2 | v1).

Then, the pairs (u1, u2) are uniformly distributed variables drawn from the respective

copula C(u1, u2).

(4) The desired simulated values are x = F−1(u1) and y = G−1(u2).

Algorithm 1.1: Generating bivariate outcomes from Clayton copula

(1) Simulate two independent uniform U(0, 1) random variables, say (v1, v2).

(2) Set u1 = v1.

(3) Set u2 = [v−θ
1 (v−θ/(1+θ)

2 − 1) + 1]−1/θ .

(4) The desired simulated values are x = F−1(u1) and y = G−1(u2).

Algorithm 1.2: Generating bivariate outcomes from Frank’s copula

(1) Simulate two independent uniform U(0, 1) random variables, say (v1, v2).

(2) Set u1 = v1.

(3) Set u2 = − 1
θ ln

(
1 + v2(1−e−θ)

v2(e−θv1−1)−e−θv1

)
.

(4) The desired simulated values are x = F−1(u1) and y = G−1(u2).

Algorithm 1.3: Generating bivariate outcomes from FGM copula

(1) Simulate two independent uniform U(0, 1) random variables, say (v1, v2).

(2) Set u1 = v1.

(3) Set a = 1 + θ(1− 2v1); b =
√

a2 − 4(a− 1)v2.

(4) Set u2 = 2v2/(a + b).

(5) The desired simulated values are x = F−1(u1) and y = G−1(u2).
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Algorithm 1.4: Generating bivariate outcomes from AMH copula

(1) Simulate two independent uniform U(0, 1) random variables, say (v1, v2).

(2) Set a = 1− v1; b = 1− θ(1+ 2av2) + 2θ2a2v2; c = 1+ θ(2− 4a + 4av2) + θ2(1− 4av2 +

4a2v2).

(3) Set u2 = (2t(aθ − 1)2)/(b +
√

c).

(4) The desired simulated values are x = F−1(u1) and y = G−1(u2).

The conditional distribution algorithm can be extended to the general case of p vari-

ables. In higher dimensions, the full distribution of (X1, ..., Xp) is simulated by recursively

simulating the conditional distribution of Xk given X1, ..., Xk−1 for k = 2, ..., p (Bouyè et al.

(2000) [36]).

2.3.2 Bivariate distribution algorithm

For some copulas the conditional distribution is not directly invertible and so different

algorithms are necessary. This is the case of the Gumbel-Hougaard copula and the Joe

copula. One alternative and popular algorithm that can be used to simulate random vari-

ables from an Archimedean copula is based on the following Theorem.

Theorem Let U1 and U2 be uniform U(0, 1) random variables and let its bivariate

distribution function be defined by the Archimedean copula generated by ϕ. Then, the

function KC(t) = t − ϕ(t)/(ϕ
′
(t)) is the distribution function of C(U1, U2). Further-

more, the joint distribution of the random variables X = ϕ(U1)/[ϕ(U1) + ϕ(U2)] and

Y = C(U1, U2) is characterized by H(x, y) = x × KC(y), for all (x, y) ∈ I2 with X and Y

independent, and X uniformly distributed on (0, 1). Following, we present a proof in case

of copula C to be absolutely continuous.

A proof for the general case can be found in Genest and Rivest (1993) [37].

The joint density h
(

x, y
)
= ∂2

∂u1∂u2
C (u1, u2) ·

∣∣∣∣∣∣ ∂(u1,u2)

∂(x,y)

∣∣∣∣∣∣ in terms of x and y, where ∂2C (u1, u2)

is given as follows and ∂ (u1, u2) /∂
(
x, y
)

correspond to the Jacobian of the transformation

ϕ(u1) = xϕ(y), ϕ(u2) = (1− x) ϕ(y). Since

∂ (u1, u2)

∂
(
x, y
) =

ϕ
(
y
)

ϕ′
(
y
)

ϕ′ (u1) ϕ′ (u2)
(2.7)

and consequently
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h
(
x, y
)
=

(
−

ϕ′′
(
y
)

ϕ′ (u1) ϕ′ (u2)[
ϕ′
(
y
) ]3

)
·
(
−

ϕ
(
y
)

ϕ′
(
y
)

ϕ′ (u1) ϕ′ (u2)

)
=

ϕ′′
(
y
)

ϕ′
(
y
)[

ϕ′
(
y
) ]2 (2.8)

Thus

H
(
x, y
)
=
∫ x

0

∫ y

0

ϕ′′ (z) ϕ (z)[
ϕ′ (z)

]2 dzdw = x ·
[

z− ϕ (z)
ϕ′ (z)

]y

0

= x · Kc
(
y
)

(2.9)

and the conclusion follows.

The resulting simulation procedure follows algorithm 2.

Algorithm 2

(1) Simulate two independent uniform U(0, 1) random variables, say (v1, v2).

(2) Set t = K−1
C (v2) where KC(t) = t− ϕ(t)/(ϕ

′
(t))

(3) Set u1 = ϕ−1(v1ϕ(t)) and u2 = ϕ−1((1− v1)ϕ(t))

Then, the pairs (u1, u2) are uniformly distributed variables drawn from the respective

copula C.

(4) The desired simulated values are x = F−1(u1) and y = G−1(u2).

Extensions of the results shown in the above theorem can be used to provide the cor-

responding simulation algorithm to the multi-dimensional case (Wu, Valdez and Sherris

(2006) [38]). The main challenge for the practical implementation of this algorithm is to

find the inverse function of KC.

Algorithm 2.1: Generating bivariate outcomes from the Gumbel-Hougaard copula

(1) Simulate two independent uniform U(0, 1) random variables, say (v1, v2).

(2) Set KC(t) = t(1− ln(t)/θ) = v2, and solve numerically for 0 < t < 1.

(3) Set u1 = exp[v1/θ
1 ln(t)] and u2 = exp[(1− v1)

1/θ ln(t)].

Then, the pairs (u1, u2) are uniformly distributed variables drawn from the respective

copula C.

(4) The desired simulated values are x = F−1(u1) and y = G−1(u2).

Algorithm 2.2: Generating bivariate outcomes from Joe copula

(1) Simulate two independent uniform U(0, 1) random variables, say (v1, v2).

(2) Set KC(t) = t− [ln(1−(1−t)θ)][1−(1−t)θ]
[θ(1−t)θ−1]

= v2, and solve numerically for 0 < t < 1.

(3) Set u1 = 1− {1− [1− (1− t)θ ]v1}1/θ and u2 = 1− {1− [1− (1− t)θ ]1−v1}1/θ .

Then, the pairs (u1, u2) are uniformly distributed variables drawn from the respective
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copula C.

(4) The desired simulated values are x = F−1(u1) and y = G−1(u2).

2.3.3 Laplace transform algorithm

Clayton, Frank, Joe and Gumbel-Hougaard copulas fall into the class of the so-called

Laplace (Stieltjes) Transform Archimedean copulas (LT-Archimedean copulas). This LT

representation leads to a useful way of simulating such copulas (Marshall and Olkin

(1988) [39]; Joe (1997) [33]; Hofert (2008) [40]). For such copulas, the inverse of the gen-

erator function ϕ has a nice representation on a Laplace Transform of some function G.

Algorithm 3, based on the LT representation, is given below:

Algorithm 3

(1) Generate a variable V with distribution function G with ψ(t) =
∫ +∞

0 etxdG(x), t ≥ 0 ,

the Laplace-Stieltjes transform of G.

(2) Generate independent standard uniform random variables v1, v2.

(3) Set ui = ψ(−ln(vi)/V).

Then, the vector (u1, u2) has the desired Archimedean copula dependence structure

with generator ϕ = ψ−1.

• For a Clayton copula, V is gamma distributed Ga(1/θ, 1) and ψ(t) = (1 + t)−1/θ .

• For a Gumbel-Hougaard copula, V is stable distributed St(1/θ, 1, (cos(Π/(2θ)))θ , 0; 1)

(see Nolan (2007) [41]) and ψ(t) = exp(−t1/θ).

• For a Frank copula, V is discrete with P(V = k) = (1 − e−θ)k/(kθ) and ψ(t) =

− 1
θ ln[1 + e−t(e−θ − 1)], k ∈N.

• For the AMH copula, V is discrete with P(V = k) = (1− θ)θk−1 and ψ(t) = 1−θ
et−θ

,

k ∈N.

• For Joe copula, V is discrete with P(V = k) = (−1)k+1(1/θ
k ) and ψ(t) = 1− (1−

e−t)1/θ , k ∈N.

Unfortunately, it is not known how to find G explicitly. If we know how to sample G,

this algorithm provides a powerful tool for sampling these copulas with large dimensions.
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2.3.4 Survival data and random number generation

Copulas have been widely studied in the last decades. Their first applications were

mainly in actuarial sciences and finances but their use has spread to other areas such

as survival analysis. The copula construction allows the selection of different marginal

distributions for each outcome while accounting for the dependence between the random

variables. They can be used to model and understand explanatory variables in survival

analysis. The copula structure can also be used to study different survival models such as

the bivariate survival. For example, suppose we are considering to examine the survival

of twins. There is strong empirical evidence that supports the dependence of their life-

times. Another problem that often appear in survival analysis and that can be modeled

with copulas is the issue of competing risks. Though in many cases the outcomes (com-

peting risks; see Figure 2.3) are assumed to be statistically independent there is strong

evidence that this assumption is not realistic. To account for this dependence, one general

approach is to apply copulas (Escarela and Carrière (2003) [42]; Kaishev, Dimitrova and

Haberman (2007) [43]).

In many longitudinal studies subjects can experience several events across a follow-

up period. The events of concern may be of the same nature (e.g., cancer patients may

experience recurrent disease episodes) or represent different states in the disease process

(e.g., ‘alive’ and ‘disease-free’, ‘alive with recurrence’ and ‘dead’). If the events are of

the same nature these are usually referred as recurrent event, whereas if they represent

different states (i.e. multi-state models) they are usually modeled through their intensity

functions (Soutinho, Meira-Machado and Oliveira (2020) [44]; Harden and Kropko (2008)

[45]; Kropko and Harden (2018) [46]). The dependence between the different outcomes

can also be modeled using copulas (Cook and Lawless (2007) [47]; Hougaard (2000) [1];

Malehi et al. (2015) [48]; Rotolo, Legrand and Van Keilegom (2013) [49]).

The algorithms shown above can be used to generate survival data that can be used in

many of these situations. One can use them to generate survival data subject to random

right-censoring (Kalbfleisch and Prentice (1980) [50]; Hougaard (2000) [1]), arising from

censored gap times (de Uña-Álvarez and Meira-Machado (2008) [51]; Moreira and Meira-

Machado (2012) [52]), competing-risks (Putter, Fiocco and Geskus (2007) [18]) and multi-

state models (Andersen et al. (1993) [13]; Meira-Machado et al. (2009) [15]; Meira-Machado

and Sestelo (2016) [53]; Meira-Machado and Sestelo (2019) [16]). Below, we present the

algorithms to generate data for four models (Figure 2.3).
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FIGURE 2.3: Schematic representation of some common multi-state models. Mortality
model for survival analysis (top); recurrent events model (second row); competing risks

model (third row) and progressive illness-death model (bottom).

Time-to-event data

Standard survival data measure the time from some particular time origin until the occur-

rence of one type of event. The main feature of survival data is censoring. Right-censoring

is the most common type of censoring and can occur because of insufficient follow-up,

loss to follow-up or failure unrelated to the study. In terms of notation, in this chapter, we

denote the random variable survival time by Y. Next, we denote the random censoring

variable by Z, which we assume to be independent of Y; and ∆ = I(Y ≤ Z) the indicator

status indicating either a failure (i.e., ∆ = 1) or censorship occurred. Because of censoring

rather than Y we observe (T, ∆) where T = min(Y, Z) is the observed time. If covari-

ables, C, are present, the observed data consists of the triplets (Ti, ∆i, Ci) (i = 1, . . . , n) of

independent and identically distributed replicates of (T, ∆, C).

The procedure to generate such data is as follows:

(1) Generate (X, Y) from a bivariate distribution function based on some known two-

dimensional copula.
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(2) An independent censoring time Z is generated, according to some particular model

(e.g., Uniform or Exponential).

(3) Set T = min(Y, Z) and ∆ = I(Y ≤ Z).

Recurrent events data

Recurrent events involve repeat occurrences of the same type of event over time ([47]). Re-

current events in longitudinal studies include recurrent leukaemia episodes, tumor recur-

rences in cancer patients (e.g. bladder cancer) or heart failure hospitalizations. Let (X, Y)

be gap times corresponding to two consecutive events, which are observed subject to ran-

dom right-censoring. The fact that the variables X and Y are recorded successively, rather

than simultaneously, is important when the variables are subject to censoring. Again, we

consider here random right censoring (denoted by Z). In the present context of successive

events, we only observe the second gap time if the first failure time is uncensored. More

precisely, the observable variables are given by (T1, T2, ∆1, ∆2) where T1 = min(X, Z),

∆1 = I(X ≤ Z), T2 = min(Y, Z2) and ∆2 = I(Y ≤ Z2), where Z2 = (Z− X)I(X ≤ Z) is

the censoring variable for the second gap time.

The procedure to generate such data is as follows:

(1) Generate (X, Y) from a bivariate distribution function based on some known two-

dimensional copula.

(2) An independent censoring time Z is generated, according to some particular model

(e.g., Uniform or Exponential).

(3) Set T1 = min(X, Z); ∆1 = I(X ≤ Z); T2 = min(Y, Z−X)× I(X ≤ Z); ∆2 = I(X +Y ≤

Z).

Competing risks data

Competing risks data (Figure 2.3, third row) are encountered in many medical studies

where the subjects under study are at risk for more than one mutually exclusive event.

The observable data in these models is represented by the failure time T and the indicator

status variable ∆, which in this case will take the value 0 if the competing risk process does

not move from the initial state at the survival time T, or the value 1 and 2 for the possible

causes of death 1 and 2. The observable data may also include a possibly covariable

vector, which we shall ignore for the moment. The survival time and cause of death may

be modeled as arising from the minimum of latent failure times corresponding to the
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different causes. The procedure to generate such data is as follows:

(1) Generate (X, Y) from a bivariate distribution function based on some known two-

dimensional copula.

(2) An independent censoring time Z is generated, according to some particular model

(e.g., Uniform or Exponential).

(3) If X ≤ Y then D = 1; otherwise D = 2.

(4) Set T = min(X, Y, Z); ∆ = I(min(X, Y) ≤ Z)× D.

Alternative simulation designs for competing risks data are given by Beyersmann

(2009) [54].

Progressive illness-death multi-state model

In some cases the events of concern may not be of the same nature, representing different

stages in the disease process. Consider for example a cancer study, where X represents the

time between tumor resection and recurrence (local or distant), and Y represents the time

between development of a recurrence and death of the patient. Some individuals may die

without observing a recurrence. The progressive illness-death model is probably the most

popular one in the medical literature. The irreversible version of this model (Figure 2.3,

bottom), describes the pathway from an initial state to an absorbing state either directly

or through an intermediate state. Many event-history data sets from biomedical studies

with multiple endpoints can be reduced to this generic structure.

To simulate the data in the progressive illness-death model, we separately consider the

subjects passing through State 2 at some time, and those who directly go to the absorbing

State 3. For the first subgroup of individuals, the successive gap times can be simulated

using a two-dimensional copula, whereas those in the second group can be simulated

from any continuous distribution.

The procedure to generate such data is as follows:

(1) Draw ρ ∼ Ber(p) where p is the proportion of subjects passing through State 2.

(2) If ρ = 1 then generate (X, Y) from a bivariate distribution function based on some

known two-dimensional copula.

(3) If ρ = 0, one particular model (e.g., Uniform, Exponential or Weibull) is used to gen-

erate the transition time, W, from State 1 to State 3.

(4) An independent censoring time Z is generated, according to some particular model

(e.g., Uniform or Exponential).



2. SOME OF THE MOST COMMON COPULAS FOR SIMULATING COMPLEX SURVIVAL

DATA 25

(5) If ρ = 1 then set T1 = min(X, Z) and ∆1 = I(X ≤ Z). Set also T = min(X + Y, Z) and

∆ = I(X + Y ≤ Z).

(6) If ρ = 0 then set T1 = min(W, Z) and ∆1 = I(W ≤ Z). Set also T = T1 and ∆ = ∆1.

The stochastic behavior of the process in this model is characterized by the vector of

random variables (T1, T, ∆1, ∆), where T1 is the sojourn in State 1, T the total time and ∆1

and ∆ the corresponding indicator statuses.

The general (and usual) censoring distributions assumed to model censoring are uni-

form and exponential. The parameters in these distributions can be determined by itera-

tive algorithms to control the censoring percentage one wishes to obtain.

2.4 Software developement

In R, several packages provide functions for simulating survival data. A comprehensive

list of these packages can be seen in the CRAN task view ‘Survival Analysis’ (Allignol

and Latouche (2019) [57]). Some of them can be used to simulate data from complex pro-

cesses, such as the genSurv package (Meira-Machado and Faria (2014) [58]) that permits

to generate data with one binary time-dependent covariable and data stemming from a

progressive illness-death model. Univariate and semi-competing risks data can be gener-

ated using the SimSCRPiecewise package. The survsim package (Crowther and Lambert

(2013) [59]; Morina and Navarro (2004) [60]) can also be used to simulate simple and

complex survival data such as recurrent event data and competing risks data. Complex

multi-state models data with possibly nonlinear baseline hazards and nonlinear covari-

able effects can be simulated using functions available as part of the simMSM package.

To provide researchers with a tool for simulating complex survival data we develop

an R package called survCopula. This package is composed by a set of functions which

allow the user to simulate a cohort with the objective of studying its behavior in a va-

riety of scenarios including survival, competing risks, recurrent events and some multi-

state models. The main feature of the package is its ability for using different copulas

for simulating correlated multivariate survival data in a variety of scenarios as discussed

previously. They allow us to control the dependence between time variables with knowl-

edge of the marginal distributions. This software and source code are all available at the

GitHub repository at https: at the GitHub repository at https://github.com/gsoutinho/

survCopula. Details on the usage of its functions can be obtained with the corresponding

https://github.com/gsoutinho/survCopula
https://github.com/gsoutinho/survCopula
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help pages after the package is installed. As a supplementary material [A.1], we described

all the functions of this R package.

2.5 Discussion

Copulas have become a popular tool to create distributions that model correlated multi-

variate data. In this chapter a review of the most common copulas is presented with the

goal to introduce the generators functions of some important families of Archimedean

copulas as well as their dependence that can be measured by Kendall’s τ or Spearman’s

ρ. Due to the important role of the simulation studies in statistical inference, this chap-

ter also describes several algorithms to generate bivariate data from several copulas, and

explored the use of these correlated data for generating multivariate survival data in a

variety of scenarios. In fact, the use of copulas is suitable for this purpose since they can

be used to introduce dependence between time and covariates, or between times of differ-

ent transitions in more complex survival systems. In case of the Conditional distribution

algorithm this can be applied in many copulas such as Clayton, Frank, FGM or AMH.

Since some copulas are not directly invertible for the Gumbel-Hougaard and the Joe cop-

ulas was also discussed an alternative algorithm making use of the function the function

KC. A Laplace Transform algorithm is also described for some copulas and finally, four

types of survival data and random number generation are presented covering different

situations, including recurrent events, competing risks and models with multiple events

of different types. We also demonstrated the application of these methods of copulas to

the biomedical statistics namely in simulation studies involving different models in sur-

vival analysis or multistate models who have the advantage to take in consideration the

dependence of variables.

In order to be used on biomedical practices a user-friendly software in the form of

an R package is provided too. The package provides several functions that can be used

to generate survival data in a variety of scenarios including competing risks, recurrent

event and multi-state models. Users can choose the marginal distributions as well as

the dependence between the correlated data which is induced in the joint distribution by

means of copulas. As a future field of research we are interested to use copulas to simulate

longitudinal and survival data. This type of data is particularly relevant in cancer studies

in which longitudinal biomarkers may be associated to the survival time.



Chapter 3

Estimation of the Transition

Probabilities in Multi-state Survival

Data: New Developments and

Practical Recommendations

Multi-state models can be successfully used for describing complicated event history data,

for example, describing stages in the disease progression of a patient. In these models one

important goal is the estimation of the transition probabilities since they allow for long

term prediction of the process. Traditionally, these quantities have been estimated by

the Aalen-Johansen estimator which is consistent if the process is Markovian. Recently,

estimators have been proposed that outperform the Aalen-Johansen estimators in non-

Markov situations. In this chapter, we review the most important nonparametric methods

for the estimation of transition probabilities and consider a new proposal for these quan-

tities in a multi-state system that is not necessarily Markovian. The proposed product-

limit nonparametric estimator is defined in the form of a counting process, counting the

number of transitions between states and the risk sets for leaving each state with an in-

verse probability of censoring weighted form. Several simulation studies were conducted

under different data scenarios (Section 3.4). The proposed methods were also illustrated

with a real data set on colon cancer (Section 3.5). Finally, the advantages and limitations of

the different methods and some practical recommendations are discussed in Section 3.6.

27
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The contents of the paper are partially based on the papers published in WSEAS Trans-

actions on Mathematics by Soutinho and Meira-Machado (2020) [55] and Computational

Statistics by Soutinho and Meira-Machado (2021) [108].

3.1 Notation

A multi-state model is a model for a time continuous stochastic process (X(t), t ∈ [0, ∞))

which at any time occupies one of a few possible states. In this chapter, we consider the

progressive illness-death model and assume that all subjects are in State 1 at time t = 0,

i.e., P(X(0) = 1) = 1. In terms of notation, we also may define the sojourn time in the

initial state, Z = inf{t : X(t) 6= 1} and the total time of the process T = inf{t : X(t) = 3}.

Note that (Z, T) falls on a line with a strictly positive probability, since T = Z for those in-

dividuals undergoing a direct transition from State 1 to the absorbing State 3. On the other

hand, Z < T indicates that the individual visits the intermediate State 2 at some time. In

practice, several issues influence the observation of these two random variables. The

most common issue is right-censoring, which happens when a subject leaves the study

before an event occurs, or when the study ends before the event has occurred. Under

right-censoring, only the censored versions of Z and T, along with their corresponding

censoring indicators, are available. This censoring is modeled by considering a variable

C, which we assume to be independent of the process (Z, T). Define Z̃ = min(Z, C) and

T̃ = min(T, C) for the censored versions of Z and T and introduce ∆1 = I(Z ≤ C) and

∆ = I(T ≤ C) for the respective censoring indicators of Z and T. The variables Z̃ and

T̃23 = T̃ − Z̃ are the observed sojourn times in states 1 and 2, respectively. Finally, the

available data are (Z̃i, T̃i, ∆1i, ∆i), 1 ≤ i ≤ n, i.i.d. copies of (Z̃, T̃, ∆1, ∆).

3.2 Transition probabilities

As aforementioned multi-state models may be considered as a generalization of survival

analysis where survival is the ultimate outcome of interest but where information is avail-

able about intermediate events which individuals may experience during the study pe-

riod. This multi-state process can be fully characterized through transition probabilities

between states h and j, that we express by phj(s, t|Hs−) = P(X(t) = j|X(s) = h,Hs−), for

h, j ∈ S and s < t, where Hs− denotes the history of the multi-state process up to s. In



3. ESTIMATION OF THE TRANSITION PROBABILITIES IN MULTI-STATE SURVIVAL DATA:
NEW DEVELOPMENTS AND PRACTICAL RECOMMENDATIONS 29

particular, the history of the process has the information of the different transitions that

occur to an individual over time, as well as the time at which these transitions take place.

The process can be also characterized through the transition intensities

λhj(t|Ht−) = lim
∆t→0

P(X(t + ∆t) = j|X(t) = h,Ht−)

∆t
(3.1)

The cumulative transition intensities are defined as Λhj (t) =
∫ t

0 λhj(u)du, with Λhh(t) =

−∑j 6=h Λhj(t) the (h, h)th diagonal element of the K× K matrix Λ(t). Similarly, we define

the K× K matrix P(s, t) with the (h, j)th element phj(s, t).

When the multi-state process is Markovian, the transition intensities can be simplified

to

λhj(t) = lim
∆t→0

P(X(t + ∆t) = j|X(t) = h)
∆t

(3.2)

and the transition probabilities to phj(s, t) = P(X(t) = j|X(s) = h).

In particular, this means that under the Markov assumption, P(X(t) = j|X(s) =

h, X(u) = x) = P(X(t) = j|X(s) = h) for any 0 ≤ u < s and x ∈ S , and thus, that

the future of the process after time s depends only on the state occupied at time s, not on

the arrival time to that state or on the states previously visited.

For Markovian processes, the transition probability matrix P(s, t) can be recovered

from the transition intensities through product integration (Aalen and Johansen (1978)

[61]):

P(s, t) = ∏
s<u≤t

(
I + dΛ(u)

)
(3.3)

where I is the K × K identity matrix, and where the cumulative transition intensities can

be estimated by the Nelson-Aalen estimator (Andersen et al.(1993) [13])

Λ̂hj(t) = ∑
u≤t

Nhj(u)
Yh(u)

(3.4)
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where Nhj(t) is the number of observed direct transitions from state h to state j up to time

t and Yh(t) is the number of individuals under observation in State h just before time t,

and then, the Aalen-Johansen estimator takes the form

P̂(s, t) = ∏
s<u≤t

(
I + dΛ̂(u)

)
(3.5)

For more simple models like the illness-death model, we can give explicit expressions

for the elements of P̂(s, t). Expressions for general models are not possible.

Without loss of generality and for the purpose of simplicity, from this point on, we

will consider the progressive illness-death model in which we have five different transi-

tion probabilities to estimate: p11(s, t), p12(s, t), p13(s, t), p22(s, t) and p23(s, t). Using the

introduced notation, the transition probabilities can be written as

p11(s, t) = P
(
Z > t | Z > s

)
, (3.6)

p12(s, t) = P
(
Z ≤ t, T > t | Z > s

)
, (3.7)

p13(s, t) = P
(
T ≤ t | Z > s

)
, (3.8)

p22(s, t) = P
(
Z ≤ t, T > t | Z ≤ s, T > s

)
, (3.9)

p23(s, t) = P
(
T ≤ t | Z ≤ s, T > s

)
. (3.10)

from which it follows

p11(s, t) =
P (Z > t)
P (Z > s)

, (3.11)

p12(s, t) =
P (s < Z ≤ t, T > t)

P(Z > s)
, (3.12)

p13(s, t) =
P (Z > s, T ≤ t)

P(Z > s)
, (3.13)

p22(s, t) =
P (Z ≤ s, T > t)
P (Z ≤ s, T > s)

, (3.14)

p23(s, t) =
P (Z ≤ s, s < T ≤ t)

P (Z ≤ s, T > s)
. (3.15)

Since we have two obvious relations p12(s, t) = 1− p11(s, t)− p13(s, t) and p23(s, t) =

1− p22(s, t) this means that, in practice, we only need to estimate three transition proba-

bilities.
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The progressive illness-death model is characterized by three transition intensities:

the disease intensity λ12(t), the mortality intensity without the disease λ13(t) and the

mortality intensity among the diseased individuals, λ23(t, t12). The later transition inten-

sity may depend on t12, the time of the disease occurrence in the illness-death process:

λ23(t, t12) = lim∆t→0 P(X(t + ∆t) = 3|X(t) = 2, T12 = t12)/∆t where T12 represent the

potential transition times from State 1 to State 2. The process is called Markov if λ23(t, t12)

is independent of t12, otherwise it is called semi-Markov (i.e., future evolution not only

depends on the current state, but also on the entry time into that same state).

In the particular case of the progressive illness-death model the transition probabilities

can be obtained from the transition intensities as follows (Beyersmann, Schumacher and

Allignol (2011) [62])

p11(s, t) = exp
(
−
∫ t

s

(
λ12(u) + λ13(u)

)
du
)

(3.16)

p22(s, t | t12) = exp
(
−
∫ t

s
λ23(u, t12)du

)
(3.17)

p12(s, t) =
∫ t

s
p11(s, u−)λ12(u)p22(u, t | u)du (3.18)

Here, p22(s, t | t12) denotes the transition probability p22 conditionally on a particular

entry time t12. If the process is Markov, λ23(t, t12) = λ23(t) and p22(s, t | t12) = p22(s, t).

The two other transition probabilities p13(s, t) and p23(s, t) can be estimated from the two

obvious relations aforementioned.

3.3 Nonparametric estimation of the transition probabilities

The standard nonparametric method to estimate a transition probability matrix is the

time-honored Aalen-Johansen (AJ) estimator (Aalen and Johansen (1978) [61]). This es-

timator benefits from the assumption of Markovianity on the underlying stochastic pro-

cess extending the time-honored Kaplan-Meier estimator (Kaplan and Meier (1958) [63])

to Markov chains.

Moreira, de Uña-Álvarez and Meira-Machado (2013) [64] propose a modification of

the Aalen-Johansen estimator in the illness-death model based on a preliminary smooth-

ing (also known as presmoothing, Dikta (1998) [65]; Cao et al. (2005) [66]) of the censoring
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probability for the total time (respectively, of the sojourn time in State 1), given the avail-

able information. The presmoothed Aalen-Johansen (PAJ) estimator proposed by Moreira,

de Uña-Álvarez and Meira-Machado (2013) [64] is obtained by replacing the censoring in-

dicators (in the transition probabilities p11(s, t) and p22(s, t)) by an estimator of a binary

(logistic) regression function. The authors verified through simulations that the use of

presmoothing can lead to improved estimators with less variability.

Since the Markov assumption may be violated in practice, the consistency of the time-

honored Aalen-Johansen estimator and of its presmoothed versions cannot be ensured in

general. Exceptions to this are the estimators for p11(s, t) or for the so-called occupation

probabilities, p1j(0, t) (Datta and Satten (2001) [67]).

Estimators for the transition probabilities in the progressive illness-death model which

do not rely on the Markov assumption were introduced for the first time by Meira-Macha-

do, de Uña-Álvarez and Cadarso-Suárez (2006) [68]. The proposed estimators were de-

fined in terms of multivariate Kaplan-Meier integrals with respect to the marginal distri-

butions of Z and T. These authors showed the practical superiority of their estimators

relative to the Aalen-Johansen in situations in which the Markov condition is strongly

violated. However, their proposal has the drawback of requiring that the support of the

censoring distribution contains the support of the lifetime distribution. Otherwise, they

only report valid estimators for truncated transition probabilities. To avoid this issue, cor-

rected estimators (labeled in this chapter as LIDA, the acronym of Lifetime Data Analysis,

the journal in which this estimator was published for the first time) were proposed by de

Uña-Álvarez and Meira-Machado (2015) [69] for p12(s, t) and p22(s, t).

The paper by de Uña-Álvarez and Meira-Machado (2015) [69] also introduces estima-

tors based on subsampling. The idea behind subsampling, also referred to as landmarking

(van Houwelingen (2007) [70]), is to consider the subset of individuals observed in State h

by time s. The procedure is then based on (differences between) Kaplan-Meier estimators

derived from these subsets of the data. Subsampling was later used by Putter and Spitoni

(2018) [71] to derive a landmark Aalen-Johansen estimator (LMAJ) of the transition prob-

abilities. The idea behind the proposed estimator is to use the Aalen-Johansen estimator

of the state occupation probabilities derived from those subsets (consisting of subjects oc-

cupying a given state at a particular time) for which consistency has already been proved

in multi-state models that are not necessarily Markov (Datta and Satten (2001) [67]). In

this latter approach, the application of presmoothed estimators (PLMAJ) is possible too.
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3.3.1 Aalen-Johansen estimator

The Aalen-Johansen estimator is the standard nonparametric estimator of the transition

probabilities for Markov processes. Their estimation method extends the time-honored

Kaplan-Meier estimator to Markov chains. The Kaplan-Meier estimator is the standard

method to estimate the survival function from time-to-event data that are subject to right

censoring. It is a step function with jumps at event times. The size of the steps depends

on the number of events and the number of individuals at risk at the corresponding time.

Explicit formulae of the Aalen-Johansen estimator (Aalen and Johansen (1978) [61]) for

the illness-death model are given by the following expressions:

p̂ AJ
11 (s, t) = ∏

s<ti≤t

(
1− dN1(ti)/Y1(ti)

)
(3.19)

p̂ AJ
22 (s, t) = ∏

s<ti≤t

(
1− dN23(ti)/Y2(ti)

)
(3.20)

and

p̂ AJ
12 (s, t) = ∑

s<ti≤t
p̂ AJ

11 (s, t−i )
dN12(ti)

Y1(ti)
p̂ AJ

22 (ti, t) (3.21)

Where dN1(ti) = dN12(ti) + dN13(ti) for the total number of transitions out of state 1

and let Y1(ti) and Y2(ti) be the number of healthy (i.e. in state 1) and diseased (i.e. in

state 2) individuals, respectively, just prior to time ti. Since p̂ AJ
11 (s, t) and p̂ AJ

22 (s, t) are

Kaplan-Meier estimators, their variance may be estimated by Greenwood’s formula. The

expression for the variance of p̂ AJ
12 (s, t) can be found in Borgan (2005) [72].

3.3.2 Kaplan-Meier weighted estimators (LIDA)

For a general non-Markov illness-death process without recovery, Meira-Machado, de

Uña-Álvarez and Cadarso-Suárez (2006) [68] derived estimators for the transition prob-

abilities defined in terms of multivariate “Kaplan-Meier integrals” with respect to the

marginal distribution of the total time T. In particular, the estimators of p12(s, t) and

p22(s, t) were proposed as an alternative to the Aalen-Johansen estimators in non-Markov

situations. The transition probability p11(s, t) is defined as the ratio of observed survival

distributions (and they can be estimated by the ordinary Kaplan-Meier estimator of sur-

vival (Kaplan and Meier (1958) [63]) of the sojourn time in State 1, which we denote by Ŝ0).
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The denominator of p12(s, t) can be estimated in the same way. The remaining quantities

involve expectations of particular transformations of the pair (Z, T), E
[
ϕ (Z, T)

]
, which

can not be estimated so simply

p̂LIDA12 (s, t) =
Ê(ϕs,t(Z, T))

Ŝ0(s)
(3.22)

and

p̂ LIDA
22 (s, t) =

Ê(ϕ̃s,t(Z, T))
Ê(ϕ̃s,s(Z, T))

(3.23)

where ϕs,t(u, v) = I(s < u ≤ t, v > t) and ϕ̃s,t(u, v) = I(u ≤ s, v > t) and Ê(ϕs,t(Z, T)) is

the “Kaplan-Meier integral”

Ê(ϕs,t(Z, T)) = ∑
i

Wi ϕs,t(Z̃i, T̃i) (3.24)

where Wi is the Kaplan-Meier weight attached to T̃i when estimating the marginal distri-

bution of T from the
(

T̃i, ∆i

)
’s (equal to minus the jump at T̃i of the Kaplan-Meier esti-

mator of survival of the total time Ŝ). See Meira-Machado, de Uña-Álvarez and Cadarso-

Suárez (2006) [68] for more details.

The methods proposed by Meira-Machado, de Uña-Álvarez and Cadarso-Suárez (2006)

[68] have the drawback of requiring that the support of the censoring distribution con-

tains the support of the lifetime distribution. An assumption that is often not fulfilled in

medical applications due to limitations in the patient’s following-up. To avoid this poten-

tial problem, corrected estimators were proposed by de Uña-Álvarez and Meira-Machado

(2015) [69] for p12(s, t) and p22(s, t):

p̂cLIDA12 (s, t) =
Ŝ0(s)− Ŝ0(t)− Ê(γs,t(Z, T))

Ŝ0(s)
(3.25)

and

p̂cLIDA22 (s, t) = 1− Ê(γ̃s,t(Z, T))
Ŝ(t)− Ŝ0(s)

(3.26)
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where γs,t(u, v) = I(u > s, v ≤ t) and γ̃s,t(u, v) = I(u ≤ s, s < v ≤ t).

All these quantities can be estimated nonparametrically using Kaplan-Meier weights.

3.3.3 Landmark Estimators

Recently, de Uña-Álvarez and Meira-Machado (2015) [69] have used the idea of subsam-

pling to introduce (landmark) estimators of the transition probabilities which do not rely

on the Markov property. The idea of the new methods is to use a procedure based on (dif-

ferences between) Kaplan-Meier estimators derived from a subset of the data consisting

of all subjects observed to be in a given state at a given time. Following the notation intro-

duced in Section 3.1, given the time point s, to estimate p1j(s, t) for j = 1, 2, 3 the landmark

analysis is restricted to the individuals observed in State 1 at time s. For the subpopula-

tion Z > s, the censoring time C is still independent of the pair (Z, T) and, therefore,

Kaplan-Meier-based estimation will be consistent. Similarly, to estimate p2j(s, t), j = 2, 3,

the landmark analysis proceeds from the sample restricted to the individuals observed in

State 2 at time s. Then, we may formally introduce the landmark estimators as follow

p̂ LM
11 (s, t) = Ŝ KM(s)

0 (t) (3.27)

p̂ LM
12 (s, t) = Ŝ KM(s)(t)− Ŝ KM(s)

0 (t) (3.28)

p̂ LM
13 (s, t) = 1− Ŝ KM(s)(t) (3.29)

p̂ LM
22 (s, t) = ŜKM[s](t) (3.30)

p̂ LM
23 (s, t) = 1− Ŝ KM[s](t) (3.31)

where ŜKM(s)
0 and ŜKM(s) are the Kaplan-Meier estimators for the distributions of Z and

T, respectively, but computed from the subsample S1 =
{

i : Z̃i > s
}

; whereas Ŝ KM[s] is

the Kaplan-Meier estimator of the distribution of T but computed from the subsample

S2 =
{

i : Z̃i ≤ s < T̃i

}
.

As we can see, the Kaplan-Meier estimator plays an important role for the landmark

estimators proposed by de Uña-Álvarez and Meira-Machado (2015) [69]. Under our no-

tation, the Kaplan-Meier product-limit estimator of the survival function S(t) = P(T > t)

can be expressed using Kaplan-Meier weights as follows

ŜKM(t) = 1−
n

∑
i=1

Wi I(T̃(i) ≤ t) (3.32)
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where

Wi =
∆[i]

n− i + 1

i−1

∏
j=1

[
1−

∆[j]

n− j + 1

]
(3.33)

is the Kaplan-Meier weight attached to T̃(i).

Similarly, one could introduce the Kaplan-Meier formula based on the (Z̃i, ∆1i)’s for

the distribution of Z.

The subsampling approach combined with the Aalen-Johansen estimate of the state

occupation probabilities was later used by Putter and Spitoni (2018) [71] to introduce the

termed Landmark Aalen-Johansen estimator. The landmark Aalen-Johansen estimators

of the transition probabilities may then be introduced as

p LMAJ
hj (s, t) = π̂LM(s) ∏

s<u≤t

(
I + dΛ̂

LM
(u)
)

(3.34)

with π̂LM(s) a 1× K vector with π̂LM(s) = 1 for the jth element, and other values equal

to 0. Here, the estimator of the cumulative transition intensities, Λ̂LM, is Nelson-Aalen

estimator computed on a landmark data set which selects subjects observed to be in State

h at time s (Putter and Spitoni 2018) [71].

Simulation studies published in the paper by Putter and Spitoni (2018) [71] show that

the landmark Aalen-Johansen estimator (LMAJ) and the landmark estimator (LM) perform

similarly. In fact, the two landmark estimators (LM and LMAJ) of the transition probabilities

p11(s, t), p22(s, t) and p23(s, t) are equivalent.

As a weakness, the landmark estimators proposed by de Uña-Álvarez and Meira-

Machado (2015) [69] and Putter and Spitoni (2018) [71] may provide large standard er-

rors in estimation in some circumstances. This may occur for small sample sizes and/or

large proportion of censored data. In such cases the estimators based on a landmark ap-

proach may result in a wiggly estimator with fewer jump points. A valid approach that

can be used to reduce the variability of these estimators is to consider a modification of

the landmark estimator based on presmoothing (Meira-Machado (2016) [73]; Soutinho,

Meira-Machado and Oliveira (2020) [44]).

3.3.4 Weighted Cumulative Hazard Estimators

In this section we propose new estimators for the transition probabilities p11(s, t), p13(s, t)

and p22(s, t). The estimators are constructed using the cumulative hazard of the total time

given a first time but where each observation has been weighted using the information
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of the first duration. The proposed estimator (WCH - weighted cumulative hazard) for the

transition probability p11(s, t) is given by

p̂ WCH
11 (s, t) = P̂

(
Z > t | Z > s

)
,

= ∏
v∈R1

{1− Λ̂11(dv)}, (3.35)

where Λ11(dv) is the cumulative conditional hazard of Z given Z > s. Assuming that

Z⊥C, Λ11(dv) can be estimated by

Λ̂11(dv) = ∑n
i=1 I(Z̃i > s, Z̃i = v, ∆1i = 1)

∑n
i=1 I(Z̃i > s, Z̃i ≥ v)

and where R1 = {Z̃i : Z̃i ≤ t}.

Estimator (3.35) is equivalent to the estimator proposed by Meira-Machado, de Uña-

Álvarez and Cadarso-Suárez (2006) [68], de Uña-Álvarez and Meira-Machado (2015) [69]

and the so-called Aalen-Johansen estimator (Aalen and Johansen (1978) [61].

Similar ideas can be used to obtain estimators for p13(s, t) and p22(s, t). Note that

p13(s, t) = P(T ≤ t | Z > s) = 1− P(T > t | Z > s). Then,

p̂ WCH
13 (s, t) = 1− P̂

(
T > t | Z > s

)
,

= 1− ∏
v∈R13

{1− Λ̂13(dv)} ∏
v∈R123

{1− Λ̂123(dv)}, (3.36)

where Λ13(dv) is the cumulative conditional hazard of T given Z > s for those individ-

uals going directly into State 3 without visiting State 2; and Λ123(dv) is the cumulative

conditional hazard of T given Z > s for those visiting State 2. Assuming that (Z, T)⊥C,

Λ13(dv) can be estimated by

Λ̂13(dv) = ∑n
i=1 I(Z̃i > s, Z̃i = T̃i, T̃i = v, ∆2i = 1)

∑n
i=1 I(Z̃i > s, T̃i ≥ v)

(3.37)

and where R13 = {T̃i : T̃i ≤ t}; whereas Λ123(dv) can be estimated by

Λ̂123(dv) = ∑n
i=1 I(Z̃i > s, Z̃i < T̃i, T̃i = v, ∆2i = 1)

∑n
i=1 I(Z̃i > s, T̃i ≥ v)

(3.38)

and where R123 = {T̃i : T̃i ≤ t}.
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Then, p12(s, t) can be estimated by p̂ WCH
12 (s, t) = 1− p̂ WCH

11 (s, t)− p̂ WCH
13 (s, t). Note that

estimators of p̂ WCH
1j (s, t) , j = 1, 2 are equivalent to the landmark estimators proposed by

de Uña-Álvarez and Meira-Machado (2015) [69].

Since p22(s, t) = P(Z<s,T>t)
P(Z<s,T>s) =

P(T>t|Z<s)
P(T>s|Z<s) . The key to estimating p22(s, t) is to estimate

P(T > u | Z < s) for u ∈ {s, t}. These quantities can be estimated by

P̃(T > u | Z < s) = ∏
v∈R23

{1− Λ̃23(dv)}, (3.39)

where R23 = {T̃23i : T̃23i ≤ u− Z̃i, Z̃i < T̃i}; and Λ23(dv) can be estimated by

Λ̃23(∆v) = ∑n
i=1 I(Z̃i ≤ s, Z̃i < T̃i, T̃23i = v, ∆2i = 1)/Ĝ(Z̃i + v)

∑n
i=1 I(Z̃i ≤ s, Z̃i < T̃i, T̃23i ≥ v, ∆1i = 1)/Ĝ(Z̃i + v)

. (3.40)

The resultant estimator is labeled as p̂WCH22 (s, t).

Since p22(s, t) = P(T > t|Z < s, T > s), an alternative estimator is given by

p̃WCH22 (s, t) = P̃(T > u | Z < s, T > s) = ∏
v∈R?

23

{1− Λ̃?
23(dv)}, (3.41)

where R?
23 = {T̃i : T̃i ≤ t} and where Λ?

23(dv) can be estimated by

Λ̃?
23(∆v) = ∑n

i=1 I(Z̃i ≤ s, T̃i > s, T̃i = v, ∆2i = 1)/Ĝ(v)

∑n
i=1 I(Z̃i ≤ s, T̃i > s, T̃i ≥ v, ∆1i = 1)/Ĝ(max(Z̃i, v))

. (3.42)

The estimator p̃WCH22 (s, t) is equivalent to the landmark estimator p̂LM22(s, t) proposed by

de Uña-Álvarez and Meira-Machado (2015) [69].

The estimation of the variance is important for inference purposes. Resampling tech-

niques such as bootstrap provide here a practical solution to the problem of variance es-

timation and inference. These methods can be used to construct confidence limits based

on the percentile bootstrap.
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3.4 Simulation study

In this section we investigate the performance of the proposed estimators through sim-

ulations. More specifically, the estimators introduced in Section 3.3 are considered. In

particular we aim to compare the performance of the Aalen-Johansen estimator which

benefits from the assumption of Markovianity on the underlying stochastic process, with

alternative estimators which are free of the Markov condition. The simulation addresses

also the question about the more efficient estimator in different scenarios.

To simulate the data in the irreversible illness-death model, we separately consider the

subjects passing through State 2 at some time, and those who directly go to the absorbing

State 3. For the second subgroup of individuals, times to death without illness are gener-

ated from the hazard function h13(t) = 0.024t. For the first subgroup of individuals, the

successive gap times (Z, T − Z) are simulated using two cause-specific hazard functions,

λ12 and λ23 for each of the events (illness and death). The cause-specific hazard for the

intermediate event was defined as λ12(t) = 0.29
t+1 . For the individuals that experienced the

disease, times to death after the disease were generated using three different hazards:

λ1
23(t, t12) = 0.05

λ2
23(t, t12) =

1
0.25(t12 + 1)0.8

λ3
23(t, t12) = 0.04× log(t + 1)

where t > 0, denotes the time since the start point, and t12 is the transition time from State

1 to State 2.

The use of these three different hazard functions provides three different scenarios.

The first scenario can be considered Markovian since the hazard of death after the disease

was set constant being independent of t and t12. In the two remaining scenarios, the

hazard for death after disease depended on the these times. The second scenario is semi-

Markovian since the process depends not only of the current state, but also how long it

has been in the current state (time refers to time since entering the intermediate state).

The third scenario is non-Markov since the hazard for death after disease depends on the

time since entry in study.
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An independent uniform censoring time C is generated, according to models U [0, 20]

and U [0, 30]. For the Markovian scenario, the first model, presents 19% of censoring on

the first gap time Z, 40% censoring on the total time T and 42% on the second gap time

T − Z, for those individuals who entered in state 2. The second model changes these

censoring levels to 33%, 58% and about 36%, respectively. The first model in the semi-

Markovian scenario, reveals 23% of censoring for Z, 40% for T and 41% for T− Z. Second

model increases these censoring levels to 36%, 49% and 41%, respectively. Finally, in the

non-Markovian scenario, the model U [0, 20] provides 25% of censoring on the first gap

time, 43% on the total time and 41% on the second gap time. Under the model U [0, 30]

censoring increases to 26%, 44% and about 42%, respectively.

For each simulated scenario we consider several different points (s, t) pairs, corre-

sponding to combinations of times 2, 4, 8 and 12 representing the differences between

closer and distant times. Sample sizes n = 100 and n = 250 are considered. In each sim-

ulation, 1000 samples are generated. From these samples we obtained the mean for all

generated data sets. As a measure of efficiency, we took the Mean Squared Error (MSE)

but we also computed the standard deviations (SD) and the Bias.

Tables 3.1 (Markov scenario), 3.2 (semi-Markov scenario) and 3.3 (non-Markov sce-

nario) report the results for transition probability p13(s, t). When one is confident of

the Markov assumption, the Aalen-Johansen is preferred over non-Markovian estimators

since it reports a smaller variance in estimation. This is in agreeing with results reported in

Table 3.1. Results reported in the Tables 3.2 and 3.3 also reveal that the Aalen-Johansen es-

timator (labeled as AJ) might still perform reasonably well in situations where the process

shows only mild deviations from Markovianity. However, when there is strong evidence

that the process is not Markov the use of a non-Markov estimator is preferable due to their

greater accuracy. This can be observed from results reported in Tables 3.2 and 3.3.

All three simulation scenarios reveal that the performance of the methods is poorer at

the right tail. This was expected because for larger values of s and t, the censoring effects

are stronger. The SD decreases with an increase of the sample size and with the decrease

of the censoring percentage, which was also expected.

Results in Tables 3.1, 3.2 and 3.3 reveal a poor performance of the original non-Markov

estimators by Meira-Machado, de Uña-Álvarez and Cadarso-Suárez (2006) [68], referred

to as LIDA estimators.
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The other two non-Markovian methods (the corrected LIDA, labeled as cLIDA, and

the Weighted Cumulative Hazard method, WCH) obtain in all settings a negligible bias

(decreasing as the sample size increases), while the LIDA estimator shows a systematic

bias.

Tables 3.2 and 3.3 show that the Markov-free estimators cLIDA and WCH may behave

much more efficiently than the Aalen-Johansen. This is because of the failure of the

Markov assumption from which the Aalen-Johansen estimator is built. This is more evi-

dent in the semi-Markov scenario, with higher lag times t− s. In these cases, the Aalen-

Johansen show a systematic bias which does not decrease with an increasing sample size.

In these cases the application of the Aalen-Johansen method is not recommended here,

due to possible biases. The poor behavior of the Aalen-Johansen estimator can also be

seen in Figure 3.1, in which we show the boxplots of the estimates of the transition prob-

abilities based on the 1000 Monte Carlo replicates for the four estimators, with different

sample sizes. From these plots it can be seen that the cLIDA and WCH methods are unbi-

ased estimators and confirm the less variability of the Aalen-Johansen estimator. The WCH

method (which in this case is equivalent to the LM method) is the preferred since is the

unbiased method reporting less variability.

TABLE 3.1: Bias and standard deviation (SD) for the three estimators of p13(s, t). Markov
scenario with two sample sizes and two censoring levels.

p̂AJ13(s, t) p̂LIDA13 (s, t) p̂cLIDA13 (s, t) p̂WCH13 (s, t)
bias SD bias SD bias SD bias SD

(s,t)= (2,4)
n=100 C ∼ U[0, 30] <0.0001 00299 0.0345 0.0533 <0.0001 0.0316 <0.0001 0.0316

C ∼ U[0, 20] <0.0001 0.0300 0.0600 0.0552 <0.0001 0.0312 <0.0001 0.0311
n=250 C ∼ U[0, 30] <0.0001 0.0187 0.0335 0.0368 <0.0001 0.0197 <0.0001 0.0197

C ∼ U[0, 20] <0.0001 0.0193 0.0584 0.0383 <0.0001 0.0204 <0.0001 0.0204
(s,t)= (2,8)
n=100 C ∼ U[0, 30] 0.0024 0.0527 0.0659 0.0926 0.0021 0.0567 0.0025 0.0563

C ∼ U[0, 20] 0.0014 0.0594 0.118 0.0907 0.0010 0.0630 <0.0001 0.0627
n=250 C ∼ U[0, 30] <0.0001 0.0340 0.0677 0.0626 <0.0001 0.0363 <0.0001 0.036

C ∼ U[0, 20] <0.0001 0.0375 0.1147 0.0607 <0.0001 0.0406 <0.0001 0.0401
(s,t)= (4,12)
n=100 C ∼ U[0, 30] -0.0039 0.0736 0.0669 0.1034 -0.0029 0.0791 -0.0038 0.0767

C ∼ U[0, 20] -0.0024 0.0824 0.1084 0.1181 -0.0013 0.0911 -0.0014 0.0893
n=250 C ∼ U[0, 30] 0.0011 0.0462 0.0671 0.0733 0.0018 0.0508 0.0017 0.0496

C ∼ U[0, 20] <0.0001 0.0503 0.1132 0.0708 <0.0001 0.0541 <0.0001 0.0533
(s,t)= (8,12)
n=100 C ∼ U[0, 30] -0.0015 0.0816 0.0424 0.103 -0.0031 0.0844 -0.0029 0.0839

C ∼ U[0, 20] -0.0019 0.099 0.0645 0.117 -0.0016 0.1034 -0.0027 0.1012
n=250 C ∼ U[0, 30] <0.0001 0.0529 0.0412 0.0658 <0.0001 0.0551 <0.0001 0.0546

C ∼ U[0, 20] <0.0001 0.0621 0.0615 0.0785 <0.0001 0.0652 <0.0001. 0.0639
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TABLE 3.2: Bias and standard deviation (SD) for the three estimators of p13(s, t). Semi-
Markov scenario with two sample sizes and two censoring levels.

p̂AJ13(s, t) p̂LIDA13 (s, t) p̂cLIDA13 (s, t) p̂WCH13 (s, t)
bias SD bias SD bias SD bias SD

(s,t)= (2,4)
n=100 C ∼ U[0, 30] 0.0085 0.0312 0.0181 0.0488 0.0015 0.0323 0.0016 0.0323

C ∼ U[0, 20] 0.0057 0.0311 0.0333 0.0534 <0.0001 0.0331 <0.0001 0.0331
n=250 C ∼ U[0, 30] 0.0071 0.0197 0.0158 0.0337 <0.0001 0.0202 <0.0001 0.0202

C ∼ U[0, 20] 0.0065 0.0201 0.0333 0.0378 <0.0001 0.0208 <0.0001 0.0208
(s,t)= (2,8)
n=100 C ∼ U[0, 30] 0.0273 0.0579 0.0498 0.087 0.0014 0.0617 0.0014 0.0610

C ∼ U[0, 20] 0.0254 0.0596 0.0863 0.0932 <0.0001 0.0639 <0.0001 0.0634
n=250 C ∼ U[0, 30] 0.0276 0.0353 0.0474 0.0590 0.0019 0.0369 0.0022 0.0370

C ∼ U[0, 20] 0.0257 0.0354 0.0840 0.0629 <0.0001 0.0383 <0.0001 0.0378
(s,t)= (4,12)
n=100 C ∼ U[0, 30] 0.0328 0.0757 0.0761 0.1059 0.0035 0.0798 0.0035 0.0783

C ∼ U[0, 20] 0.0308 0.0841 0.1193 0.1079 0,0028 0.0902 0.0022 0.0883
n=250 C ∼ U[0, 30] 0.0270 0.0459 0.0672 0.0727 -0.0024 0.0498 -0.0024 0.0486

C ∼ U[0, 20] 0.0271 0.0530 0.1106 0.0744 -0.0027 0.0573 -0.0020 0.0562
(s,t)= (8,12)
n=100 C ∼ U[0, 30] 0.0085 0.0842 0.0505 0.1056 <0.0001 0.0872 -0.0012 0.0861

C ∼ U[0, 20] 0.0077 0.0987 0.0738 0.1216 0.0013 0.1040 -0.0013 0.1004
n=250 C ∼ U[0, 30] 0.0095 0.0530 0.0508 0.0673 <0.0001 0.0550 <0.0001 0.0542

C ∼ U[0, 20] 0.0085 0.0596 0.0720 0.0750 -0.0010 0.0620 -0.0011 0.0608

TABLE 3.3: Bias and standard deviation (SD) for the three estimators of p13(s, t). Non-
Markov scenario with three sample sizes and two censoring levels.

p̂AJ13(s, t) p̂LIDA13 (s, t) p̂cLIDA13 (s, t) p̂WCH13 (s, t)
bias SD bias SD bias SD bias SD

(s,t)= (2,4)
n=100 C ∼ U[0, 30] 0.0018 0.0282 0.0147 0.0488 -0.0019 0.0286 -0.0019 0.0285

C ∼ U[0, 20] 0.0035 0.0318 0.0376 0.0563 <0.0001 0.0325 <0.0001 0.0325
n=250 C ∼ U[0, 30] 0.0034 0.0185 0.0123 0.0345 <0.0001 0.0188 <0.0001 0.0188

C ∼ U[0, 20] 0.0030 0.0191 0.0309 0.0413 <0.0001 0.0194 <0.0001 0.0194
(s,t)= (2,8)
n=100 C ∼ U[0, 30] 0.0131 0.0563 0.0252 0.0936 -0.0017 0.0588 -0.0014 0.0586

C ∼ U[0, 20] 0.0119 0.0567 0.0792 0.0925 <0.0001 0.0603 <0.0001 0.0596
n=250 C ∼ U[0, 30] 0.0164 0.0349 0.0257 0.0584 0.0027 0.0367 0.0028 0.0364

C ∼ U[0, 20] 0.0140 0.0365 0.0686 0.0711 <0.0001 0.0392 <0.0001 0.0390
(s,t)= (4,12)
n=100 C ∼ U[0, 30] 0.0176 0.0749 0.0316 0.1103 <0.0001 0.0801 -0.0015 0.0786

C ∼ U[0, 20] 0.0212 0.0832 0.0900 0.1197 0.0045 0.0906 0.0034 0.0869
n=250 C ∼ U[0, 30] 0.0204 0.0468 0.0240 0.0783 <0.0001 0.0506 <0.0001 0.0498

C ∼ U[0, 20] 0.0179 0.0527 0.0815 0.0841 -0.0017 0.0583 -0.0015 0.0567
(s,t)= (8,12)
n=100 C ∼ U[0, 30] 0.0145 0.0814 0.0259 0.1077 0.0039 0.0842 0.0038 0.0835

C ∼ U[0, 20] 0.0060 0.1005 0.0610 0.1246 -0.0038 0.1032 -0.0034 0.1031
n=250 C ∼ U[0, 30] 0.0087 0.0527 0.0189 0.0709 <0.0001 0.0541 <0.0001 0.0539

C ∼ U[0, 20] 0.0114 0.0619 0.0596 0.0815 0.0016 0.0645 0.0017 0.0636

Tables 3.4, 3.5 and 3.6 report the results for five different estimators for the transition

probability p22(s, t). Results reported in Table 3.4 reveal that the Aalen-Johansen estima-

tor is the preferred since it reports unbiased estimates with smaller variance in estimation.

This was expected since the process is Markovian in this scenario. Again, it is important
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FIGURE 3.1: Boxplots of the M = 1000 estimates of the transition probabilities of the p̂AJ12 ,
p̂LIDA12 , p̂cLIDA12 and p̂WCH12 with two different samples sizes for semi-Markovian scenario.

Censoring times were generated from an uniform distribution on [0, 30].

mentioning that this estimator which assumes the process to be Markovian still performs

reasonably well in situations where the process shows only mild deviations from Marko-

vianity. This occurs for example in the semi-Markov scenario with small lag times t− s.

In these cases, the Aalen-Johansen reports estimates with small bias but less variability

and therefore low mean squared errors. As the lag times t− s increase so the bias result-

ing in a clear biased estimator. This behavior is also present in the non-Markov scenario

(Table 3.6). Results shown in Tables 3.5 and 3.6 reveal that when there is strong evidence

that the process is not Markov that the use of a non-Markov estimator is preferable. With

the exception of the LIDA method all the remaining non-Markov methods (cLIDA, LM and

WCH) are valid alternative estimators due to their greater accuracy. Again, the performance

of the LIDA method is poorer even worst than the Aalen-Johansen estimator. Simulation

results reveal that the LIDA estimator is systematically (downward) biased whereas the

three non-Markov methods cLIDA, LM and WCH are asymptotically unbiased. The best per-

formance is attained by the non-Markov methods (cLIDA, LM and WCH) which lead to more

efficient estimation of the transition probabilities. This can be seen in all measures (bias,

standard deviation and mean square error). However, when considering all scenarios
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and all pairs (s, t) neither of the two methods seems to be uniformly best for estimating

p22(s, t). However, the landmark method LM reveals in most cases less variability and

therefore better results (with less mean square errors) than the remaining non-Markov

estimators.

For completeness purposes we show in Figures 3.2, 3.3 and 3.4 the boxplots of the

estimates of the transition probability p22(s, t) based on 1000 Monte Carlo replicates for

the five estimators, with different sample sizes. The boxplots shown in these figures are

in agreement with our findings reported in Table 3.4, 3.5 and 3.6. From these plots it can

be seen that the LIDA estimator of p23(s, t) is systematically (downward) biased and that

the AJ estimator may also lead to biased estimates (but with less variability) under devi-

ations from Markovianity. Under a Markov scenario (Figure 3.2), all estimators but the

LIDA estimator revealed to be unbiased and with a variance that decrease with the sample

size. The AJ estimator is preferable in this case because it provides less variability. When

the multi-state model is not Markov, this is no longer the case. Despite of offering a small

variability, the bias associated to Aalen-Johansen estimator in non-Markov scenarios (Fig-

ures 3.3 and 3.4) makes this approach unappropriated. The methods labeled as LM and

WCH are recommended in these cases.

TABLE 3.4: Bias and standard deviation (SD) for the five estimators of p22(s, t). Markov
scenario with two sample sizes and two censoring levels.

p̂AJ22 (s, t) p̂LIDA22 (s, t) p̂cLIDA22 (s, t) p̂LM22 (s, t) p̂WCH22 (s, t)
bias SD bias SD bias SD bias SD bias SD

(s,t)= (2,4)
n=100 C ∼ U[0, 30] 0.0017 0.0547 -0.0409 0.0960 <0.0001 0.0597 <0.0001 0.0599 <0.0001 0.0598

C ∼ U[0, 20] <0.0001 0.0547 -0.0926 0.1330 -0.0012 0.0598 -0.0014 0.0596 -0.0013 0.0596
n=250 C ∼ U[0, 30] 0.0010 0.0341 -0.0361 0.0552 <0.0001 0.0371 <0.0001 0.0372 <0.0001 0.0372

C ∼ U[0, 20] -0.0012 0.0365 -0.0778 0.0818 <0.0001 0.0410 <0.0001 0.0408 <0.0001 0.0408
(s,t)= (2,8)
n=100 C ∼ U[0, 30] <0.0001 0.0788 -0.1129 0.1626 <0.0001 0.0969 0.0013 0.0962 0.0013 0.0963

C ∼ U[0, 20] <0.0001 0.0812 -0.2364 0.2174 -0.0011 0.1017 -0.0013 0.0993 <0.0001 0.0992
n=250 C ∼ U[0, 30] 0.0030 0.0488 -0.0949 0.0976 0.0033 0.0597 0.0028 0.0592 0.0029 0.0592

C ∼ U[0, 20] -0.0029 0.0526 -0.2143 0.1363 -0.0025 0.0651 -0.0029 0.0634 -0.0028 0.0635
(s,t)= (4,12)
n=100 C ∼ U[0, 30] -0.0015 0.0845 -0.1550 0.1687 <0.0001 0.0981 -0.0016 0.0967 -0.0016 0.0972

C ∼ U[0, 20] 0.0018 0.0958 -0.3451 0.2312 0.0026 0.1119 0.0028 0.1078 0.0017 0.1081
n=250 C ∼ U[0, 30] <0.0001 0.0555 -0.1376 0.1055 0.0021 0.0635 0.0019 0.0622 0.0017 0.0627

C ∼ U[0, 20] -0.0021 0.0589 -0.2968 0.1566 -0.0023 0.0689 -0.0017 0.0668 -0.0019 0.0675
(s,t)= (8,12)
n=100 C ∼ U[0, 30] <0.0001 0.0789 -0.1262 0.1568 -0.0026 0.0821 -0.0028 0.0819 -0.0030 0.0830

C ∼ U[0, 20] -0.0046 0.0952 -0.3220 0.2814 -0.0056 0.0992 -0.0065 0.0979 -0.0084 0.1024
n=250 C ∼ U[0, 30] -0.0018 0.0497 -0.1030 0.0930 -0.0019 0.0513 -0.0018 0.0507 -0.0018 0.0514

C ∼ U[0, 20] <0.0001 0.0578 -0.2594 0.1730 <0.0001 0.0615 <0.0001 0.0605 <0.0001 0.0618
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TABLE 3.5: Bias and standard deviation (SD) for the five estimators of p22(s, t). Semi-
Markov scenario with two sample sizes and two censoring levels.

p̂AJ22 (s, t) p̂LIDA22 (s, t) p̂cLIDA22 (s, t) p̂LM22 (s, t) p̂WCH22 (s, t)
bias SD bias SD bias SD bias SD bias SD

(s,t)= (2,4)
n=100 C ∼ U[0, 30] 0.0207 0.0842 -0.0105 0.1081 -0.0013 0.0989 <0.0001 0.0976 <0.0001 0.098

C ∼ U[0, 20] 0.0191 0.0908 -0.0333 0.1266 <0.0001 0.1047 <0.0001 0.1040 <0.0001 0,1048
n=250 C ∼ U[0, 30] 0.0230 0.0538 -0.0039 0.0668 0.0027 0.0625 0.0033 0.0614 0.0034 0.0620

C ∼ U[0, 20] 0.0186 0.0576 -0.0279 0.0813 -0.0038 0.0677 -0.0037 0.0664 -0.0036 0.0668
(s,t)= (2,8)
n=100 C ∼ U[0, 30] 0.0805 0.0901 -0.0182 0.1388 <0.0001 0.1280 0.0022 0.1207 0.0027 0.1208

C ∼ U[0, 20] 0.0776 0.0948 -0.0704 0.1606 -0.0011 0.1318 0.0000 0.1225 <0.0001 0.1250
n=250 C ∼ U[0, 30] 0.0799 0.0544 -0.0122 0.0858 0.0025 0.0749 0.0042 0.0704 0.0041 0.0712

C ∼ U[0, 20] 0.0794 0.0590 -0.0524 0.1075 <0.0001 0.0839 -0.0010 0.0761 -0.0010 0.0773
(s,t)= (4,12)
n=100 C ∼ U[0, 30] 0.0665 0.1004 -0.0626 0.1498 -0.0017 0.1269 -0.0024 0.1179 -0.0034 0.1216

C ∼ U[0, 20] 0.0732 0.1115 -0.1436 0.1847 0.004 0.1481 0.0058 0.1337 <0.0001 0.1414
n=250 C ∼ U[0, 30] 0.0703 0.0612 -0.0442 0.1000 0.0026 0.0822 0.0026 0.0736 0.0027 0.0759

C ∼ U[0, 20] 0.0714 0.0691 -0.1196 0.1285 0.0011 0.0941 0.0043 0.0822 0.0049 0.0860
(s,t)= (8,12)
n=100 C ∼ U[0, 30] 0.0207 0.1201 -0.0949 0.1845 0.0017 0.1376 0.0027 0.1308 <0.0001 0.1382

C ∼ U[0, 20] 0.0138 0.1381 -0.2551 0.2722 -0.0037 0.1572 -0.0056 0.1484 -0.0136 0.1712
n=250 C ∼ U[0, 30] 0.0189 0.0742 -0.0693 0.1117 0.0018 0.0825 0.0027 0.0791 0.0028 0.0823

C ∼ U[0, 20] 0.0197 0.0893 -0.1973 0.1748 0.0016 0.1031 0.0025 0.0962 -0.0016 0.1052

TABLE 3.6: Bias and standard deviation (SD) for the five estimators of p22(s, t). Non-
Markov scenario with three sample sizes and two censoring levels.

p̂AJ22 (s, t) p̂LIDA22 (s, t) p̂cLIDA22 (s, t) p̂LM22 (s, t) p̂WCH22 (s, t)
bias SD bias SD bias SD bias SD bias SD

(s,t)= (2,4)
n=100 C ∼ U[0, 30] 0.0093 0.0492 -0.0074 0.0661 <0.0001 0.0573 <0.0001 0.0571 <0.0001 0.0576

C ∼ U[0, 20] 0.0058 0.0512 -0.0322 0.0857 -0.0016 0.0586 -0.0018 0.0584 -0.0022 0.0588
n=250 C ∼ U[0, 30] 0.0071 0.0308 -0.0078 0.0408 -0.0011 0.0362 -0.0011 0.0360 -0.0014 0.0362

C ∼ U[0, 20] 0.0082 0.0318 -0.0262 0.0513 <0.0001 0.0373 <0.0001 0.0370 <0.0001 0.0372
(s,t)= (2,8)
n=100 C ∼ U[0, 30] 0.0347 0.0797 -0.0300 0.1260 -0.0026 0.1000 -0.0017 0.0992 -0.0023 0.0996

C ∼ U[0, 20] 0.0334 0.0843 -0.1050 0.1680 0.0033 0.1058 0.0017 0.1050 0.0014 0.1051
n=250 C ∼ U[0, 30] 0.0309 0.0490 -0.0268 0.0781 -0.0030 0.0629 -0.0028 0.0621 -0.0035 0.0624

C ∼ U[0, 20] 0.0307 0.0523 -0.0992 0.1037 -0.0046 0.0663 -0.0045 0.0642 -0.0052 0.0646
(s,t)= (4,12)
n=100 C ∼ U[0, 30] 0.0323 0.0890 -0.0511 0.1340 0.0015 0.1065 <0.0001 0.1026 -0.0025 0.1042

C ∼ U[0, 20] 0.0325 0.1027 -0.1729 0.1922 0.0019 0.1259 0.0021 0.1213 -0.0015 0.1240
n=250 C ∼ U[0, 30] 0.0322 0.0552 -0.0410 0.0871 <0.0001 0.0668 -0.0010 0.0643 -0.0036 0.0648

C ∼ U[0, 20] 0.0387 0.0626 -0.1504 0.1286 0.0064 0.0793 0.0068 0.0746 0.0041 0.0760
(s,t)= (8,12)
n=100 C ∼ U[0, 30] 0.0085 0.0934 -0.0463 0.1270 -0.0035 0.1015 -0.0040 0.0999 -0.0097 0.1030

C ∼ U[0, 20] 0.0145 0.1061 -0.1854 0.2219 0.0032 0.1157 0.0041 0.1125 -0.0046 0.1220
n=250 C ∼ U[0, 30] 0.0115 0.0575 -0.0340 0.0783 <0.0001 0.0619 <0.0001 0.0606 -0.0054 0.0639

C ∼ U[0, 20] 0.0111 0.0689 -0.1534 0.1366 <0.0001 0.0740 <0.0001 0.0727 -0.0067 0.0766
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FIGURE 3.2: Boxplots of the M = 1000 estimates of the transition probabilities of the
p̂AJ22 , p̂LIDA22 , p̂cLIDA22 , p̂LM22 and p̂WCH22 with two different samples sizes for Markovian scenario.

Censoring times were generated from an uniform distribution on [0, 30].
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FIGURE 3.3: Boxplots of the M = 1000 estimates of the transition probabilities of the p̂AJ22 ,
p̂LIDA22 , p̂cLIDA22 , p̂LM22 and p̂WCH22 with two different samples sizes for semi-Markovian scenario.

Censoring times were generated from an uniform distribution on [0, 30].
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FIGURE 3.4: Boxplots of the M = 1000 estimates of the transition probabilities of the p̂AJ22 ,
p̂LIDA22 , p̂cLIDA22 , p̂LM22 and p̂WCH22 with two different samples sizes for non-Markovian scenario.

Censoring times were generated from an uniform distribution on [0, 30].
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3.5 Example of application

Colorectal cancer is one of the most commonly diagnosed cancers worldwide. It is also

the one of most frequent causes of cancer-related death in both men and women. Several

lifestyle-related factors have been linked to colorectal cancer including diet, weight and

exercise. Survival rates for colorectal cancer vary worldwide but they have been associ-

ated to several clinical and pathological factors including age, tumor size, lymph nodes

with detectable cancer, etc.

Surgical resection is the best treatment option for patients with colorectal cancer and

the most powerful tool for assessing prognosis following potentially curative surgery.

In a large percentage of the patients with colorectal cancer, the diagnosis is made at a

sufficiently early stage when all apparent disease tissue can be surgically removed. Un-

fortunately, some of these patients have residual cancer, which leads to recurrence of the

disease and death (in some cases). Cancer patients who have experienced a recurrence are

known to be at a substantially higher risk of mortality. This mortality is higher in cases

of early recurrences. Traditionally, the effect of these covariates is studied using the Cox

proportional hazards model (Cox (1972) [6]) with time-dependent covariates. The analy-

sis of such studies can also be successfully performed using a multi-state model (Putter,

Fiocco and Geskus (2007) [18]; Meira-Machado et al. (2009) [15]).

In this section we re-analyzed data from one of the first successful trials of adjuvant

chemotherapy for colon cancer (Moertel et al. (1990) [74]). In this data set we have a total

of 929 patients from a large clinical trial on Duke’s stage III patients, affected by colon

cancer, that underwent a curative surgery for colorectal cancer. In this study, patients were

followed from the date of cancer diagnosis until censoring or death. A total of 468 patients

developed a recurrence and among these 414 died; 38 patients died without recurrence.

The rest of the patients (423) remained alive and disease-free up to the end of the follow-

up. Cancer recurrence affects the patient’s outcome and can be included as a transient

state in a progressive illness-death model with states ‘alive and disease-free’ (State 1),

‘alive with recurrence’ (State 2) and ‘death’ (State 3).

Besides recurrence, the sojourn time in State 1, the total time of the process and the

corresponding indicator statuses are known for each individual. Additional covariates

such as age, sex, tumor size and lymph nodes with detectable cancer, are also available.

In this chapter we consider early recurrence as recurrence within 1 year after primary

surgery of colorectal cancer. Considering overall survival after recurrence, the median
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survival time in the early recurrence group was 498 days with overall survival rates of

26.6%, 10.8% and 6.3% for 2, 3 and 5 years after surgery. As expected, better results (p-

value < 0.001) were obtained for patients in the late recurrence group (i.e., with a time to

recurrence greater than 1 year after surgery). The median survival time in this group was

1292 days with overall survival rates of 86.7%, 65.4% and 31.3% for 2, 3 and 5 years after

surgery. These results confirm that recurrence has a negative impact in the prognosis and

to a premature recurrence.

Statistical methods for analyzing data in an illness-death multi-state model depend on

the Markov assumption. By ignoring the disease history behavior (e.g., states previously

visited and the transition times among them), these models may carry severe limitations

which can make the model inappropriate. It is a fact that the future health of individ-

uals with an early recurrence may be different from those who have been healthy for a

long time. In addition, the risk of death is known to increase shortly after the recurrence,

which reveals that the length of stay in the recurrence state is relevant for prognosis, thus

invalidating the memoryless property of Markov processes. Accordingly, the Markov as-

sumption can be checked by including covariates depending on the history. This ‘global’

test for Markovianity based on the Cox model (using time to recurrence as a covariate)

reported a coefficient of negative sign for the recurrence time, not revealing a possible

increased risk of death shortly after relapse (p-value = 0.154).

Since several estimators introduced in this chapter are consistent regardless the Markov

condition they can be used to introduce a ‘local’ test for the Markov condition by measur-

ing the discrepancy in the estimates obtained from these estimators to those obtained

using the Aalen-Johansen estimators (only consistent if the process is Markov). Graphical

comparisons of the transition probabilities between the two approaches are reported in

Figure 3.5. This figure depicts the discrepancy between the landmark non-Markovian es-

timator (LM) and the Aalen-Johansen estimator (Markovian), for p12(s, t) and p22(s, t), for

s = 365, s = 730 and s = 1095 (Dij = pLMij (s, t)− pAJij (s, t)). The 95% pointwise confidence

bands are based on simple bootstrap are also shown, revealing clear differences between

the two methods in large intervals for s = 365. In this case, since there exists a deviation

of the plot with respect to the straight line y = 0, one gets some evidence on the lack

of Markovianity of the underlying process beyond one year after surgery. On the other

hand, the plots depicted on the second and third row no not reveal evidence against the

Markov assumption. In summary, these plots reveal some evidence, at least for s = 365,
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that the use of Markov-free estimators such as those proposed in this chapter are more

suited to estimate the transition probabilities p12(s, t), p13(s, t), p22(s, t) and p23(s, t). This

topic of testing the Markov assumption in multi-state models will be more deeply anal-

ysed in Chapter 6 by the introduction of ‘local’ and ‘global’ tests based on the differencies

between AJ and LM estimators.
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FIGURE 3.5: Local graphical test for the Markov condition, for s = 365 (top), s = 730
(middle) and s = 1095 (bottom). Test based on the discrepancy between the Aalen-
Johansen estimator (Markovian) and the Markov-free estimator (LM). Colon cancer data.
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With this example of application we are also interested in illustrating differences be-

tween the estimated transition probabilities from the estimators introduced in Section 3.3.

These quantities can be used to obtain prediction probabilities of future events (e.g., re-

currence and death in cancer studies). In Figure 3.6 we present, as an example, estimated

transition probabilities for p12(s, t) and p22(s, t), with s = 365, s = 730 and s = 1095 (cor-

responding to 1, 2 and 3 years) for the colon cancer data, showing that a choice between

the different methods makes a big difference. As shown in our simulations the estimators

by Meira-Machado, de Uña-Álvarez and Cadarso-Suárez (2006) [68] provide curves that

are almost always below those obtained by the new estimators. This is more clear in the

transition probability p22(s, t) for higher values of s. This is in agreement with our simula-

tion results that suggested a systematic negative bias for the estimator by Meira-Machado,

de Uña-Álvarez and Cadarso-Suárez (2006) [68] (i.e. a downward biased estimator).

Since few events (‘death’) are observed at higher time values, consistency problems are

expected at the right tail of the distribution when using the estimator by Meira-Machado,

de Uña-Álvarez and Cadarso-Suárez (2006) [68]. These features can be seen in all plots

but especially in the figures of the transition probability p22(s, t). While both LM and WCH

estimators decrease smoothly with time the estimator by Meira-Machado, de Uña-Álvarez

and Cadarso-Suárez (2006) [68] shows a sharp decrease to zero.

All plots depicted in right hand side of Figure 3.6 reveal a similar behavior of the LM

and WCH estimators of the transition probability p22(s, t). These plots report the survival

fraction along time, among the individuals in the recurrence state 1 year (Figure 3.6, top),

and 2 years (Figure 3.6, middle) and 3 years (Figure 3.6, bottom) after surgery. They reveal

that patients with an early recurrence have lower survival probabilities. When compar-

ing the two Markov-free methods with the Aalen-Johansen estimator (AJ) one can observe

some differences for s = 365 which are less evident as s increases. These discrepancies

can be explained by the failure of the Markov assumption as shown in Figure 3.5. Sim-

ilarly, differences can also be observed between AJ and WCH estimators for the transition

probability p12(s, t). Summarizing, it becomes clear from this application that, at least

for s = 365, the use of Markov-free estimators such as LM and WCH are preferred over the

Aalen-Johansen estimator.
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FIGURE 3.6: Estimated transition probabilities for p12(s, t) and p22(s, t), s = 365 (top),
s = 730 (middle) and s = 1095 (bottom). Colon cancer data.

3.6 Discussion

There has been a remarkable surge of activity lately on the topic of nonparametric esti-

mation of transition probabilities in multi-state models. Most recent contributions on this

topic are in the context of non-Markov multi-state models since the Aalen-Johansen esti-

mator is still the preferred and standard estimator when one is confident of the Markov as-

sumption. In a recent paper, de Uña-Álvarez and Meira-Machado (2015) [69] has used the
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idea of subsampling to introduce the landmark estimators that are consistent regardless

the Markov condition. In this chapter, we revisit the topic of the nonparametric estima-

tion of the transition probabilities, by introducing competing estimators in a multi-state

system that is not necessarily Markovian and that overcomes the referred assumption on

the censoring support. The new set of estimators are constructed using the cumulative

hazard of the total time given a first time but where each observation has been weighted

using the information of the first duration. One of the proposed estimator is equivalent

to the landmark estimators. To evaluate the performance of all estimators, several sim-

ulation studies were conducted under different data scenarios. Based on these results

recommendations are given as to which estimators to use. Results obtained from several

simulation studies conducted under different data scenarios show that the new method

and the proposals introduced by de Uña-Álvarez and Meira-Machado (2015) [69] are quite

similar providing accurate estimates.

The comparison between estimated transition probabilities was also the basis to in-

troduce a graphical local test for the Markov assumption. Following this approach, new

methods, based on measuring the discrepancy of the Aalen-Johansen estimator which

gives consistent estimators in Markov processes, and recent approaches that do not rely

on this assumption, will be presented in Chapter 6. Our simulation results also show

that the Aalen-Johansen estimator provides biased estimates if the Markov assumption

does not hold. In most of these cases the use of a non-Markov estimator is preferable

due to their greater accuracy. Therefore, one important issue is how to test the Markov

assumption.



Chapter 4

A comparison of Presmoothing

methods in the estimation of

transition probabilities

The estimation of transition probabilities is of major importance in the analysis of sur-

vival data with multiple events. These quantities play an important role in the inference

in multi-state modeling providing in a simple and summarized manner long-term predic-

tions of the process. Recently, de Uña-Álvarez and Meira-Machado (2015) [69] proposed

nonparametric estimators based on subsampling, also known as landmarking, which

have already proved to be more efficient than other nonparametric estimators in case of

strong violation of the Markov condition. However, as the idea behind the landmarking is

to use specific portions of data, when the subsample sizes are reduced or in the presence

of heavily censored data, this may lead to higher variability of the estimates.

To avoid the high variability of the landmark estimators, in this chapter we introduce

estimators based on presmoothing which are obtained by replacing the censoring indi-

cator variables in the classical definitions by values of a regression estimator. Results of

simulation studies confirm the good behavior of the proposed methods. We also illustrate

and compare these new methods to the nonparametric landmark estimator through a real

data set on colon cancer.

The contents of this chapter are mainly based on the paper published in Communica-

tions in Statistics - Simulation and Computation by Soutinho, Meira-Machado and Oliveira

(2020) [44].

55
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4.1 Introduction

The landmark estimators are based on the computation of the so-called occupation proba-

bilities in a subset of individuals that happen to be in a given state at a particular time. Be-

cause of this, since the Kaplan-Meier estimator is a step function with jumps located only

at the uncensored observations, in some cases the computation of the transition proba-

bilities are based on reduced data and usually in the presence of heavily censored data

the accuracy of their estimation might not be acceptable, in particular, at the right tail of

distribution.

To avoid this problem, Meira-Machado (2016) [73] proposed an approach that can

be used to reduce the variability of the landmark estimator. This approach is based on

spline smoothing while the other is based on a preliminary parametric estimation (pres-

moothing) of the probability of censoring. The main idea of presmoothing is that each

censoring indicator is replaced by a smooth fit of a binary regression of the indicator on

observables. The use of presmoothed estimators is a good alternative in these situations,

since they give mass to all the event times, including the censored observations. Success-

ful applications of presmoothed estimators include estimation of the survival function

(Dikta (1998) [65]; Meira-Machado, Sestelo and Gonlçalves (2016) [75]), nonparametric

curve estimation (Cao and Jácome (2004) [76]), regression analysis (de Uña-Álvarez and

Rodrı́guez-Campos (2004) [77]; Jácome and Iglesias (2010) [78]), estimation of the bivari-

ate distribution of censored gap times (de Uña-Álvarez and Amorim (2011) [79]), and the

estimation of the transition probabilities (Amorim, de Uña-Álvarez and Meira-Machado

(2011) [80]). All these references concluded that the presmoothed estimators have im-

proved variance when compared to purely nonparametric estimators.

Following, we review some recent developments on the presmoothed estimation of

the transition probabilities. Specifically, we focus on the choice of the preliminary smooth-

ing function which may be based on a certain parametric family such as logistic, probit,

cauchit; or on a nonparametric regression smoother such as the Nadaraya-Watson ker-

nel estimator (Wand and Jones (1997) [81]). Thus, in Section 4.2 we introduce the pro-

posed presmoothing estimators. The performance of four sets of estimators is investi-

gated through simulations in Section 4.3, while in Section 4.4 the methods are compared

through the analysis of medical data from a controlled clinical trial in liver cirrhosis. Soft-

ware development is presented in 4.5. Main conclusions are reported in Section 4.6.
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4.2 Presmoothing methods

In terms of notation let’s consider the same of Section 3.1, in which the movement of the

individuals through a progressive illness-death model is given by (X(t), t ∈ [0, ∞)), but

now with state space {0, 1, 2}, with the available data represented by (Z̃i, T̃i, ∆1i, ∆i), 1 ≤

i ≤ n, i.i.d. copies of (Z̃, T̃, ∆1, ∆). Under the landmark approach described in 3.3.3, the

presmoothed Kaplan-Meier estimators are obtained by replacing the censoring indicator

variables in the expression of the Kaplan-Meier weights with some smooth fit before the

Kaplan-Meier formula is applied. Thus, the presmoothed Kaplan-Meier estimator of the

survival function of T is given by

ŜPrKM(t) = 1−
n

∑
i=1

W̃i I(T̃(i) ≤ t), (4.1)

where

W̃i =
pn(T̃(i))

n− i + 1

i−1

∏
j=1

1−
pn(T̃(j))

n− j + 1

 , 1 ≤ i ≤ n, (4.2)

and pn(t) stands for an estimator of the binary regression function p(t) = P(∆ = 1 | T̃ =

t), i.e., the conditional probability that the observation at time t is not censored.

We may now formally introduce the presmoothed landmark estimators as follows

p̂ PrLM
00 (s, t) = ŜPrKM(s)

0 (t) (4.3)

p̂ PrLM
01 (s, t) = ŜPrKM(s)(t)− Ŝ PrKM(s)

0 (t) (4.4)

p̂ PrLM
02 (s, t) = 1− ŜPrKM(s)(t) (4.5)

p̂ PrLM
11 (s, t) = Ŝ PrKM[s](t) (4.6)

p̂ PrLM
12 (s, t) = 1− Ŝ PrKM[s](t) (4.7)

where Ŝ PrKM(s)
0 and Ŝ PrKM(s) are the presmoothed Kaplan-Meier estimators for the distri-

butions of Z and T, respectively, but computed from the respective subsamples.



58
STATISTICAL ANALYSIS OF COMPLEX SURVIVAL DATA: NEW CONTRIBUTIONS IN STATISTICAL

INFERENCE, SOFTWARE DEVELOPMENT AND BIOMEDICAL APPLICATIONS

One useful parametric candidate for the binary regression function p(t) belongs to a

parametric family of binary regression curves, such as logit or probit. When the paramet-

ric model specified for p(t) is correct the corresponding semiparametric presmoothed esti-

mator is at least as efficient as the original nonparametric Kaplan-Meier estimator. Impor-

tantly, the validity of a given model for the presmoothing function can be checked graph-

ically or formally, by applying a goodness-of-fit test such as the test proposed by Hosmer

and Lemeshow (2003) [82] for the logistic model or the Kolmogorov-Smirnov type version

of the model-based bootstrap approach described in Dikta, Kvesic and Schmidt (2006)

[83]. This implies that the risk of a misspecified model can be controlled in practice. An

alternative and more flexible approach is to model the binary regression function through

an additive regression model.

Nonparametric presmoothing (Cao et al. (2005) [66]) is useful when there is a clear risk

of a miss-specification of the parametric model. In this case, one may use the Nadaraya-

Watson kernel estimator for p(·) based on the binary responses ∆i with covariates Ti. The

idea is to estimate p(T̃i) by pn(T̃i) where

pn(t) =
∑n

i=1 K
(
(t− Ti)/an

)
∆i

∑n
i=1 K

(
(t− Ti)/an

) (4.8)

and K is a known probability density function (the kernel function) and an is a sequence

of bandwidths. As a drawback, nonparametric regression requires the specification of a

bandwidth for the computation of the smooth fit pn(t). As an decreases, the roughness

of the resulting estimator will increase. When an → 0, then, the presmoothed estimator

coincides in the limit with the classical estimators. On the other hand, as the bandwidth

an increases, oversmoothed estimates will be obtained removing important features of the

underlying structure of the survival function to be estimated.

Different presmoothed estimators are obtained depending on the choice of the prelim-

inary smoothing function. Simulation studies reported in the next section show that in

both cases the presmoothed estimators may be much more efficient than the completely

nonparametric estimator, since they often have less variance while providing smoother

curves with the expected behavior.
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4.3 Simulation studies

In this section, we report results from two simulation studies where the aim is to compare

the finite sample performance of our presmoothed estimators of the transition probabili-

ties. To be specific, we compare the original landmark estimator of de Uña-Álvarez and

Meira-Machado (2015) [69] (labeled as LM) with the semiparametric presmoothed estima-

tor which is obtained through the use of a logistic regression model for the presmoothing

function (labeled as PLM) and the presmoothed estimator based on a nonparametric kernel

regression model (labeled as NP). For completeness purposes, we also included the pres-

moothed estimator which is obtained through the use of a generalized additive logistic

regression model (labeled as GAM).

We first simulated data from a scenario used by Amorim, de Uña-Álvarez and Meira-

Machado (2011) [80], which these authors found to be challenging both in terms of bias

and variance. To be specific, we separately consider the subjects passing through the

intermediate state (State 1, in this chapter) at some time and those who directly go to the

ultimate state (State 2). For the first subgroup of individuals we generated replicates of

(Z, T − Z) according to the bivariate distribution

F12(x, y) = F1(x)F2(y)
[
1 +

{
1− F1(x)

} {
1− F2(y)

}]
(4.9)

with exponential marginal distribution functions with rate parameter 1. For the sec-

ond subgroup of individuals (Z = T), the value of Z is simulated according to an expo-

nential with rate parameter 1. Random censoring was simulated from uniform distribu-

tions U [0, τG] for τG equal to 3 and 4. The model with τG = 4 results in 24% of censoring

on the first gap time Z, and in 47% of censoring on the second gap time T− Z. The model

with τG = 3 increases these censoring levels to 32% and about 57%, respectively. Since

we are assuming correlated times for Z and T− Z, the simulated model does not satisfies

the Markov property. Details of the simulation procedure can be found in Amorim, de

Uña-Álvarez and Meira-Machado (2011) [80].

To summarize the results we fixed the values of (s, t) for four different points, corre-

sponding to combinations of the percentiles 20%, 40%, 60% and 80% of the exponential

marginal distribution functions with rate parameter 1. In each simulation, 1000 samples

were generated with sample sizes 50, 100 and 250. As a measure of efficiency, we took the
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Mean Squared Error (MSE) but we also computed the standard deviations (SD) and the

Bias for each point (s, t).

The performance of the empirical transition probabilities p̂ LM
ij (s, t),

p̂ PLM
ij (s, t), p̂ GAM

ij (s, t) and p̂ NP
ij (s, t) in the simulations are summarized in Table 4.1. The

semiparametric presmoothing (labeled as PLM) requires the estimation of the binary re-

gression functions, such as p0n(t) = P(∆1 = 1|Z̃ = t) and p1n(t) = P(∆ = 1|T̃ = t), to

presmooth the Kaplan-Meier estimators Ŝ0(t) and Ŝ(t), respectively. After some algebra,

it is seen that the function p0n(t) is written as (τG − t) / (τG − t + 1). The binary function

p1n(t), for those individuals that observe a transition to State 1, is given by τG/
(
1 + η(t)

)
,

where η(t) = λG(t)/λT(t), and where τG(t) = 1/(τG − t) is the hazard rate of the censor-

ing variable and

λT(t) =
(
−e−t (4− 2t) + e−2t (8 + 4t)

)
/
(

e−t (2t− 2) + e−2t (3 + 2t)
)

(4.10)

is the hazard rate of T under restriction Z̃ < T̃. Plots for these functions shown in Fig-

ure 4.1 reveal that they are monotonous and so they can be adequately estimated by lo-

gistic regression.

FIGURE 4.1: Theoretical characteristics of the binary regression functions p0n(t) (letf) and
p1n(t) (right) for censoring times uniformly distributed between 0 and 4.

In our simulations we have used the logistic regression models pn(t; β) = 1/(1 +

exp(β0 + β1t)). The β parameters in model p0n(·; β) were estimated by maximizing of

the conditional likelihood of the ∆1’s given Z̃; and via maximization of the conditional

likelihood of the ∆’s given T̃, in model p1n(·; β). The presmoothing labeled as GAM was

implemented by fitting a generalized additive logistic model through the mgcv R package
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(Wood (2019) [84]). To compute the transition probabilities with a nonparametric pres-

moothing we have used the plug-in bandwidth selector of Cao et al. [66] and biweight

kernels. As would be expected, results reported in this table reveal that the estimation of

the transition probabilities is performed with less accuracy as s and t grow. This behavior

was expected since the performance of all methods in lifetime data is usually poorer at

the right tail where the censoring effects are stronger. At these points the SD is in most

cases larger. The SD decreases with an increase in the sample size and with a decrease of

the censoring percentage as usual. All methods obtain in all settings a low bias. It can also

be seen that the SD clearly dominates the performance of the proposed estimators in most

the cases revealing a clear advantage of the presmoothed estimators when compared with

the unsmoothed landmark estimators (labeled as LM). This can be observed by the relative

efficiency between the unsmoothed landmark estimator and the three presmoothed esti-

mators that was measured by the ratio between their corresponding MSEs. In almost all

cases, the use of presmoothing leads to estimators with less SD and less MSE.

Because of space limitation, Table 4.1 does not report the results for transition prob-

ability p̂00(s, t). However, the behavior of the estimators for this transition can be seen

in Figures 4.2 and 4.3 through the boxplots of the mean squared errors based on the 1000

Monte Carlo replicates for the four estimators, with different sample sizes and two censor-

ing levels. For completeness purposes we decided to show the plots for three transitions

and different fixed values of (s, t). The boxplots shown in these figures reveal some results

which are in agreement with our findings reported in Table 4.1. These plots confirm the

less variability of the presmoothed estimators. Results shown in Table 4.1 and Figures 4.2

and 4.3 suggest that the use of presmoothing leads to better results for all transition prob-

abilities while neither one of the three presmoothed estimators (PLM, GAM and NP) seems to

be uniformly the best.

While reducing the variance, presmoothing may introduce some bias in estimation.

Simulation results reported in Table 4.1 serve to illustrate this issue too. When the para-

metric model specified for the presmoothing function is incorrect, the corresponding semi-

parametric estimator may lose efficiency, providing estimators with a large bias. How-

ever, the validity of a given parametric model for presmoothing can be checked by ap-

plying a goodness-of-fit test such as the test proposed by Hosmer and Lemeshow (2003)

[82]. We have conducted simulation studies to evaluate the capability of the Hosmer and

Lemeshow goodness-of-fit test to detect deviations from the logistic regression model.
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Results (not reported here) suggest small deviations in this scenario. In most cases the

test was not able to reject the logistic model. Though the simulated scenario seems to be

favorable to the estimator based on a parametric preliminary smoothing, the estimator

based on nonparametric presmoothing is competitive, attaining better results (with less

variance and less mean squared errors) in a large number of points.

To assess the effect of a misspecification of the logistic regression model in the estima-

tion of the transition probabilities through the use of parametric presmoothing methods,

a second simulation study was performed. In this scenario, data were generated accord-

ing to the progressive three-state model. This model can be viewed as a particular case

of the illness-death model where no transitions are observed on disease-free mortality

transition. The vector of gap times (Z, T − Z) is simulated as follows. The first gap time

Z is simulated according to a mixture of two lognormal distributions, LogN(0, 3) and

LogN(3, 0.2), with equal probability. Given Z = x, the second gap time, T12 = T − Z, is

drawn from a Lognormal distribution with mean log(x)/2 and standard deviation equal

to 0.2. This scenario does not follow the Markov assumption since the hazard for the sec-

ond gap time depends on the time to progression to the intermediate state. The censoring

time C was independently generated following a uniform distribution U[10, 30]. Note

that under this scenario, censored observations are expected to be concentrated near the

center of the distribution and therefore revealing a misspecification of the fitted logistic

regression model.

Results shown in Table 4.2 reveal the impact of a misspecification of the fitted logistic

regression model in the estimation of the transition probabilities, leading to estimators

with increased bias, in some points, and higher values for the MSE. In such cases the use

of an estimator based on nonparametric presmoothing is preferable.
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TABLE 4.1: Bias and standard deviation (SD) for estimators of pij(s, t). The relative MSEs
are also given. Scenario 1: illness-death model with correlated exponential gap times.

p̂LM01 (s, t) p̂PLM01 (s, t) p̂NP01 (s, t) p̂GAM01 (s, t) Relative MSE
bias (SD) bias (SD) bias (SD) bias (SD) LM/PLM LM/NP LM/GAM

(s,t)=(0.2231,0.5108)
n C
50 U[0, 4] 0.0001 (0.0585) -0.0074 (0.0521) -0.0079 (0.0499) -0.0039 (0.0543) 1.2333 1.3405 1.1516

U[0, 3] 0.0024 (0.0593) -0.0063 (0.0515) -0.0075 (0.0480) 0.0007 (0.0531) 1.3039 1.4922 1.2464
100 U[0, 4] -0.0015 (0.0411) -0.0089 (0.0367) -0.0092 (0.0355) -0.0045 (0.0377) 1.1896 1.2575 1.1770

U[0, 3] 0.0010 (0.0424) -0.0074 (0.0360) -0.0084 (0.0350) -0.0030 (0.0387) 1.3285 1.3870 1.1916
250 U[0, 4] 0.0011 (0.0247) -0.0063 (0.0219) -0.0065 (0.0215) -0.0019(0.0225) 1.1850 1.2175 1.2032

U[0, 3] 0.0007 (0.0265) -0.0068 (0.0226) -0.0081 (0.0226) -0.0020 (0.0238) 1.2597 1.2252 1.2329
(s,t)=(0.2231,0.9163)

n C
50 U[0, 4] 0.0012 (0.0746) -0.0027 (0.0660) 0.0003 (0.0644) < 0.0001 (0.0682) 1.2777 1.3446 1.1974

U[0, 3] 0.0031(0.0751) -0.0009(0.0655) 0.0009(0.0641) 0.0012(0.0693) 1.3189 1.3760 1.1778
100 U[0, 4] -0.0009 (0.0526) -0.0058 (0.0465) -0.0022 (0.0463) -0.0019 (0.0477) 1.2582 1.2848 1.2130

U[0, 3] 0.0018 (0.0539) -0.0017 (0.0460) 0.0027 (0.0466) 0.0008 (0.0489) 1.3722 1.3377 1.2196
250 U[0, 4] 0.0016 (0.0324) -0.0029 (0.0288) 0.0012 (0.0293) 0.0011 (0.0296) 1.2532 1.2281 1.1984

U[0, 3] -0.0002 (0.0336) -0.0033 (0.0287) 0.0011 (0.0300) -0.0002 (0.0301) 1.3540 1.2482 1.2479
(s,t)=(0.5108,1.6094)

n C
50 U[0, 4] 0.0007( 0.0988) 0.0018 (0.0870) 0.0064 (0.0880) 0.0008 (0.0919) 1.2866 1.2539 1.1541

U[0, 3] 0.0018 (0.1112) 0.0079 (0.9390) 0.0130 (0.0959) -0.0013 (0.0987) 1.3920 1.3214 1.2682
100 U[0, 4] -0.003 (0.0709) -0.0029 (0.0620) 0.0042 (0.0634) -0.0030 (0.0649) 1.3101 1.2493 1.1931

U[0, 3] 0.0040 (0.0756) 0.0070 (0.0640) 0.0147 (0.0665) 0.0046 (0.0680) 1.3827 1.2369 1.2335
250 U[0, 4] <0.0001 (0.0458) <0.0001 (0.0398) 0.0070 (0.0410) 0.0005 (0.0416) 1.3271 1.2141 1.2133

U[0, 3] -0.0002 (0.0485) 0.0027 (0.0394) 0.0109 (0.0424) 0.0005 (0.0425) 1.5079 1.2224 1.2975
(s,t)=(0.9163,1.6094)

n C
50 U[0, 4] 0.0041 (0.1332) -0.0013 (0.1201) -0.0016 (0.1178) -0.0006 (0.1199) 1.2304 1.2801 1.2347

U[0, 3] -0.0016 (0.1422) -0.0042 (0.1279) -0.0095 (0.1273) -0.0182 (0.1254) 1.2345 1.2428 1.2643
100 U[0, 4] -0.0043 (0.0848) -0.011 (0.0760) -0.0082 (0.0766) -0.0075 (0.0783) 1.2226 1.2152 1.1629

U[0, 3] -0.0020 (0.1014) -0.0027 (0.0872) -0.0002 (0.0893 -0.0069 (0.0882) 1.3507 1.2906 1.3134
250 U[0, 4] -0.0014 (0.0550) -0.0070 (0.0493) -0.0046 (0.0487) -0.0032 (0.0503) 1.2230 1.2666 1.1933

U[0, 3] -0.0025 (0.0586) -0.0044 (0.0507) -0.0011 (0.0530) -0.0030 (0.0532) 1.3314 1.2272 1.2132
p̂LM12 (s, t) p̂PLM12 (s, t) p̂NP12 (s, t) p̂GAM12 (s, t) LM/PLM LM/NP LM/GAM

(s,t)=(0.2231,0.5108)
n C
50 U[0, 4] -0.0192 (0.2470) -0.0218 (0.2452) -0.0026 (0.2189) 0.0219 (0.1982) 1.0124 1.2812 1.5505

U[0, 3] -0.0087 (0.2427) -0.0163 (0.2404) 0.0217 (0.2124) 0.0559 (0.1830) 1.0159 1.2941 1.6226
100 U[0, 4] -0.0063 (0.1666) -0.0112 (0.1655) -0.0066 (0.1657) -0.0006 (0.1592) 1.0096 1.0113 1.0968

U[0, 3] -0.0018 (0.1636) -0.0063 (0.1619) -0.0016 (0.1594) 0.0086 (0.1503) 1.0186 1.0537 1.1809
250 U[0, 4] 0.0046 (0.0975) 0.0025 (0.0971) -0.0016 (0.0968) 0.0030 (0.0974) 1.0082 1.0164 1.0016

U[0, 3] -0.0004 (0.1036) -0.0004 (0.0998) -0.0048 (0.0986) -0.0007 (0.1012) 1.0783 1.1025 1.0477
(s,t)=(0.2231,0.9163)

n C
50 U[0, 4] -0.0026 (0.2291) -0.0082 (0.2250) 0.0124 (0.1918) 0.0401 (0.1590) 1.0357 1.4215 1.9630

U[0, 3] 0.0035 (0.2389) -0.0137 (0.2458) 0.0475 (0.1903) 0.0579 (0.1558) 0.9416 1.4848 2.0796
100 U[0, 4] -0.0003 (0.1561) -0.0013 (0.1513) 0.0032 (0.1526) 0.0109 (0.1412) 1.0645 1.0457 1.2155

U[0, 3] -0.0005 (0.1624) -0.0039 (0.1541) -0.0016 (0.1567) 0.0084 (0.1437) 1.1097 1.0738 1.2728
250 U[0, 4] 0.0026 (0.0988) 0.0029 (0.0965) -0.0016 (0.0991) 0.0019 (0.0976) 1.0476 0.9941 1.0249

U[0, 3] -0.0021 (0.0991) -0.0031 (0.0958) -0.0048 (0.0975) -0.0038 (0.0970) 1.0693 1.0304 1.0420
(s,t)=(0.5108,1.6094)

n C
50 U[0, 4] -0.0064 (0.1801) -0.0120 (0.1686) 0.0020 (0.1517) 0.0212 (0.1378) 1.1366 1.4113 1.6733

U[0, 3] -0.0182 (0.1910) -0.0412 (0.1997) 0.0028 (0.1574) 0.0442 (0.1290) 0.8852 1.4862 1.9847
100 U[0, 4] 0.0013 (0.1253) -0.0032 (0.1179) 0.0012 (0.1188) 0.0004 (0.1174) 1.1280 1.1115 1.1394

U[0, 3] -0.0041 (0.1332) -0.0158 (0.1218) -0.0050 (0.1217) -0.0042 (0.1190) 1.1763 1.1979 1.2525
250 U[0, 4] 0.0002 (0.0768) -0.0019 (0.0731) -0.0019 (0.0754) -0.0019 (0.0739) 1.1047 1.0376 1.0800

U[0, 3] -0.0018 (0.0845) -0.0076 (0.0786) -0.0012 (0.0786) -0.0061 (0.0801) 1.1470 1.1558 1.1058
(s,t)=(0.9163,1.6094)

n C
50 U[0, 4] 0.0011 (0.1953) -0.0020 (0.1908) 0.0076 (0.1784) 0.0326 (0.1529) 1.0485 1.1968 1.5640

U[0, 3] -0.0002 (0.2146) -0.0135 (0.2114) 0.0144 (0.1921) 0.1023 (0.1438) 1.0263 1.2414 1.4827
100 U[0, 4] 0.0007 (0.1412) -0.0001 (0.1360) -0.0057 (0.1409) 0.0028 (0.1366) 1.0782 1.0026 1.0675

U[0, 3] -0.0040 (0.1533) -0.0110 (0.1462) -0.0154 (0.1437) 0.0161 (0.1325) 1.0947 1.1277 1.3219
250 U[0, 4] -0.0017 (0.0856) -0.0019 (0.0815) -0.0095 (0.0819) -0.0025 (0.0822) 1.1031 1.0788 1.0854

U[0, 3] -0.0036 (0.0928) -0.0045 (0.0858) -0.0110 (0.0886) -0.0044 (0.0891) 1.1696 1.0821 1.0846
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TABLE 4.2: Bias and standard deviation (SD) for estimators of pij(s, t). The relative MSEs
are also given. Scenario 2: progressive three-state model.

p̂LM01(s, t) p̂PLM01 (s, t) p̂NP01(s, t) p̂GAM01 (s, t) Relative MSE
bias (SD) bias (SD) bias (SD) bias (SD) LM/PLM LM/NP LM/GAM

(s,t)=(8,10)
n
100 -0.0004 (0.0190) -0.0140 (0.0081) -0.0127 (0.0088) -0.0079 (0.0150) 1.3722 1.5101 1.2463
250 0.0004 (0.0123) -0.0144 (0.0049) -0.0137 (0.0054) -0.0109 (0.0092) 0.6512 0.6962 0.7344
500 -0.0002 (0.0086) -0.0147 (0.0034) -0.0144 (0.0036) -0.0115 (0.0065) 0.3334 0.3464 0.4382

(s,t)=(10,14)
n
100 0.0002 (0.0323) 0.0161 (0.0253) 0.0178 (0.0266) 0.0131 (0.0285) 1.1609 1.0168 1.0599
250 0.0001 (0.0204) 0.0175 (0.0158) 0.0108 (0.0181) 0.0038 (0.0185) 0.7506 0.9400 1.1755
500 0.0001 (0.0151) 0.0178 (0.0113) 0.0064 (0.0133) 0.0032 (0.0137) 0.5159 1.0502 1.1486

(s,t)=(12,18)
n
100 0.0010 (0.0761) -0.0163 (0.0615) -0.0082 (0.0601) 0.0273 (0.0617) 1.4298 1.5724 1.2729
250 0.0013 (0.0472) -0.0154 (0.0380) -0.0069 (0.0414) -0.0025 (0.0437) 1.3246 1.2631 1.1653
500 0.0010 (0.0329) -0.0154 (0.0262) -0.0042 (0.0301) -0.0017 (0.0305) 1.1702 1.1725 1.1626

(s,t)=(16,18)
n
100 0.0013 (0.0712) 0.0086 (0.0635) 0.0210 (0.0598) 0.0703 (0.0638) 1.2339 1.2644 05793
250 0.0007 (0.0423) 0.0109 (0.0376) 0.0083 (0.0365) 0.0153 (0.0378) 1.1682 1.2732 1.0733
500 0.0015 (0.0309) 0.0122 (0.0271) 0.0103 (0.0261) 0.0056 (0.0286) 1.0841 1.2152 1.1281

p̂LM12(s, t) p̂PLM12 (s, t) p̂NP12(s, t) p̂GAM12 (s, t) LM/PLM LM/NP LM/GAM
(s,t)=(8,10)

n
100 0.0109 (0.3476) 0.0099 (0.3483) -0.0091 (0.2273) 0.0245 (0.2458) 0.9961 2.3404 2.1752
250 0.0068 (0.2161) 0.0045 (0.2172) -0.0008 (0.1872) 0.0144 (0.1687) 0.9905 1.3348 1.6334
500 0.0033 (0.1362) -0.0007 (0.1383) 0.0027 (0.1368) 0.0023 (0.1346) 0.9700 0.9913 1.0240

(s,t)=(10,14)
n
100 -0.0060 (0.2852) -0.0089 (0.2815) -0.0096 (0.1909) -0.0201 (0.0480) 1.0256 2.2333 4.1961
250 0.0030 (0.1852) -0.0016 (0.1764) 0.0074 (0.1499) 0.0039 (0.1344) 1.1027 1.5240 1.9011
500 0.0029 (0.1272) 0.0017 (0.1211) -0.0008 (0.1244) 0.0022 (0.1196) 1.1033 1.0462 1.1301

(s,t)=(12,18)
n
100 0.0141 (0.1786) 0.0077 (0.1792) 0.0149 (0.1339) -0.2905 (0.1001) 0.9980 1.8120 0.3781
250 -0.0120 (0.1626) -0.0247 (0.1488) -0.0106 (0.1282) 0.0107 (0.0993) 1.1684 1.6103 2.7210
500 -0.0053 (0.1141) -0.0135 (0.1090) -0.0047 (0.0903) -0.0006 (0.0873) 1.0823 1.6001 1.7157

(s,t)=(16,18)
n
100 0.0027 (0.1518) -0.0034 (0.1423) 0.0220 (0.1137) 0.0019 (0.1042) 1.1382 1.7275 2.3236
250 0.0038 (0.0863) -0.0020 (0.0808) 0.0182 (0.0831) 0.0053 (0.0813) 1.1413 1.0312 1.1256
500 0.0023 (0.0559) -0.0016 (0.0475) 0.0147 (0.0476) -0.0008 (0.0490) 1.3836 1.2611 1.3046
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FIGURE 4.2: Boxplots of the M = 1000 estimates of the transition probabilities. Hori-
zontal solid red line correspond to the true value of the transition probability. Censoring

times uniformly distributed between 0 and 3.
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FIGURE 4.3: Boxplots of the M = 1000 estimates of the transition probabilities. Hori-
zontal solid red line correspond to the true value of the transition probability. Censoring

times uniformly distributed between 0 and 4.
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4.4 Real data application

For illustration purposes, we apply the proposed methods of Section 4.2 to data based on

a case study presented by the PROVA study group which aimed to evaluate the effect of

propranolol and sclerotherapy on risk of first variceal bleeding and survival in patients

with liver cirrhosis. The trial included 286 patients in whom cirrhosis has been diagnosed

in the past and where endoscopy had shown oesophageal varices but who had not yet

experienced a transfusion-requiring bleeding from the varices (PROVA (1991) [85]). From

the 286 patients enrolled in the trial, 50 had a bleeding episode and among these 29 died.

Forty six patients died without experienced variceal bleeding. The rest of the patients

(190) remained alive and without variceal bleeding up to the end of the follow-up. The

patients were observed for up to 42 months, with an average of 15 months. For each

patient, the two event times (time to variceal bleeding and time to death) and the corre-

sponding indicator statuses are recorded. The process can be modeled using a progressive

illness-death model with transient states ‘alive and without variceal bleeding’, ‘alive with

variceal bleeding’, and an absorbing state ‘dead’.

The data set for the PROVA study group is of small size with a high censoring percent-

age, near to 74%. The time alive and without variceal bleeding, Z, is more often censored

in the time interval between 1 and 4 years. We have only 11 individuals that experienced

variceal bleeding one year after enrollment in the study. A few (15) complete (i.e. un-

censored) observations for patients with a survival time greater than one year that died

without experiencing variceal bleeding. At 90 days (3 months) we have 260 individuals

alive and without variceal bleeding and only 11 individuals alive with variceal bleeding.

From those 11 that experiencing variceal bleeding only 3 died leading to 73% of censored

observations. Similarly, at 1 year after enrollment, we have 21 individuals alive with

variceal bleeding and a few 5 complete observations (76% censoring). This means that it

is expected that any estimator for the transition probabilities will behave poorly in these

cases. Presmoothing will help to improve the estimation in these situations, in particular

in the right tail of the distributions of Z and T (i.e., for larger times for being alive and

without variceal bleeding, and also for larger values of the time since variceal bleeding,

T − Z).

It is of practical interest to determine whether the Markov condition holds within a

particular data set in order to determine which method is more appropriate to estimate

the transition probabilities. The Markov condition may by checked by studying the effect
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of the time of variceal bleeding on the mortality after bleeding. Results from fitting this

covariate in a Cox model reported a significant coefficient (p-value = 0.0003; regression

coefficient: 0.0061) for the bleeding time revealing the failure of the Markov condition for

the PROVA data set. These findings are in agreement with those obtained by Andersen

and Esbjerj and Sorensen (2000) [20] and Andersen and Keiding (2002) [17].

In cases like this one, where there is strong evidence that the process does not verifies

the Markov property, the landmark estimators can be preferable due to their greater ac-

curacy. Since the construction of these estimators is based on subsamples of the complete

data, this will generally lead to small sample sizes and usually to heavily censored data

as shown in Figure 4.4. This fact is more evident for the individuals with variceal bleed-

ing (observed in State 1) but it is also present for those in the alive and without bleeding

state (State 0) for higher landmarking times. To avoid this problem, a valid approach

is to consider a modification of the landmark estimator based on presmoothing. Here

we present some figures to illustrate the estimators obtained by replacing the censoring

indicator variables in the classical definitions by values of several regression estimators.

FIGURE 4.4: Number of individuals observed in State 0 and State 1 along time. PROVA
data.

Figure 4.5 shows estimated curves of the transition probabilities p̂hj(s, t), for fixed val-

ues of s = 90 and s = 365 days along time t. The estimators labeled as ‘Unsmoothed’

correspond to the original unsmoothed landmark estimator proposed by de Uña-Álvarez

and Meira-Machado (2015) [69] whereas the estimator labeled as ‘logit’ correspond to

the semiparametric presmoothed estimator introduced in Section 4.2 with a preliminary
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presmoothing based on a parametric binomial logistic family. For completeness pur-

poses we also included semiparametric presmoothed estimators based on a different bi-

nomial family such as ‘probit’ or ‘cauchit’. We also considered estimators with a prelim-

inary presmoothing function based on an additive logistic model (labeled in Figure 4.5

as ‘logit.gam’). Finally, the estimator labeled as ‘nonparametric’ correspond to the pres-

moothed estimators with a preliminary presmoothing based on a nonparametric regres-

sion model using the Nadaraya-Watson kernel estimator. None of these methods require

the process to be Markov.

As expected, all estimators report roughly the same estimates for lower values of t

whereas some deviations are observed for higher values of t. It can also be seen that the

original unsmoothed landmark estimator (de Uña-Álvarez and Meira-Machado (2015)

[69]) reveals higher variability on the right hand side. Plots for the transition probabilities

p̂00(s, t) (first row) and p̂11(s, t) (last row), s = 90 and 365, report the survival fraction

along time, among the individuals ‘alive and without variceal bleeding’ and among those

with a ‘bleeding episode’. Results for the estimated curves for p̂00(s, t), s = 90 and 365,

reveal also that the choice of the family function for the regression estimator can lead to

major differences in the estimates. Some differences can also be observed in the right tail

of the estimated transition probabilities p̂01(s, t) (second row) and p̂02(s, t) (third row).

Plots for p̂02(s, t), report one minus the the survival fraction along time, among the in-

dividuals alive and without variceal bleeding at time s. Plots for p̂01(s, t), allow for an

inspection along time of the probability of being ‘alive with bleeding episode’ for the

individuals who are without variceal bleeding at time s. Since the ‘bleeding’ state is tran-

sient, these curves are first increasing and then decreasing. Major differences are observed

in the right tail when comparing the methods based on a parametric presmoothing with

their counterparts (‘unsmoothed’ and ‘nonparametric’) for the estimation of the transi-

tion probabilities. This can be possibly explained by a misspecification of the parametric

model. The logistic model is likely the most common statistical model that is usually

taken to apply to a binary dependent variable. The validity of a logistic model for the

presmoothing function can be checked by applying a goodness-of-fit test such as the test

proposed by Hosmer and Lemeshow (2003) [82]. Results obtained for all landmarking

times (i.e., s) are depicted in Figure 4.6, revealed that the test was able to reject the logistic

model when used to estimate the transition probabilities p̂0j(90, t). Note that the choice

of this parametric model is a common choice for a parametric presmoothing. However,
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curves depicted in Figure 4.5 reveal that the presmoothed landmark estimators with a pre-

liminary presmoothing based on a nonparametric regression provides in all cases curves

with the expected behavior, similar to those obtained from the nonparametric original

landmark estimators (labeled as ‘unsmoothed’) but with a better description of the tail

behavior. Since there is a clear risk of a misspecification of the parametric model, the use

of estimators based on nonparametric presmoothing as those labeled with ‘nonparamet-

ric’ are preferable.

FIGURE 4.5: Estimated transition probabilities for s = 90 and s = 365. PROVA data.
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FIGURE 4.6: p-values for the Hosmer and Lemeshow test for logistic regression model
for all possible landmarking times. PROVA data.

4.5 Software development

To provide the biomedical researchers with a comprehensive and easy-to-use tool for

obtaining estimates of the transition probabilities, we developed an R package (R Core

Team (2018) [86]) called presmTP (Soutinho, Meira-Machado and Oliveira (2019) [87]). The

main function presmTP can be used to calculate the estimated transition probabilities from

the unsmoothed landmark estimators but presmoothed estimates can also be obtained

through the use of a parametric family of binary regression curves, such as logit, pro-

bit or cauchit. The additive logistic regression model and nonparametric regression are

also alternatives implemented in function presmTP. The package dependencies include

the survPresmooth package (López-de Ullibarri and Jácome (2013) [88]) and the mgcv

package (Wood (2019) [84]). presmTP package (version 1.1.0) is available at the CRAN

repository at https://cran.r-project.org/web/packages/presmTP. As a supplemen-

tary material, in Section A.2, we present the functions that comprise the R package

4.6 Discussion

Several recent contributions for the estimation of the transition probabilities in the con-

text of multi-state processes that do not satisfy the Markov property have been reported.

Many of these contributions were made for the illness-death model. Recently, the prob-

lem of estimating the transition probabilities in illness-death model has been reviewed,

https://cran.r-project.org/web/packages/presmTP
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and new (landmark) estimators have been proposed which are built by considering spe-

cific subsets of individuals. As a weakness, the proposed estimators may provide large

standard errors in estimation.

In this chapter, the relative performance of several presmoothed landmark estimators

for the transition probabilities was investigated through simulations. Results suggest that

the use of presmoothing techniques can lead to competitive estimators that may outper-

form the original landmark estimators providing estimators with less variability. It is

worth mentioning that presmoothing can introduce some bias in estimation while reduc-

ing the variance. This bias component is larger when there is some misspecification in

the chosen parametric model. The risk of introducing a large bias through a misspeci-

fied model can be controlled in practice by testing the validity of the model applying a

goodness-of-fit test. Nonparametric presmoothing is useful when there is no parametric

candidate for the presmoothing function.



Chapter 5

Joint models of longitudinal and

multistate survival data: estimation

of the conditional transition

probabilities

The topic of joint modeling of longitudinal and survival data has received remarkable

attention in recent years. In cancer studies for example, these models can be used to as-

sess the impact that a longitudinal marker has on the time to death or relapse. The goal

of this chapter is to introduce feasible estimation methods for the transition probabilities

conditionally on covariates observed with repeated measures combining existing meth-

ods for joint modeling of longitudinal and survival data with the landmark landmark

approach. This way, it is possible to extend to time-dependent covariates for each indi-

vidual so that the trajectory of the longitudinal outcomes are included in the regression

models. From the application to a data set we have confirmed that the proposed joint

modeling landmark estimators have good small sample properties and are more efficient

than competing estimators that do not take in consideration all information provided by

the longitudinal measures of the covariate.

This chapter is partially based on Soutinho, Meira-Machado and Oliveira (2020) [89]

published in 35th International Workshop on Statistical Modelling (IWSM2020).

73
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5.1 Introduction

In medical studies, besides studying time-to-event, one main goal is to evaluate the im-

pact of a set of repeated measures as time-dependent covariates on the transition inten-

sities. These longitudinal measures involve collection of data at different time points for

each study subject which are characterized by the dependence within subject repeated

observations over time (Xu and Bai (2017) [90]). Some examples are the use of repeated

measures of lung function in clinical studies on chronic obstructive pulmonary disease

(COPD); blood tests performed for patients enrolled in drug trials or to evaluate the

prostate specific antigen (PSA) (Edwards (2000) [91]; Molenberghs and Verbeke (2001)

[92]; and Hickey et al. (2018) [93]). In order to produce valid inferences in these cases

a joint modeling analysis of longitudinal and survival outcomes is required (Rizopoulos

(2010) [94]).

A common strategy, that greatly simplifies the inference, is to model both processes

separately, using linear mixed effects models for the longitudinal model and Cox regres-

sion models for the time-to-event analysis (Cox (1972) [6]). However, this approach is not

recommended, in practice, since this will generally lead to biased effect size estimates due

to the correlation between the two outcomes (Ibrahim, Chu and Chen (2010) [95]; Hickey

et al. (2018) [93]). Joint modeling approach still remains a matter of interesting works and

there are many contributions in literature covering the topic such as the works by Self and

Pawitan (1992) [96] and Tsiatis et al. (1995) [97], addressing the joint modeling on the CD4

biomarker to the development of AIDS, or the many contributions given by Rizopoulos

(2010 and 2012) [94, 98].

Less has been done, however, in the framework of joint modeling of longitudinal and

multi-state models. We can stand out some of the following: Williamson et al. (2008)

[99] extended some methods for joint modeling with only one time-to-event to allow for

competing risks. Liu and Huang (2009) [100] applied a joint random effects model to data

of a clinical research on AIDS to study the interaction of the CD4 cell repeated measures

and recurrent opportunistic diseases and their effect on survival. Andrinopoulou et al.

(2014) [101] considered a joint model for two echocardiographic markers with competing

risk failure time data to assess the valve functions during the follow-up period. Later,

the same data set was used by Andrinopoulou et al. (2017) [102] to investigate the effect

of the features of the longitudinal process on the prediction for the events regarding the

time-dependent trajectory and time-dependent cumulative effects. Ferrer et al. (2016)
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[56] proposed a joint model for a longitudinal process and a multi-state process which is

divided into two sub-models linked by a function of shared random effects. Contributions

have also been done in the form of software (Król et al. 2017) [103]. Background concepts

related to the extension of the joint modeling to multi-state models can be found in Ferrer

et al. (2016) [56] and Hickey et al. (2018) [104].

There has been little research on the estimation of the transition probabilities condi-

tional on current or past covariate measures. An averaged Beran’s conditional estimator

was introduced by Dabrowska and Lee (1996) [105] to yield a consistent estimate of the

transition probabilities. The authors considered a vector of sojourn times in past states

as the covariate. Two competing nonparametric estimators for the conditional transition

probabilities were introduced by de Uña-Álvarez and Cadarso-Suárez (2006) [68]. The

proposed methods are based on local smoothing by means of kernel weights based on

local constant (Nadaraya-Watson) regression. Two different schemes of inverse censor-

ing probability reweighting were used to deal with right censoring. Their proposals are

fully nonparametric approaches which are not recommended to multiple covariates due

to the problem in multivariate nonparametric regression estimation, the so-called curse

of dimensionality. One standard method that is particularly well-suited to the setting

with multiple covariates is to consider estimators based on a Cox’s regression model (Cox

(1972) [6]) fitted marginally to each allowed transition, with the corresponding baseline

hazard function estimated by the Breslow’s method (Breslow, 1972) [23]. A direct bino-

mial regression technique was considered by Azarang et al. (2017) [106].

In this chapter, we revisit the problem of estimation of the transition probabilities of

an irreversible, possibly non-Markov model. However, unlike the previous contributions,

we are interested in estimating these probabilities given a continuous covariate measured

repeatedly over time. To this end, we used the subsampling approach proposed by de

Uña-Álvarez and Meira-Machado (2015) [69] combined with methods proposed by Ri-

zopoulos (2012) [98]. The joint modeling approach allows to extend to time-dependent

covariates for each individual so that the trajectory of the repeated longitudinal outcomes

are taken into account. This approach also deals quite well with imbalance data where

the number of measures by individual or the moments at which they were collected are

not the same (Rizopoulos (2012) [98]). Standard methods in this setup usually rely on a

parametric specification of the covariate effects or do not have in consideration for all the
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longitudinal outcomes. As an example, recently Hoff et al. (2019) [107] present semipara-

metric regression models and inverse probability weights in combination with the LMAJ

estimator to perform covariate adjusted analyses. Nevertheless, in the estimation of the

transition probabilities repeated measures are not included.

The rest of the chapter is organized as follows: the joint modeling approach is intro-

duced in Section 5.2. Section 5.3 describes the application of the proposed method to a

data set. Finally the main conclusions are given in Section 5.4.

5.2 Methods

5.2.1 Notation and preliminaries

Let’s consider the irreversible version of the illness-death model represented by individ-

uals who start in the ‘alive and disease-free’ state (State 0, in this chapter) and may move

to the ‘diseased’ state (State 1) or to the absorbing ‘dead’ state (State 2). Individuals in

the ‘diseased’ state will eventually move to the ‘dead’ state without any possibility of

recovery.

The underlying stochastic process of the progressive illness-death model may be rep-

resented by {X(t), t ≥ 0, X(0) = 0}, where X(t) represents the state occupied by the

process at time t, for which we assume all individuals to be in State 0 at time 0. The

process is characterized by the joint distribution of (Z, T), where Z = inf{t : X(t) 6= 0}

denotes the sojourn time in State 0 and T = inf{t : X(t) = 2} is the total survival time

of the process. The right-censoring is modelled by considering a censoring variable C,

which we assume to be independent of the process. Due to censoring, rather than (Z, T)

we observe Z̃ = min(Z, C) and T̃ = min(T, C), the censored versions of Z and T, and

we have ∆1 = I(Z ≤ C) and ∆ = I(T ≤ C) for the respective censoring indicators of

Z and T. In this chapter, we also consider a time-dependent covariate which we denote

by Y(t) and a vector of baseline covariates denoted by W. Finally, the available data are

(Z̃i, T̃i, ∆1i, ∆i, Yi(t), Wi), 1 ≤ i ≤ n, i.i.d. copies of (Z̃, T̃, ∆1, ∆, Y(t), W).

5.2.2 Joint model specification

In this section, we present the details of the joint modeling framework under the multi-

state point of view. For simplicity and without loss of generality, consider the conditional

transition probability pi
11(s, t | Yi(t), Wi) where Yi(t) denotes the longitudinal covariate
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and Wi a vector of baseline covariates for the i-th individual who belong at time s to the

intermediate state (State 1, in this chapter).

Assuming the landmark approach, we will consider a subsample of the data consist-

ing on those individuals observed at State 1 at time s. The joint modeling approach for

multi-state models is built assuming two submodels: a linear mixed effects submodel

and a illness-death submodel with three transition intensities. To estimate the conditional

transition probability pi
11(s, t | Yi(t), Wi) we only need to consider the transition intensity

from the intermediate State 1 (‘diseaded’) to State 2 (‘dead’). Let Yi(t) denote the value

of the longitudinal outcome at time t for the i-th individual. The observed longitudinal

data consists of the measurements Yij = {Yi(tij), j = 1, . . . , ni}, in which ni correspond

to the number of repeated measures for the i-th individual. The true and unobserved

value of the longitudinal outcome at time t is denoted by mi(t). We aim to estimate

P(T > t | Z ≤ s, T > s,Mi(s), Wi), where Mi(s) = {mi(u), 0 ≤ u < s} denotes the

history of the true unobserved longitudinal process up to time point s.

Under Gaussian assumptions, we have that the unobserved true longitudinal outcome

mi(t) is explained according to time and covariates with fixed and random effects that take

into consideration the correlation between the repeated measures of the same individual.

In particular, we have the following mixed effects model:

Yi(t) = mi(t) + ε i(t)

= UT
i (t)β + VT

i (t)bi + ε i(t), (5.1)

where Ui(t) and Vi(t) denote the vectors of the design matrices for the fixed and random

effects, β and b the corresponding parameters, and ε i(t) ∼ N(0, σ2) is the measurement

error term which is assumed to be independent of bi, bi ∼ N(0, D).

To model the transition intensities depending on the effect of mi(t), we consider the

following proportional hazards model:

λi
hj
(
t|Mi(t), Wi

)
= lim

dt→0
P
(
Xi(t + dt) = j | Xi(t) = h,Mi(t), Wi

)
= λhj,0 (t) exp

{
αhjmi(t) + γT

hjWi

}
, (5.2)

where λhj,0(t) is a baseline hazard function, γhj is a vector of regression coefficients and

the parameter αhj quantifies the effect of the longitudinal outcome on the time-to-event

for the transition from h to j.
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Without loss of generality, and for the purpose of simplicity, we focus now our atten-

tion in the progressive illness-death model, in particular, on the individuals belong to in-

termediate state 1 given by the subset S1. In this case, the maximum likelihood estimation

is based on the maximization of the log-likelihood of the joint distribution of the time-to-

event (given by the total survival time) and longitudinal outcomes (Ti, ∆i, Yi(t)). Thus,

regarding the vector of time-independent random effects and the correlation between the

repeated measurements in the longitudinal process (conditional independence), we for-

mally have (Rizopoulos (2010) [94])

p
(
Ti, ∆i, Yi|bi; θ

)
= p

(
Ti, ∆i|bi; θ

)
p
(
Yi|bi; θ

)
(5.3)

p
(
Yi|bi; θ

)
= ∏

j
p
{

Yi

(
tij

)
|bi; θ

}
(5.4)

where θ =
(

θT
t , θT

y , θT
b

)T
denotes the parameter vector, with θt representing the param-

eters for the event time outcome, θy the parameters for the longitudinal outcomes and

θb the unique parameters of the random-effects covariance matrix, yi is the ni × 1 vector

of longitudinal responses of the i-th subject, and p (·) denotes an appropriate probability

density function. In particular, p
{

Yi

(
tij

)
|bi; θy

}
is the univariate normal density for the

longitudinal responses.

Under the assumptions for joint models, the log-likelihood contribution for the i-th

subject can be formulated as follows

log p (Ti, ∆i, Yi; θ) = log
∫

p
(
Ti, ∆i|bi; θt, βt

) ∏
j

p
{

Yi

(
tij

)
|bi; θy

} p (bi; θb) dbi (5.5)

where p (bi; θb) is the multivariate normal density for the random effects and the like-

lihood of the survival part is given by

p
(
Ti, ∆i|bi; θt, βt

)
=

{
λi
(
Ti|Mi(t); θt, β

)}∆i
Si
(
Ti|Mi(t); θt, β

)
, (5.6)

with λi (·) given by (5.2), and

Si
(
t|Mi(t); Wi, θt, β

)
= P

(
Ti > t|Mi(t); Wi, θt, β

)
= exp

{
−
∫ t

0
λi
(
s|Mi(s); θt, β

)
ds
}

(5.7)

It should be noted that the maximization of the log-likelihood function given by (5.5) with
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respect to θ is a computationally challenging task. In this work, we used the Expectation-

Maximization (EM) algorithm to maximaze the approximated log-likelihood, which is a

traditional method that deals with the random effects as being ‘missing data’. See Fer-

rer et al. (2016) [56] for more details on the generalization of the likelihood of the joint

distribution for multi-state models.

In this chapter, we are actually interested in estimating the following conditional tran-

sition probabilities pi
00(s, t|Yi), pi

02(s, t|Yi) and pi
11(s, t|Yi). Baseline covariates are not con-

sidered. Assuming the landmarking approach, we are interested in the prediction of the

conditional transition probabilities for a new subject, i, with a set of longitudinal mea-

surements Yi(s) = {Yi(s), 0 ≤ u ≤ s}. These quantities can be expressed through the

following conditional probabilities:

pi
00(s, t|Yi(t)) = P(Z > t|Z > s,Yi(s),S0)

pi
02(s, t|Yi(t)) = P(T ≤ t|Z > s,Yi(s),S0)

pi
11(s, t|Yi(t)) = P(T > t|Z ≤ s, T > s,Yi(s),S1) (5.8)

where t > s, Yi(s) = {Yi(s), 0 ≤ u ≤ s}, S0 and S1 denote the landmark samples on

which the joint model was fitted. To this end, we propose to estimate these conditional

probabilities by predicting survival probabilities for a new subject i taking the advantage

of the landmark approach that reduces the estimation of these quantities to the estima-

tion of survival functions, following the same procedures given by Rizopoulos (2010), for

calculating expected survivals.

To be specific, let’s consider the conditional probability pi
11(s, t|Yi(t)) for the individ-

uals who remain in the intermediate state (State 1). In this particular case, with the nec-

essary adaptations in terms of notation, this transition probability can be reduce to the

following expression

pi
11(s, t|Yi(t)) =

∫ Si
{

t|Mi(t, bi, θ); θ
}

Si
{

s|Mi(s, bi, θ); θ
} p
(
bi|Z ≤ s, T > s,Yi(s); θ

)
dbi (5.9)

where Si(·), denotes the survival function, and furthermore we explicitly note that the

longitudinal historyMi(·), as approximated by the linear mixed-effects model, is a func-

tion of both the random effects and the parameters. Finally, to estimate the transition
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probability p̂i
11(s, t|Yi(t)), we can derive a Monte Carlo, based on Bayesian formulation of

the problem, using the simulation scheme described in Rizopolous (2010, 2012) [94][98].

5.3 Application to a data set

In this section, we investigate the performance of the proposed estimators of the condi-

tional transition probabilities through two data sets that contain longitudinal and multi-

state data in order to estimate the joint multi-state model described in the simulation

study (see Section 4 of Ferrer et al. (2016) [56]). The data can be download at https:

//github.com/LoicFerrer/JMstateModel/tree/master/Example.

More specifically, we aim to compare the proposed estimator based on a joint mod-

eling landmark approach (labeled as JMLM) with the estimators based on a Cox’s model

fitted marginally to the corresponding transition with the baseline hazard function esti-

mated by the Breslow’s method (labeled as BRES). For completeness purposes, we also

included the original landmark estimator, which does not account for the effect of the co-

variate (labeled as LM). Note that the estimator based on a Cox model does not take into

account the complete longitudinal history of the covariate up to time s, but the value of the

longitudinal covariate at time s. It assumes that a patient’s risk can be fully explained by

the current covariate value. This simplifying assumption is commonly made in medical

literature. Note also that the proposed JMLM estimator not only accounts for the complete

longitudinal history of the covariate up to time s but also for the two event times. This

means that two individuals with the same longitudinal history can have different JMLM

estimates of the conditional transition probabilities.

The data set comprises a total of 500 individuals. 164 of them have developed an

illness (State 1, in this chapter) and among these 99 died (State 2). 157 died without having

the illness, passing directly from the initial state to the absorbing state. The rest of the

subjects (179) remained disease-free (State 0) up to the end of the follow-up. Thus, it was

observed nearly 36% of censored observations in State 1 and 40% in State 2. Most of the

values of the longitudinal marker vary from -0.681 to 1.217 (interquartile range), with a

minimum of -12.753 and a maximum of 7.985.

In order to compare the behavior of the three estimators considered in this section, we

evaluate the conditional transition probabilities for a fixed value of s = 8. This value was

used to built the two landmark data sets that are based on the individuals occupying State

0 (S0 = {i : Z̃i > 8}) and State 1 (S1 = {i : Z̃i ≤ 8, T̃i > 8}). The first subsample of data

https://github.com/LoicFerrer/JMstateModel/tree/master/Example
https://github.com/LoicFerrer/JMstateModel/tree/master/Example
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will be used to estimate the conditional transition probabilities pi
00(8, t|Yi(t)) whereas the

second subsample is used to estimate pi
11(8, t|Yi(t)).

Figure 5.1 shows two plots to summarize the progression of the longitudinal marker,

for the individuals observed at time s = 8 in the initial state (State 0, subset S0) (first row,

left column) and for those that belong to the subsample of individuals in State 1 (first row,

right column). A total of 151 subjects were observed in State 0, at time s = 8, while this

number decreases to 96 that are observed in State 1 at the same time value. The grey lines

represent the values of the longitudinal marker along time for each individual, against the

line with red color that indicates the average trend of the progression. For both subsets,

the red line suggests, on average, that the marker progression decreases at a fast rate up

to nearly s = 1, after entry in study. Individuals in State 0 at time s = 8 (i.e. that belong

to S0) show, on average, an initial decrease in the marker values until a value near 2 and

then is roughly constant. On the other hand, individuals in State 1 at time s = 8 (i.e. that

belong to S1) show, on average, a fast decreasing rate for lower values and then a fast

increase until time 8. Almost all the individuals that belong to S1 have an increase marker

progression whereas the evolution in S0 is much more heterogenous as we can see by its

wide band of marker values for higher time values near 8.

To illustrate the usefulness of the proposed methods, we have considered four subjects

with different progression of the longitudinal marker for each subsamples (S0 and S1).

Their longitudinal values can be seen in the second row of Figure 5.1. These subjects were

chosen in order to analyze the ability of the estimators to deal with different trends of

the longitudinal variable. For the first subsample, S0, we selected the individuals with

the following numbers and trends: subject 228 with a high decreasing rate of the marker

progression; subject 181 with an almost constant trend of the marker with values close

to 0; subject 192 with a bathtub shape progression, first decreasing and then increasing;

and subject 421 with an increasing rate (Figure 5.1, left column of the second row). We

experience some difficulties in finding subjects with a decreasing rate in the longitudinal

marker. To this second subset, S1, we have chosen the subject 56 with a small decreasing

rate (with a smaller number of longitudinal measures when compared to the others three

subjects); subjects 20 and 74 with relatively slow increasing rates, almost constant, after

the first moments since entry in study; and, finally, subject 8 with a fast increasing rate

and high marker values for all times (Figure 5.1, right column of the second row).

Figure 5.2 shows the estimated curves of the conditional transition probabilities p̂i
00(8, t |
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Yi(t)), for all subjects observed in State 0 at time s = 8, using the proposed JMLM estimator

(left column of the first row). The BRES estimator is shown on the right column of the first

row. For completeness purposes, the unconditional landmark estimator LM (black dash

line) and the curve that represents the global average for all the subjects (red line) are also

displayed in both plots. These plots reveal higher variability of estimated curves based

on the BRES estimator when compared with those provided through the JMLM estimator.

With regard to the progression of the longitudinal marker in time, it can be seen that the

estimated curves of the BRES and LM estimators are quite similar whereas the curves of

the JMLM estimator present higher values for time values near s = 8. The less variability

of the JMLM estimator is more evident for lower values of t, revealing narrower bands,

given by the curves, that become wider with greater lag times t− s, in agree of the aver-

age progression of the marker. The plots of the estimated curves of the selected subjects

are displayed on the second row. The estimated curves based on the JMLM estimator (left

column) and the BRES estimator (right column), revealed that a decreasing progression

of the longitudinal marker leads to higher values of the estimated survival curves as oc-

curs with subject 228, for both JMLM and BRES estimators (black line). On the other hand,

an increasing rate of the evolution of the marker leads to lower values of the estimated

curve that become more evident as the longitudinal markers are higher. Such behavior

can be seen when observing the estimated curve for subject 421 for both JMLM and BRES

estimators (blue line). However, the analysis of the estimated curves of subjects 192 and

181 revealed interesting differences between the two estimators that allow to highlight

the importance of the proposed method (JMLM) by considering the trend of the longitudi-

nal marker in the estimation. In fact, since subject 192 has a higher increasing rate than

subject 181, as a consequence, for both estimators, the survival curve of the subject 192

(green line) is closer to the blue line (associated to subject 421) than those given by subject

181 (red line). This can be explained by the fact that the BRES estimator is takes only into

account the last value of the marker before time 8, and these values are quite similar for

subjects 421 and 192 (around 2). This can explain the similarity of the two curves (with

blue and green lines). Such behavior is not present when the curves are estimated through

the JMLM because it considers the evolution of the longitudinal process, explaining why

the curve for subject 192 (green line) is now closer of that with a red line (of subject 181)

than the curve of subject 421 (blue line).

Similar plots for the estimated curves of the conditional transition probabilities p̂i
11(8, t |
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FIGURE 5.1: Spaghetti plot for marker values for the subsets S0 and S1 (first line) and the
marker progression of selected individuals belong to the same S0 and S1 subsets (second

line).

Yi) are shown in Figure 5.3. Again, it can be seen higher variability among the estimated

curves based on the BRES method when compared with those provided through the JMLM

estimator. Interestingly, the variability seems smaller when compared to that shown in

Figure 5.2, being closer to the unconditional landmark estimator, labeled as LM, with some

discrepancies for lower values of t. Similarly, as in Figure 5.2, subjects with a higher in-

creasing rates for the longitudinal values reveal estimated survival curves that decrease

faster for both JMLM and BRES estimators (see subject 8, represented with a blue line). On

the other hand, subjects with a decreasing rates for the longitudinal variable, have higher

values of the estimated curves as can be seen when observing subject 56 (represented by a

black line). Finally, subjects 74 and 20, with intermediate marker progressions with slow

increasing rates (almost constant), attained estimated curves that are close to the curve

obtained through the LM estimator.
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FIGURE 5.2: Spaghetti plot for transition probabilities p̂i
00(8, t | Yi), for all individuals

belong to the subset S0, using the proposed JMLM estimator (First row, left column) and
the BRES estimator (First row, right column). Transition probabilities p̂i

00(8, t | Yi) using
the JMLM estimator (Second row, left column) and the BRES estimator (Second row, right

column) for selected individuals belong to the subset S0.
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FIGURE 5.3: Spaghetti plot for transition probabilities p̂i
11(8, t | Yi), for all individuals

belong to the subset S1, using the proposed JMLM estimator (First row, left column) and
the BRES estimator (First row, right column). Transition probabilities p̂i

11(8, t | Yi) using
the JMLM estimator (Second row, left column) and the BRES estimator (Second row, right

column) for selected individuals belong to the subset S1.
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5.4 Discussion

The estimation of transition probabilities is a major goal in multi-state models since they

allow for long term prediction of the process. In the literature there exist a set of ap-

proaches to relate the effect of the individual characteristics given by a covariate (or a

vector of covariates) for the transition probabilities among states. A common method

is to decouple the whole and, for each transition, considering Cox’s regression models

for modeling the transition intensities whose baseline hazard function are estimated by

the Breslow’s method. This method is particularly well-suited to deal with multiple co-

variates, but it is restricted to a single value for each covariate and it does not take into

consideration individual longitudinal trends of biomarkers. In this chapter, we revisit

the problem of estimation of these quantities and introduce new proposals of estimators

given a continuous covariate measured repeatedly over time.

Joint modeling of longitudinal and survival data are becoming increasingly popular in

clinical research. In these models, as the longitudinal markers are measured with errors,

they are not considered as time-dependent covariates unlike the Cox model that assumes

that the exact values of the explanatory variables are known for all the individuals at risk

at each event time. In this chapter we proposed a new method, called joint modeling

landmark, for estimating the transition probabilities conditionally on covariates observed

with repeated measures. This approach is based on the use of specific samples of data,

consisting of subjects occupying a given state at a particular time. This procedure allows

the adaptation of existing methods for joint modeling of longitudinal and survival data

to estimate the transition probabilities for each individual while taking into account the

repeated measures of a longitudinal variable.

To illustrate the ability of the new estimators, we have used two data sets involving

the longitudinal and progressive illness-death models provided as supplementary mate-

rial by Ferrer et al. (2016) [56]). Results seem to confirm the good performance of the pro-

posed estimator with accurate estimated conditional transition probabilities. This method

also revealed for a particular example more sensibility to reflect the evolution of the lon-

gitudinal measures when compared to the Breslow-based method, which only makes use

of a single value of the covariate.

In further research developments, we intend to extend our approach to simulation

studies to more complex multi-state models than the progressive illness-death model, as
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well as to include longitudinal submodels with more than one covariate and correspond-

ing interactions. We also plan to illustrate the application of the proposed method to a

real data set involving oncological studies.





Chapter 6

Goodness-of-fit test statistics for the

Markov condition

The inference in multi-state models is traditionally performed under a Markov assump-

tion that claims that past and future of the process are independent given the present

state. This assumption has an important role in the estimation of the transition proba-

bilities. When the multi-state model is Markovian, the Aalen-Johansen estimator gives

consistent estimators of the transition probabilities but this is no longer the case when

the process is non-Markovian. Usually, this assumption is checked including covariates

depending on the history. Since the landmark methods of the transition probabilities are

free of the Markov assumption, they can also be used to introduce such tests by measur-

ing their discrepancy to Markovian estimators. In this chapter, we introduce tests for the

Markov assumption and compare them with the usual approach based on the analysis

of covariates depending on history through simulations. The methods are also compared

with more recent and competitive approaches. Three real data examples are included for

illustration of the proposed methods.

The contents of this chapter are mainly based on the paper published in Computational

Statistics by Soutinho and Meira-Machado (2021) [108].

6.1 Introduction

Multi-state models are the most suitable models for the description of complex longitu-

dinal survival data involving several events of interest. The inference for transition in-

tensities often includes regression analysis which usually involves the modeling of each

89
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transition intensity separately. A traditional choice is to model each transition intensity

using a proportional hazards model assuming the process to be Markovian. However, it

has been quoted that the Markov assumption is violated in some applications (Andersen

and Esbjerj and Sorensen (2000) [20]; Andersen and Keiding (2002) [17]). In such cases,

if interest is on multi-state regression, one alternative approach is to use a semi-Markov

model in which the future of the process does not depend on the current time but rather

on the duration in the current state. Semi-Markov models are also called “clock reset”

models because each time the patient enters a new state, time is reset to 0. In terms of

transition probabilities, the Markov assumption also allows the construction of simple es-

timators, since individuals with different past histories become comparable (Aalen and

Johansen (1978) [61]). Unfortunately, when this assumption is violated, the use of the

so-called Aalen-Johansen estimators for transition probabilities can induce bias, and thus

may not be recommended. To tackle this, substitute estimators for the Aalen-Johansen

estimator for a non-Markov process were introduced by de Uña-Álvarez and Cadarso-

Suárez (2006) [68], Allignol et al. (2014) [109], Uña-Álvarez and Meira-Machado (2015)

[69] and Titman (2015) [110].

Therefore, to perform inference for transition intensities or for the transition proba-

bilities it is essential to check if the Markov assumption is tenable. This assumption is

usually checked by including covariates depending on the history (Kay (1986) [22]; An-

dersen and Esbjerj and Sorensen (2000) [20]; Andersen and Keiding (2002) [17]). Alterna-

tive methods, based on a local Kendall’s τ, measuring the future-past association along

time, were proposed by Rodrı́guez-Girondo and de Uña-Álvarez (2012, 2016) [111] [112].

These methods can be used for three-state progressive and illness-death models but the

extension of these tests to general multi-state models is not straightforward and thus,

flexible methods that may be used in general models are required. A very recent work by

Titman and Putter (2020) [113] considers new approaches to check this assumption. In one

of these approaches a general test is developed by considering summaries from families

of log-rank statistics where patients are grouped by the state occupied at different times.

Chiou et al. (2018) [114] also consider an equivalent problem for testing Markoviaty (in

the progressive illness-model) but involving tests for dependent truncation.

The organization of this chapter is as follows. Section 6.2 gives an introduction to

the methodological background and introduces tests for checking the markov assump-

tion. In Section 6.3, we evaluate the performance of the proposed methods and compare
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them with competive methods through simulations studies. In Section 6.4, the use of

the proposed methods is illustrated by the analysis of an illness-death model describing

the disease process of breast and colon cancer patients. Liver cirrhosis data is used to

illustrate the application of the proposed methods to more general models. Main conclu-

sions and discussion are reported in Section 6.5. To provide the biomedical researchers

with an easy-to-use tool to compute these proposed methods we develop an R pack-

age called markovMSM which are available available at the CRAN repository at https:

//cran.r-project.org/web/packages/markovMSM. Details on the usage of its functions

can be obtained with the corresponding help pages. The main funcionalities of the pack-

age are presented in Section A.3.

6.2 Tests for the markov assumption

Traditionally, the Markov condition is verified by modeling particular transition inten-

sities on aspects of the history of the process using a proportional hazards model (Kay

(1986) [22]). In the progressive illness-death model, for example, with state space {1, 2, 3},

we can examine whether the time spent in the initial state is important on the transi-

tion from the disease state (the intermediate state) to death (the absorbing state) or not.

For doing that, let λ23(t) denote the hazard function of T for those individuals going

from State 2 to State 3, and let Z denote the sojourn time in State 1. Fitting a Cox model

λ23(t | Z) = λ23,0(t) exp(βZ), where λ23,0 is the baseline hazard and β a regression param-

eter, we now need to test the null hypothesis, H0 : β = 0, against the general alternative,

H1 : β 6= 0. This would assess if the transition rate from the disease state into death is

unaffected by the time spent in the initial state. It is worth to remember that the semi-

parametric Cox proportional hazard model is based on the assumption of proportional

hazards and that it assumes a linear effect on the hazard for the covariate. Both may fail

in practice, and consequently this approach may be unable to detect the lack of Marko-

vianity.

Since the landmark methods (LM) for estimating the transition probabilities proposed

by de Uña-Álvarez and Meira-Machado (2015) [69], and the landmark Aalen-Johansen

estimators (LMAJ) by Putter and Spitoni (2018) [71], are free of the Markov assumption,

they can also be used to introduce local tests for Markovianity by measuring their dis-

crepancy to Markovian Aalen-Johansen estimators (AJ), for a fixed value s > 0. Though

the two landmark methods behave similarly, the LMAJ can be used in general multi-state

https://cran.r-project.org/web/packages/markovMSM
https://cran.r-project.org/web/packages/markovMSM
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models which can be considered an advantage. These ideas were recently used by Titman

and Putter (2020) [113] to introduce a general tests based on summaries from families of

log-rank statistics where patients are grouped by the state occupied at a given (landmark)

time.

In this chapter we also introduce a local test based on the areas under the two curves,

AUC, (i.e., the curves of the estimated transition probabilities) that can be used for a gen-

eral multi-state model. We propose the use of the following test statistic based on direct

nonparametric estimates of the transition probabilities,

U =
∫ τ

s

(
p̂ LMAJ

hj (s, u)− p̂ AJ
hj (s, u)

)
du,

where τ is the upper bound of the support of T. The test statistics can be seen as the

difference between the area under the estimated transition probability curve for the non-

markov LMAJ estimator and the AJ estimator. Intuitively, the test statistics should be close

to zero if the process is Markov. The Markov assumption becomes less likely as the test

statistic get further away from zero in either direction. Because of censoring, both esti-

mators (LMAJ and AJ) may reveal high variability in the right tail which may inflate the

test statistic. In addition to this issue, since landmarking is based on reduced data, the

maximum point for which the LMAJ transition probability estimate is strictly defined may

be lower than the maximum point for AJ. To overcome these problems, we suggest that in

the computation of U one should use the minimum between the upper bound for which

LMAJ is defined and the 90% percentile of the total time for the upper limit in the integral

that defines the test statistic. In the progressive illness-death model, besides the transition

probability p̂23(s, t), also p̂12(s, t) can be used to test the Markov assumption. For general

multi-state models, one can use transitions depending on history (i.e., phj(s, t) depending

on subject specific arrival time at state h > 1). In fact, if the goal is to decide which es-

timator is the most appropriate to estimate a specific transition probability phj(s, t), then

the test statistic should be the one based on that same transition probability.

Note that if the null hypothesis of Markovianity holds, the value of U should be close

to zero. To approximate the distributions of the test statistic, bootstrap methods with

a large number of resamples are used. We generate M bootstrap samples and for each

sample the test statistic U? is calculated. Then, according to large sample asymptotic dis-

tribution theory, when M, the number of replicates goes to infinity, we have the following

statistic distributed approximately as a standard normal distribution with a mean of 0
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and variance of 1: V = (U − 0)/σ?
(U?) ∼ N(0, 1). The null hypothesis will be rejected if

V > v(1−α/2) or V < v(α/2), where v(α/2) and v(1−α/2) denote the α/2 and 1− α/2 per-

centiles, respectively, of a normal distribution with a mean of 0 and variance of 1.

In this chapter we also propose a global test which can be achieved by combining the

results obtained from local tests over different times. The testing procedure used here

involves the following steps:

Step 1: Using the original sample of the illness-death model, obtain the percentiles

5, 10, 20, 30 and 40 of the sojourn time in State 1. For general multi-state models, we

recommend the use of the same percentiles of the subject specific arrival time at the cor-

responding state.

Step 2: For each of the values s obtained in Step 1, obtain the probability values for

the local method as explained before.

Step 3: Obtain the mean of the probability values for each closest pairs; i.e., the mean

of the probability values of the following pairs of percentiles: (5, 10), (10, 20), (20, 30) and

(30, 40).

Step 4: Get the minimum between the four probability values obtained in Step 3.

Step 1 considers a global test based on local tests computed at low percentiles of sub-

ject specific arrival times at the corresponding state. This is based on our experience that

the failure of Markovianity often occurs for small transition times. Besides the hypothesis

tests proposed above, in Section 6.4 we also propose graphical local tests that can be used

to check the Markov assumption in the illness-death model as well as for more complex

multi-state models, possibly with reversible transition between states. These graphical

tests can be used to validate the default values proposed in Step 1 or to propose alter-

native values for which a discrepancy between the two methods (LMAJ and AJ) is more

evident. The procedure described in Step 3 can be used to ensure that there is a discrep-

ancy between the two estimated curves in a large range of time values.

To provide the biomedical researchers with an easy-to-use tool to compute the pro-

posed methods, we have developed a R package which details on the usage are available

as supplementary material [A.3]. The package allows users to choose different percentiles

for the sojourn time in State 1 (Step 1).



94
STATISTICAL ANALYSIS OF COMPLEX SURVIVAL DATA: NEW CONTRIBUTIONS IN STATISTICAL

INFERENCE, SOFTWARE DEVELOPMENT AND BIOMEDICAL APPLICATIONS

6.3 Simulation studies

In this section, we report results from simulation studies, where the aim is to compare

the finite sample performance of the proposed methods to test the Markov assumption in

a progressive illness-death model. Due to computing time issues the simulations shown

here only address this model. However, an application of the proposed methods to a

more complex multi-state model is presented in Section 6.4 from a real data set. To sim-

ulate the data in the progressive illness-death model, we assume that all individuals are

in the initial state (State 1) at time t = 0, and that these individuals may follow two

possible paths: passing through the intermediate state (State 2), at some specific time;

or going directly to the absorbing state (State 3). Transition times for those leaving the

initial state are generated from the cause-specific hazards given by λ12(t) = 0.29/(t + 1)

and λ13(t) = 0.024× t, where t > 0 denotes the time since the start point. To study the

Markov assumption, three different scenarios are considered corresponding to different

hazards that are used to generate death times for individuals passing through the inter-

mediate state: λ1
23(t) = 0.05, λ2

23(t) = 0.25(t12 + 1)−0.8 and λ3
23(t) = 0.04 log(t + 1), where

t12 is the transition time to the intermediate event. The first scenario is Markov since the

hazard is independent of time, whereas the second is semi-Markov and the third is non-

Markov. Censoring times were generated from uniform distributions. Two samples size

were considered for each scenario (n = 250 and n = 500).

We also consider a fourth scenario in which the traditional test, based on the Cox pro-

portional hazard model may fail. In this scenario, the transition times are generated from

the following cause-specific hazards given by λ12(t) = 1/(2− t), λ13(t) = 2/(3− 2t)

for 0 ≤ t < 2 and 0 ≤ t < 1.5, respectively. To generate death times for individu-

als passing through the intermediate state we consider λ23(t) = exp (−(t12 − 1)2). This

simulated scenario is the same as that described in Rodrı́guez-Girondo and Uña-Álvarez

(2016) [112]. Note that this scenario is non-Markov, because of the dependence on the

transition time to the intermediate state but in this case a misspecification of the Cox

model is expected because of the shape of the hazard λ23(t) with a parabolic influence of

the predictor.

Table 6.1 reports the rejection proportions of the proposed tests for the first three sce-

narios with sample sizes n = 250 and n = 500. Random censoring was simulated using

uniform distributions U[0, 60] and U[0, 30]. The first censoring distribution led to medium

censoring percentages (between 41% and 47%) whereas these percentages increase in the
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TABLE 6.1: Rejection proportions for nominal level of 5% of the local tests for fixed values
s = 1, s = 2, s = 4, s = 6 and s = 8 (AUC(s) and LR(s)). Rejection proportions for the
global tests (AUC and Cox) are also included. Censoring times uniformly distributed

between 0 and 30, and between 0 and 60.

Global
Scenario Trans. Prob. n C Method 1 2 4 6 8 AUC / LR Cox
Markov p̂12(s, t) 250 U[0, 30] AUC(s) 0.055 0.055 0.064 0.073 0.062 0.073 0.046

500 U[0, 30] AUC(s) 0.066 0.057 0.069 0.072 0.076 0.057 0.045
p̂23(s, t) 250 U[0, 30] LR(s) 0.051 0.047 0.054 0.051 0.056 0.043 0.046

500 U[0, 30] LR(s) 0.036 0.048 0.054 0.052 0.057 0.052 0.045
p̂23(s, t) 250 U[0, 30] AUC(s) 0.055 0.043 0.049 0.046 0.033 0.076 0.046

500 U[0, 30] AUC(s) 0.060 0.052 0.061 0.065 0.055 0.056 0.045
Semi-Markov p̂12(s, t) 250 U[0, 30] AUC(s) 0.765 0.762 0.611 0.437 0.286 0.845 0.757

500 U[0, 30] AUC(s) 0.964 0.961 0.881 0.701 0.530 0.992 0.977
p̂23(s, t) 250 U[0, 30] LR(s) 0.872 0.891 0.739 0.520 0.296 0.960 0.757

500 U[0, 30] LR(s) 0.996 0.999 0.976 0.862 0.635 1.000 0.977
p̂23(s, t) 250 U[0, 30] AUC(s) 0.759 0.744 0.536 0.316 0.131 0.862 0.757

500 U[0, 30] AUC(s) 0.967 0.955 0.855 0.648 0.449 0.993 0.977
non-Markov p̂12(s, t) 250 U[0, 30] AUC(s) 0.172 0.284 0.308 0.292 0.258 0.354 0.382

500 U[0, 30] AUC(s) 0.336 0.458 0.508 0.502 0.468 0.602 0.701
p̂23(s, t) 250 U[0, 30] LR(s) 0.225 0.268 0.267 0.241 0.191 0.414 0.382

500 U[0, 30] LR(s) 0.369 0.464 0.515 0.479 0.384 0.696 0.701
p̂23(s, t) 250 U[0, 30] AUC(s) 0.172 0.240 0.226 0.176 0.114 0.302 0.382

500 U[0, 30] AUC(s) 0.348 0.452 0.474 0.420 0.332 0.574 0.701

Markov p̂12(s, t) 250 U[0, 60] AUC(s) 0.048 0.038 0.048 0.050 0.072 0.066 0.058
500 U[0, 60] AUC(s) 0.052 0.052 0.050 0.042 0.070 0.062 0.038

p̂23(s, t) 250 U[0, 60] LR(s) 0.055 0.055 0.061 0.053 0.054 0.043 0.058
500 U[0, 60] LR(s) 0.064 0.067 0.053 0.054 0.052 0.046 0.038

p̂23(s, t) 250 U[0, 60] AUC(s) 0.048 0.036 0.042 0.044 0.068 0.062 0.058
500 U[0, 60] AUC(s) 0.050 0.054 0.050 0.032 0.068 0.062 0.038

Semi-Markov p̂12(s, t) 250 U[0, 60] AUC(s) 0.918 0.946 0.84 0.736 0.600 0.980 0.926
500 U[0, 60] AUC(s) 0.998 1.000 0.982 0.940 0.876 1.000 0.940

p̂23(s, t) 250 U[0, 60] LR(s) 0.961 0.970 0.943 0.847 0.708 0.998 0.926
500 U[0, 60] LR(s) 1.000 1.000 0.999 0.999 0.961 1.000 0.940

p̂23(s, t) 250 U[0, 60] AUC(s) 0.918 0.928 0.812 0.664 0.490 0.982 0.926
500 U[0, 60] AUC(s) 0.996 1.000 0.982 0.942 0.848 1.000 0.940

non-Markov p̂12(s, t) 250 U[0, 60] AUC(s) 0.282 0.382 0.442 0.410 0.382 0.504 0.368
500 U[0, 60] AUC(s) 0.474 0.652 0.724 0.724 0.656 0.754 0.692

p̂23(s, t) 250 U[0, 60] LR(s) 0.260 0.341 0.431 0.412 0.376 0.546 0.368
500 U[0, 60] LR(s) 0.504 0.650 0.739 0.711 0.663 0.861 0.692

p̂23(s, t) 250 U[0, 60] AUC(s) 0.276 0.344 0.404 0.330 0.288 0.472 0.368
500 U[0, 60] AUC(s) 0.506 0.648 0.692 0.704 0.656 0.758 0.692

second censoring distribution (between 45% and 62%). Four tests are considered in this ta-

ble: (i) local test based on the area under the transition probabilities p̂12(s, t) and p̂23(s, t),

denoted by AUC(s); (ii) local test proposed by Titman and Putter (2020) [113], based on the

log-rank, for the transition probability p̂23(s, t), denoted by LR(s); (iii) global test based on

the area under the transition probabilities (AUC) or the global test base on the log-rank

statistics (LR) (Titman and Putter (2020) [113]); (iv) global test based on the Cox model

(Cox). The global test LR is based on the mean value of the log-rank statistics as described

in Titman and Putter (2020) [113]. The local tests were evaluated at five fixed values s = 1,

s = 2, s = 4, s = 6 and s = 8. Results in this table were obtained by the empirical rejection

proportions from 1000 trials at the significant level of 0.05.

Results show that, for the semi-Markov and non-Markov scenarios, the power of the

tests is higher for lower censoring percentages, increasing with the sample size. The boot-

strap test based on the areas under the curves (of the transition probabilities) (AUC) and

the local test based on log-rank statistics both reveal their capacity to identify the differ-

ences between curves in the semi-Markov scenario showing higher rejection probabilities
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for lower values of s. Note that in this scenario, departures between the two curves (ob-

tained from AJ and LMAJ methods) are expected to decrease as the difference t− s increase.

In non-Markov scenario, departures between the two curves (obtained for the transition

probabilities p̂12(s, t) and p̂23(s, t) from AJ and LMAJ methods) denote a great improve-

ment when considering a sample size of n = 500, but with rejection probabilities below

0.50 for all s, with the exception for censoring uniform distribution U[0, 60]. Both local

tests also obtain low rejection proportions (near the nominal level of 5%) when the data is

generated from a Markov scenario. Note that we expect rejection proportions about 0.05

in this case. The results based on the log-rank statistic also confirm the good accuracy of

this method in agreement with the conclusions shown in Titman and Putter (2020) [113].

In general for all scenarios, sample sizes and censoring distributions, results between the

log-rank test and the local AUC test are quite similar being able to distinguish the in-

equality between AJ and LMAJ curves in semi-Markov and non-Markov scenarios, while

providing low rejection proportions when the process is indeed Markovian. When com-

paring the results for the two local tests based on different transition probabilities, p̂12(s, t)

and p̂23(s, t), it can be seen that they provide similar values but slightly higher when based

on the computation of the transition probability p̂12(s, t). This behavior may be explained

by the number of observations from which the transition probability is computed, those

in State 1 at time s for p̂12(s, t), and those in State 2 at the same time for p̂23(s, t). For

completeness purposes, Table 6.1 also shows the results from the three global tests. These

global tests present satisfactory results in all scenarios, reporting rejection proportions of

about 5% for the Markov scenario, and high levels of rejection proportions for the semi-

Markov and non-Markov scenarios. These results are in accordance with those obtained

using a local test based on the area under the curves of the estimated transition probabil-

ities. As expected, in general, the performance of the proposed methods is improved for

scenarios with less censoring percentages (i.e., for censoring times following an uniform

distribution U[0, 60]). This improvement is not so obvious for the method based on the

Cox model. We can also notice that the global log-rank and the AUC global tests behave

similarly in all cases. Some of these patterns, for censoring uniform distribution U[0, 30],

can be clearly seen in Figure 6.1.

Table 6.2 reports the rejection proportions of the four proposed tests for the forth sce-

nario, non-Markovian with an hazard based on a quadratic predictor. Random censoring

was simulated from uniform distributions U[0, τG] for τG equal to 8.1 and 4.6. The model
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FIGURE 6.1: Rejection probabilities for testing the null hypothesis of the Markov con-
dition for the three tests for nominal level 5%. Markov, semi-Markov and non-Markov
scenarios (upper, middle, and lower panels, respectively), for n = 250 and n = 500 (left
and right panels, respectively). Results for the transition probability p̂23(s, t). Censoring

times uniformly distributed between 0 and 30.

with τG = 8.1 results in 12% censoring on the first gap time and in 24% for the total

time. The model with τG = 4.6 increases these censoring levels to 20% and about 40%,

respectively. In this case, the global method based on the Cox proportional model has a

bad performance which can be explained by failure of the linear specification of the Cox

model. It can also be seen that the power of this test does not increase substantially with

the sample size, as it happens in semi-Markov and non-Markov scenarios shown in Ta-

ble 6.1. Results shown in Table 6.2, reveal that the tests (local and global) based on the

area under the curves have a good performance, revealing reasonable levels of rejection
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TABLE 6.2: Rejection proportions for nominal level of 5% of the local tests for fixed values
s = 0.2, s = 0.6, s = 1, s = 1.2, s = 1.4 and s = 1.6 (AUC(s) and LR(s)). Rejection pro-
portions for the global tests (AUC and Cox) are also included. Non-Markovian scenario,

hazard with a quadratic predictor.

Global
Scenario Trans. Prob. n Method 0.2 0.6 1 1.4 1.6 AUC/LR Cox

Non-Markov p̂12(s, t) 250 AUC(s) 0.270 0.260 0.042 0.186 0.256 0.360 0.074
quadratic 500 AUC(s) 0.492 0.504 0.094 0.278 0.468 0.708 0.094
predictor p̂23(s, t) 250 LR(s) 0.348 0.283 0.053 0.169 0.264 0.439 0.074

500 LR(s) 0.638 0.542 0.065 0.299 0.489 0.815 0.094
C ∼ U[0, 8.1] p̂23(s, t) 250 AUC(s) 0.324 0.314 0.064 0.128 0.162 0.430 0.074

500 AUC(s) 0.538 0.532 0.010 0.228 0.376 0.742 0.094
Non-Markov p̂12(s, t) 250 AUC(s) 0.250 0.276 0.072 0.092 0.186 0.410 0.092

quadratic 500 AUC(s) 0.422 0.455 0.112 0.122 0.256 0.638 0.107
predictor p̂23(s, t) 250 LR(s) 0.294 0.257 0.063 0.115 0.161 0.305 0.092

500 LR(s) 0.535 0.449 0.059 0.172 0.287 0.647 0.107
C ∼ U[0, 4.6] p̂23(s, t) 250 AUC(s) 0.238 0.294 0.080 0.062 0.098 0.420 0.092

500 AUC(s) 0.416 0.430 0.114 0.094 0.168 0.642 0.107
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FIGURE 6.2: Rejection probabilities for testing the null hypothesis of the non-Markov
condition for the three tests for nominal level 5%. Non-Markovian scenario, hazard with
a quadratic predictor. Results based on different censoring percentages (C ∼ U[0, 8.1] -
upper, C ∼ U[0, 4.6] - bottom), for n = 250 and n = 500 (left and right panels, respec-

tively). Results for the transition probability p̂23(s, t).

proportions of Markovianity. It can be seen that the power of these tests increases with the

sample size. Results in terms of power performance for non-Markovian scenario, hazard

with a quadratic predictor are shown in Figure 6.2. The plots show the rejection prob-

abilities for the transition probability p̂23(s, t) as a function of s. Simulation results also

confirm the similarity of the local and global tests between the log-rank and the AUC test

for both scenarios.
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Rodrı́guez-Girondo and Uña-Álvarez (2016) [112] also introduced methods for check-

ing the Markov assumption for the progressive illness-death model. The performance of

their methods was studied through simulation studies. Among the methods for simu-

lating data, their model 2 is the one that we aim to reproduce in our scenario 4, making

some comparisons possible. As in their case, our simulations reveal the inability of the

Cox model to identify the failure of the Markovianity with proportion rejections varying

between 5% and 10%. As in our case, the methods proposed in Rodrı́guez-Girondo and

Uña-Álvarez (2016) [112] revealed an increased power of the global tests as the sample

size increases and with a decrease in the censoring percentage. Among the proposed

tests, the wCn method, based on the local Kendall’s tau τi, appears to be the one with

better accuracy to distinguish the non-markovianity of the process either for subjects who

pass directly from State 1 to State 2 or for those that have passed through the interme-

diate state. Comparing the results of the AUC global test, reported in our Table 6.2, to

the proposed wCn method, namely for individuals that experienced a transition through

the intermediate state, we can observe higher rejection proportions for the AUC test for

all samples sizes (n=250 and n=500) and censoring parameters (4.6 and 8.1). It is worth

remember that the extension of the methods proposed in Rodrı́guez-Girondo and Uña-

Álvarez (2016) [112] to general models is not straightforward, while our methods (based

on the AUC) can be applied to general multi-state models as illustrated in our third real

data example.

6.4 Real data analysis

In this section, we illustrate the proposed methods using data from three clinical trial

studies. We first use data from a colon cancer study from a large clinical trial on Duke’s

stage III patients (Moertel et al., 1995) [115]), the second one is from a clinical trial on breast

cancer and the last one from a data set of liver cirrhosis patients subjected to a prednisome

treatment (Andersen et al., 1993) [13].

Surgical resection is the best treatment option for cancer patients and the most pow-

erful tool for assessing prognosis following potentially curative surgery. In a large per-

centage of the patients with such cancers, the diagnosis is made at a sufficiently early

stage when all apparent disease tissue can be surgically removed. Unfortunately, some

of these patients have residual cancer, which leads to recurrence of the disease and death

(in some cases). Cancer patients who have experienced a recurrence are known to be
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at a substantially higher risk of mortality. Usually, this mortality is higher in cases of

early recurrences. The effect of a recurrence in a survival model is traditionally studied

using extensions of the Cox proportional hazards model (Cox (1972 [6]); Genser and Wer-

necke (2005) [116]). Multi-state models can also be successfully used to model such data

(Pérez-Ocón et al. (2001) [117]; Putter, Fiocco and Geskus (2007) [18]; Meira-Machado et

al. (2009) [15]; Meira-Machado (2016) [73]; Meira-Machado and Sestelo (2019) [16]). In

both real data examples from cancer studies, data can be viewed as arising from a pro-

gressive illness-death model with states ‘Alive and disease-free’, ‘Alive with Recurrence’

and ‘Dead’. Below, the Markov assumption is carefully analyzed comparing the proposed

methods with the traditional approach.

6.4.1 Colon cancer study

In this study, 929 patients affected by colon cancer were followed from the date of a cu-

rative surgery for colorectal cancer until censoring or death from colon cancer. From this

total, 468 developed a recurrence and among these 414 died; 38 patients died without re-

currence. The rest of the patients (423) remained alive and disease-free up to the end of

the follow-up.

Figure 6.3 reports estimated transition probabilities for fixed values of s = 365, 730,

1095 and 1460 days (1, 2, 3 and 4 years, respectively), along time, for the transition prob-

abilities p̂12(s, t) (left hand side) and p̂23(s, t) (right hand side). As expected, these plots

reveal that the landmark estimators (LM and LMAJ) have more variability than the Aalen-

Johansen estimator (AJ). This is a obvious consequence of the subsampling approach

which will be more evident for some specific values of s and higher values of t. Plots

shown in the top of the figure (for s equal to one year) show departures between the two

Markov-free estimators (LM and LMAJ) and the Aalen-Johansen estimator (AJ). Note that

for the mortality transition from State 2 to State 3 the two (Markov-free) landmark estima-

tors are equivalent. Deviations from the two approaches (Markovian and Markov-free),

as those shown for s equal to one year, may be explained by the failure of the Markov

assumption. On the other hand, the corresponding plots for the remaining values of s

show that all methods behave quite similar.

Plots shown in the first row of Figure 6.4 compare the Aalen-Johansen estimator (AJ)

and the landmark non-Markovian estimator (LMAJ) for p12(s = 365, t), p13(s = 365, t)

and p23(s = 365, t). A small deviation can be seen in these plots with respect to the



6. GOODNESS-OF-FIT TEST STATISTICS FOR THE MARKOV CONDITION 101

straight line y = x. The plot on the second row presents the estimated transition proba-

bilities p̂23(s = 365, t) from the landmark Aalen-Johansen estimator with 95% pointwise

confidence limits (black lines) and Aalen-Johansen estimator (red line), revealing some

discrepancies between the two approaches in the estimation of this transition probabil-

ity. These plots provide a graphical test of the Markov assumption which reveal some

evidence on the lack of Markovianity of the underlying process beyond one year after

surgery.

For further illustration, in Figure 6.5 we display the discrepancy between the Aalen-

Johansen estimator (Markovian) and the landmark non-Markovian estimator (LMAJ), for

p12(s, t) and p22(s, t), for s = 365, s = 730, s = 1095 and s = 1460, measured through

Dhj = p̂ AJ
hj (s, t) − p̂ LMAJ

hj (s, t), h = 1, 2, j = h + 1. The 95% pointwise confidence limits

were obtained using simple bootstrap. This plot reveals clear differences between the two

methods in large intervals for s = 365. The differences are observed by the deviation of the

plot with respect to the straight line y = 0, from which one gets some evidence on the lack

of Markovianity of the underlying process beyond one year after surgery. On the other

hand the plots depicted for other values of s do not reveal evidence against the Markov

assumption. In summary, these plots show that there is some evidence, at least for s =

365, that the application of the Aalen-Johansen method is not recommended here, due to

possible biases. They also reveal a possible failure of the Markov assumption. It is worth

mention that deviations of the plots with respect to the straight line y = 0 in the right

tail (higher values of t) should not be overvalued since they often occur due to the limited

number of individuals at these times. Note that the findings observed in Figure 6.4 are not

in agreement with the results obtained through the ‘global’ test for Markovianity based on

the Cox model (using time to recurrence as a time-dependent covariate). This test reported

a coefficient of negative sign for the recurrence time, according to an increased risk of

death shortly after relapse (p-value = 0.154) revealing no evidence against the Markov

model for the colon data.

Results reported in Table 6.3 are in agreement with those obtained from the graphical

inspection shown in Figure 6.5, revealing a failure of the Markov assumption only for non-

null lower values of s. They show that, the test based on the difference of the area under

the two curves lead to a probability value of 0.002 and 0.003, respectively for p̂12(s, t)

and p̂23(s, t), for s = 365. Low probability values (less than 5%) were also obtained for

s = 90 and s = 180 too. These findings were also confirmed by the local tests based on
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TABLE 6.3: Probability values of the local test for several fixed values of s (measured in
days). Rejection proportions for the global tests also included. Colon cancer data.

Global
Trans. Prob. Method 90 180 365 730 1095 1460 AUC / LR Cox

p̂12(s, t) AUC(s) 0.012 0.007 0.002 0.154 0.135 0.857 0.014 0.154
p̂23(s, t) LR(s) 0.006 0.026 0.036 0.685 0.981 0.509 0.018 0.154

AUC(s) 0.003 0.004 0.003 0.155 0.118 0.714 0.013 0.154

TABLE 6.4: Probability values of the local test for s = 365 days by treatment for AUC
local test. Rejection proportions for the test based on the Cox model also included. Colon

cancer data.

Trans. Prob. Treatment Method s=365 Cox
Obs 0.0002

p̂12(s, t) Lev AUC(s) 0.7192
Lev+5FU 0.1116

Obs 0.0008 0.062
p̂23(s, t) Lev AUC(s) 0.3013 0.401

Lev+5FU 0.1562 0.712

the log-rank statistic. The global test we propose (based on the areas under the transition

probabilities) are also in agreement with our findings, reporting a probability value lower

than 0.014 against the Markov condition. The local tests based on the log-rank statistic

also confirmed small probability values mainly for s up to 365. Either the AUC and the

log-rank global tests confirm the failure of the Markovianity of the process.

Often multi-state models include covariates and it may be the omission of covariate

effects that induces apparent non-Markovianity. The methods proposed in this chapter

can also deal with this problem since discrete covariates can be included in the estimation

of the transition probabilities phj(s, t) by splitting the sample for each level of the covari-

ate and repeating the described procedures for each subsample. As shown in Table 6.4

treatment (Obs(ervation), Lev(amisole), Lev(amisole)+5-FU) revealed a strong effect on

the 2→3 transition intensities and a greater effect on 1→ 2. Results reported in Table 6.4

also show that the test for Markovianity based on the Cox model reported a p-value of

0.062 (regression coefficient: -0.000528) for the Observation group.

6.4.2 Breast cancer data

In this section we use data from the second trial in which a total of 720 women with

primary node positive breast cancer were recruited in the period between July 1984 and

December 1989. The data which was also used by Sauerbrei and Royston (1999) [118]

considers 686 patients who had complete data for the two event times (time to recurrence

and time to death). In this study, patients were followed from the date of breast cancer

diagnosis until censoring or dying from breast cancer. From the total of 686 women, 299

developed a recurrence and 171 died.
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As for the analysis of the colon cancer data, we start to present on Figure 6.6 the

estimated transition probabilities for fixed values of s = 365, 730, 1095 and 1460 days,

along time, for the transition probabilities p̂12(s, t) (left hand side) and p̂23(s, t) (right

hand side). In this case, differences between the estimated curves of the Aalen-Johansen

(AJ) and the Landmark estimator (LMAJ) are not evident. The discrepancy of the two

estimators with the 95% pointwise confidence limits is also displayed in Figure 6.7 for

Dhj = p̂ AJ
hj (s, t)− p̂ LMAJ

hj (s, t), h = 1, 2, j = h + 1. In this case, there are no clear evidences

of a deviance of the plot with respect to the straight line y = 0, at least in large intervals.

In summary, these plots do not show evidence against the use of the Aalen-Johansen es-

timator and therefore, against the Markov assumption. These findings are in agreement

with the results obtained through the three ‘global’ tests for Markovianity in Table 6.5.

The test based on the Cox model which reported a negative coefficient sign for the recur-

rence time, according to an increased risk of death shortly after relapse (p-value = 0.121)

revealing no evidence against the Markov model for the breast cancer data. Higher prob-

ability values were obtained from the global test based on the area under the transition

probabilities and log-rank statistics. The two local tests confirm this fact too.

TABLE 6.5: Probability values of the local test for several fixed values of s (measured in
days). Rejection proportions for the global tests also included. Breast cancer data.

Global
Trans. Prob. Method 180 365 730 1095 1460 AUC / LR Cox

p̂12(s, t) AUC(s) 0.543 0.306 0.232 0.247 0.241 0.230 0.121
p̂23(s, t) LR(s) 0.926 0.647 0.246 0.163 0.922 0.580 0.121

AUC(s) 0.955 0.603 0.269 0.428 0.577 0.280 0.121

6.4.3 Liver cirrhosis data

In this section we consider a data set of liver cirrhosis patients who were included in a

randomized clinical trial at several hospitals in Copenhagen between 1962 and 1974. The

study aimed to evaluate whether a treatment based on prednisone prolongs survival for

patients with cirrhosis (Andersen et al. (1993) [13]). Let State 1 correspond to ‘normal

prothrombin level’, State 2 to ‘low (or abnormal) prothrombin level’, and the State 3 to

‘dead’. The movement of the patients among these three states can be modeled through

the reversible multi-state model shown in Figure 6.8. From the total of 488 patients with

liver cirrhosis initially enrolled in the study, 292 died, from which 104 experienced a direct

transition from State 1 to the absorbing state, and in 188 patients an abnormal prothrom-

bin level was detected at any time. There were also 314 patients that had movements
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from abnormal prothrombin levels towards normal levels and 274 from the normal pro-

thrombin level to the intermediate state. Most transition times are below 1460 days, with

a maximum of 4892 days.

Following the same procedure of the previous real data set analysis, we started com-

paring the estimated curves of the LMAJ and the AJ estimators for the transitions prob-

abilities p̂12(s, t), p̂21(s, t) and p̂23(s, t), for fixed values of s= 180, 365, 730 and 1095 days,

with the purpose to identify a possible failure of the Markov assumption. These times

were chosen to cover the first years of the study corresponding to the most cases with

transitions. In fact, after 4 years for all transitions the number of individuals decrease

with potential consequences for the estimates under the landmark approach as refered

previously in case of small size samples. The plots with the estimated curves at those

points are shown in Figure 6.9. Plots shown in the first column reveal some departures

between LMAJ and AJ estimators of p12(s, t), but only for lower values of s. The devia-

tion between the two estimators seem to be more evident when comparing the estimated

curves of p21(s, t) (second column), while this is not so evident when comparing the es-

timated curves of the transition probability p23(s, t) (third column). As referred above,

apparent deviation between the two estimated curves, at least at some lowers values of s,

may due to the lack of Markov condition.

The discrepancy of the two estimators, computed using Dhj = p̂ AJ
hj (s, t)− p̂ LMAJ

hj (s, t)

with the 95% pointwise confidence limits is also displayed in Figure 6.10. Some of these

plots reveal some evidence of a deviance of the plot with respect to the straight line y = 0,

revealing a possible failure of the Markov condition. Some of these findings are in agree-

ment with the results reported in Table 6.6, which shows the rejection proportions, for

p̂12(s, t), p̂21(s, t) and p̂23(s, t) of the proposed tests for checking the Markov assumption.

Results were obtained by the empirical rejection proportions from 250 trials at the sig-

nificant level of 0.05. Interestingly, the proposed local test was able to detect a failure of

the Markov condition for s = 365 for the mortality transition of patients with abnormal

prothrombin level. For the remaining time points of s, the test obtained lower rejection

probabilities which are in agreement with the results obtained in all global tests. For the

transition from State 1 to State 2, the proposed local test only reveal the failure of the

Markov condition for s = 180. For the transition 2 to 1, besides s = 180, the local test also

revealed a failure of the Markov condition for s = 365. These evidences (of failure of the

Markov condition) for these two transitions are confirmed by the results of the proposed
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TABLE 6.6: Probability values of the local test for several fixed values of s (measured in
days). Rejection proportions for the global tests also included. Liver cirrhosis data.

Global
Trans. Prob. Method 180 365 730 1095 1460 AUC / LR Cox

p̂12(s, t) AUC(s) 0.002 0.158 0.134 0.639 0.793 <0.001 0.002
p̂21(s, t) AUC(s) <0.001 <0.001 0.156 0.253 0.237 0.001 <0.001
p̂23(s, t) LR(s) 0.699 0.336 0.594 0.641 0.034 0.298 0.999
p̂23(s, t) AUC(s) 0.317 0.030 0.677 0.367 0.195 0.258 0.999

global test based on the AUC and the test based on the Cox model.
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FIGURE 6.3: Estimates of the transition probabilities for the Aalen-Johansen (AJ) and
Markov-free estimators (landmark and landmark Aalen-Johansen), for s equal to 1, 2, 3

and 4 years since entry in study. Colon cancer data.
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FIGURE 6.4: Graphical test for the Markov condition, s = 365 (First row). Transition
probabilities of p̂23(s = 365, t) from the landmark Aalen-Johansen estimator with 95%
pointwise confidence limits (black lines) and Aalen-Johansen estimator (red line) (Second

row). Colon cancer study.
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FIGURE 6.5: Local graphical test for the Markov condition, for s equal to 1, 2, 3 and 4
years since entry in study. Test based on the discrepancy between the Aalen-Johansen

estimator (Markovian) and the Markov-free estimator (LM). Colon cancer data.
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FIGURE 6.6: Estimates of the transition probabilities for the Aalen-Johansen (AJ) and
Markov-free estimators (landmark and landmark Aalen-Johansen), for s equal to 1, 2, 3

and 4 years since entry in study. Breast cancer data.
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FIGURE 6.7: Local graphical test for the Markov condition, for s equal to 1, 2, 3 and 4
years since entry in study. Test based on the discrepancy between the Aalen-Johansen

estimator (Markovian) and the Markov-free estimator (LM). Breast cancer data.
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FIGURE 6.8: The reversible illness-death model for patients with liver cirrhosis.
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FIGURE 6.9: Estimates of the transition probabilities for the Aalen-Johansen (AJ) and
Markov-free estimators (landmark Aalen-Johansen), for some s equal to 180, 365, 730

and 1095 days since entry in study. Liver cirrhosis data.
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FIGURE 6.10: Local graphical test for the Markov condition, for s equal to 180, 365, 730
and 1095 days since entry in study since entry in study. Test based on the discrepancy be-
tween the Aalen-Johansen estimator (Markovian) and the Markov-free estimator (LMAJ).

Liver cirrhosis data.
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6.5 Discussion

The Markov assumption is commonly used to analyze multi-state survival data. There-

fore, goodness-of-fit tests for the Markov assumption are crucial in these models. Tradi-

tionally, this assumption is tested including covariates depending on the history on the

modeling process. The comparison between estimated transition probabilities is the ba-

sis to introduce two formal local tests for the Markov assumption. The new methods

are based on measuring the discrepancy of the Aalen-Johansen estimator which gives

consistent estimators in Markov processes, and recent approaches that do not rely on this

assumption. A log-rank test is used on specific transitions to check if the Markov assump-

tion holds. A second method is proposed in this chapter in which the test statistic is based

on the difference of the areas under the two curves. We note that alternative test statis-

tics could also have been considered such as those based on the absolute differences or

squared differences between the Aalen-Johansen and the landmark estimators that would

lead to a kolmogorov smirnov or a Cramer-von Mises-type test statistic, respectively.

Simulation results reveals that the two methods perform similarly revealing high power

to detect a failure of the Markov condition. The simulation results and the results ob-

tained through real medical data analysis suggest that the second approach may be a

good alternative to the existing methods. The use of the graphical local tests based on

the discrepancy between estimated curves of the transition probabilities, proposed here,

are recommended to confirm the conclusions obtained from the application of this for-

mal local test. In general, the two curves may cross at mid time points when the process

is indeed Markovian (and the two curves are similar). If the process is not Markovian,

then it is expected that the two curves only cross at earlier time points or at higher time

points (at the right tail). Nevertheless, it is wise to start the analysis with a graphical test

in particular to identify possible situations in which the process is indeed not Markovian

and the two curves cross at mid time points. In such cases the usage of a different test

statistics (e.g. based on a squared difference) should be also analyzed in future research

investigation.

The use of local tests is recommended whenever the interest is focused on the estima-

tion of the transition probabilities and, in particular, to decide which estimator is the most

appropriate to use: the Aalen-Johansen estimator or a robust estimator. The use of the

proposed local test is advised for each transition probability phj(s, t) (h > 1), and the use
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of the robust Markov-free estimator when faced of evidences against Markovianity. This

procedure may be followed for a general multi-state model.

A global test, such as the test proposed here, might be preferable for regression pur-

poses. To this end, a common simplifying strategy is to decouple the whole process into

various survival models by fitting separate intensities to all permitted transitions using

semiparametric Cox proportional hazard regression models, while making appropriate

adjustments to the risk set. The most common models are characterized through one of

the two model assumptions that can be made about the dependence of the transition in-

tensities and time. The transition intensities may be modeled using separated Cox mod-

els assuming the process to be Markovian (also known as the clock forward modeling

approach). When the test rejects the Markov assumption, a possible alternative is to use

a semi-Markov Cox model in which the future of the process does not depend on the

current time but rather on the duration in the current state. Both models can be easily

implemented using standard software such as the R packages survidm or mstate. To de-

cide the appropriate modeling approach, the global test should be used to all transitions

depending on history.

The global test proposed is obtained through the combination of the results from local

tests over different times. Simulation results show that the proposed global test may be

much more powerful than the standard parametric method based on the proportional

hazard specification which relies on a prior model specification that may fail in practice.

The proposed methods can be used in general multi-state models.

Discrete covariates can be included in the proposed methods by splitting the sample

for each level of the covariate and repeating the described procedures for each subsam-

ple. To account for the effect of continuous covariates, one can consider estimators of the

transition probabilities conditional on covariates. One standard method is to consider es-

timators based on a Cox’s model fitted marginally to each type of transitions, with the

corresponding baseline hazard function estimated by the Breslow’s method.

All the proposed methods in this chapter were implemented using the R language

and release as a package, called markovMSM, which is available at the CRAN repository at

https://cran.r-project.org/web/packages/markovMSM (Soutinho and Meira-Machado

(2021) [119]). A detailed description of the main funcionalities is also presented as supple-

mentary material [A.3] to this thesis and makes part of a paper submitted for publication

[B].

https://cran.r-project.org/web/packages/markovMSM


Chapter 7

survidm: An R package for Inference

and Prediction in an Illness-Death

Model

Multi-state models are a useful way of describing a process in which an individual moves

through a number of finite states in continuous time. The illness-death model plays a cen-

tral role in the theory and practice of these models, describing the dynamics of healthy

subjects who may move to an intermediate ”diseased” state before entering into a termi-

nal absorbing state. In these models, one important goal is the modeling of transition rates

which is usually done by studying the relationship between covariates and disease evolu-

tion. However, biomedical researchers are also interested in reporting other interpretable

results in a simple and summarized manner. These include estimates of predictive proba-

bilities, such as the transition probabilities, occupation probabilities, cumulative incidence

functions, and the sojourn time distributions. The development of survidm package has

been motivated by recent contributions that provide answers to all these topics. The cur-

rent version of the package provides seven different approaches to estimate the transition

probabilities, two methods for the sojourn distributions and two approaches for the cu-

mulative incidence functions. In addition, these probabilities can also be estimated con-

ditionally on covariate measures. The package also allows the user to perform multi-state

regression where the estimation of the covariate effects is achieved using Cox regression

in which different effects of the covariates are assumed for different transitions.

115
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The contents of this chapter are mainly based on the paper published in R Journal by

Soutinho, Sestelo and Meira-Machado (2021) [120].

7.1 Introduction

Several researchers have recently developed software for multi-state survival analysis.

A comprehensive list of the available packages in the Comprehensive R Archive Net-

work (CRAN) can be seen in the CRAN task view ’Survival Analysis’ (Allignol and La-

touche (2019) [57]). In R, several packages provide functions for estimating the transition

probabilities (e.g., the package p3state.msm (Meira-Machado and Roca-Pardiñas (2011)

[121]), TPmsm (Araújo, Roca-Pardiñas and Meira-Machado (2014) [122]), etm (Allignol,

Schumacher and Beyersmann (2011) [123]), mstate (de Wreede, Fiocco and Putter (2011)

[124]) and TP.idm (Balboa and de Uña-Álvarez (2018) [125]), but none implements all

the methods addressed by survidm which includes all newly developed methods based

on the subsampling approach (see de Uña-Álvarez and Meira-Machado (2015) [69] and

references therein). In addition, not all allow the users to obtain estimates of the tran-

sition probabilities conditional to covariates. The cmprsk and the timereg R packages

can be used to estimate the cumulative incidence functions in a competing risks model.

The package survival (via survfit and coxph functions) can also be used for compet-

ing risks data. The msSurv can be used to estimate the state occupation probabilities and

the sojourn distributions for multi-state models subject to right-censoring (possibly state-

dependent) and left-truncation. The package also provides matrices of transition prob-

abilities between any two states. However, none of the available software provides an

encompassing package which can be used to estimate all these quantities. Finally, the

use of different packages to estimate these quantities separately is rather difficult because

each of the current programs requests its own data structure.

This chapter introduces survidm (version 1.3.2, available from the Comprehensive

R Archive Network at https://cran.r-project.org/web/packages/survidm/), a soft-

ware application for R which performs inference in a progressive illness-death model. It

describes the capabilities of the program for estimating semiparametric regression mod-

els and for implementing nonparametric estimators for all quantities mentioned above. In

the remainder of this chapter we provide a brief introduction of the methodological back-

ground which most of them were already described in previous chapters (7.2). Following,

a detailed description of the package is presented and its usage is illustrated through the

https://cran.r-project.org/web/packages/survidm/


7. SURVIDM: AN R PACKAGE FOR INFERENCE AND PREDICTION IN AN ILLNESS-DEATH

MODEL 117

analysis of a real data set (7.3). Finally, the last section contains the main conclusions of

the package are presented in Section 7.4.

7.2 Methodology background

The mathematical background underlying the survidm package is briefly introduced in

this section. A more detailed explanation of the concepts can be found in the previously

chapters of this thesis. To be specific, the importance of the intensity rates in multi-state

models to identify the effect of the different predictors into the outcome and the way

of these quantities are modeled can be found in sections 1.3, 3.2 and 6.2. In the pack-

age survidm the inference of the transitions intensities is restricted to two semiparametric

multi-state models (Cox models assuming the process to be Markovian and semi-Markov

model in which the future of the process does not depend on the current time but rather on

the duration in the current state), but other models are possible for the analysis of multi-

state survival data. For example, time-homogeneous Markov models and model with

piecewise constant intensities are implemented in the msm R package (Jackson (2011)

[126]). Aalen additive model (Aalen, Borgan and Fekjaer (2001) [127]) and accelerated

failure time models (Wei (1992) [128]) are another class of regression models that can be an

alternative to the Cox proportional hazards model. The estimation of the transition proba-

bilities also plays a very important role in the inference in multi-state models since allows

predictions of the clinical prognosis of a patient across the evolution of the disease. The

definition of this conditional probabilities and different methods for estimating the transi-

tion probabilities, with also a historical perspective, can be seen in the sections 1.3, 3.2, 3.3

and 4.2.

To estimate both these quantities is the major importance to check the Markov as-

sumption, the reasons for checking and consequences in case of failure of this assumption

are presented in the sections 1.3, 3.2, 3.3, 3.6, 4.1, 4.6 and 6.1. Global and local test are also

proposed in Section 6.2.

Another quantity of interest in multi-state modeling is the cause-specific cumulative

incidence function, as defined by Kalbfleisch and Prentice (1980) [50]. In the illness-death

model the cumulative incidence of the illness is of particular interest. It represents the

probability of an individual being or having been diseased at time t. One possible esti-

mator, proposed by Geskus (2011) [129], is obtained by applying the Nelson-Aalen esti-

mator and the product-limit estimator of survival. This estimator can also be expressed
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in terms of the Kaplan-Meier weights of the distribution of Z, the sojourn time in State

0, as introduced in the paper by Meira-Machado and Sestelo (2019) [16]. A modifica-

tion of this estimator based on presmoothing can be introduced to reduce its variability.

Both methods are implemented in the survidm package. Estimation methods for the cu-

mulative incidence function conditionally on covariate measures based on local constant

(Nadaraya-Watson) regression are also implemented in the package.

The estimation of the marginal distributions in multi-state modeling is an interesting

topic too. In the context of the illness-death model, if the independence assumption be-

tween the censoring variable C and the vector of times (Z, T) is assumed, the marginal

distribution of the sojourn time in State 0, Z, can be consistently estimated by the Kaplan-

Meier estimator based on the (Z̃i, ∆1i)’s. Similarly, the distribution of the total time may

be consistently estimated by the Kaplan-Meier estimator based on the (T̃i, ∆i)’s. However,

the estimation of the marginal distribution of the sojourn time in State 1 is not such a sim-

ple issue. Nonparametric estimates for this marginal distribution allowing for state and

path-dependent censoring were proposed by Satten and Datta (2002) [130].

7.3 survidm in practice

This section introduces an overview of how the package is structured. This software en-

ables both numerical and graphical outputs to be displayed for all methods described in

the previous section. It is intended to be used with the R statistical program (R Core Team

(2019) [86]). The package is composed of 17 functions that allow users to obtain estimates

for all proposed methods. Details on the usage of the functions (described in Table 7.1)

can be obtained with the corresponding help pages.

It should be noted that to implement the methods described in the methodology sec-

tion, one needs the following variables: time1, event1, Stime, and event. Covariates can

also be included. The variable time1 represents the sojourn time in State 0 and Stime the

total time, whereas event1 and event are the respective censoring indicators. This means

that event1 will take the value 1 if the subject leaves State 0 and 0 otherwise; event takes

value 1 if the subject reaches State 2 and 0 otherwise.

For illustration, we apply the proposed methods to data from a large clinical trial

on Duke’s stage III patients affected by colon cancer, that underwent a curative surgery

for colorectal cancer [74]. This data set is freely available as part of the R survival

package. The data is also available as part of the R package survidm. Besides the two



7. SURVIDM: AN R PACKAGE FOR INFERENCE AND PREDICTION IN AN ILLNESS-DEATH

MODEL 119

Function Description

survIDM Create a survIDM object.
coxidm Fits proportional hazards regression models for each transi-

tion.
tprob Estimation of the transition probabilities.
CIF Estimation of the cumulative incidence functions.
sojourn Nonparametric estimation of the sojourn distribution in the

intermediate state.
autoplot.survIDM Visualization of survIDM objects with ggplot2 and plotly

graphics.
plot.survIDM Plot for an object of class survIDM.
print.survIDM Print for an object of class survIDM.
summary.survIDM Summary for an object of class survIDM.
nevents Counts the number of observed transitions in the multi-state

model.
markov.test Performs a test for the Markov assumption.
KM Computes the Kaplan-Meier product-limit of survival.
PKM Computes the presmoothed Kaplan-Meier product-limit of

survival.
Beran Computes the conditional survival probability of the response,

given the covariate under random censoring.
KMW Returns a vector with the Kaplan-Meier weights.
PKMW Returns a vector with the presmoothed Kaplan-Meier weights.
LLW Returns a vector with the local linear weights.
NWW Returns a vector with the Nadaraya-Watson weights.

TABLE 7.1: Summary of functions in the survidm package.

event times (disease-free survival time and death time) and the corresponding indica-

tor statuses, a vector of covariates including rx (treatment: Obs(ervation), Lev(amisole),

Lev(amisole)+5FU), sex (1 - male), age (years), nodes (number of lymph nodes with de-

tectable cancer), surge (time from surgery to registration: 0 = short, 1 = long), adhere (ad-

herence to nearby organs) are also available. The covariate ‘recurrence’ is the only time-

dependent covariate, while the other covariates included are fixed. Recurrence can be

considered as an intermediate transient state and modeled using the progressive illness-

death model with transient states ‘alive and disease-free’ and ‘alive with recurrence’, and

the absorbing state ‘dead’. In the following, we will demonstrate the package capabilities

using this data. Below is an excerpt of the data.frame with one row per individual. Indi-

viduals were chosen in order to represent all possible combinations of movements among

the three states.

1 > library("survidm")

> data(colonIDM)

3 > colonIDM[c(1:2,16,21),1:7]
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5 time1 event1 Stime event rx sex age

1 968 1 1521 1 Lev+5FU 1 43

7 2 3087 0 3087 0 Lev+5FU 1 63

16 1323 1 3214 0 Obs 1 68

9 21 2789 1 2789 1 Obs 1 64

Individual represented in the first line experienced a recurrence of the tumor and have

died. In such cases, event1 and event are equal to 1 and time1 are different of Stime. In-

dividual represented in line 2 remain alive and without recurrence at the end of follow-up

(event1 = 0 and event = 0). Individual represented in line 16 of the original data set, with

event1 = 1 and event = 0, corresponds to an individual with an observed recurrence

that remains alive at the end of the follow-up. Note that in this case, the disease-free

survival time is equal to the death time (time1 = Stime). Finally, individual represented

in line 21 of the original data set has died without observing a recurrence. We note that

event1 = 1 and event = 0 correspond to individuals with an observed recurrence that

remain alive at the end of the follow-up.

Of the total of 929 patients, 468 developed a recurrence, and among these 414 died, 38

patients died without developing a recurrence. A summary of the data with the number

of the undergoing transitions can be obtained through the nevents function. The colums

of the data set must include at least the four columns named time1, event1, Stime, and

event according to the requirements of the survIDM function presented in the help file.

Parameter state.names enables to change the default values of states, ‘healthy’, ‘illness’,

and ‘death’.

1 > nevents(with(colonIDM, survIDM(time1, event1, Stime, event)),

state.names = c("healthy", "recurrence", "death"))

3 healthy recurrence death

healthy 423 468 38

5 recurrence 0 54 414

death 0 0 452

7.3.1 Regression models for transitions intensities

To relate the individual characteristics to the intensity rates, semiparametric multi-state

regression models are used. Specifically, separated Cox models assuming the process to
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be Markovian (i.e., the transition intensities only depend on the history of the process

through the current state) or using a semi-Markov model in which the future of the pro-

cess does not depend on the current time but rather on the duration in the current state.

Therefore, of practical interest to determine whether the Markov property holds within

a particular data set to determine whether a Markov model or a semi-Markov model is

more appropriate.

7.3.2 The Markov assumption

The Markov assumption may be checked, among others, by including covariates depend-

ing on the history. For the progressive illness-death model, the Markov assumption is only

relevant for mortality transition after recurrence. We can examine whether the time spent

in the initial state ”Alive and disease-free” (i.e., the past) is important in the transition

from the recurrence state to death (i.e., the future). For doing that, let Z be the time spent

in State 0 and t the current time. Fitting a model α12(t; Z) = α12,0(t)exp{βZ}, we now

need to test the null hypothesis, H0 : β = 0, against the general alternative, H1 : β 6= 0.

This would assess the assumption that the transition rate from the disease state into death

is unaffected by the time spent in the previous state.

> library(survival)

2 > fit <- coxph(Surv(time1, Stime, event) ~ time1, data = colonIDM,

subset=c(time1 < Stime))

4 > fit

coef exp(coef) se(coef) z p

6 time1 -0.0002475 0.9997526 0.0001737 -1.424 0.154

8 Likelihood ratio test=2.04 on 1 df, p=0.1533

n= 468, number of events= 414

Following this procedure, we verified that the effect of time spent in State 0 reported

a p-value of 0.154 (regression coefficient: - 0.0002475), revealing no evidence against the

Markov model for the colon data. Results from this test can also be obtained through the

function markov.test, which has an output fairly similar to those obtained from coxph

function.

1 > mk <- markov.test(survIDM(time1, event1, Stime, event) ~ 1,
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data = colonIDM)

3 > mk

Since there is no evidence on the lack of Markovianity, a multi-state Markov regression

model based on the Cox model can be fitted through the following input command:

1 > fit.cmm <- coxidm(survIDM(time1, event1, Stime, event) ~ rx + sex + age +

nodes + surg + adhere, data = colonIDM)

3

> summary(fit.cmm)

5

Cox Markov Model: transition 0 -> 1

7

coef exp(coef) lower 0.95 upper 0.95 Pr(>|z|)

9 rxLev -0.061251858 0.9405863 0.7596976 1.1645457 5.740592e-01

rxLev+5FU -0.515170844 0.5973985 0.4713678 0.7571264 2.031682e-05

11 sex -0.149177218 0.8614164 0.7160077 1.0363552 1.137849e-01

age -0.004669254 0.9953416 0.9876802 1.0030625 2.362711e-01

13 nodes 0.083943790 1.0875678 1.0686993 1.1067694 5.418662e-21

surg 0.251798521 1.2863368 1.0509673 1.5744186 1.460249e-02

15 adhere 0.296839791 1.3455997 1.0551768 1.7159575 1.671466e-02

17 Cox Markov Model: transition 0 -> 2

19 coef exp(coef) lower 0.95 upper 0.95 Pr(>|z|)

rxLev -0.29152482 0.7471235 0.3271685 1.706135 4.889711e-01

21 rxLev+5FU -0.11211853 0.8939383 0.4220165 1.893589 7.697006e-01

sex 0.39293182 1.4813174 0.7641923 2.871399 2.445966e-01

23 age 0.08422764 1.0878765 1.0476871 1.129608 1.157046e-05

nodes 0.07538428 1.0782984 0.9895116 1.175052 8.552937e-02

25 surg 0.41564547 1.5153485 0.7703441 2.980851 2.285509e-01

adhere 0.05435239 1.0558566 0.4377875 2.546517 9.036879e-01

27

29 Cox Markov Model: transition 1 -> 2

31 coef exp(coef) lower 0.95 upper 0.95 Pr(>|z|)

rxLev 0.068953592 1.071386 0.8533466 1.345138 5.525534e-01
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33 rxLev+5FU 0.327043851 1.386862 1.0741245 1.790656 1.212756e-02

sex 0.214094887 1.238740 1.0138220 1.513557 3.623833e-02

35 age 0.009342474 1.009386 1.0014760 1.017359 1.994502e-02

nodes 0.046061552 1.047139 1.0249376 1.069821 2.522475e-05

37 surg -0.012258877 0.987816 0.7944594 1.228232 9.121722e-01

adhere 0.137708158 1.147641 0.8851963 1.487895 2.985854e-01

The transition intensities characterize the hazard for movement from one state to an-

other, revealing how the different covariates affect the various permitted transitions. The

results indicate that none of the covariates were found to have a strong effect on all three

transitions. Save for covariates age and sex, all the remaining predictors were considered

important for recurrence transition. Interestingly, age displayed a strong linear effect on

mortality transition without recurrence, whereas all the other covariates failed to show

relevant association on this transition. Finally, save for covariates surg and adhere, all the

remaining predictors were considered important for the mortality transition after recur-

rence. The coxidm function also returns the analysis of the deviance for each Cox model.

In this case, only an overall p-value is presented for categorical variables. To obtain the

outputs, we have to indicate type=‘anova’ in summary function.

2 > summary(fit.cmm,type = ’anova’)

4 Cox Markov Model: transition 0 -> 1

6 loglik Chisq Df Pr(>|Chi|)

NULL -2954.2

8 rx -2941.8 24.6964 2 4.338e-06 ***

sex -2941.0 1.6402 1 0.20030

10 age -2939.8 2.3435 1 0.12581

nodes -2909.0 61.6050 1 4.198e-15 ***

12 surg -2906.2 5.7134 1 0.01684 *

adhere -2903.5 5.3740 1 0.02044 *

14 ---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

16

18 Cox Markov Model: transition 0 -> 2
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20

loglik Chisq Df Pr(>|Chi|)

22 NULL -231.79

rx -231.54 0.4938 2 0.7812

24 sex -231.04 1.0065 1 0.3158

age -219.26 23.5445 1 1.221e-06 ***

26 nodes -218.04 2.4536 1 0.1173

surg -217.35 1.3830 1 0.2396

28 adhere -217.34 0.0145 1 0.9043

---

30 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

32

Cox Markov Model: transition 1 -> 2

34

36 loglik Chisq Df Pr(>|Chi|)

NULL -1897.5

38 rx -1895.0 4.8864 2 0.0868804 .

sex -1892.8 4.3995 1 0.0359501 *

40 age -1890.8 4.0650 1 0.0437799 *

nodes -1883.4 14.7205 1 0.0001247 ***

42 surg -1883.4 0.0090 1 0.9242629

adhere -1882.9 1.0505 1 0.3054007

44 ---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The effect of the continuous covariates on the log hazards is often assumed to have

a linear functional form in all intensities. To introduce flexibility into the Cox Markov

model, several smoothing methods may be applied, but P-splines (Eilers and Marx (1996)

[12]) are being most frequently considered in this context. Results showed of a strong

nonlinear effect for nodes (checked through a formal test) when using a Cox model on

the recurrence transition. Figure 7.1 returns a centered set of predictions on a log hazard

scale. The average predicted value is zero with a mean value of nodes as the reference

(see the vignette ’Splines, plots, and interactions’ in Therneau (2021) [131]). The main

curve depicts the smooth curve for nodes on a log hazard scale, indicating that the risk of
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recurrence increases rapidly until about 6 nodes. The apparent decrease after 23 nodes is

not significant due to the wide confidence intervals.

1 > library(ggplot2)

> library(plotly)

3

> fit2.cmm <- coxidm(survIDM(time1, event1, Stime, event) ~ rx + sex + age +

5 pspline(nodes) + surg + adhere, data = colonIDM)

7

> d<-data.frame(x=fit2.cmm$term01$nodes$x, y=fit2.cmm$term01$nodes$y,

9 y1=fit2.cmm$term01$nodes$y-1.96*fit2.cmm$term01$nodes$se,

y2=fit2.cmm$term01$nodes$y+1.96*fit2.cmm$term01$nodes$se)

11

> nonlinear<-ggplot(d, aes(x,y))+theme_bw()+labs(x = "nodes") +

13 labs(y = "Partial for pspline(nodes)")+

geom_ribbon(aes(ymin=y1,ymax=y2),fill=’gray92’,alpha=0.9)+

15 geom_line(aes(x,y))+

geom_line(color=1,size=1)

17

> ggplotly(nonlinear)

The proportional hazards assumption can be tested formally using the summary func-

tion. The output can be obtained putting type=’ph’ in summary function.

> summary(fit2.cmm, type = ’ph’)

2

Cox Markov Model: transition 0 -> 1

4 Test the Proportional Hazards Assumption

6 chisq df p

rx 4.12e-01 2.00 0.81

8 sex 2.10e+00 1.00 0.15

age 9.37e-04 1.00 0.98

10 pspline(nodes) 7.60e+00 3.95 0.10

surg 1.97e+00 1.00 0.16

12 adhere 6.13e-01 1.00 0.43

GLOBAL 1.30e+01 9.94 0.22
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FIGURE 7.1: Predicted values of the smooth log hazard based on penalized splines (black
line) with pointwise 95% confidence intervals obtained from the partial residuals for

nodes (recurrence intensity), using the colon cancer data.

14

16 Cox Markov Model: transition 0 -> 2

Test the Proportional Hazards Assumption

18

chisq df p

20 rx 1.6292 2.00 0.44

sex 0.0668 1.00 0.80

22 age 0.8396 1.00 0.36

pspline(nodes) 0.7859 4.00 0.94

24 surg 0.4955 1.00 0.48

adhere 2.3606 1.00 0.12

26 GLOBAL 6.1424 9.99 0.80

28

Cox Markov Model: transition 1 -> 2

30 Test the Proportional Hazards Assumption
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32 chisq df p

rx 5.03913 1.99 0.08

34 sex 0.02204 1.00 0.88

age 0.73628 1.00 0.39

36 pspline(nodes) 4.25500 4.09 0.39

surg 2.02427 1.00 0.15

38 adhere 0.00177 1.00 0.97

GLOBAL 13.19170 10.08 0.22

A semi-Markov model could be obtained by including the argument semiMarkov =

TRUE in the coxidm function.

7.3.3 Occupation probabilities and transition probabilities

The occupation probabilities and the transition probabilities are key quantities of inter-

est in multi-state models. They offer interpretable results in a simple and summarized

manner.

Estimates and plots of the transition probabilities can be obtained using the tprob

function. The default method is the Aalen-Johansen estimator (AJ) which assumes the

process to be Markovian. The presmoothed version of the Aalen-Johansen estimator (PAJ)

also assumes the process to be Markovian while the remaining methods (LIDA, LM, PLM,

LMAJ, and PLMAJ) are free of the Markov condition.

When one is confident of the Markov assumption, the Aalen-Johansen is preferred

over the non-Markovian estimators since it reports a smaller variance in estimation. Es-

timates and plot for the Aalen-Johansen method can be obtained through the following

input commands:

1 > tpAJ <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,

method = "AJ", conf = TRUE, data = colonIDM)

3

> summary(tpAJ, times=365*2:6)

5

Estimation of pij(s=365,t)

7

t 00 01 02 11 12

9 730 0.7966309 0.1300071 0.0733620 0.4686360 0.5313640

1095 0.7192603 0.1224599 0.1582799 0.2533822 0.7466178
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11 1460 0.6805333 0.0884287 0.2310380 0.1335300 0.8664700

1825 0.6444157 0.0859123 0.2696720 0.0932851 0.9067149

13 2190 0.6131533 0.0774912 0.3093556 0.0632835 0.9367165

15 2.5%

17 t 00 01 02 11 12

730 0.7673408 0.1093487 0.0589350 0.4105298 0.4728114

19 1095 0.6867036 0.1026150 0.1354061 0.2105314 0.7011204

1460 0.6468259 0.0714743 0.2030840 0.1047501 0.8346547

21 1825 0.6098804 0.0688614 0.2396632 0.0708282 0.8813846

2190 0.5780541 0.0612090 0.2777007 0.0464018 0.9172849

23

97.5%

25

t 00 01 02 11 12

27 730 0.8270390 0.1545683 0.0913208 0.5349666 0.5971676

1095 0.7533604 0.1461425 0.1850177 0.3049547 0.7950677

29 1460 0.7159973 0.1094050 0.2628397 0.1702170 0.8994981

1825 0.6809066 0.1071852 0.3034384 0.1228620 0.9327733

31 2190 0.6503836 0.0981045 0.3446188 0.0863070 0.9565597

33 > autoplot(tpAJ)

Besides being consistent regardless the Markov condition, the landmark non-Markov

estimators (LM, PLM, LMAJ, and PLMAJ) can be preferable in many situations due to their

greater accuracy. When comparing the original nonparametric landmark estimator (LM)

and the Aalen-Johansen estimator, some discrepancies are observed for t = 730 and t =

1095 (2 and 3 years, respectively). In addition to the aforementioned discrepancy between

the two estimates, the plots for the two methods (Figure 7.2) also show that the confidence

bands are narrower in the case of the Aalen-Johansen, revealing less variability for this

method.

1 > tpLM <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,

method = "LM", conf = TRUE, data = colonIDM)

3

> summary(tpLM, times=365*2:6)
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5

Estimation of pij(s=365,t)

7

t 00 01 02 11 12

9 730 0.7966309 0.14750103 0.0558681 0.38815789 0.6118421

1095 0.7192603 0.14320925 0.1375305 0.15789474 0.8421053

11 1460 0.6805333 0.09446864 0.2249981 0.10526316 0.8947368

1825 0.6444157 0.08583643 0.2697479 0.09210526 0.9078947

13 2190 0.6131533 0.07465238 0.3121944 0.06432749 0.9356725

15 2.5%

17 t 00 01 02 11 12

730 0.7673274 0.12294665 0.0411836 0.31792669 0.5390734

19 1095 0.6866872 0.12033558 0.1142137 0.10937624 0.7860868

1460 0.6468058 0.07447488 0.1960521 0.06621973 0.8472552

21 1825 0.6098421 0.06804756 0.2387239 0.05591405 0.8630680

2190 0.5777125 0.05742370 0.2791810 0.03480413 0.8969820

23

97.5%

25

t 00 01 02 11 12

27 730 0.8270534 0.17695930 0.07578852 0.4739034 0.6944337

1095 0.7533784 0.17043081 0.16560740 0.2279357 0.9021157

29 1460 0.7160195 0.11982998 0.25821767 0.1673268 0.9448794

1825 0.6809493 0.10827565 0.30480372 0.1517218 0.9550498

31 2190 0.6507682 0.09705015 0.34911161 0.1188947 0.9760319

33 > autoplot(tpLM)

Since the landmark estimators of the transition probabilities are free of the Markov

assumption, they can also be used to introduce such tests (at least in the scope of the

illness-death model) by measuring their discrepancy to Markovian estimators. The func-

tion markov.test performs a local graphical test for the Markov condition. This graphical

test is based on a PP-plot which compares the estimations reported by the Aalen-Johansen

transition probabilities to their non-Markov counterparts. The corresponding plot for a
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FIGURE 7.2: Transition probability estimates using the AJ (left hand side) and LM (right
hand side) method, using the colon cancer data.

local test of Markovianity (s = 365) can be obtained through the following input com-

mand:

1 > mk <- markov.test(survIDM(time1, event1, Stime, event) ~ 1, s = 365,

data = colonIDM)

3 > autoplot(mk)

The plot shown in Figure 7.3 compares the Aalen-Johansen estimator and the land-

mark non-Markovian estimator for p01(s, t), p02(s, t), and p12(s, t), for s = 365. Existing

deviations of the plots with respect to the straight line y = x reveals some evidence on the

lack of Markovianity of the underlying process beyond one year after surgery. For fur-

ther illustration, this figure jointly displays the landmark non-Markovian estimator and

the Aalen-Johansen estimator for p12(s = 365, t). In this, plot the differences between

both estimators are clearly seen. Thus, in principle, the application of the Aalen-Johansen

method is not recommended here, due to possible biases.

The variability of the nonparametric landmark estimator (LM) may be successfully re-

duced using presmoothing ideas (Dikta (1998) [65]; Cao et al. (2005) [66]). The pres-

moothed landmark estimator is implemented in the same function through the method

PLM. The same ideas can be used to reduce the variability of the Markovian Aalen-Johansen

estimator and the (non-Markov) Landmark Aalen-Johansen estimator through methods

PAJ and PLMAJ, respectively.
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FIGURE 7.3: Graphical test for the Markov condition, s = 365. The second row shows
the landmark (Markov-free) estimator with 95% pointwise confidence limits (black lines)
and Aalen-Johansen estimator (red line) for the transition probability p12(365, t), using

the colon cancer data.

The package survidm also allows for the computation of the above quantities condi-

tional on covariates that are observed for an individual before the individual makes a

particular transition of interest. For continuous covariates, one possible and flexible non-

parametric approach is to consider local smoothing by means of kernel weights based

on local constant (Nadaraya-Watson: NW) regression. This estimator is implemented in

our package through function tprob using the method = IPCW. Below are the input com-

mands to obtain the estimates of the transition probabilities at time s = 365 for an indi-

vidual of 48 years old. For the bandwidth in the estimator, we use dpik function which

is available from the R KernSmooth package. This is the data-based bandwidth selector of

Wand & Jones (1997) [81].
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1 > tpIPCW.age <- tprob(survIDM(time1, event1, Stime, event) ~ age, s = 365,

method = "IPCW", z.value = 48, conf = FALSE, data = colonIDM,

3 bw = "dpik", window = "gaussian", method.weights = "NW")

5 > summary(tpIPCW.age, time=365*2:6)

7 Estimation of pij(s=365,t)

9 t 00 01 02 11 12

730 0.7662208 0.1921290 0.04165012 0.28946129 0.7105387

11 1095 0.7308496 0.1688189 0.10033149 0.12631010 0.8736899

1460 0.6980293 0.1088373 0.19313342 0.05905711 0.9409429

13 1825 0.6310625 0.1186104 0.25032706 0.05903929 0.9409607

2190 0.6157095 0.1051797 0.27911080 0.04035816 0.9596418

15

> autoplot(tpIPCW.age)
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FIGURE 7.4: Conditional transition probabilities given that the subject is alive and
disease-free at s = 365 days for a 48-years-old patient, using the colon cancer data.

The curves depicted in Figure 7.4, which are purely nonparametric, enable flexible

modeling of the data providing flexible and robust effects of the covariate that can be
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used at least as a preliminary attempt, providing insights on the data being analyzed.

Such methods can be used to capture nonstandard data features that may not be detected

through parametric or semiparametric proposals. A general problem in multivariate non-

parametric regression estimation is the so-called curse of dimensionality. In higher dimen-

sions, the observations are sparsely distributed even for large sample sizes. Consequently,

estimators based on local averaging (like those based on kernel smoothing) perform un-

satisfactorily in this situation.

An alternative method is to consider estimators based on Cox’s regression model (Cox

(1972) [6]) fitted marginally to each transition with the corresponding baseline hazard

function estimated by Breslow’s method (Breslow (1972) [23]). The following input com-

mands illustrate the use of the tprob function in this context:

> tp.breslow.age <- tprob(survIDM(time1, event1, Stime, event) ~ age, s = 365,

2 method = "breslow", z.value = 48, conf = FALSE, data = colonIDM)

4 > summary(tp.breslow.age, time=365*2:6)

6 Estimation of pij(s=365,t)

8 t 00 01 02 11 12

730 0.7970855 0.15020199 0.05271253 0.37528949 0.6247105

10 1095 0.7198657 0.14999685 0.13013746 0.14814634 0.8518537

1460 0.6826444 0.10384005 0.21351550 0.09843946 0.9015605

12 1825 0.6451532 0.09850122 0.25634562 0.08617378 0.9138262

2190 0.6139465 0.08891388 0.29713961 0.06066618 0.9393338

Note that if the argument z.value is missing, then the tprob function computes the

predicted conditional transition probabilities at the average values of the covariate. The

Breslow method (based on the Cox regression model) is particularly well-suited to the

setting with multiple covariates:

1 > tp.breslow <- tprob(survIDM(time1, event1, Stime, event) ~ rx + age + nodes, s

= 365,

method = "breslow", z.value = c(’Obs’, 50, 10), conf = FALSE, data

= colonIDM)

3
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> summary(tp.breslow, time=365*2:6)

5

Estimation of pij(s=365,t)

7

t 00 01 02 11 12

9 730 0.6423398 0.24905912 0.1086010 0.30017412 0.6998259

1095 0.5222992 0.21890332 0.2587975 0.09465150 0.9053485

11 1460 0.4680828 0.12787851 0.4040387 0.05433167 0.9456683

1825 0.4181094 0.10712224 0.4747684 0.04519157 0.9548084

13 2190 0.3762996 0.08424903 0.5394514 0.02685212 0.9731479

7.3.4 Cumulative Incidence Function

Another quantity of interest in multi-state modeling is the cause-specific cumulative in-

cidence of the illness (recurrence). Function CIF can be used to obtain the nonparamet-

ric estimator of Geskus (2011) [129] (default method), which is equivalent to the classical

Aalen-Johansen estimator. The corresponding presmoothed version (Meira-Machado and

Sestelo, 2018) is also implemented through the argument presmooth = TRUE:

1 > cif <- CIF(survIDM(time1, event1, Stime, event) ~ 1, data = colonIDM,

conf = TRUE)

3 > summary(cif, time=365*1:6)

5 Estimation of CIF(t)

t CIF

7 365 0.2378902

730 0.3844412

9 1095 0.4372663

1460 0.4620841

11 1825 0.4859813

2190 0.5032043

13

2.5%

15

t CIF

17 365 0.2088267

730 0.3509039
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19 1095 0.4038141

1460 0.4296740

21 1825 0.4540347

2190 0.4697608

23

97.5%

25

t CIF

27 365 0.2616792

730 0.4103338

29 1095 0.4666664

1460 0.4900876

31 1825 0.5161684

2190 0.5319749

33

> autoplot(cif, ylim=c(0, 0.6), confcol = 2)
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FIGURE 7.5: Cumulative incidence function in the recurrence state with 95% bootstrap
confidence bands, using the colon cancer data.

Figure 7.5 depicts the estimates of cumulative incidence function for the recurrent state

together with a 95% pointwise confidence bands based on simple bootstrap that resamples
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each datum with probability 1/n. From this plot, it can be seen that individuals have a

probability of recurrence higher than 50%. This cumulative probability is about 43% at

three years after surgery.

Figure 7.6 depicts the estimates of the (conditional) cumulative incidence function for

patients with 1 and 9 lymph nodes with detectable cancer. Curves depicted in this fig-

ure, which are purely nonparametric, indicate that patients with 9 lymph nodes with de-

tectable cancer have a considerably higher probability of recurrence. The corresponding

input commands are shown below:

> cif.1.nodes <- CIF(survIDM(time1, event1, Stime, event) ~ nodes, data =

colonIDM,

2 conf = FALSE, z.value = 1)

> cif.9.nodes <- CIF(survIDM(time1, event1, Stime, event) ~ nodes, data =

colonIDM,

4 conf = FALSE, z.value = 9)

6 > d<-as.data.frame(cbind(rep(cif.1.nodes$est[,1],2),c(cif.1.nodes$est[,2],

cif.9.nodes$est[,2]), c(rep("1 nodes", length(cif.1.nodes$est

[,1])),

8 rep("9 nodes", length(cif.1.nodes$est[,2])))))

> names(d)<-c(’time’,’cif’,’type’)

10

> cif<-ggplot(d, aes(x=as.numeric(time), y=as.numeric(cif),group=factor(type),

12 color=factor(type)))+theme_bw()+labs(x = ’Time (days)’,

y = ’CIF(t|nodes)’)

14 > cif+geom_step(size=1)+ theme(legend.title=element_blank())

7.3.5 Sojourn distribution

Another interesting quantity is the sojourn time in each state. Estimates for the distribu-

tion function of the sojourn time in the recurrence state can be obtained using the estima-

tor by Satten and Datta (2002) [130] through function sojourn.

> soj <- sojourn(survIDM(time1, event1, Stime, event) ~ 1,

2 data = colonIDM, method = "Satten-Datta", conf = FALSE)

> summary(soj, time=365*1:6)
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FIGURE 7.6: Conditional cumulative incidence function for the colon cancer data for
nodes = 1 and nodes = 9, using the colon cancer data.

4

Estimation of sojourn(t)

6

t sojourn

8 365 0.4852424

730 0.7723636

10 1095 0.8755021

1460 0.8983714

12 1825 0.9102335

2190 0.9220849

The estimates for the distribution function of the sojourn time in the recurrence state,

corresponding to the time between entry in recurrence and death, reveal that the distri-

bution function increases to a value near 49% and 78% for a time of one and two years,

respectively, revealing a high risk of death shortly after relapse.

The methods for implementing some of the proposed methods can be computationally

demanding. In particular, the use of bootstrap resampling techniques is time-consuming

process because it is necessary to estimate the model a great number of times. In such
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cases, we recommend the use of parallelization (cluster = TRUE). This should consider-

ably increase performance on multi-core/ multi-threading machines.

7.4 Discussion

There has been several recent contributions for the inference in the context of multi-state

models. Many of these contributions were made for the illness-death model. One impor-

tant and perhaps undervalued aspect of multi-state models is the possibility to apply them

to obtain predictions of the clinical prognosis. This is usually achieved using estimates

of the transition probabilities and survival estimates. However, there are several other

quantities that could also be used in the analysis of these data, such as the state occupa-

tion probabilities, the sojourn time distributions, and the cumulative incidence functions.

To provide the biomedical researchers with an easy-to-use tool for obtaining predictive

estimates for all these quantities, we develop an R package called survidm. This pack-

age can be used to implement several nonparametric and semiparametric estimators for

the transition probabilities. In addition, estimators have also implemented that account

for the influence of covariates. Bootstrap confidence bands are provided for all methods.

The software can also be used to perform multi-state regression (using type-specific Cox

models).



Chapter 8

MSM.app: a Web-Based Tool for the

Analysis of Multi-state Survival Data

The development of applications for obtaining interpretable results in a simple and sum-

marized manner in multi-state models is a research field with great potential, namely in

terms of using open source tools that can be easily implemented in biomedical applica-

tions. This chapter introduces MSM.app, an interactive web application using the Shiny

package for the R language. This web application consists of three parts representing dif-

ferent aspects of the survival analysis and its extension to complex multi-state models.

The first one allows to perform the survival analysis from mainly of most common func-

tions of the survival R packages. The second enables to obtain some of the main goals

of a multi-state analysis, such as the inference of regression models and the estimation of

transition probabilities through the survidm and mstate R packages. Finally, MSM.app also

includes local and global statistical tests to check the Markov assumption for multi-state

using the markovMSM package.

The MSM.app allows one to perform traditional survival analysis in terms of estimating

survival curves, comparing multiple curves, or inferring in regression models. It can also

be used to obtain the results from some newly developed methods, such as the estima-

tion of transition probabilities or the recent methods for checking the Markov assumption

for multi-state models. For all of these aspects, the user can easily compare, for instance,

statistical measures related to the precision of estimates or the validity of regression mod-

els. The application comprises a set of dynamic web forms, tables, and graphics, making

use of the capabilities of the Shiny package, which enables any user, regardless of their

139
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previous knowledge of informatics, to perform a dynamic analysis involving the most

important topics in multi-state models.

8.1 Introduction

Data visualization has grown in importance and popularity across a wide variety of fields

over recent years (Kirk (2012) [132]; Yau (2013) [133]). In this regard, the development

of a new variety of web tools has followed this increase, enabling researchers to gather

and publish information to spur interest in the research community (Govan (2016) [134]).

This type of web application includes databases, algorithms, services, and software tools,

which provide some of the following advantages: availability; installation of software

packages is unnecessary; optimization of computational resources; updates and access

to the latest versions can easily be done; and the possibility of real-time validation of

previous analysis (Lánczky and Győrffy (2021) [135]).

Since the mid-2000s, R (R Core Team, 2019 [86]) has become one of the most impor-

tant programming languages to work in academia and businesses due to its abilities in

data processing, statistics, and visualization, which has enabled it to be the fastest grow-

ing language for training methods at universities (Muenchen (2017) [136]). According to

IEEE, it is also the main competitor of Python concerning data science, consistently rising

to the top of the list of languages for most jobs (Varma and Virmani (2017) [137]). In re-

cent years, new innovations have been developed to provide interactive web tools, such

as the htmlwidgets package, that are friendlier by allowing us to wrap Javascript web

visualization libraries in R code (Walker (2016) [138]).

The appearance of the shiny R package has also simplified the way to display outputs

from R language. This type of application interactively shows outputs that can be viewed

on the localhost or via the internet (Wojciechowski, Hopkins and Upton (2015) [139]).

The shiny package also includes a number of graphical user interfaces for controlling the

app’s appearance and behavior (similar to how the HTTP wrapper works). In a sense, all

one needs is a basic understanding of shiny input and output functions and some ideas

on how to customize the user interface using in-built wrappers that allow the creation

of a simple and intuitive user interface with dynamic filters and real-time explanatory

analysis. If a developer wants to customize the user interface, Shiny can also integrate

additional CSS and Javascript libraries within the web application (Seal and Wild, 2016;

Varma and Virmani, 2017). Because all codes in shiny tools use only the R language and
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no knowledge of Javascript or HTTP is required, it has become simple for programmers to

create and deploy web applications on Windows and Linux servers (Powers, Kopp and

Martinez (2016) [140]; Dunning et al. (2017) [141]; Murrell and Potter (2014) [142]).

This chapter introduces MSM.app application, which combines shiny package, the

survival R package (Therneau et al. (2021) [131]) , and the multi-estate R packages

mstate (Putter et al. (2020) [143]) and survidm (Soutinho, Sestelo and Meira-Machado

(2021) [120]). Other contributions for survival analysis and multi-state models in the R

language can be seen in ‘CRAN Task View: Survival Analysis’. Among the function-

alities of the proposed web tool, MSM.app allows one to conduct a traditional survival

analysis regarding the following topics: (i) estimation of survival functions (using the

classical Kaplan-Meier estimator); (ii) comparison of survival functions between groups;

and (iii) use of semiparametric and parametric regression models to study the relation-

ship between explanatory variables and survival time. The MSM.app can also be used for

the analysis of multi-state survival data. In fact, multi-state models (Putter, Fiocco and

Geskus (2007) [18]; Meira-Machado et al. (2009) [15]; Meira-Machado and Sestelo (2019)

[16]) can be seen as a generalization of survival analysis in which survival is the ultimate

outcome of interest but where information is available about intermediate events which

individuals may experience during the study period. Besides studying the effects of co-

variates in the course of the illness, two additional goals in multi-state models are the

estimation of the transition probabilities and the cumulative incidence functions, which

may be influenced by the fact that the process is Markovian or not. All these issues are

considered in the MSM.app web tool. Recent reviews on these topics may be found in

the papers by Meira-Machado and Sestelo (2019) [16] and Soutinho and Meira-Machado

(2021) [108].

Among the available web tools for the analysis of multi-state survival data are MSDshiny,

MSM-shiny and MSMplus. The MSDshiny application provides a useful and streamlined

way to plan and power clinical trials with multi-state outcomes. Among the possibilities

of analysis, this application provides a view of the multi-state structure, treatment effects,

and can be used to perform simulations (Peterson (2019) [144]). The MSM-shiny appli-

cation uses a CSV file containing multi-state data and provides the modeling and com-

parison of transition hazard models and the prediction of occupation probabilities (Lacy

(2021) [145]). A recent contribution is MSMplus which provides a flexible visualization

of the transition probabilities, transition intensities, or probability of visiting a particular
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state. In this regard, the user must upload two files: one that contains the structural and

descriptive information of the multi-state model; and a second file that provides the vari-

ous predictions from the model. This can be done using JSON files derived from functions

developed in Stata or R. The CSV files can also be used as input files from a specific struc-

ture to be accepted for the application (Skourlis et al. (2021) [146]). It is our belief that a

friendly web application for the analysis of survival data with one or more events of in-

terest is still missing. MSM.app’s goal is to provide a comprehensive web application that

allows users to collect and publish dynamic data analysis involving the most important

topics in survival analysis and multi-state models.

This chapter is organized as follows. In Section 8.2 a brief description of the back-

ground underlying to the development of the shiny application is presented. Section 8.3

describes all the pages that comprise the web tool which are available at the Shiny Apps

repository https://gsoutinho.shinyapps.io/appmsm/. Finally, the main conclusions

are reported in Section 8.4.

8.2 About Shiny applications architecture

Shiny is a package developed for the R language by RStudio that has become a popular

way to create and deploy web server applications (Walker (2016) [138]). Through the com-

bination of the structure of the shiny framework with R codes, one can build interactive

web applications to obtain results or graphics without the user’s prior knowledge of R,

HTML, CSS or JavaScript (Chang (2017) [147]; Kaushik (2016) [148]). Shiny applications also

provide integration with other R packages, JavaScript libraries, or CSS customization, and

they are under the GPL-2 open source license (Seal and Wild (2016) [149]). The structure

of shiny applications is built upon two components: the user-interface scripts for the lay-

out of the application where the outputs are displayed (ui.R); and the other given by the

server scripts with the instructions of the application (server.R) (Govan (2016) [134].

A shiny application can be run on a localhost where R and shiny package are installed.

This is the easiest way to share when the users are familiar with R, and it is only neces-

sary to execute the instructions to run the app (Varma and Virmani (2017) [137]). When

using the RStudio services, shiny applications can be accessed in three ways by the in-

ternet: ShinyApps.io, Shiny Server, and Shiny Server Pro (Wojciechowski, Hopkins and

Upto (2015) [139]). Shinyapps.io is a self-service platform that makes it easy to share shiny

applications on the web. The service runs in the cloud on shared servers that are operated

https://gsoutinho.shinyapps.io/appmsm/
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by RStudio. Each application is self-contained and operates on either data that is up-

loaded with the application, or data that the code pulls from third-party data stores, such

as databases or web services (RStudio (2021) [150]). The Shiny server is totally free and

open source, stable and well featured (Beeley (2013) [151]). Shiny Server Pro is a commer-

cial version with enhanced security (possibility of allowing confidential web sharing of

proprietary material) and additional features (Wojciechowski, Hopkins and Upton (2015)

[139]).

The communication between the client and server is done over the normal TCP connec-

tion. The data traffic that is needed for many web applications between the browser and

the server is facilitated over the websockets protocol. This protocol operates separately

from the handshake mechanism between the client and server and is done over the HTTP

protocol (Seal and Wild (2016) [149]).

8.3 The MSM.app web application in practice

The MSM.app is a web application that can be used by any user, independently of their

background knowledge of informatics, through a user-friendly interface that interactively

provides web forms, reports, tables, and graphics. In the following subsections, all the

functionalities of the application for obtaining results from survival and multi-state mod-

els are described using three real data examples: The first one involves data from sur-

vival in patients with Acute Myelogenous Leukemia (Miller (1997) [152]). The second

corresponds to data from a clinical trial on colon cancer, which can be modeled using the

progressive illness-death model (Moertel et al. (1990) [74]). Finally, extensions to progres-

sive processes beyond the three-state illness-death model are discussed using data from

the European Group for Blood and Marrow Transplantation (EBMT) (Putter, Fiocco and

Geskus (2007) [18]).

8.3.1 About the Introduction web page

This page introduces an overview of the theoretical concepts addressed in MSM.app which

are presented through check boxes. These HTML elements allow one to show or hide the

contents described previously in Section 2: “survival analysis”, “Multi-state models” and

“Shiny applications architecture” as well as the main goals of the web tool in MSM.app

(Figure 8.1).
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FIGURE 8.1: Introduction web page: Through four check boxes, the user can see a brief
description of the mathematical background underlying MSM.app. The main goals of the

web application are also included.

8.3.2 The input file page

This page allows the user to select the necessary data sets for implementing the anal-

ysis. To this regard, there is a selection box to choose the data set to be used. When

uploading the file, we must choose which type of analysis corresponds to the data set.

This is accomplished by selecting one of three options (“survival data”, “illness-death

model”, or “multi-state model”), the latter of which should be chosen if there are more

than three states or reversible transitions. The selection is based on radio button elements

(Figure 8.2). In terms of format, the MSM.app only requires a CSV file as input. This is a

delimited file that uses a comma to separate the values and where each line of the file is a

data record. Files that use a semicolon to separate the values are also accepted.

FIGURE 8.2: The input file page with the data table with some results for the aml data set
and three radio buttons for each type of model.

Once the type of data is selected, a new web form appears below the radio buttons.

For survival analysis, we must identify the “event time” and “status indicator” variables
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(Figure 8.3, left hand side). In the case of an illness-death model, we have to first indicate

the three state names of the model in the text box “names of the states”, and then, select,

respectively, the “time to the intermediate state”, “the status indicator of entering the

intermediate state”, “time to the ultimate state” and “the status indicator of entering the

ultimate state” variables (Figure 8.3, center). Finally, for more complex models (MSM),

the options are “number of states”, “transitions schema”, ‘name of states”, “variables

for event times” and “variables for event status” given by the text boxes HTML elements

(Figure 8.3, right hand side).

FIGURE 8.3: The event time and status variables for the survival analysis from the aml
data set (left); indication of the two event times and their corresponding status for the
illness-death model given by the colonIDM data (center); and a description of the MSM
model through the number and the state names, the transition schema, and the event

times and corresponding status for the ebmt4 data (right).

For ease in statistical processing, most data sets have categorical variables that are

assigned by numeric indices. However, these types of variables should require special

attention since they cannot be entered into regression models just as they are. Instead,

they need to be recoded into a set of binary variables that can then be entered into the

model. This can be done on this page. It is also possible to delete some variables that are

unnecessary to the analysis. All this can be done through three text boxes by typing the

order index of each variable by the order in the data set (Figure 8.4, left hand side). After

clicking on the ‘upload’ button, a data table appears on the right hand side of the page

which can be dynamically changed using filters or by searching for specific words in the

table (Figure 8.2). At any moment, we can also check the name and the type of variables

that comprise the data set, as well as the last one that has been uploaded from the ‘view

structure of data’ (Figure 8.4, right hand side).

For better understanding of the structure of the data, the MSM.app also provides three

examples of data sets each one representing a type of analysis. These CSV files are available



146
STATISTICAL ANALYSIS OF COMPLEX SURVIVAL DATA: NEW CONTRIBUTIONS IN STATISTICAL

INFERENCE, SOFTWARE DEVELOPMENT AND BIOMEDICAL APPLICATIONS

FIGURE 8.4: Input file page: A partial view of the web form to select the index of variables
to change the classes or delete them from the data set (left). Structure of the variables for

the ebmt4 data set (Right).

through the links on left side of the page at bottom of “View structure of data” (Figure 8.5).

FIGURE 8.5: Three examples of data set representing each of type of analysis.

8.3.3 Survival analysis pages

From the “survival analysis” button, we can carry out the classical methods for survival

analysis (Figure 8.6). The Kaplan-Meier estimator can be used to estimate overall survival

or the survival of different groups, while the log-rank (or the Gehan-Wilcoxon) test can

be used to compare curves from two or more groups. The Cox model or the accelerated

failure time model (AFT) can be used to test multiple predictors at once. To this end, we

use the several functions of survival R package (Therneau et al. (2021) [131]).
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FIGURE 8.6: Output with the tabPanels shiny elements for the pages to obtain the survival
analysis.

8.3.3.1 Kaplan-Meier estimator

Non-parametric estimation of the survival function is traditionally performed using the

Kaplan-Meier estimator. This can be done from this page, where the outputs of the sum-

mary of estimates and plots are displayed on the right side. The estimates of the survival

curves can be desegregated for different groups of categorical variables using the drop

list “select variable”. By default, the check box for obtaining plots is disabled. When we

click on it, the graph of survival is presented on the right side. By default, the interval of

confidence for the plots is not selected. Plots with the confidence intervals can be obtained

by choosing ”yes” in the corresponding radio button. Finally, it is also possible to export

the plots of the survival curves to the PDF format by clicking the “Download pdf” button

(Figure 8.7).

FIGURE 8.7: The output of the survival estimation for the categorical covariate “x” of
the aml data set using the Kaplan-Meier estimator. Survival curves for each group with

confidence intervals are also shown at the bottom.
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8.3.3.2 Compare survival curves

Statistical tests can be used to compare survival rates between groups. The null hypoth-

esis states that there is no difference in survival between groups. These tests can be per-

formed on this page. The log-rank test is the most commonly-used statistical test that is

built using equal weights for all time points. When the survival curves cross at early time

points, then one can identify groups that have higher risk at early time points while others

have higher risk at late time points, making it necessary to use methods that give more

weight to deaths at early time points. The Gehan-Wilcoxon test is one of these tests. Both

tests are available in the MSM.App. On the left side of the page we have two radio buttons

for the type of method to be used and a drop list HTML element with all the categorical

variables which are automatically loaded. The outputs with the results of the tests are

shown at all times that the user chooses the test or the specific covariate (Figure 8.8).

FIGURE 8.8: The output of the Log-rank test for the categorical covariate “x” of the
aml data set for testing the null hypothesis of no difference in survival between the two

groups.

8.3.3.3 Cox PH models

The next step in the survival analysis is to simultaneously evaluate the effects of several

factors on survival. To this end, on this page, we use the semiparametric Cox proportional

hazards model (Cox (1972) [6]). Following the same idea as the previous pages, the out-

puts for the fitted models are shown on the right side of the page. All possible covariates

to be included in the models are automatically shown in check boxes HTML elements. The

output for the Cox model is updated as the user selects the variables to be included in the

model (Figure 8.9).
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FIGURE 8.9: Results of the Cox model for the variable “x” of the aml data set.

8.3.3.4 Parametric models

Parametric survival models can be fitted in a similar way as for the Cox proportional haz-

ards model. However, in this case, besides selecting the set of covariates from the check

boxes, users also have to indicate the type of distribution to be used in the regression mod-

els. Six possibilities are available on the left side of the page through radio buttons. Using

the interactivity of the shiny package, the outputs of the fitted models are updated by

choosing the corresponding variables and the type of distribution for the survival times.

The outputs also provide the Akaike Information Criterion (AIC) values for each model,

making it easier to compare the model fit when using different distributions (Figure 8.10).

FIGURE 8.10: The outputs of the parametric models page with the results of the fitted
model for the categorical variable “x” of the aml data set using the exponential distribu-

tion.

8.3.4 IDM-Analysis pages

In this section, we describe the steps for obtaining some of the most important goals for

analyzing data from a progressive illness-death model given by two events, three states,

and three transitions (Figure 8.11). Besides the occupation probabilities and the transition

probabilities, the cumulative incidence functions are important predictive probabilities.

Regression models for each of the three transition intensities can also be used to evaluate
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the effect of prognostic factors for each transition. To obtain the results, we have used sev-

eral functions from the survidm R package (Soutinho, Sestelo and Meira-Machado (2021)

[120]).

FIGURE 8.11: TabPanels shiny elements for the pages to obtain the illness-death model
analysis.

8.3.4.1 Number of events

This page shows the number of individuals or items undergoing each transition among

the three states of the illness-death model. On the left side of the page, we can change the

output from “count” to “proportion” of transitions (Figure 8.12).

FIGURE 8.12: The number of transitions among the three states of the colonIDM data set.

8.3.4.2 Regression models

Covariates may be incorporated into models through transition intensities to explain dif-

ferences among individuals in the course of the illness. A common simplification strategy

that allows one to relate the individual characteristics to the intensity rates is to decouple

the multi-state process into various survival models by fitting separate intensities to all

permitted transitions using semiparametric Cox proportional hazard regression models

(Cox (1972) [6]). This is done with the introduction of appropriate adjustments to the risk

set. This approach depends on the dependence of the transition intensities and time. To
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be specific, if the past and future are independent given the present state, which is known

as the Markov assumption. When this assumption cannot be assumed, one alternative ap-

proach is to use a semi-Markov model in which the future of the process does not depend

on the current time but rather on the duration in the current state. For the illness-death

model, the Markov assumption is only relevant for the transition leaving the intermediate

“disease” state, and the difference in the two approaches is also at that transition. Since

the Markov assumption is of major importance to this end, first the user has to indicate if

the process is Markovian or semi-Markovian through the radio buttons on the web form

on the left side of the page. To check this assumption, a separate page was built and de-

tails about it are given below. In terms of regression, besides the traditional method for

inference using Cox models, this page also provides the outputs of ANOVA tests and the

p-values of the tests for nonlinearity. This can also be done by selecting the radio buttons

on the web form. Finally, all possible covariates to be included in the model are associated

with check boxes. As with other previous pages, as the user chooses some of the selected

options in the web form, the output of the fitted models is also automatically updated on

the right side of the page (Figures 8.13, 8.14 and 8.15).

FIGURE 8.13: Results of the application of the Cox PH model with the following covari-
ates: rx, sex, age, obstruct and perfor. Results for each of the three transition intensities of

the colonIDM. A Markovian process is assumed.

8.3.4.3 Transition probabilities

The transition probabilities quantities are particularly of interest since they allow for long-

term predictions of the multi-state process. These quantities can be nonparametrically es-

timated by the Aalen-Johansen estimator (Aalen and Johansen (1978) [61]), provided the
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FIGURE 8.14: ANOVA results for transitions 0 −→ 1 and 0 −→ 2 with the following co-
variates: rx, sex, age, obstruct and perfor of the colonIDM. A Markovian process is assumed.

FIGURE 8.15: The proportional hazards assumption was tested for the transitions 0 → 1
and 0 → 2 with the following covariates: rx, sex, age, obstruct and perfor of the colonIDM.

A Markovian process is assumed.

system is Markovian. When the multi-state model is non-Markov, the Aalen-Johansen

estimator may introduce some bias. In such cases, the use of methods that do not rely on

this assumption is preferable. Among these methods are the estimators based on subsam-

pling, also known as landmark methods. To be more specific, the landmark methods (LM)

proposed by de Uña-Álvarez and Meira-Machado (2015) [69], as well as its presmoothed

version (PLM) proposed by Meira-Machado (2016) [73], and the landmark Aalen-Johansen

proposed by Putter and Spitoni (2018) [71]. All these non-parametric methods are avail-

able in MSM.app and can be accessed through this page. Suppose we are interested in

obtaining the estimates of the transition probabilities from the initial single time s = 365
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days to the next four years (730, 1095, 1460, and 1825 days) using the landmark approach.

To this end, we start to fill in the first two text boxes on the left side of the page. This

procedure will be the same for all types of estimation methods (given by the next four

radio buttons). Then we select LM in “Nonparametric” and the results are automatically

displayed on the right side of the page. If we are interested in seeing the confidence in-

tervals, we just need to click “yes” on the radio button. As referred above, it is possible to

see plots for each transition probability and export them using the last two HTML elements

of the form (Figures 8.16 and 8.17).

FIGURE 8.16: Results of the estimates of the transition probabilities and the correspond-
ing confidence intervals for s = 365 and times 730, 1090, 1460, and 1825 days for the

colonIDM data set using the landmark estimators.

Categorical covariates can be included using all these four methods by splitting the

sample for each level of the covariate and repeating the described procedures for each sub-

sample. To account for the effect of one continuous covariate, the nonparametric method

proposed by Meira-Machado, de Uña-Álvarez and Datta (2015) [24] is implemented in

this web tool by selecting “IPCW” from the radio button and the drop list “one single

continuous covariate”. This type of estimator is based on local smoothing, which is in-

troduced using regression weights where the right censoring is handled by appropriate

reweighting on observations using the Inverse Probability of Censoring Weighting (IPCW

estimator). The next two steps to obtaining the transition probabilities are to choose the
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FIGURE 8.17: Transition probability estimates with confidence intervals for each transi-
tion for s = 365 using the landmark estimators.

continuous variable and fill in the corresponding value in the text box. In the example of

Figure 8.18 we have selected the variable “age” taking the value of 48 years.

Finally, one standard method (particularly well-suited to the setting with multiple co-

variates) is to consider estimators based on a Cox’s model fitted marginally to each type

of transition, with the corresponding baseline hazard function estimated by the Breslow’s

method (Breslow (1972) [23]. In the MSM.app web application, the estimation of this type

of transition probability conditional on several covariates can be done by clicking “more

than one covariate” in the radio button ”type of methods”. Then all the possible covari-

ates to include in the model appear on the form on the left side with the aspect of check

boxes and a text box where the user can fill in with the corresponding values. Taking

the example of Figure 8.19, three covariates were selected for the model (“rx”,“sex”, and

“age”) and the respective values are: Obs,1,48 (without spaces or quotation marks).

8.3.4.4 Cumulative Incidence Function (CIF)

Another quantity of interest in multi-state modeling is the cause-specific cumulative in-

cidence function (CIF), as defined by Kalbfleisch and Prentice (1980) [50]. In the illness-

death model, the cumulative incidence of the illness (intermediate state) is of particular

interest. This quantity denotes the probability of the individual or item being or having

been in the intermediate ‘diseased’ state at some particular time t. As for the transition
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FIGURE 8.18: Results of the estimates of the transition probabilities and the correspond-
ing confidence intervals for s = 365 and times 730, 1090, 1460, and 1825 days for the

colonIDM data set using the IPCW estimator.

probabilities, this quantity can be estimated conditional on a covariate, continuous or cat-

egorical. To get the outputs on the right side, first, the user should start by indicating the

list of times (comma separated) in the text box labelled “times”. To display the confidence

interval for the estimates, one has to select “yes” in the corresponding radio button. To

estimate this quantity conditional on covariates, one must choose which covariate to be

considered in the drop list “Select variable”. In the case of a continuous variable, we must

also insert the value in the text box below. As an example, in Figure 8.20, it was selected

“age” at 50 years. By default, the CIF estimates do not include any covariates since the

drop list “Select variable” appears with “none”.

8.3.5 MSM-Analysis pages

By clicking on the “MSM-analysis” we can extend some of the methods addressed in the

previous section to more complex multi-state models involving more than three states and

considering the possibility of reversible transitions. Three pages are available that allow

one to obtain the number of movements of the individual among states, the outputs of the

regression models for each transition, and the results for the transition probabilities using

the classical Aalen-Johansen estimator that assumes the process to be Markovian and the
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FIGURE 8.19: Results of the estimates of the transition probabilities and the correspond-
ing confidence intervals for s = 365 and times 730, 1090, 1460, and 1825 days for the

colonIDM data set using the Breslow estimator.

recent landmark Aalen-Johansen estimator that is free of this condition (Figure 8.21). All

these methods were implemented by using several functions from the mstate R package

(Putter et al. (2020) [143]. The following examples of applications were obtained from

the European Group for Blood and Marrow Transplantation (Putter, Fiocco and Geskus

(2007) [18].

8.3.5.1 Number of events

This page shows the movement of individuals among the states in the multi-state model.

The outputs on the right side of the page change automatically when selecting the radio

buttons “count” or “proportion” of transitions (Figure 8.22).

8.3.5.2 Regression models

In a similar way to that which occurred for IDM models, we are now interested in the

estimation of covariate effects for each transition using Cox regression models. In this

regard, we assume the decoupling of the process into various survival models, taking

into account the delayed entry into each transition in accordance with Putter (2020) [153].

The summary outputs of the models are automatically shown on the right side of the page
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FIGURE 8.20: Cumulative recurrence incidence with 95% bootstrap confidence intervals.
Data from a colon cancer study.

FIGURE 8.21: TabPanels shiny elements that were used for the pages to obtain the multi-
state models (MSM) analysis.

as the user changes which covariates should be included in the models for each transition.

This can be done through the check boxes where all possible covariates are presented and

from drop lists with all combinations of transitions. As an example, in Figure 8.23, we

have got the results of the Cox regression model for the transition 1 → 2 which includes

the covariates “year”, “age” and “proph”.
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FIGURE 8.22: The number of transitions among the states of the ebmt4 data set.

FIGURE 8.23: The output of the Cox regression model for the transition 1 → 2 that in-
clude the ‘year”, “age” and “proph” covariates. ebmt4 data set.

8.3.5.3 Transition probabilities

This page extends the estimation of the transition probabilities to multi-state systems that

may involve more than three states with possible reversible transitions. The steps to ob-

tain the results are quite similar to those used for the illness-death model. The user should

start by introducing the initial (s) and the other times for obtaining the estimates in the text

box elements. Two methods for inference are available: the markovian Aalen-Johansen

estimator AJ and the non-markov LMAJ estimator that can be chosen through the drop

list, “and the confidence intervals are displayed by selecting “yes”. As an example, Fig-

ure 8.24 shows the Aalen-Johansen estimates of the transition probabilities for the EBMT

data set, considering all possible transition probabilities from the initial state 1 to the state

5 (which are chosen by selecting the corresponding drop list on the left side of the page),

with s = 365 and the other times 730, 1095, 1460, and 1825. When clicking on the button

“view plots” a new drop list with all possible transitions from the initial state appears,

enabling you to see the plot for the transition probabilities. In this example, we have
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chosen the transition 1 → 2. Finally, it is also possible to export to a PDF format file the

corresponding plot.

FIGURE 8.24: Estimates of all possible transition probabilities from the state 1 to 5, for s =
365 and times equal to 730, 1095, 1460, and 1825 using the AJ estimators. ebmt4 data set.

8.3.6 Tests for the Markov condition pages

A critical aspect to take into account for the inference of regression models and transition

probabilities is to check the Markov condition. The MSM.app web application provides two

types of tests for checking this assumption using recent literature methods: (i) local tests,

which are obtained by fixing a specific time value, s, and are especially useful for estimat-

ing transition probabilities; and (ii) global tests, which may be preferable for regression

purposes.These tests can be accessed through the menu “Tests for the Markov condition”

(Figure 8.25). The mathematics underlying the proposed methods has been discussed in

the previous papers by Soutinho and Meira-Machado (2021) [108] and Titman and Putter

(2020) [113].

8.3.6.1 Local tests

This page allows one to obtain the results for local tests that check the Markov assump-

tion. First, the user must indicate which type of multi-state corresponds to the data set

upload in the input file page: IDM or a general model with more than three states or that al-

lows reversible transitions. Two types of methods are available for checking the local tests
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FIGURE 8.25: TabPanels shiny elements for the local and global tests pages for the tests
for the Markov condition.

of the Markov condition: (i) the AUC method, which is based on measuring the discrep-

ancy between the AJ estimator of the transition probabilities (which provides consistent

estimates when the process is Markovian) and the landmark estimators (which are free

of the Markov condition). In this case, the web tool uses the LM estimator for the pro-

gressive illness-death models and LMAJ in the case of more complex MSM models; (ii) the

Log-rank method, which considers summaries from families of log-rank statistics where

patients are grouped by the state occupied at different times. The next steps are to enter

the specific values to be used to check the Markov assumption (via a text box element),

indicate which transitions we are interested in obtaining the results from, and the num-

ber of replicas used in the tests in the text box “times”. As an example, in Figure 8.26,

we obtained the p-values for the local tests based on the s times 365, 730, 1095, 1460, and

1825 for the transition from state 2 to state 3. Results were obtained for an IDM model

based on the colon cancer data using 100 replicas. The procedure to get results using the

Log-rank test is quite similar, but in terms of output, the web tool provides results of the

local test for the specific transition and times. It is suggested that this method be used

with 500 replicas since the overall computation demand is reasonable. For more complex

MSM models, the web form and the steps to obtain the outputs are the same with the only

difference being the number of states in the drop list boxes for “from” and “to” are higher

than the IDM models.

8.3.6.2 Global tests

On this page, we can obtain the results of the global tests to check the Markov assumption.

Both for IMD and more complex MSM models, three global tests are available: (i) the first

one is based on Cox models, from which it is possible to evaluate the effect of history on

the process. In this case, this can be done by checking the significance of the covariate time
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FIGURE 8.26: Results of the local test for the illness-death model using the colon cancer
data set, for s = 365, 730, 1095, 1460, and 1825 days, using the AUC test, from state 1 to state

3.

until entering the first state of a particular transition. As illustrated in Figure 8.27, we can

conclude that there is no effect of the time spent in the initial state on the transition 2→ 3

(p-value = 0.1543195). The results were obtained using the Cox Proportional Hazards

Model (CPHM) test for the IDM model based on the colon cancer data. In the analysis of

more complex models, the user also needs to indicate which states correspond to the drop

lists “from” and “to” that appear on the web tool form for this case; (ii) the recent global

test proposed by Soutinho and Meira-Machado (2021) [108], based on the area under the

curves (AUC), can be used. This test is based on the (AUC) local test results for specific

percentiles. To do this, as shown in Figure 8.28, one only needs to indicate the type of

test AUC, the corresponding states from (“1”) and to (“5”) and the number of replicas to

compute the results, in this case, 100. The outputs on the right hand show the proportion

of rejections of the test for all possible transitions between state 1 and state 5. For IDM

models, the user only needs to indicate the number of replicas for the global test; (iii) it
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is also possible to use the global test based on the log-rank statistics (Titman and Putter,

2020) throughout the similar steps of the previous methods, after selecting Log-rank in

the radio button HTML element. The outputs provide only the results of the tests for each

transition indicated in the drop lists.

FIGURE 8.27: Results for this global test given by the Cox PH model to our data indicated
that the effect of the time spent in State 1 is not significant (p-value of 0.154), revealing no

evidence against the Markov model for the colon data set.

FIGURE 8.28: Outputs of the global test for the illness-death model based on the ebmt
data set using the AUC test, from state 1 to state 5. Results for the AUC local test are also

shown.
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8.4 Discussion

The shiny package has grown in popularity as a means of displaying interactive outputs

and graphs via web applications. Once developed, the web tools can be shared via the

cloud and run on any browser, allowing any user, regardless of computing skills, to dy-

namically analyze data sets. In terms of biomedical applications, following this increasing

interest in this type of web tool, there have been some recent contributions in the litera-

ture that enable carring out multi-state analysis. In this chapter we have presented the

MSDshiny, the MSM-shiny and the MSMplus applications from which it is possible to per-

form some specific aspects of the multi-state model analysis, such as planning and pow-

ering clinical trials, simulation studies, obtaining results for the inference of transition

probabilities or identifying factors that influence the transition intensities of the models

(Peterson (2019) [144], Lacy (2021) [145] and Skourlis et al. (2021) [146]).

However, although the importance of these models is well recognized, after analyzing

existing web applications, we can conclude their use by non-statisticians has been limited.

An important reason for this is the lack of friendly software that covers the main goals

involving survival analysis and multistate models on the same platform.

For this reason, we have developed a shiny application called MSM.app that allows

users to explore various types of multi-state models and perform regression inference as

well as obtain several predictive measures of interest, such as the occupation probabilities,

the transition probabilities, and the cumulative incidence functions. Recent methods for

checking the Markov assumption are also implemented. Throughout the chapter, we have

highlighted from three data sets all the main functionalities of the web application and

the steps to carry out the analysis. As part of future research work, we plan to constantly

update MSM.app to improve its limitations and to cope with recent developments.

This software is available at the Shiny Apps repository https://gsoutinho.shinyapps.

io/appmsm/.

https://gsoutinho.shinyapps.io/appmsm/
https://gsoutinho.shinyapps.io/appmsm/




Chapter 9

Conclusions and future research

In this thesis, we presented several methodological contributions concerning statistical

issues encountered in multi-state models. In this context, we addressed special attention

to the estimation of transition probabilities, namely, through the extension of the recent

landmark approach to include presmoothing methods of estimation or by including re-

peated measures and event history data using the joint modeling. Due the importance

of checking the Markov condition in the inference in multi-state models, we have also

proposed new tests by measuring the discrepancies between estimators that do not rely

of this assumption and the Aalen-Johansen estimator (that provides consistent estimates

in Markovian processes). All methods proposed in this thesis were analyzed from simu-

lation studies and applied to biomedical data sets. Next, we go through the main conclu-

sions drawn from the results obtained and raise some open questions that motivate future

research.

In Chapter 2, we provided practical algorithms for simulating data from a wide class

of multivariate copulas. They are suitable for this purpose since they can be used to intro-

duce dependence between time and covariates, or between times of different transitions

in more complex survival systems. The dependence measures involving copulas given by

Kendall’s tau τ or Spearman’s ρ were also presented. The algorithms of copulas described

are based on three of the most used techniques for generating multivariate data from cop-

ulas: the conditional distribution method (such as, Clayton, Frank, FGM or AMH); based

on the bivariate distribution of the copula or sampling algorithms based on numerical

inversion of Laplace transforms. Finally, four types of survival data and random number

generation involving time-to-event data, recurrent events data, competing risks data and

progressive illness-death multi-state models were introduced.

165
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In Chapter 3, we proposed new non-parametric estimators (WCH) for the estimation

of transition probabilities for cases that the process is not necessarily Markovian using

the cumulative hazard of the total time given a first time but where each observation has

been weighted using the information of the first duration. Several simulation studies were

conducted for illness-death models. Results confirmed the good accuracy of the proposed

estimator comparing to the other. For the transition probabilities (p22) this new estimator

is equivalent to the landmark estimator (LM). Application to a real data set of colorectal

cancer also revealed for cases where it was visible a failure of the Markov assumption

that the LM and WCH estimators are preferred over the Aalen-Johansen estimator.

The landmark approach is a recent contribution in the literature that allows the im-

provement the performance of the transition probability estimation, by reducing bias, in

case of failure of the Markov condition in multi-state models. Nevertheless, since this

methodology is based on (differences between) Kaplan-Meier estimators obtained from a

subset, when the sample sizes are small this may lead to increase the variance of the esti-

mates, as we shown from simulation studies. In Chapter 4, we introduced presmoothed

estimators to improve of the accuracy of the estimates by replacing the indicator variable

of the LM estimators. To model the binary regression function p(t) some parametric fam-

ilies were considered such as logit, probit and generalized additive logistic models. It was

also considered a non-parametric modeling of p(t) based on the Nadaraya-Watson kernel

estimator.

In this thesis, we were also interested to include the effect of the progression of the dis-

ease among states, for each individual, on the estimation of transition probabilities. To ac-

count the trajectory of repeated markers in multi-state models, in Chapter 5, we proposed

a new estimators (JMLM) based on a joint modeling between the longitudinal sub model

(that includes random effect errors associated to the individuals) and survival data (that

are represented by the transition intensities for each transition of the multi-state process)

under the landmark approach. These new estimators for the inference of the transition

probabilities were compared to the standard Breslow’s method (that comprises for each

individual only a single observation for covariate), and the nonparametric LM estimator

(that provides the same estimates for all individuals). To illustrate the ability of the pro-

posed method to deal with the evolution of the repeated measures, we have used two

data sets obtained from simulation. From the result, we can conclude that the estimation

of transition probabilities conditionally on covariates observed with repeated measures
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seems to be more efficient than competing estimators that do not take in consideration all

information across the states of the process.

In Chapter 6, two new tests for testing the Markov condition in multi-state models

were proposed. The ‘local’ test is based on the areas under the two curves (i.e., the curves

of the estimated transition probabilities) that can be used for a general multi-state model

(considering the LMAJ estimators). To approximate the distributions of the test statistic,

bootstrap method, with a large number of resamples, was used. The test rejects the null

hypothesis of Markovianity when the absolute value of the standard test statistic is above

of the critical value (1.96, in case of 95% of confidence). We also proposed a ‘global’ test

given by a grid of points obtained from the percentiles 5, 10, 20, 30 and 40 of the so-

journ time in State 1. For general multi-state models, is recommended the use of the same

percentiles of the subject specific arrival time at the corresponding state. Results of sim-

ulation and the application to three real data sets reported that the proposed ‘global’ test

has better accuracy to identify failure of Markovianity being much more powerful than

the standard parametric method based on the proportional hazard specification which

relies on a priori model specification that may fail in practice. The use of ‘local’ tests is

also recommended whenever the interest is focused on the estimation of the transition

probabilities. From a grid of fixed values, for the different scenarios, the proposed ‘local’

test confirmed the ability to detect a failure of the Markov condition. This is more evident

in the non-Markov scenario. Simulation results also revealed that the proposed ‘local’ test

and the log-rank test have similar power to identify the failure of the Markovianity.

An important aspect of the statistical research is the development of user-friendly

software to facilitate the use of new methodologies. With this regard, in Chapter 7, we

detailed described the implementation of the survidm R package whose contents are cur-

rently under review. However, a description of the main functionalities of other packages

covering the methods proposed in this thesis are available as supplementary material

[A]. Due to the increasing importance of dynamic visualization of results and graphs in

biomedical applications during the period of this thesis, we have developed a web ap-

plication, called MSM.app, to perform an interactive multi-state survival data analysis by

using a user-friendly interface. In Chapter 8, we introduced the main functionalities of

this web tool, which are available at the Shiny Apps repository at https://gsoutinho.

shinyapps.io/appmsm/. At present, the MSM.app allows users to perform a traditional

https://gsoutinho.shinyapps.io/appmsm/
https://gsoutinho.shinyapps.io/appmsm/
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survival analysis, and the main goals described in this thesis involve progressive illness-

death models and the extension to more complex multi-state models. It is also possible

to use some of the most recent methods for checking the Markov assumption, such as

Soutinho and Meira-Machado (2021) [108] and Titman and Putter (2020) [113]. As a result

of this work, we have already submitted a paper for publication [B]. As next steps, since

this type of web application is always an unfinished project, we are interested in updating

the MSM.app application with the new findings of the future research work.

Most of the topics addressed in this thesis may be and should be extended in sev-

eral research directions. During the course of this thesis, some research work has already

been done apart from that which has been present in this thesis. As an example, in terms

of transition probabilities, we have developed new methods for improving the accuracy

of the transition probabilities under the landmark approach. In particular, we have al-

ready submitted a paper to a journal where we propose new estimators that make use

of the flexibility of the generalized gamma distribution to model survival functions [B].

Results drawn from simulation studies and the application to a cancer data set confirm

a decrease in the variance for both the new proposed estimators when compared to the

non-parametric LM estimator for small subsets. However, in some cases, the use of LM es-

timators may be preferable to avoid misspecification of the GGLM in short lag times (t− s).

As future work, we also plan to apply our proposed methods to the estimation of tran-

sition probabilities, namely, through the extension of to cope with left truncation, (ii) to

interval censoring, and (iii) to the illness-death model with recovery as well as to more

complex models involving several transient states. Still regarding the estimation of transi-

tion probabilities conditional covariates given by repeated measures (Chapter 5), we also

intend to investigate our methods to more complex longitudinal models comprising sev-

eral covariates and more complicated random errors. To this end, the author of this thesis

has already started a academic collaboration with the Hospital Nossa Sra. da Oliveira, in

Guimarães, in order to access a biomedical information and data sets for future publica-

tions. He has also established partnerships with doctors of hospitals that resulted in other

publications beyond those in the scope of this thesis.

We are also interested in developing new approaches to estimate the marginal and

joint distribution functions for recurrent event data. To this end, we have already submit-

ted a paper to a journal in which we introduce new nonparametric estimators and their

extensions to several gap times are also given. Nonparametric inference based on current
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or past covariate measures is also taken into account [B]. Due to computational demand,

we did not apply our methods for checking the Markov condition to complex multistate

models by simulation studies. In future work, we aim to confirm that the accuracy of

the ‘local’ and ‘global’ tests to identify failures of the Markov assumption in this type of

multi-state model is in accordance with what we have observed in this thesis through the

application to real data sets with more than three states and reversible transitions.

ROC (Receiver Operating Characteristic)-based approaches were first developed for

classification studies with categorical outcomes. They have been extensively used in

biomedical studies because of their flexibility and robustness. ROC curves are most use-

ful when predictions are continuous and the problem is to compute the sensitivity for

various thresholds of a marker or combination of markers (Li and Ma (2011) [154]). The

AUC (Area under the ROC curve) provides a quantitative measure of the ROC curve

and summaries the discrimination accuracy of a test (Chambless and Diao (2006) [155]).

Many disease outcomes are time depend and ROC curves that vary as a function of time

may be more appropriate (Heagerty, Lumley and Pepe (2000) [156]). To incorporate the

time-varying nature of the clinical onset time of the disease, various definitions of time-

dependent sensitivity, specificity and ROC curves have been proposed (Zheng, Cai and

Feng (2006) [157]). As future research work, we also aim to develop new nonparametric

estimators of the cumulative-dynamic time-dependent ROC curve that allows account-

ing for the possible modifying effect of covariate measures on the discriminatory power

of the biomarker. Several methods may be considered, for example the use of single-

index models. To account for the covariate effect, one standard method (particularly

well-suited to the setting with multiple covariates) could consider estimators based on a

Cox’s model. However, besides of imposing the so-called proportional hazards assump-

tion, these methods also rely on a parametric specification of the covariates’ effects on the

intensity functions. In this topic, we should aim to study the implementation of these

methods to the case of flexible additive Cox models (e.g. using a P-spline fit).





Appendix A

Supplementary material

A.1 survCopula: a R package for multivariate Dependence Mod-

eling with Copulas for survival data

This software and source code are all available at the GitHub repository at https://

github.com/gsoutinho/survCopula. Below, we provide a specific description and de-

tails on the usage of each functions of the package.

The function dgCopula performs the simulation of survival data for the mortality

model. The description of arguments of the functions are presented in Table A.1.

For illustration purposes, suppose we are interested to simulate survival data for the

mortality model. One possibility would be using a bivariate copula with marginal func-

tions uniformly distributed on (0; 5), where the survival (denoted by T) could be for in-

stances the survival time (in years) of lung cancer since diagnosis, and tumor size (in cm)

is a covariate value measured for each individual. Individuals alive at the end of the

follow-up have right censored observations (i.e., Delta = 0). Such data can be obtained

using the dgCopula function through the following input commands:

1 > library(survCopula)

> setseed(2345)

3 > sim.data<-dgCopula(typeCopula =’clayton’, theta=1,

typeX=’Unif’, num1_X=0, num2_X=5,

5 typeY=’Unif’, num1_Y=0, num2_Y=5,

typeCens=’Unif’, num1_Cens=0, num2_Cens=7,

7 nsim=250, typeSurvData=’time-to-event’)

> head(sim.data)
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Argument Description

typeCopula Type of copula. Possible options are clayton, frank, FGM, AMH,
gumbel-hougaard and joe. Defaults to clayton.

theta A numeric value for the space parameter.
typeX Type of marginal distribution. Possible options are Exp, Norm,

Unif and Gamma. Defaults to Exp.
num1 X A numeric value for the first parameter of the first marginal

distribution.
num2 X A numeric value for the second parameter of the first marginal

distribution. Only required for two parameter distributions.
typeY Type of marginal distribution. Possible options are Exp, Norm,

Unif and Gamma. Defaults to Exp.
num1 Y A numeric value for the first parameter of the second marginal

distribution.
num2 Y A numeric value for the second parameter of the second

marginal distribution. Only required for two parameter dis-
tributions.

typeCens Type of censuring distribution. Possible options are None,
Unif, Exp and Wei. Defaults to None.

num1 Cens A numeric value for the first parameter of the censoring distri-
bution.

num2 Cens A numeric value for the second parameter of the censoring
distribution. Only required for two parameter distributions.

typeSurvData Type of survival data. Possible options are time-to-event,
recurrent, competing-risks and illness-death. Defaults
to illness-death.

state2.prob Probability of a individual move to the intermediate state in
illness-death model. Only required if typeSurvData =‘illness-
death’. Default to 0.7.

nsim Number of observations to be generated.

TABLE A.1: Summary of the arguments of the function dgCopula.

9

T Z Delta

11 1 3.3786641 5.3939928 1

2 4.5925602 6.3436964 1

13 3 1.9646380 1.9646380 0

4 0.5421364 5.1900408 1

15 5 0.4418575 0.5881083 1

6 2.1502214 2.1502214 0

Following the same procedure, a simulated survival data in an illness-death model

could be given by this imput commmads:

> sim.data2<-dgCopula(typeCopula =’frank’, theta=10,

2 typeX=’Exp’, num1_X=0.5,

typeY=’Exp’, num1_Y=1.5,
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4 typeCens=’Unif’, num1_Cens=0, num2_Cens=4,

nsim=250, typeSurvData=’illness-death’,

6 state2.prob=0.6)

> head(sim.data2)

8 T1 Delta1 T Delta Z

1 1.6494293 1 1.6494293 1 1.7036172

10 2 0.1866107 1 0.3812326 1 2.4967757

3 0.2455007 0 0.2455007 0 0.2455007

12 4 1.3421718 1 1.3421718 1 2.0920786

5 0.7569676 0 0.7569676 0 0.7569676

14 6 2.9718201 0 2.9718201 0 2.9718201

The function copula performs a random number generation for Bivariate Copula

Functions. Only returns a single pair of random values from a bivariate copula with

marginal distributions X and Y. The arguments of this function are presented in Table A.2.

Argument Description

v1 A numeric value belong to the interval [0,1], corresponding to
the cumulative density of the first marginal distribution.

v2 A numeric value belong to the interval [0,1], corresponding to
the cumulative density of the first marginal distribution.

theta A numeric value for the space parameter.
type Type of copula. Possible options are clayton, frank, FGM, AMH,

gumbel-hougaard and joe. Defaults to clayton

typeX Type of marginal distribution. Possible options are Exp, Norm,
Unif and Gamma. Defaults to Exp.

num1 X A numeric value for the first parameter of the first marginal
distribution. Defaults to Exp

num2 X A numeric value for the second parameter of the first marginal
distribution. Only required for two parameter distributions.

typeY Type of marginal distribution. Possible options are Exp, Norm,
Unif and Gamma. Defaults to Exp.

num1 Y A numeric value for the first parameter of the second marginal
distribution.

num2 Y A numeric value for the second parameter of the second
marginal distribution. Only required for two parameter dis-
tributions.

TABLE A.2: Summary of the arguments of the function copula.

As result, the function provides 2-dimensional vector for the random variables as we

can see through the following input commands for the copulas clayton and AMH:

> clay<-copula(0.6, 0.4, theta=2, type=’clayton’, typeX=’Exp’, num1_X=0.56,

2 typeY=’Exp’, num1_Y=0.90)
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> clay

4 [1] 1.6362334 0.8804935

6 >AMH<-copula(0.4, 0.4, theta=0.59, type=’AMH’, typeX=’Norm’, num1_X=0.56,

num2_X=0.3, typeY=’Gamma’, num1_Y=0.90, num2_Y=0.30)

8 > AMH

[1] 0.4839959 0.1231871

The function rcopula allows to obtain random number generation for Bivariate Cop-

ula Functions. Returns a number equal to the indicated size sample of pairs of random

values from a bivariate copula with marginal distributions X and Y. The arguments of the

function are presented in Table A.3:
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Argument Description

typeCopula Type of copula. Possible options are clayton, frank, FGM, AMH,
gumbel-hougaard and joe. Defaults to clayton

theta A numeric value for the space parameter.
typeX Type of marginal distribution. Possible options are Exp, Norm,

Unif and Gamma. Defaults to Exp.
num1 X A numeric value for the first parameter of the first marginal

distribution.
num2 X A numeric value for the second parameter of the first marginal

distribution. Only required for two parameter distributions.
typeY Type of marginal distribution. Possible options are Exp, Norm,

Unif and Gamma. Defaults to Exp.
num1 Y A numeric value for the first parameter of the second marginal

distribution.
num2 Y A numeric value for the second parameter of the second

marginal distribution. Only required for two parameter dis-
tributions.

nsim Number of observations to be generated.

TABLE A.3: Summary of the arguments of the function rcopula.

For illustration, the 2-dimensional random vector with the results of the simulation

considering two size samples 250 can be obtained through the input commands:

1 > res1<-rcopula(typeCopula = ’clayton’, theta = 2, typeX=’Exp’, num1_X=0.9,

typeY=’Exp’, num1_Y=0.3, nsim=1000)

3

> head(res1)

5

X Y

7 1 1.9802811 4.3365143

2 3.0396864 14.1342913

9 3 0.2920836 6.7020863

4 0.3780575 0.9226155

11 5 0.5374659 5.8153233

6 2.6236131 13.6893266

13

> res2<-rcopula(typeCopula = ’AMH’, theta = 2,

15 typeX=’Norm’, num1_X=0.9, num2_X=0.3,

typeY=’Gamma’, num1_Y=3, num2_Y=2, nsim=1000)

17

> head(res2)

19
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21 X Y

1 1.4816224 5.379682

23 2 0.5164510 4.827510

3 0.7882364 2.033678

25 4 0.5850117 1.641286

5 0.7162522 2.530820

27 6 0.8377601 1.333447

The function invF is used to obtain the value of the inverse cumulative distribution

and is included inside the previous functions. It is composed of the following four pa-

rameters:

Argument Description

u A numeric value belong to the interval [0,1], corresponding to
the cumulative density.

type Type of marginal distribution. Possible options are Exp, Norm,
Unif and Gamma. Defaults to Exp.

num1 A numeric value for the first parameter of the marginal distri-
bution.

num2 A numeric value for the second parameter of the marginal dis-
tribution. Only required for two parameter distributions.

TABLE A.4: Summary of the arguments of the function invF.

As result, we obtain numeric values corresponding to the distribution of the marginal

function as presented in following two examples:

1 > invF(0.2)

[1] 0.2231436

3 > invF(0.2,type = ’Norm’, num1 = 0.2,num2 = 0.1)

[1] 0.1158379
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A.2 presmTP: a R package for obtaining unsmoothed and pres-

moothed estimates of the transition probabilities in the illness-

death model

presmTP package is available at the CRAN repository at https://cran.r-project.org/

web/packages/presmTP. This package comprises three functions presmTP, summary.pstp

and plot.pstp which arguments are described in Tables A.5, A.6 and A.7. Functions

summary.pstp and plot.pstp return, respectively, a data.frame or a list containing the

estimates of the probabilities and draws the estimated probabilities obtained by presmTP

function.

Argument Description

data A numeric value to be squared
s The first time for obtaining estimates for the transition proba-

bilities.
method The method used to compute the transition probabilities.

Possible options are uns, np logit, logit.gam, probit and
cauchit. Defaults to uns.

estimand An optional character string identifying the function to esti-
mate: S for survival function and H for cumulative hazard
function. Defaults to S.

bw.selec An optional (partially matched) character string specifying the
method of bandwidth selection. fixed if no bandwidth se-
lection is done, in which case the bandwidth(s) given by the
fixed.bw argument is (are) used, plug-in for plug-in band-
width selection and bootstrap for bootstrap bandwidth selec-
tion. Defaults to fixed.

fixed.bw An optional numeric vector with the fixed bandwidth(s) used
when the value of the bw.selec argument is fixed. It must
be of length 1 for estimating survival and cumulative hazard
functions, and of length 2 for density and hazard functions (in
this case, the first element is the presmoothing bandwidth).

bound An optional numeric vector with the fixed bandwidth(s) used
when the value of the bw.selec argument is fixed. It must
be of length 1 for estimating survival and cumulative hazard
functions, and of length 2 for density and hazard functions (in
this case, the first element is the presmoothing bandwidth).

TABLE A.5: Summary of the arguments of the function presmTP.

Argument Description

object A fitted pstp object as produced by presmTP.
state ini Initial state of the transition. Defaults to state ini=0.
times Vector of times; the returned data frame will contain 1 row for

each time.

TABLE A.6: Summary of the arguments of the function summary.pstp.

https://cran.r-project.org/web/packages/presmTP
https://cran.r-project.org/web/packages/presmTP
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Argument Description

x A fitted pstp object as produced by presmTP.
state ini Initial state of the transition. Defaults to state ini=0.

TABLE A.7: Summary of the arguments of the function plot.pstp.

Below, we provide some examples on the usage of the functions of the presmTP pack-

age from a real data set.

> data("colonIDM")

2 > #Unsmoothed

> res1<- presmTP(data = colonIDM, s = 365,method = "uns" )

4 > res1$est0$t[1:10]

[1] 365 366 369 370 372 374 378 379 380 382

6 > res1$est0$p01[1:10]

[1] 0.000000000 0.001430615 0.002861230 0.004291845 0.005722461 0.007153076

0.008583691 0.010014306 0.012875536 0.014306152

8 > res1$est1$t[1:10]

[1] 365 366 372 376 381 382 384 389 390 400

10 > summary(res1, state_ini=1, time=365*1:5)

12 Estimation of pij(s=365,t)

14 t p11 p12

1 365 1.00000000 0.0000000

16 366 730 0.38815789 0.6118421

731 1095 0.15789474 0.8421053

18 1096 1460 0.10526316 0.8947368

1461 1825 0.09210526 0.9078947

20 > plot(res1)

> res1$call

22 presmTP(data = colonIDM, s = 365, method = "uns")

> class(res1)

24 [1] "Unsmooth" "pstp"

> #Nonparametric

26 > res2<- presmTP(data = colonIDM, s = 365,method = "np" )

> res3<- presmTP(data = colonIDM, s = 365,method = "np", estimand="S")

28 > res4<- presmTP(data = colonIDM, s = 365,method = "np", estimand="H")

> res5<- presmTP(data = colonIDM, s = 365,method = "np",
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30 + bw.selec="fixed", fixed.bw=30)

> #Presmoothed - Logit

32 > res6<- presmTP(data = colonIDM, s = 365,method = "logit" )

> summary(res6, state_ini=1, time=365*1:5)

34

Estimation of pij(s=365,t)

36

t p11 p12

38 1 365 1.00000000 0.0000000

366 730 0.38817214 0.6118279

40 731 1095 0.15796118 0.8420388

1096 1460 0.10541699 0.8945830

42 1461 1825 0.09282557 0.9071744

> #Presmoothed - Logit GAM

44 > res7<- presmTP(data = colonIDM, s = 365,method = "logit.gam" )

FIGURE A.1: Transition probabilities estimates using unsmoothed estimator for the tran-
sitions 0→1, 0→1 and 0→2. Colon cancer data.
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Function Description
global.test Performs a global test for checking the Markov condition us-

ing the Area under the two Curves (AUC) method.
local.test Performs a local test of the Markov assumption based on the

Area under the two Curves AUC for selected times.
LR.test Log-rank based test for the validity of the Markov assumption.
plotMSM Plot for an object of class markovMSM.
eventsMSM Counts the number of observed transitions in the multi-state

model.
prepMSM Prepares the data set for multi-state modeling in a long format

from a data set in wide format.
transMatMSM Define transition matrix for a multi-state model.
print.markovMSM Print for an object of class
textttmarkovMSM.
summary.markovMSM Summary for an object of class markovMSM.

TABLE A.8: Summary of functions in the markovMSM package.

A.3 markovMSM: a R package for testing Markovianity

This section offers the guidelines to use the markovMSM package (Soutinho and Meira-

Machado (2021) [119]), a software application for R statistical program (R Core Team

(2019) [86]), with the purpose to perform the local and global tests for testing the Markov

assumption presented in chapter 6. To this end, a description of the functions of the pack-

age is illustrated using three real data sets. The first one involve data from a clinical trial

on colon cancer modeled using the progressive illness-death model (Moertel et al. (1990)

[115]). Extensions to progressive processes beyond the three-state illness-death model are

discussed using data from the European Group for Blood and Marrow Transplantation

(EBMT) (Putter, Fiocco and Geskus (2007) [18]). Finally, we use data from a study with

liver cirrhosis patients subjected to a prednisone treatment (Andersen et al. (1993) [13]).

The package comprises 7 main functions which are briefly summarized in Table A.8.

A.3.1 Data manipulation

Following, we reanalyse data from a large clinical trial on Duke’s stage III patients, af-

fected by colon cancer, that underwent a curative surgery for colorectal cancer (Moertel et

al. (1990) [74]). Of the 929 patients, 468 developed a recurrence and among these 414 died;

38 patients died without recurrence. The remaining 423 patients were alive and disease-

free up to the end of the follow-up. Besides the two event times (time to recurrence and

time to death) and the corresponding indicator statuses, a vector of covariates including

age, sex, number of lymph nodes and extent of local spread are also available. Below is
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an excerpt of the data frame in a wide format with one row per individual. Individu-

als were chosen in order to represent all possible combinations of movements among the

three states.

> library(markovMSM)

2 > data("colonMSM")

> db_wide <- colonMSM

4 > head(db_wide[c(1:2,16,21),1:11])

6 time1 event1 Stime event rx sex age obstruct perfor adhere nodes

1 968 1 1521 1 Lev+5FU 1 43 0 0 0 5

8 2 3087 0 3087 0 Lev+5FU 1 63 0 0 0 1

16 1323 1 3214 0 Obs 1 68 0 0 0 1

10 21 2789 0 2789 1 Obs 1 64 1 0 0 1

The four initial variables describe the movement of the patients among the three states

of the illness-death model: time1 denote the time measured in days from surgery to recur-

rence, whereas Stime is the total time or the time to death or censoring; event1 and event

denote the corresponding status/censoring indicator (1 for an event and 0 for censoring).

Patient 1 had a recurrence after 968 days (i.e., observed a transition from the initial state

to the intermediate state) and then he/she died after 1521 days in study. Patient 2 remain

alive and without recurrence at the end of follow-up (event1 = 0 and event = 0). The

two event times are equal in these cases. Patient represented in the third line had a recur-

rence after 1323 days but remain alive at the end of the follow-up (i.e. in State 2). Finally,

the patient represented in the last line died after 2789 days in study without experiencing

a recurrence.

As the original data set is in the wide format, the next step to implement the proposed

methods will be to convert the data into a long format which is given by one line for each

transition for which a subject is at risk. This can be done using functions transMatMSM and

prepMSM. Function defines the transition matrices revealing which transitions are possible,

whereas prepMSM provides a new dataset in a long format data for which each row will

correspond to a transition for which a patient is at risk. For the progressive illness-death

model these two functions are used as follow:

> positions<-list(c(2, 3), c(3), c())

2 > namesStates = c("Alive", "Rec", "Death")
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> tmat <-transMatMSM(positions, namesStates)

4 timesNames = c(NA, "time1","Stime")

status=c(NA, "event1","event")

6 > trans = tmat

> db_long<- prepMSM(data=db_wide, trans, timesNames, status)

8

> db_long[1:10,]

10

id from to trans Tstart Tstop time status

12 1 1 1 2 1 0 968 968 1

2 1 1 3 2 0 968 968 0

14 3 1 2 3 3 968 1521 553 1

4 2 1 2 1 0 3087 3087 0

16 5 2 1 3 2 0 3087 3087 0

6 3 1 2 1 0 542 542 1

18 7 3 1 3 2 0 542 542 0

8 3 2 3 3 542 963 421 1

20 9 4 1 2 1 0 245 245 1

10 4 1 3 2 0 245 245 0

Finally, in terms of manipulation of data, a useful function is eventsMSM since it allows

to summarise the number of transitions among states and their percentages:

1 > eventsMSM(db_long)

3 $Frequencies

to

5 from Alive Rec Death no event total entering

Alive 0 468 38 423 929

7 Rec 0 0 414 54 468

Death 0 0 0 452 452

9

$Proportions

11 to

from Alive Rec Death no event

13 Alive 0.0000000 0.5037675 0.0409042 0.4553283

Rec 0.0000000 0.0000000 0.8846154 0.1153846

15 Death 0.0000000 0.0000000 0.0000000 1.0000000
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A.3.2 Methods for testing the Markov condition in the illness-death model

Traditionally, the Markov assumption is checked by including covariates depending on

the history. In the particular case of the colon cancer data set, we are interested to assess if

the transition rate from the recurrence state into death is unaffected by the time spent in

the previous state. This can be done using function PHM.test. A a brief description of the

arguments of this function is shown in Table A.9. Results for this global test to our data

indicated that the effect of the time spent in State 1 is not significant (p value of 0.154)

revealing no evidence against the Markov model for the colon data. The corresponding

input codes are the following

1 > res <- PHM.test(data=db_long, from=2, to=3)

[1] 0.1543195

3 > res

$p.value

5 [1] 0.1543195

$from

7 [1] 2

$to

9 [1] 3

Argument Description
db long A data frame in the long format containing the subject id; from

corresponding to the starting state; the receiving state, to; the
transition number, trans; the starting time of the transition
given by Tstart; the stopping time of the transition, Tstop,
and status (for the status variable, with 1 indicating an event
(transition), 0 a censoring).

from The starting state of the transition to check the Markov condi-
tion.

to The last state of the considered transition to check the Markov
condition.

TABLE A.9: Summary of the arguments of the function PHM.test.

In the markovMSM package the local test proposed in Section 2.3 is performed using

function AUC.test, through argument type=‘local’. A summary of the arguments of

this function is presented in Table A.10.

The input commands to perform the AUC local test, for a fixed time s = 180 and

transitions 1→2 and 1→3 are the following
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1 > set.seed(1234)

> res2<-AUC.test(db_long, db_wide, times=180, from=1, to=3, type=’local’,

3 replicas=100, tmat = tmat)

> res2$localTest

5 s 1->1 1->2 1->3

1 180 0.2902191 0.002982042 0.002992007

As result, function AUC.test returns the probability values, for all attainable transi-

tions from the initial state. To obtain the same local test for transition 2→3, we only need

to put 2 in the parameter from as follow

> set.seed(1234)

2 > res3<-AUC.test(db_long, db_wide, times=180, from=2, to=3, type=’local’,

replicas=100, tmat = tmat)

4 > res3$localTest

s 2->2 2->3

6 1 180 0.02547708 0.04816232

Results reveal a possible failure of the Markov assumption with low probability values

for transitions 1→2 and 2→3 for s = 180 (less than 5%). These findings are in agree with

results depicted in Figure A.2 that reports the estimated transition probabilities. In fact,

we can observe departures between the two Markov-free estimators (LM and LMAJ) and

the Aalen-Johansen estimator (AJ) revealing a possible failure of the Markov assumption.

The input command to obtain the plots shown in Figure A.2 are the following

> plot(res2, to=2, axis.scale=c(0,0.25), difP=FALSE)

2 > plot(res3, to=3, axis.scale=c(0,1), difP=FALSE)

Putting the parameter difP=TRUE, we can also obtain the discrepancy between the

Aalen-Johansen estimator (Markovian) and the landmark non-Markovian estimator (LMAJ),

for p12(s, t) and p23(s, t), for s = 180, measured through Dhj = p̂AJhj (s, t) − p̂ LMAJ
hj (s, t),

h = 1, 2, j = h + 1. The 95% pointwise confidence limits were obtained using simple

bootstrap (Figure A.3). The corresponding input commands in this case are the following

> plot(res2, to=2, axis.scale=c(-0.03,0.03), difP=TRUE)

2 > plot(res3, to=3, axis.scale=c(-0.30,.10), difP=TRUE)
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FIGURE A.2: Estimates of the transition probabilities for the Aalen-Johansen (AJ) and
Markov-free estimators (landmark and landmark Aalen-Johansen) for s = 180. Colon

cancer data.
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FIGURE A.3: Local graphical test for the Markov condition, for s = 180. Test based on
the discrepancy between the Aalen-Johansen estimator (Markovian) and the Markov-free

estimator (LM). Colon cancer data.

Plots shown in Figure A.3 can be seen as graphical local tests for the Markov assump-

tion. As expected, in both cases they reveal differences between the two methods for

s = 180 since they show a clear deviation with respect to the straight line y = 0. From

these one gets some (graphical) evidence on the lack of Markovianity of the underlying

process beyond of half an year after surgery. Thereby for this specific time the application

of the Aalen-Johansen method may not be recommended here, due to possible biases.

In Section 6.2, a global test was also introduced that combines the probability values of
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the local test over different times (given by the percentiles of the sojourn time in State 1).

In the markovMSM package this can be obtained using function AUC.test. The arguments of

this function are described in Table A.10. Some examples of how to perform the proposed

AUC global test are shown in the following input commands, in which we consider the

default percentiles in the argument quantiles.

> set.seed(1234)

2 > res4<-AUC.test(db_long, db_wide, from=1, to=3, replicas = 100, tmat=tmat)

> round(res4$globalTest,3)

4 1->1 1->2 1->3

1 0.067 0.012 0.012

6

> set.seed(1234)

8 > res5<-AUC.test(db_long, db_wide, from=2, to=3, type=’global’, replicas = 100,

tmat=tmat)

10 > round(res5$globalTest,3)

2->3

12 1 0.006

Results reported by the first command lines provide the probability values for the

global test based on the AUC for the three transitions leaving State 1 (i.e., 1 → 1, 1 → 2

and 1 → 3). As expected, an higher probability value was obtained for transition 1→1

while the two remaining transitions reveal evidences against the Markov condition. Re-

sults reported in the second set of input commands are in agree with previous findings,

reporting a probability value of 0.016 for 2→3. Among the objects saved by this function,

AUC.test displays the probability values for each percentile times (default to 5, 10, 20, 30

and 40) through the following codes

> round(res4$localTest,3)

2 s 1->1 1->2 1->3

1 102.4 0.978 0.081 0.081

4 2 173.0 0.118 0.025 0.025

3 290.6 0.015 0.000 0.000

6 4 469.2 0.679 0.056 0.056

5 726.8 0.635 0.176 0.176

8

> round(res5$localTest,3)
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10 s 2->2 2->3

1 102.4 0.015 0.015

12 2 173.0 0.011 0.011

3 290.6 0.000 0.000

14 4 469.2 0.050 0.050

5 726.8 0.156 0.156

These outputs show, for instance, that the probability value of the AUC local test for

the second percentile time (s = 173), is 0.011. Plots with the graphical local tests for the

respective quantiles can be easily obtained using the following input commands:

1 > plot(res4, quantileOrder=3, axis.scale=c(-0.04, 0.02))

3 > plot(res5, quantileOrder=3, axis.scale=c(-0.10, 0.20))
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FIGURE A.4: Local graphical test for the Markov condition, for s equal to 173 (2nd per-
centil sojourn time in State 0. Colon cancer data.

The plots shown in Figure A.4 display the differences between the AJ and LMAJ esti-

mates for the second quantile (quantileOrder) of the sojourn time in the initial state being

in accordance with the p-values obtained in the local tests.

The markovMSM package can also be used to compute the results of the global and local

tests proposed by [113] which is based on log-rank statistics. A summary of the arguments

of the LR.test function is shown in Table A.11. The following input commands illustrate

the usage of LR.test function to implement these tests:

1 > set.seed(1234)

> res6 <- LR.test(db_long=db_long, times=180, from = 2, to = 3, replicas = 1000)
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3 > res6$globalTestLR

[1] 0.047

Results of the local and the global test based on the log-rank statistics also confirm the

failure of Markovianity for lower values of s.

A.3.3 Extending the Tests for Markov assumption to more complex multi-state

models

Following, we use two data sets to illustrate the extension of the previous functions to

more complex multi-state models. As a first example, we consider the data of 2279

patients transplanted at the European Society for Blood and Marrow Transplantation

(EBMT) and, as second example data from liver cirrhosis patients subjected to a pred-

nisone treatment. Further datails on the description of the data can be found in Putter,

Fiocco and Geskus (2007) [18] and Andersen et al. (1993) [13], respectively. The steps on

the usage of the functions are quite similar to those introduced for the illness-death model.

To extend the proposed local and global tests to more complex models we make use of

the LMAJ estimator that produces consistent estimates of the transition probabilities in

case of non-Markovianity of the process. We start to consider the data set comprising

2279 patients who suffered a blood cancer and who were treated at the EBMT between

1985 and 1998 after a transplant. The movement of the patients among the six states can

be modelled through the multi-state model with the following six states: ‘Alive and in

remission, no recovery or adverse event’ (state 1); ‘Alive in remission, recovered from the

treatment’ (state 2); ‘Alive in remission, occurrence of the adverse event’ (state 3); ‘Alive,

both recovered and adverse event’ (state 4); ‘Alive, in relapse’ (treatment failure) (state 5)

and ‘Dead (treatment failure)’ (state 6). In total there are 12 transitions, three intermediate

events given by recovery (Rec), adverse event (AE) and a combination of the two (AE and

Rec), and two absorbing states: Relapse and Death (Figure A.5).

Since the original data ebmt4 is in the wide format, before implementing a global test

we need to convert it into the long format using functions transMatMSM, prepMSM before

using function AUC.test with the argument type=‘global’:

> data("ebmt4")

2 > db_wide <- ebmt4

> positions=list(c(2, 3, 5, 6), c(4, 5, 6), c(4, 5, 6),
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FIGURE A.5: A six-states model for leukemia patients after bone marrow transplantation.

4 c(5, 6), c(), c())

> namesStates = c("Tx", "Rec", "AE", "Rec+AE", "Rel", "Death")

6 > tmat <-transMatMSM(positions, namesStates)

> timesNames = c(NA, "rec", "ae","recae", "rel", "srv")

8 > status=c(NA, "rec.s", "ae.s", "recae.s","rel.s", "srv.s")

> trans = tmat

10 > db_long<- prepMSM(data=db_wide, trans, timesNames, status)

> db_long[1:10,]

12

Data:

14 id from to trans Tstart Tstop time status

1 1 1 2 1 0 22 22 1

16 2 1 1 3 2 0 22 22 0

3 1 1 5 3 0 22 22 0

18 4 1 1 6 4 0 22 22 0

5 1 2 4 5 22 995 973 0

20 6 1 2 5 6 22 995 973 0

7 1 2 6 7 22 995 973 0

22 8 2 1 2 1 0 12 12 0

9 2 1 3 2 0 12 12 1

24 10 2 1 5 3 0 12 12 0

26 > set.seed(1234)

> res7<-AUC.test(db_long, db_wide, from=1, to=5, type=’global’,

28 quantiles=c(.05, .10, .20, .30, 0.40),

tmat = tmat, replicas = 100,

30 positions=positions, namesStates=state.names,
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FIGURE A.6: The reversible illness-death model for patients with liver cirrhosis.

timesNames=timesNames, status=status)

32

> round(res7$globalTest, 4)

34 1->1 1->2 1->3 1->4 1->5

1 0.1423 0.0099 0.0234 0.1016 0.0017

36

> round(res7$localTests,4)

38 s 1->1 1->2 1->3 1->4 1->5

1 9.9 0.2805 0.5994 0.0187 0.0891 0.0040

40 2 12.0 0.2844 0.5248 0.0282 0.4794 0.0000

3 15.0 0.0001 0.2018 0.0404 0.0177 0.0034

42 4 18.0 0.4610 0.0051 0.1811 0.1855 0.0015

5 21.0 0.0067 0.0147 0.4796 0.2471 0.0287

The interpretation of the output for the global test and for local tests of the five per-

centile times are similar to those shown for the illness-death model. Thus, object res7 is

used to get a list with components giving the probability values for the Markov test for all

transitions leaving State 1 (i.e., for 1→ j with j ∈ {1, 2, 3, 4, 5}). For instance, the probabil-

ity value 0.0099 correspond to the result of the AUC global test for transition 1→2, while

0.0147 is the probability value for the local test, for s = 21 for the same transition.

The proposed methods can be also used in reversible multi-state models such as those

applied to the data set of liver cirrhosis patients who were included in a randomized

clinical trial at several hospitals in Copenhagen between 1962 and 1974. The study aimed

to evaluate whether a treatment based on prednisone prolongs survival for patients with

cirrhosis (Andersen et al. (1993) [13]. State 1 corresponds to ‘normal prothrombin level’,

State 2 to ‘low (or abnormal) prothrombin level’, and the State 3 to ‘dead’. The movement

of the patients among these three states can be modeled using the reversible illness-death

model shown in Figure A.6.
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Note that the original data set prothr is already in the long format. Thus to obtain the

probability values for the transitions started in State 2, the input command is the following

1 > set.seed(1234)

> res8 <- AUC.test(db_long = prothr, db_wide = NULL, from=2, to=3,

3 type=’global’, replicas=100, limit=0.90,

quantiles=c(.05, .10, .20, .30, 0.40))

5 > round(res8$globalTest,5)

2->1 2->2 2->3

7 1 0.00063 0.00067 0.30514

9 > round(res8$localTests,4)

s 2->1 2->2 2->3

11 1 73.5 0.0021 0.0006 0.2092

2 117.0 0.0009 0.0007 0.6885

13 3 223.0 0.0003 0.0021 0.2566

4 392.0 0.0085 0.0401 0.3537

15 5 681.0 0.2047 0.2825 0.6736

The interpretation of the output for the global test is the same shown previously and

therefore, for instance, the probability value for transitions 2→1 and 2→3, are 0.00063 and

0.30514, respectively; the result for the local test for s = 117 for 2→3 is 0.6885.

Below we report, for the same data set prothr, the results for global and local tests

proposed by [113], which are based on log-rank statistics, for transition 4 (between the

states 2 and 3) and transition 3 (between the states 2 and 1), with times corresponding to

the percentiles 5, 10, 20, 30 and 40 (the default percentile values also used by the AUC

global test). The corresponding input commands are the following

1 > set.seed(1234)

> times <- c(73.5, 117, 223, 392, 681)

3 > res9 <- LR.test(db_long=prothr, times=times, from = 2, to = 3, replicas = 1000)

5 > res9$localTestLR

[1] 0.907 0.330 0.758 0.516 0.193

7

> res9$globalTestLR

9 [1] 0.576
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11 > set.seed(1234)

> res10 <- LR.test(db_long=prothr, times=times, from = 2, to = 1, replicas =

1000)

13

> res10$localTestLR

15 [1] 0.012 0.007 0.107 0.044 0.500

17 > res10$globalTestLR

[1] 0.012

The interpretation of results is similar to those obtained through the AUC.test func-

tion. Thus, for instance for s = 681, the probability values, for transitions 2→3 and 2→1,

are 0.193 and 0.50, respectively. The probability values for the global test, are 0.576 and

0.012, respectively. A summary of the arguments of the LR.test function is presented in

Table A.11.
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Argument Description
db long A data frame in the long format containing the subject id; from

corresponding to the starting state; the receiving state, to; the
transition number, trans; the starting time of the transition
given by Tstart; the stopping time of the transition, Tstop,
and status for the status variable, with 1 indicating an event
(transition), 0 a censoring.

db wide Data frame in wide format in which to interpret time, status,
id or keep, if appropriate.

from The starting state of the transition probabilities.
to The last receiving state considered for the estimation of the

transition probabilities. All the probabilities among the first
and the last states are also computed.

type Type of test for checking the Markov condition: local or
global. By default type=‘global’.

times For the local test, times represents the starting times of the
transition probabilities. In case of a global test, the argument
is given by times between the minimum time and the third
quartile times used in the formula of this test. Default to NULL.

quantiles Quantiles used in the formula of the global test for the AUC
methods.

tmat The transition matrix for multi-state model.
replicas Number of replicas for the Monte Carlo simulation to stan-

dardization of the T-statistic given by the difference of the ar-
eas of AJ and LMAJ transition probabilities estimates.

limit Percentile of the event time used as the upper bound for the
computation of the AUC-based test.

positions List of possible transitions; x[[i]] consists of a vector of state
numbers reachable from state i.

namesStates A character vector containing the names of either the compet-
ing risks or the states in the multi-state model specified by the
competing risks or illness-death model. names should have
the same length as the list x (for transMat), or either K or K + 1
(for trans.comprisk), or 3 (for trans.illdeath).

timesNames Either 1) a matrix or data frame of dimension n × S (n being
the number of individuals and S the number of states in the
multi-state model), containing the times at which the states are
visited or last follow-up time, or 2) a character vector of length
S containing the column names indicating these times. In the
latter cases, some elements of time may be NA

status Either 1) a matrix or data frame of dimension n× S, contain-
ing, for each of the states, event indicators taking the value 1
if the state is visited or 0 if it is not (censored), or 2) a charac-
ter vector of length S containing the column names indicating
these status variables. In the latter cases, some elements of
status may be NA

TABLE A.10: Summary of the arguments of function AUC.test.
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Argument Description
db long Multi-state data in msdata format. Should also contain

(dummy coding of) the relevant covariates; no factors allowed.
times Grid of time points at which to compute the statistic.
from The starting state of the transition to check the Markov condi-

tion.
to The last state of the considered transition to check the Markov

condition.
replicas Number of wild bootstrap replications.
formula Right-hand side of the formula. If NULL will fit with no co-

variates (formula=”1” will also work), offset terms can also be
specified.

fn A list of summary functions to be applied to the individual
zbar traces (or a list of lists).

fn2 A list of summary functions to be applied to the overall chi-
squared trace.

dist Distribution of wild bootstrap random weights, either
poisson for centred Poisson (default), or normal for standard
normal.

min time The minimum time for calculating optimal weights.
other weights Other (than optimal) weights can be specified here.

TABLE A.11: Summary of the arguments of the function LR.test.
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markovMSM: An R package for checking the
Markov condition in multi-state survival data
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Abstract

Multi-state models can be successfully used to describe processes in which an indi-
vidual move through a finite number of states in continuous time. These models allow a
detailed view of the evolution or recovery of the process, and can be used to study the
effect of a vector of explanatory variables on the transition intensities or to obtain predic-
tion probabilities of future events, after a given event history. In both cases, before using
these models, we have to evaluate whether the Markov assumption is tenable. This paper
introduces the markovMSM package, a software application for R, which considers tests
of the Markov assumption that are applicable to general multi-state models. Three ap-
proaches using existing methodology are considered: a simple method based on including
covariates depending on the history; methods based on measuring the discrepancy of the
non-Markov estimators of the transition probabilities to the Markovian Aalen-Johansen
estimators; and, finally, methods that were developed by considering summaries from
families of log-rank statistics where patients are grouped by the state occupied of the
process at a particular time point. The main functionalities of the markovMSM package
are illustrated using real data examples.

Keywords: Markov assumption, Multi-state models, Transition probabilities.

1. Introduction
Multi-state models have been widely used to analyze complex longitudinal survival data
involving several events of interest (Andersen, Borgan, Gill, and Keiding 1993; Hougaard
2000; Putter, Fiocco, and Geskus 2007; Meira-Machado, de Uña-Álvarez, Cadarso-Suárez,
and Andersen 2009; Meira-Machado and Sestelo 2019). These models can be considered as a
generalization of the survival process where survival is the ultimate outcome of interest but
where information is available about intermediate events which individuals may experience
during the study period. For instances, in some biomedical applications, besides the ‘healthy’
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ABSTRACT
Multi-state models are a useful tool for analyzing survival data with multiple events.
The transition probabilities play an important role in these models since they allow
for long-term predictions of the process in a simple and summarized manner. Recent
papers have used the idea of subsampling to estimate these quantities, providing
estimators with superior performance in case of strong violation of the Markov
condition. Subsampling, also referred to as landmarking, leads to small sample sizes
and usually to heavily censored data leading to estimators with higher variability.
Here, we use the flexibility of the generalized gamma distribution, combined with
the same idea of subsampling to obtain estimators free of the Markov condition
with less variability. Simulation studies show the good small sample properties of
the proposed estimators. The proposed methods are illustrated using real data.

KEYWORDS
Multi-state models; Transition probabilities; Generalized gamma distribution;
Landmark approach

1. Introduction

Multi-state models are models for a stochastic process, which at any time occupies one
of a set of discrete states [1–4]. These models provide a relevant modeling framework
to deal with complex survival data in which individuals may experience more than
one event. A multi-state model can be represented schematically by diagrams with
boxes representing the states and arrows the possible transitions. The complexity of
a multi-state model greatly depends on the number of states defined and also on the
transitions allowed between these states.

Among the examples, the simplest case is the mortality model for survival data
which involves only two states and one transition. The competing risks model [5,6]
can be seen as an extension of the mortality model considering that a subject may
reach the ultimate state due to any of several causes. The irreversible illness-death or
disability model is a special case of multi-state model, commonly used in the literature
to introduce theoretical background of multi-state models, in which the individuals
may pass from the initial state (State 1) to the intermediate state (State 2) and then
to the absorbing state (State 3) (Figure 1). Individuals are at risk of death in each
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Abstract

In many longitudinal studies information is collected on the times of
different kinds of events. Some of these studies involve repeated events,
where a subject or sample unit may experience a well-defined event sev-
eral times along his history. Such events are called recurrent events.
In this paper we introduce nonparametric methods for estimating the
marginal and joint distribution functions for recurrent event data. New
estimators are introduced and their extensions to several gap times are
also given. Nonparametric inference conditional on current or past covari-
ate measures is also considered. We study by simulation the behavior
of the proposed estimators in finite samples considering two or three
gap times. Our proposed methods are applied to the study of (multi-
ple) recurrence times in patients with bladder tumors. Software in the
form of an R package has been developed implementing all methods.

Keywords: Censoring, Gap times, Kaplan-Meier, Multiple events, Recurrent
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Abstract

The development of applications for obtaining interpretable results in a simple

and summarized manner in multi-state models is a research field with great

potential, namely in terms of using open source tools that can be easily imple-

mented in biomedical applications. This paper introduces MSM.app, an inter-

active web application using shiny package for the R language, which enables

any user, regardless of their previous knowledge of informatics, to perform a dy-

namic analysis involving the most important topics in multi-state models. The

MSM.app can be used to relate the individual characteristics with the intensity

rates through a covariate vector, but can also be used to report additional inter-

pretable results in a simple and summarized manner. It can be used to obtain

the results from some newly developed methods, such as the estimation of tran-

sition probabilities or the recent methods for checking the Markov assumption.

The classical survival analysis can be seen as a particular multi-state model and

therefore is also included regarding the estimation of survival curves, the com-

parison of several curves, or the inference in regression models. The MSM.app

application comprises a set of dynamic web forms, tables, and graphics whose

usability is illustrated using real data examples.

Keywords: R language, Shiny package, Survival analysis, Multi-state models.
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[117] R. Pérez-Ocón, J. Ruiz-Castro, and M. Gámiz-Pérez, “Non-homogeneous markov
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