
Workflow Selection and Hyper-Parameters
Tuning using Meta-Learning

by

Anthi Papadopoulou

For the degree of Master of Science, Data Analytics

Supervised by

Pavel Brazdil Professor Catedrático Jubilado

Faculdade de Economia

Universidade do Porto

2019

1

Acknowledgments

To my supervisor Professor Pavel Brazdil who introduced me to the world of text
mining in the classes of MADSAD. From back then and until the finalization of this
project, he has been always attentive, supportive and patient. To my family that
still doubts that I will ever finalize this dissertation. Special thanks to Fernando
Duarte and Maria Ferreira and the community of stack overflow for their support
to complete this research.

2

Resumo

Durante a década passada, Machine Learning (ML) revelou bons modelos nos sis-
temas de aprendizagem que desempenharam eficientemente sem intervenção hu-
mana. O modo como as decisões são tomadas, desde tarefas simples como escolher
a melhor rota para alcançar um destino até tarefas complexas como desenhar resul-
tado de modelo de rede de fornecimento, é um combinação de teorias de inteligência
artificial e ferramentas que os humanos aplicam para obter a decisão. Sem minimizar
a importância do fator humano, as máquinas têm provado que conseguem superar
os homens em tarefas específicas e dar apoio útil em qualquer área científica.

Este progresso tem trazido, naturalmente, uma abundância de diferentes metodolo-
gias para solucionar problemas. Dado que regras de ouro não existem, selecionar o
algoritmo de aprendizagem correto para um problema particular é tão complicado
quanto essencial. A teoria de meta-aprendizagem foi desenvolvida para ultrapassar
esta deficiência e dar uma resposta robusta a uma simples questão: qual é a melhor
forma de treinar os meus dados?

Meta-aprendizagem traz vantagens em grande variedade de problemas de apren-
dizagem, contudo, aqui estamos interessados no seu poder preditivo em tarefas de
classificação de texto (TC). TC tem ganho muito interesse desde o "boom" da In-
ternet que tornou a informação textual disponível a qualquer pessoa, em qualquer
lugar, a qualquer hora.

No geral, nesta investigação, nós focamo-nos em explorar quatro modelos de
classificação populares usando um conjunto de parâmetros e hiper-parâmetros ad-
equados em cada treino. No total, nós treinamos 204 pipelines de fluxo de tra-
balho em 20newsgroups dataset. Os algoritmos seguem diferentes métodos de pré-
processamento e variam na complexidade computacional. Por fim, aplicamos uma
medida de meta-aprendizagem, A3R, de forma a ordenar e selecionar os algoritmos
mais eficientes e efetivos.

Palavras-Chave: meta-learning, workflow selection problem, text classification,
machine learning

3

Abstract

During the last decade, Machine Learning (ML) has shown astonishing paradigms of
learning systems that perform accurately and efficiently without any human inter-
vention. The way decisions are made, from a simple task as choosing the best path
for reaching a destination to more tasks, such as designing a supply chain model,
is a combination of artificial intelligence theories and tools that humans apply to
reach decision. Without minimizing the importance of the human factor, machines
have proven that can outperform humans in specific tasks and provide assistance in
any scientific field.

This progress has naturally brought an abundance of different methodologies for
solving problems. As golden rules do not exist, selecting the right learning algorithm
for a particular problem is as tricky as essential. Meta-learning theory was developed
in order to tackle this deficiency and give a strong answer to the simplest question:
which is the best way to train my data?

Meta-learning brings advantages in a wide range of learning problems, however
here, we are interested in its predictive power over Text Classification (TC) tasks.
TC has gained lots of interest since the boom of internet that made textual infor-
mation available to anyone, anywhere, at anytime.

Overall, in this particular research, we focused on exploring four popular classi-
fication models using an adequate set of hyper-parameters in training. In total, we
have trained 204 workflow pipelines on 20newsgroups dataset. The algorithms follow
different pre-processing methods and vary in computational complexity. Last, we
applied a meta-learning measure to rank and select the most efficient and effective
algorithm.

Keywords: meta-learning, workflow selection problem, text classification, ma-
chine learning

4

Index

Acknowledgments 2

Resumo 3

Abstract 4

1 Introduction 11
1.1 Objectives and contribution of this thesis 11
1.2 Overview of the thesis . 12

2 Literature Review 13
2.1 Text Classification . 13
2.2 Text Representation . 14
2.3 Text pre-processing methods . 14
2.4 Machine Learning Algorithms . 18

2.4.1 Linear Regression . 18
2.4.2 Random Forest . 18
2.4.3 SVM . 19
2.4.4 Deep Learning . 20

2.5 Algorithm Selection Problem . 23

3 Methodology, Experiments and Results 26
3.1 Problem Overview . 26
3.2 Datasets . 26
3.3 Experimental Set-up . 28
3.4 Ranking Workflows . 32
3.5 Results . 33

4 Conclusions and Future Work 36
4.1 Limitations of this work . 36
4.2 Future Work . 36

References 38

5

Appendices 43

A 44

6

List of Tables

2.1 Table of the most common Pre-processing techniques (Symeonidis
et al., 2018). 15

3.1 Six groups of documents used in the study. 27
3.2 Pre-processing methods with the correspondent codified term. 29
3.3 Pre-processing strategies applied on the experiments. 29
3.4 Classification models with the correspondent parameters and codified

term. 32
3.5 Specification of CNN model parameters. 32
3.6 Workflow and its ranks based on accuracy and A3R. 33
3.7 Ranking of the first 20 workflows with the correspondent run-time,

accuracy and A3R score. 35

A.1 Specification of computer in which the experiments were run. 44
A.2 Final workflow rankings based on A3R. 44

7

List of Figures

2.1 Decision Tree graph. 19
2.2 Hyperplane line for 2-dimention space (left). Hyperplane plane for

3-dimention space (right). 20
2.3 Single-Input Neuron (Demuth et al., 2014). 21
2.4 Multiple-Input Neuron (Demuth et al., 2014). 22
2.5 n-Layer Network (Demuth et al., 2014). 23
2.6 Schematic diagram of Rice’s algorithm selection problem framework

(Rice, 1976). The objective is to determine the selection mapping S
that returns the best algorithm. Adapted from Smith-Miles (2009). . 24

3.1 Code for the training of the embedding word matrix in R. 31

8

Acronyms

ML Machine Learning

TC Text Classification

A3R Average 3 Ranking

NLP Natural Language Processing

LR Linear Regression

OLS Ordinary Least Squares

RF Random Forest

SVM Support Vector Machine

DT Decision Trees

tf-idf term frequency-inverse document frequency matrix

BoW Bag of Words

PMI Pointwise Mutual Information

HAL Hyperspace Analogue to Language model

SVD Singular Value Decomposition

COALS Correlated Occurrence Analogue to Lexical Semantics

LSA Latent Semantic Analysis

GloVe Global Vectors for Word Representation

IG -Information Gain

FS -Feature Selection

AT Active Testing

9

AR Average Ranking

DL Deep Learning

ANN Artificial Neural Networks

CNN Convolutional Neural Network

RNN Recurrent Neural Network

10

Chapter 1

Introduction

In Machine Learning (ML), new methods and algorithms are proposed regularly.
Favoured and widely used methods that have been in the field for many years are
being challenged by modern more complex models. The increased computational
capabilities of computers, the abundance of information and the high demand for
automatization, has brought new dynamics to the field (Socher, 2014).

Deep Learning (DL), has become the new panacea for any problem and it is
considered the hottest topic in any artificial intelligence discussion (Lohr, 2019).
However, as promising as DL models can be, there is still no comprehensive the-
oretical understanding of the learning process involved (Shwartz-Ziv and Tishby,
2017). More than that, by their natural computational composition, they demand
large datasets in order to learn and consequently require a lot of time to train. On
the other hand, classical methods, such as Random Forest (RF), can often achieve
satisfying results while avoiding the previous limitations.

In ML problems are divided intoclassification, when the predicted value is a
discrete label, and regression, when the output is a numeric quantity. In this par-
ticular work, we are exploring classification methods on text. Text classification is
the process of handling unstructured text in order to categorize it into predefined
classes.

Overall, the issue that we are interested to investigate: given a specific text the
question is which algorithm will be the best in terms of accuracy and runtime. To
answer this, we have adopted the meta-learning approach that casts the algorithm
selection problem as a learning problem.

1.1 Objectives and contribution of this thesis
In this thesis, our objectives can be summarized below:

• Conduct a profound study and gather extensive knowledge of state-of-the-art
pre-processing techniques and classification models for unstructured text.

11

• Create workflows based on the previous studies and use them in a given set of
classification tasks.

• Compare different workflows using the methodology of ranking and meta-
learning.

• Generate a ranking of potential useful workflows.

To achieve these objectives, a number of pre-selected models with different ar-
chitectures and workflows were trained on raw text datasets. Finally all the models
will be compared in terms of accuraacy and runtime.

1.2 Overview of the thesis
In the following chapters, we discuss the methodology used and describe our exper-
imental study. More specifically: Chapter 2 dedicated to reviewing related work;
Chapter 3 describes to the methodology followed and the description of the experi-
ments conducted; Chapter 4 provides the summary of the results and concludes our
work.

12

Chapter 2

Literature Review

In this chapter we cover the bibliography that our work was based on. In the follow-
ing sections, we explain the fundamentals of text classification and representation
and the classification models used in our work. The forms of meta-learning and
algorithm selection theory is also covered as they are used in our work.

2.1 Text Classification
On the core of our research approach lays text classification. Text Classifica-
tion (TC), also referred to as text categorization or topic attribution, is defined
the activity of automatically classifying natural language text to thematic cate-
gories from a predefined set (Sebastiani, 2002). The labels usually represent the
main topic of the document (Aggarwal and Zhai, 2012), but also could represent
different level of sentiment of the documents (Melville et al., 2009) or spam versus
non-spam (Sakkis et al., 2001). TC has been widely used in real-world applications,
such as spam detection (Jindal and Liu, 2007), fraud detection (Airoldi and Malin,
2004), emergency response (Caragea et al., 2016), question answering (Madabushi
and Lee, 2016), legal discovery (Roitblat et al., 2010) etc.

We can define the classification problem as a set of training records

D = {X1, X2, ...XN} (2.1)

such that each record is labeled with a class value drawn from a set of K different
discrete values indexed by {1...k} (Aggarwal and Zhai, 2012). The classification
model, fed by the training data, captures the relations between features and assigns
the class labels:

φ = D × K → {1, 0} (2.2)

where φ is the classifying function (classifier). The labels could be represented by
binary numbers, 1 for the correct label and 0 for the incorrect are for each instance.

13

For assigning labels to an unknown set, the 2.2 equation is transformed to:

Φ̂ = D̂ × C → {1, 0} (2.3)

2.2 Text Representation
Starting point of TC is the representation of the text into a format that is compatible
with the model specifications. The most common practice is the representation of a
corpus by a term–document matrix, where rows correspond to terms and columns
correspond to documents (Turney and Pantel, 2010). In document-term matrix, the
columns and rows are interchanged. In its basic form, rows include a set of unordered
words, commonly known as bag-of-words Bag of Words (BoW). A special case of
BoW are n-grams where the sequence of n elements follow the sequence of the words
in the text (Sidorov et al., 2014). Other schemes include chunks of text, such as
phrases.

Assume X to be a term–document matrix of a collection with n documents and
m unique terms. The matrix X will then have m rows (one row for each unique
term in the vocabulary) and n columns (one column for each document). Let xi be
the i-th term in the vocabulary and dj be the j-th document in the collection. The
component xij in X represents the frequency of the i-th term in the j-th document
dj. The matrix depicts the frequency of each term to every document, providing
a measure of relevance between the documents (Salton et al., 1975). In general,
the value of most of the elements in X will be zero (the matrix is usually sparse),
since most documents will use only a small fraction of the whole vocabulary. If we
randomly choose a term wi and a document dj, it is likely that wi does not occur
anywhere in dj, and therefore xij equals 0.

A direct way to improve the performance of a system based on tf is by adding a
weight to the frequencies. Spärck Jones (1972) proposed a novel approach of creating
the matrix, term frequency-inverse document frequency matrix (tf-idf). The main
idea is that the frequency of a term in a document should be inversely proportional
to its frequency in other documents in the corpus. High weights are attributed to
terms with high tf and low df. The tf-idf equation is summarized below:

tf − idf = tfm,i,j × log
| D |
D(tm)

(2.4)

2.3 Text pre-processing methods
Pre-processing is the first step in text classification. As pre-processing we define
the procedure of cleansing and preparing raw text into a form that contains all
the useful information of the given text and can also serve as input to a predictive

14

model. The challenge rises as real world text data are usually incomplete, noisy and
inconsistent. Incomplete data are those that may lack relevant words. Noisy data
comprise of errors and outliers, while inconsistent contain discrepancies in codes or
names (Nayak, 2016).

According to Fayyad et al. (Fayyad et al., 1996), the total percentage of noise in
datasets may reach 40, a fact that causes problem to in machine learning algorithms.
In order to tackle these issues different methods have been developed. Symeonidis
et al. (Symeonidis et al., 2018) investigated the interactions among pre-processing
methods via ablation and identified the sixteen most useful and popular methods.
Table 2.1 summarizes them:

Pre-processing Techniques
Basic (Remove Unicode strings and noise)
Other (Replace URLs and user mentions)
Replace Slang and Abbreviations
Replace Contractions
Remove Numbers
Replace Repetitions of Punctuation
Replace Negations with Antonyms
Remove Punctuation
Handling Capitalized Words
Lowercase
Remove Stopwords
Replace Elongated Words
Spelling Correction
Part of Speech Tagging
Lemmatizing
Stemming
Handling Negations

Table 2.1: Table of the most common Pre-processing techniques (Symeonidis et al.,
2018).

Tokenization Although not included in the table, tokenization is considered to
be the first step of text pre-processing. Albert and Atkinson (Albert and Atkinson,
2005) defined tokenization as a kind of lexical analysis that breaks a stream of text
up into words, phrases, symbols, or other meaningful elements called tokens. In
its standard version, a token represents a single “word”, where a word is considered
to be a string of characters that is separated by special characters, such as space,
tab or line. Repeated words can be grouped into unique tokens matrix. However,
multi-word expressions represent a problem. The description of a house in the form
of white house is different from White House, as the second term represents a named

15

entity. Another problem that can occur when homograph and homonym are treated
as if they had the same meaning.

Remove text elements Remove not useful information A classic technique in
information retrieval and data mining is to remove any character or word that has
a low impact on the outcome. For this reason, we remove non-alphabetic charac-
ters, unicode strings, numbers, punctuation symbols, and stopwords. Stopwords
are function words with high frequencies of presence across all sentences. They are
considered dispensable as they do not contain much useful information for further
analysis. The set of these words is predefined, but can be changed by removing or
adding more works to it, depending on the application. The lists vary depending on
the language and the application used. Some of the most popular are the SMART
system that contains 571 English words, proposed by Squire et al. (Squire et al.,
2000) and grammatical words (Fox, 2009) that include 421 words. DIALOG infor-
mation service (Harter, 1986) includes nine items (“an,” “and,” “by,” “for,” “from,”
“of,” “the,” “to, “with”).

Capitalized words Another method is to transform all words that contain any
upper case letter to lower. By doing so, the same words are merged and the dimen-
sionality of the problem is reduced. For example, the text I spilled milk all up in
my Macbook. is transformed after this pre-processing step to i spill milk all up in
my macbook.

Stemming Is the procedure aiming to reduce all words with the same stem
(or, if pre-fixes are left untouched, the same stem) to a common form (Lovins,
1968). To give an example consider the following phrase: Saying good morning
to everyone. Another gorgeous morning in Surrey. Wishing you all well. After
applying stemming (in particular Porter Stemmer it is transformed into Say good
morn to everyon. Anoth gorgeou morn in Surrey. Wish you all well.

By its computational nature, a stemming algorithm has inherent limitations.
The routine handles individual words: it has no access to information about their
grammatical and semantic relations with one another. In fact, it is based on the
assumption of close agreement of meaning between words with the same root. This
assumption, while workable in most cases, in English represents an approximation
at best.

The most popular stemming algorithm for TC tasks is Porter’s original En-
glish stemming algorithm. Other common implementations are Snowball algo-
rithm (Agichtein and Gravano, 2000) that supports a number of languages such as
French, German, Hungarian, Italian etc., Lovins’ English stemmer, Kraaij-Pohlmann
Dutch stemmer, and a variation of the German stemmer which normalises umlauts.

Feature selection - (IG) Feature Selection is often used in text categorization

16

to reduce the size of the dimension of the initial corpora. It is a selection process of
extracting the most important features in order to reach faster performance without
affecting accuracy (Liu et al., 2005). A number of feature selection methods are
successfully used in a wide range of text categorizations. Yang and Pedersen (1997)
compared five feature selection methods for text categorization including IG, statis-
tic document frequency, term strength, and mutual information concluding that
IG excels the others. Other approaches inspired by optimization theory, genetic
algorithm and ant colony optimization (Asghari and Aghdam, 2010).

IG is one of the popular approaches employed as a term importance criterion
in the text document data (Joachims, 1998b). The idea is based on information
theory (Hammond and Mitchell, 1997). The information gain of term t is defined
in Eq. (4)

IG(t) = −
|C|∑
i=1

P (ci)logP (ci)) + P (t)

|C|∑
i=1

P (ci)logP (ci|t) + P (t̄)

|C|∑
i=1

P (ci|t̄)logP (ci|t̄)

(2.5)
where ci represents the ith category, P (ci) is the probability of the ith category,

P(t) and P (ci) the probabilities that the term t appears or not in the documents,
respectively, P (ci|t) is the conditional probability of the ith category given that term
t appeared, and P (ci|t) is the conditional probability of the ith category given that
term t does not appeared.

In this study, before dimension reduction, each term within the text is ranked
depending on their importance for the classification in decreasing order using the
IG method. Thereby, in the process of text categorization, terms of less importance
are ignored, and dimension reduction methods are applied to the terms of highest
importance.

Sparsity correction There have been several studies that attempted to over-
come the data sparseness to get a better (semantic) similarity. Sparsity correction
is applied in big word matrices in order to remove rare terms. This method ensures
that each term of the dataset is present in a minimum percentage of documents
across the document collection. The minimum threshold can be set by the user
according to their needs. In R this method can be applied through the removeS-
parseTerms function in the tm package (Feinerer and Hornik, 2012). Near the other
extreme, if sparse = .01, then only terms that appear in (nearly) every document
will be retained. Of course this depends on the number of terms and the number of
documents, and in natural language, common words like "the" are likely to occur
in every document and hence never be "sparse".

17

2.4 Machine Learning Algorithms
In ML classification is a supervised learning approach in which the algorithm learns
from data to predict a label it. There are many different types of classification
algorithms and an extensive bibliography that covers them. For practical reasons
we are going to focus on the ones that we have applied in this work.

R

2.4.1 Linear Regression

As the name implies, Linear Regression (LR) is a linear model that tries to identify
linear relationships between the explanatory (dependent) variables and the predicted
(independent) label (Seber and Lee, 2012). The predictive function of the model is
a linear function that measures the accuracy by its squared residual. Residual is the
difference between the observed value and the estimated value, where in this case
this difference equals to distance.

Suppose that xi is the dependent variable, yi is the independent variable, for
i=1,...,n samples, a LR model would be formed as:

yi = a+ bxi + ei (2.6)

where a and b are the parameters that the linear function tries to fit to the initial
data and e is the residual. As our goal is to minimize e, we could transform the
equation 2.16 to a minimization problem (Montgomery et al., 2012):

forQ(a, b) =
n∑
i

ê2i =
n∑
i

(yi − a− bxi)2 (2.7)

The square calculation of the e residual is based on the principles of Ordinary
Least Squares (OLS). It is a common estimator that tries to minimize the square
difference between the real and predicted values. Other variations of OLS inlcude,
least absolute deviations or introduce a cost function (Montgomery et al., 2012).

2.4.2 Random Forest

RF is an ensemble method of Decision Trees (DT) generated on a random split of
the initial dataset. In order to understand it, we will start by explaining how a DT
works. A DT is a decision support algorithm that uses a tree-like graph that contains
conditional control statements (Quinlan, 1986). The algorithm splits the initial data
into smaller and smaller subsets that form a decision tree with nodes and leaves. By
the term nodes we refer to two or more branches while leaves represent the decision
between the predictive classes. The node at the crest of the tree corresponds to the
best predictor called root node (see Fig. 2.1).

18

Figure 2.1: Decision Tree graph.

Instead of training one tree and getting its predictions, RF creates random trees
and performs a vote for each predicted result. The final predicted class is the one that
will prevail in the majority of the trees (Pal, 2005). In this way, the predictive value
of the final output is more powerful. Cases of datasets with skewed distributions or
missing data are handled in an efficient way. Another advantage is that RF can be
applied to both regression and classification problems.

2.4.3 SVM

Support Vector Machine (SVM) is another algorithm that is applicable to both
regression and classification problems. In SVM, the initial data are represented
as points in space (see Fig. 2.2), mapped so that the examples of the separate
categories are divided by a clear gap that is as wide as possible (Joachims, 1998a).
In other words, the larger the margin, the lower the error. These mappings schemes
are designed to ensure that dot products of the input data may be computed based
on the variables in the original space, by defining them in terms of a kernel function
k(x,y) (Joachims, 1998a).

For a linear 2-dimention space, we could define the mathematical formula of the
hyperplane as:

b0 + b1 ∗ x1 + b2 ∗ x2 = 0 (2.8)

where bixi is the dot product of the vector bi with the dependent variable. The
equation equals to 0 as the objective is to find the margin between the two classes.

19

Figure 2.2: Hyperplane line for 2-dimention space (left). Hyperplane plane for 3-
dimention space (right).

In case, the classes of the independent variables were y={-1,1}, the equation (2.18)
would be formulated as:

b0 + b1 ∗ x1 + b2 ∗ x2 = 1 (2.9)

for any value on or above this boundary for y=1, and

b0 + b1 ∗ x1 + b2 ∗ x2 = −1 (2.10)

for y=-1.

2.4.4 Deep Learning

DL has become the most favored model for solving any machine learning prob-
lem. Although the idea of neural networks started from the 50’s, it was until 2012
when Alex Krizhevsky won ImageNet Large Scale Visual Recognition Challenge
with his model of Convolutional Neural Network (CNN) named AlexNet (Krizhevsky
et al., 2012). After that, a boom in academic research and in business applications
proved that deep learning models can achieve higher accuracy in language model-
ing (Graves et al., 2013) (Pascanu et al., 2013) (Le and Mikolov, 2014) (Sutskever
et al., 2011), learning word embeddings (Mikolov et al., 2013), online handwritten
recognition (Graves et al., 2008), speech recognition (Graves et al., 2013), objection
recognition (Krizhevsky et al., 2012).

In our research effort three different architectures of DL models have been ap-
plied. For a better understanding of DL theory and applications, we will cover the
mathematical origins of artificial neural networks and the most prominent architec-
tures.

Artificial Neural Networks (ANN), although inspired by the cyclical connectivity
of neurons in the brain, cannot reach the complexity of the human brain (McCul-
lough et al., 2002). There are two key similarities between biological and artificial
neural networks. First, the building units of both networks are highly intercon-

20

nected and second, the connections between the neurons determine the function of
the network (Bengio et al., 2013).

Similar to any other machine-learning model, DL aims at predicting the output
of a given a problem. The process works as follows: given an initial data-set (in
this case, we will refer to it as input layer), the model will transform it and learn
patterns (in the hidden layers) in order to produce the final result (output layer).
Learning, in the context of ML and consequently in DL , refers to the automated
process of data transformations in order to obtain better results (Chollet et al.,
2018). However in the case of the latter the learning is a process of successive layers
of transformations where at each stage the overall performance is increased.

ANN In its simplest form a ANN consists of one feed-forward neuron input
(single-input neuron). As the figure below shows2.3, input p is multiplied by the
weight w resulting the product wp. After adding the bias, the created net input layer
will pass to the activation function (hidden layer). A is the final output produced
by the function. The process is stated as feed-forward as it starts from the input
and ends at the output moving on only one direction as the arrows show.

Figure 2.3: Single-Input Neuron (Demuth et al., 2014).

The above description could be summarized into the following equation:

a = f(wp+ b) (2.11)

where w , p and b are scalars.
Transfer functions are chosen based on the specificities of the problem given. A

variety of functions exists, that could be clustered into three main categories: linear,
sigmoid and hard limist. Linear functions output is equal to its input, meaning that
a=n. The hard limit transfer function sets the output of the neuron to 0 if the
function argument is less than 0, or 1 if its argument is greater than or equal to
0. The log-sigmoid transfer function takes the input (which may have any value
between plus and minus infinity) and squashes the output into the range 0 to 1.
The a here is defined as follows:

21

a =
1

1 + e−n
(2.12)

It is commonly used in multi-layer networks that are trained using the back-
propagation algorithm, in part because this function is differentiable. On the table
below, we can see how different functions work for a n input and a output.

A neuron with more than one input is considered a multiple-input neuron. The
image below (Fig. 2.4) sums up a multiple-input neuron:

Figure 2.4: Multiple-Input Neuron (Demuth et al., 2014).

In this case the weighted net input is now defined as:

n = w1,1p1 + w1,2p2 + ...+ w1,RpR + b (2.13)

n = Wp + b (2.14)

where W now stands for a matrix, p for a vector and b for a scalar, and the final
output equals:

a = f(Wp + b) (2.15)

The complexity grows when instead of training one hidden layer at a time, train
multiple layers together. Each layer is trying to learn different aspects about the
data by minimizing an error or cost function. The updated model looks now (Fig.
2.5):

Convolutional Neural Network CNN is an algorithm based on the architecture
of deep neural networks. The term “convolution” refers to the linear operations
that the algorithm performs instead of general matrix multiplication between the
layers (Pascanu et al., 2013). The first CNN models were trained to classify im-
age (Cireşan et al., 2012) and since then they are used in various other problems
such as text classification (Yang et al., 2016) (Zhou et al., 2016).

22

Figure 2.5: n-Layer Network (Demuth et al., 2014).

Recurrent Neural Network RNN is another class of deep learning that was first
introduced by Rumelhart and McClelland (1986). Their main characteristic is that,
instead of feeding each layer with the result of previous layer, each layer receives the
previous result and the previous input. A new parameter is added in the model time.
The decision a current network reaches at time t−1 is determined by the decision at
time t0.

The process we have just described could be defined as the following learning
function:

ht = φ(Wxt + Uht−1) (2.16)

where ht is the hidden state at time t0. Then xt is multiplied by a weight matrix
W and summed-up with the product of U hidden state ht−1 at time t−1.

2.5 Algorithm Selection Problem
In 1976, John Rice explored the idea that the problems that algorithms tackle and
the corresponding models follow the same rules. He advocated that although ex-
ploitation of a specific problem and domain would always be necessary, the selection
of the right algorithm and parameters should be based on the previous knowledge
gained (meta-knowledge) from approximately similar problems (Rice, 1976). Rice
explored the selection problem as a problem per-se, by analyzing the applicability of
the approximation theory to the algorithm selection problem. Figure 2.6 illustrates

23

this process.
Later, Wolpert et al. (1997) proposed the "No Free Lunch Theorems for Opti-

mization" that rejects the idea that a universal optimal learning algorithm is pos-
sible. They advocated that if any pair of algorithms perform on average equally for
a specific domain, then for any similar domain the results will be also similar.

Figure 2.6: Schematic diagram of Rice’s algorithm selection problem framework
(Rice, 1976). The objective is to determine the selection mapping S that returns
the best algorithm. Adapted from Smith-Miles (2009).

Overall, the algorithm selection problem addresses the importance of the deci-
sion which learning algorithms to use and how to tune them (Maron and Moore,
1997). Selecting the right predictive model for a given problem can be challenging
considering the vast number of predictive models that exist. Training a data-set
using all possible classifiers can be timely and computationally exhausting, let alone
applying different sets of parameters at each model. Meta-learning studies how the
knowledge gained from previous problems could serve in solving new ones (Brazdil
et al., 2008).

Abdulrahman et al. Abdulrahman et al. (2017) introduced a multi-objective
measure, (A3R), for identifying the best algorithm. The authors explored two tech-
niques, Average Ranking (AR) and Active Testing (AT), that select algorithms based
on rankings over efficiency and effectiveness. As its name implies,AR (Brazdil et al.,
2003) ranks the algorithms based on the average accuracy of their performance over
any prior domain. Average 3 Ranking (A3R) takes into account not only accuracy,
but also the computational time of each algorithm.

Introduced by Leite et al. (Leite and Brazdil, 2010), AT aims at selecting those al-
gorithms that have greater probability to outperform the performance of previously

24

tested algorithms by using the concept of estimates of performance gain (Abdul-
rahman et al., 2017). The final selection is based on the relative estimate that one
algorithm will be better than the previous selected. A3R measure is formulated as:

A3Rdi
aref ,aj

=

SR
di
aj

SR
di
aref

(T di
aj /T

di
aref)P

(2.17)

where aj is the algorithm to be tested, aref is the current algorithm, di is the
training domain for both algorithms, SR is the accuracy score (success rate) and
T is the computational time counted in seconds. Finally, time is raised in power
P, a number close to 1/40, in order to balance the trade-off time-accuracy. In
this scenario, there are two important parameters. First, the loss function L that
measures the difference between the real and predicted labels and second the bias
that is the measure of the assumptions that the learner creates when predicts for
instances that are different or inexistent in the training domain (Mitchell, 1980).

25

Chapter 3

Methodology, Experiments and
Results

3.1 Problem Overview
Our research was focused on exploring text pre-processing techniques and classifica-
tion algorithms, creating various workflows that could be compared and ranked. The
work was divided into three parts: first, applying a number of text pre-processing
methods and tune them. Second, follow the same process and extend the existing
pipelines with text classification methods, paying special attention to deep neural
networks exploration. Finally, create rankings by comparing the resulting pipelines
using meta-learning.

As the number of values can be infinite, we focused on creating ranges around the
default number of the best algorithms proposed in the existing literature. OpenML
(Van Rijn et al., 2013) is a platform that inspired us in our approach to create
workflows. It is a research platform where anyone can train and test workflows,
publish their configuration and results. The database serves as a base for comparing
the results of different methodologies on popular domains. Therefore, it could be
considered as a source of meta-data and meta-knowledge information.

We have followed the methodology of Maria Ferreira (2017). This researcher
applied workflow recommendation for text classification using meta-learning. As our
approach is very similar, we followed the process of tuning the parameters of the
text pre-processing (except word embeddings) and some classification algorithms.

3.2 Datasets
The 20 newsgroups dataset is comprised of 18,846 news documents that are evenly
divided into 20 classes. It is an open free source dataset that was created by Ken
Lang and it can be retrieved from (Rennie, 2008). Each document contains a text

26

of approximately 1700 words in English and belongs to the given class. The subject
of some of the classes are closely related, which increases difficulty of the correct
classification.

Reuters-21578 dataset (Lewis, 1997) is the second document collection that we
used. In its original version, it contains 21,578 newspaper articles in the form of
text documents. The collection is considered highly skewed as it contains categories
with only few documents belong to some of them. In our case, we used the split of
Mod-Apte that divides it into 90 categories.

From the above dataset collections, we decided to use the complete 20 newsgroups
dataset in conjunction with the 11 most frequent categories of the Reuters-21578
dataset. The final set is a compilation of 6 different groups (aka groups), each
containing 5 classes. Later, when we create our workflows, each group is trained
separately. Table 3.1 summarizes the documents.

Table 3.1: Six groups of documents used in the study.

code source topic no. docs
20 newsgroups alt.atheism 1000
20 newsgroups talk.religion.misc 1000

group 1 20 newsgroups soc.religion.christian 1000
Reuters-21578 acq 1650
Reuters-21578 grain 433
20 newsgroups comp.graphics 1000
20 newsgroups comp.os.ms-windows.misc 1000

group 2 20 newsgroups comp.sys.ibm.pc.hardware 1000
20 newsgroups comp.sys.mac.hardware 1000
20 newsgroups comp.windows.x 1000
20 newsgroups rec.autos 1000
20 newsgroups rec.motorcycles 1000

group 3 20 newsgroups rec.sport.baseball 1000
20 newsgroups rec.sport.hockey 1000
Reuters-21578 ship 197
20 newsgroups sci.crypt 1000
20 newsgroups sci.electronics 1000

group 4 20 newsgroups sci.med 1000
20 newsgroups sci.space 1000
Reuters-21578 dlr 131
20 newsgroups talk.politics.misc 1000
20 newsgroups talk.politics.guns 1000

group 5 20 newsgroups talk.politics.mideast 1000
Continued on next page

27

Table 3.1 – continued from previous page
code source topic no. docs

Reuters-21578 crude 389
Reuters-21578 gold 94
20 newsgroups ms.forsale 1000
Reuters-21578 earn 2877

group 6 Reuters-21578 money-fx 538
Reuters-21578 interest 347
Reuters-21578 money-supply 140

3.3 Experimental Set-up
The experiments conducted were carried out on a pc, where the specifications are in
Table A.1) across the period of three months. First, we applied the pre-processing
experiments, creating 60 different workflows (pipelines). After, we fed the results to
the four classification algorithms that we had pre-selected, resulting to 194 work-
flows. The run-time of the two separated processes was added up and the final
accuracy of each workflow was stored. These values were finally used to elaborate
the final rankings.

Text pre-processing

The first step to process the text was to convert all capital letters to lower-
case and other transformations including representation choice, Stemming, Sparsity
correction, Stop-word removal and Information gain feature selection. Table 3.2
summarizes the pre-processing steps used.

28

Table 3.2: Pre-processing methods with the correspondent codified term.
Method Options Code
Representation tf-idf tf-idf

frequency freq
1000 word embbeding emb1
2000 word embbeding emb2

Stemming - none
Porter Stemmer porter

Sparsity correction At 99% 0,99
At 98% 0,98

Stop-word removal - none
Default tm default
Smart list smart

Information gain FS - none
More than zero IG >0

As DL models incorporate in their modeling the text representation, applying
sparsity correction and information gain to word embeddings is considered out of
the scope of this text representation method. As a result, word embeddings were
combined with Stop-word removal and Stemming and used only for training the
CNN model.

Table 3.3: Pre-processing strategies applied on the ex-
periments.

pre-proc. repr stop stem spar info
p1 tf-idf none none 0,99 none
p2 tf-idf none none 0,99 >0
p3 tf-idf none none 0,98 none
p4 tf-idf none none 0,98 >0
p5 tf-idf none porter 0,99 none
p6 tf-idf none porter 0,99 >0
p7 tf-idf none porter 0,98 none
p8 tf-idf none porter 0,98 >0
p9 tf-idf default none 0,99 none
p10 tf-idf default none 0,99 >0
p11 tf-idf default none 0,98 none
p12 tf-idf default none 0,98 >0

Continued on next page

29

Table 3.3 – continued from previous page
pre-proc. repr stop stem spar info
p13 tf-idf default porter 0,99 none
p14 tf-idf default porter 0,99 >0
p15 tf-idf default porter 0,98 none
p16 tf-idf default porter 0,98 >0
p17 tf-idf smart none 0,99 none
p18 tf-idf smart none 0,99 >0
p19 tf-idf smart none 0,98 none
p20 tf-idf smart none 0,98 >0
p21 tf-idf smart porter 0,99 none
p22 tf-idf smart porter 0,99 >0
p23 tf-idf smart porter 0,98 none
p24 tf-idf smart porter 0,98 >0
p25 freq none none 0,99 none
p26 freq none none 0,99 >0
p27 freq none none 0,98 none
p28 freq none none 0,98 >0
p29 freq none porter 0,99 none
p30 freq none porter 0,99 >0
p31 freq none porter 0,98 none
p32 freq none porter 0,98 >0
p33 freq default none 0,99 none
p34 freq default none 0,99 >0
p35 freq default none 0,98 none
p36 freq default none 0,98 >0
p37 freq default porter 0,99 none
p38 freq default porter 0,99 >0
p39 freq default porter 0,98 none
p40 freq default porter 0,98 >0
p41 freq smart none 0,99 none
p42 freq smart none 0,99 >0
p43 freq smart none 0,98 none
p44 freq smart none 0,98 >0
p45 freq smart porter 0,99 none
p46 freq smart porter 0,99 >0
p47 freq smart porter 0,98 none
p48 freq smart porter 0,98 >0
p49 emb1 none none none none
p50 emb1 none porter none none
p51 emb1 default none none none

Continued on next page

30

Table 3.3 – continued from previous page
pre-proc. repr stop stem spar info
p52 emb1 default porter none none
p53 emb1 smart none none none
p54 emb1 smart porter none none
p55 emb2 none none none none
p56 emb2 none porter none none
p57 emb2 default none none none
p58 emb2 default porter none none
p59 emb2 smart none none none
p60 emb2 smart porter none none

Figure 3.1: Code for the training of the embedding word matrix in R.

The packages that we used were: tm, NLP, FSelector, Rweka, caret and keras
in R language.

Classification Algorithms

We applied five classification models, namely: Linear Regression, Quadratic Re-
gression, Random Forest, Support Vector Machine and from the DL theory CNN.
Table 3.4 is the summary of the algorithms used and the parameters that we used
to tune them. As the CNN model a bigger number of parameters, we created a
separate Table 3.5 that includes them.

The packages that we used were: MASS, e1071, randomForest and keras in R
language.

31

Model Parameters Code
Linear Regression - ld
Quadratic Regression - ld
Random Forest mtry=round down no.features rf
SVM cost=1 svm
CNN Conv2D, epochs=10 cnn

Table 3.4: Classification models with the correspondent parameters and codified
term.

Parameter Size
Maximum sequence length 1000
Embedding dimension 150
Filter size [3,4,5]
No filters 600
Drop 0,5
Maximum pool Maximum sequence length[i] - filter size[i]
Batch size 30

Table 3.5: Specification of CNN model parameters.

Training & Testing sets

As explained in Chapter 3, we applied our workflows on the documents of 20news-
groups and reuters. We created 6 dataset groups that each one contains five classes
with similar topic. In order to ensure the accuracy of our models, we run 10-fold
cross validation with leave-one-out. That means that each dataset group was split
into 10 random samples, from which the 9 were used as training set and the tenth
as testing. The final output of the prediction is the class with the highest mean
probability. The size of the split was in 0,2%. As in pre-processing phase, we didn’t
apply cross-validation in the CNN model, but similarly to it, the split size of the
CNN was 0,2% and the training epochs 10. By this technique we limit the proba-
bility of over-fitting and also overpass the problem of a skewed distribution on the
dataset.

The packages that we used were: cvTools and keras in R language.

3.4 Ranking Workflows
Based on the work of Abdulrahman et al. (2017), we followed their approach to rank
our meta-data collection. The researches propose that accuracy should be combined
with run-time, providing a ranking of algorithms that are both accurate and efficient.

32

The original equation of A3R (see equation 2.15) measure unnecessarily complex for
methods that do not use pairwise comparison. For this reason, we have adopted the
simpler version of Van Rijn et al. (2013):

A3Ri,j =
Ai,j

(Ti,j)P
(3.1)

The P parameter featured in this formula is basically the weighting parameter
for the run-time in this measure. In our work, P=1/40.

The next step after obtaining the results of the A3R measure, is to rank them.
For that we applied AR method as described in (Abdulrahman et al., 2017). That
means that each workflow was ranked based on every group separately. In our case,
we calculated 6 different ranking sets as we had 6 groups. These 6 rankings were
after averaged based on AR in order to get the final complete ranking. In case of
a tie, we assign to each tied value the average of the ranks that would have been
assigned without ties.

The table 3.6 shows how the ranking between the best workflow can be altered.
CNN models exceed in accuracy but finally over-passed by the RF model that needs
only few minutes to train.

workflow accuracy A3R
w193 1 4
w195 2 6
w197 3 8
w202 4 9
w194 5 10
w198 6 11
w152 7 1
w167 8 2
w156 9 3
w81 10 7
w187 11 15

Table 3.6: Workflow and its ranks based on accuracy and A3R.

3.5 Results
From the learning algorithms that we trained, we could conclude that DL models
result in high accuracy. By looking at the accuracy and run-time of the CNN model,
we could result that DL models need a lot of more time to train in comparison to
other models. RF that has similar accuracy rates needs almost 10 times less to
conclude the process. Also, in the groups that the distribution is skewed DL have

33

lower accuracy from these trained with RF. RF was the classification algorithm that
had high average A3R rate in all groups. SVM and linear regression followed while
quadratic regression had the lowest average results.

In terms of pre-processing techniques and scoring, word embeddings of 1000
words exceed those of 2000 words both is terms of accuracy and run-time. However,
could not overpass the combination of tf-idf, stopwords, stemming and sparcity cor-
rection in the random forest algorithm. Although CNN with 1000 words exceed in
accuracy all other workflows, it was hold back as its score on A3R was lower because
of the high run-time.

tf-idf gave also good predictions. Observing the results on the table ??, we
could conclude that information gain showed also promising results when applied.
Another interesting point was that 0,98% sparsity correction achieved better results
than 0,99% which was also better than none. Stemming and Stopwords removal
seemed to have a positive impact in all algorithms but the CNN. This may results
from the fact that these words are must have been removed by the CNN algorithm
during the training. The results in case of CNN the workflow with no text pre-
processing had almost equal results to those when these methods were applied.

Finally we can detect differences between the best performing workflows and the
dataset groups. Group g1 scored first in all classification algorithms. We may deduce
that the even distribution of this dataset was the reason for the good performance
of all classsifiers. Groups g2,g3 & g4 showed similar behaviour while the g5, g6
came last ones. The relative low numbers of documents in comparison to the other
datasets may be reason for this behaviour.

34

Table 3.7: Ranking of the first 20 workflows with the correspondent run-time, accu-
racy and A3R score.
rank workF repr stop stem spar info algo r-t acc A3R
1 w152 tf-idf smart porter 0,98 none rf 2,62 0,71 0,70
2 w167 tf-idf none porter 0,98 >0 rf 2,58 0,71 0,69
3 w156 freq smart none 0,98 none rf 1,63 0,69 0,69
4 w193 emb1 none none none none cnn 66,32 0,765 0,69
5 w187 tf-idf default none 0,98 >0 rf 1,61 0,70 0,69
6 w195 emb1 none porter none none cnn 75,32 0,76 0,68
7 w81 tf-idf smart porter 0,99 >0 rf 2,83 0,70 0,68
8 w197 emb1 smart none none none cnn 74,29 0,76 0,68
9 w202 emb2 none none none none cnn 105,67 0,76 0,67
10 w194 emb1 default none none none cnn 73,32 0,75 0,67
11 w198 emb1 default porter none none cnn 83,00 0,73 0,66
12 w200 emb2 none porter none none cnn 117,82 0,729 0,65
13 w204 emb2 default porter none none cnn 121,89 0,728 0,65
14 w196 emb1 smart porter none none cnn 88,56 0,72 0,65
15 w203 emb2 smart porter none none cnn 129,99 0,72 0,64
16 w199 emb2 default none none none cnn 132,37 0,72 0,63
17 w201 emb2 smart none none none cnn 128,79 0,72 0,63
18 w166 tf-idf smart porter 0,99 >0 rf 2,83 0,649 0,63
19 w148 tf-idf none none 0,98 >0 rf 2,74 0,65 0,63
20 w159 tf-idf default porter 0,98 none rf 3,41 0,64 0,62

35

Chapter 4

Conclusions and Future Work

Revising the initial objectives of this thesis, we could assume that meta-learning
approaches provide us with useful information about workflow selection and tuning
parameters. A3R measure and AR technique helped us to explore different methods
and order their results.

On the other hand, DL models proved to have high accuracy rates in dataset
groups with low number of samples and unbalanced classes. Though their complexity
may harden their implementation, the final outcome is satisfying. Classic algorithms
proved to perform well and gave high results, that were correlated to the text-
preprocessing. Feature selection and parameters tuning can be definitive in their
case.

4.1 Limitations of this work
This work was subject to some limitations. First of all, the tuning of the parameters
was manual. In case optimization methods were applied, the resulting ranking could
be different. Another limitation was the efficiency of the computer device that we
used. A large server would probably be more efficient in the collection of meta-data
and probably would result on higher scores. Finally, the group that we used included
large corpora that were evenly distributed, for the case of 4 out of 6 dataset groups.
These conditions are usually not met in real world data. Therefore, we would expect
different results in such a case.

4.2 Future Work
Based on the conclusions we ended, this study could be enhanced in the following
aspects a future work:

• Explore different architectures of DL models: There is a vast bibliog-

36

raphy of DL models with different architecture such as Recursice, Recurrent,
LSTM etc. Another popular technique is the training of the word embedding
matrices based on large, cross-domain, knowledge graphs such as DBpedia,
Freebase, OpenCyc, Wikidata, YAGO etc.

• Tune the parameters based on optimization techniques: Greedy search,
Genetic algorithms are some of the optimization algorithms that could be ex-
plored in order to tune the parameters more efficiently.

• Explore different values on the parameters of A3R: In our work, we
calculated our rankings based on a A3R measure with the P parameter equal
to 1/40. This parameter could be set on a range of values and explre its impact
on the final rankings obtained.

• Apply workflow selection based on meta-learning approaches on real-
world domains: The collection of the documents we used are articles were
grammatical mistakes or misspelling are missing. The text in overall does
contain characters or words that do not belong to english language. However,
in reality, this is hardly the case. Training the workflows on text such as sms
or tweets would result to different conclusions.

37

Bibliography

Abdulrahman, S. M., Cachada, M. V., and Brazdil, P. (2017). Impact of feature
selection on average ranking method via metalearning. In European Congress on
Computational Methods in Applied Sciences and Engineering, pages 1091–1101.
Springer.

Aggarwal, C. C. and Zhai, C. (2012). Mining text data. Springer Science & Business
Media.

Agichtein, E. and Gravano, L. (2000). Snowball: Extracting relations from large
plain-text collections. In Proceedings of the fifth ACM conference on Digital li-
braries, pages 85–94. ACM.

Airoldi, E. and Malin, B. (2004). Data mining challenges for electronic safety: the
case of fraudulent intent detection in e-mails. In Proceedings of the workshop on
privacy and security aspects of data mining, pages 57–66.

Albert, M. H. and Atkinson, M. D. (2005). Simple permutations and pattern re-
stricted permutations. Discrete Mathematics, 300(1-3):1–15.

Asghari, M. and Aghdam, M. S. (2010). Impact of salicylic acid on post-
harvest physiology of horticultural crops. Trends in Food Science & Technology,
21(10):502–509.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828.

Brazdil, P., Carrier, C. G., Soares, C., and Vilalta, R. (2008). Metalearning: Appli-
cations to data mining. Springer Science & Business Media.

Brazdil, P. B., Soares, C., and Da Costa, J. P. (2003). Ranking learning algorithms:
Using ibl and meta-learning on accuracy and time results. Machine Learning,
50(3):251–277.

38

Caragea, C., Silvescu, A., and Tapia, A. H. (2016). Identifying informative mes-
sages in disaster events using convolutional neural networks. In International
Conference on Information Systems for Crisis Response and Management, pages
137–147.

Chollet, F. et al. (2018). Keras: The python deep learning library. Astrophysics
Source Code Library.

Cireşan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural
networks for image classification. arXiv preprint arXiv:1202.2745.

Demuth, H. B., Beale, M. H., De Jess, O., and Hagan, M. T. (2014). Neural network
design. Martin Hagan.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., et al. (1996).
Advances in knowledge discovery and data mining, volume 21. AAAI press Menlo
Park.

Feinerer, I. and Hornik, K. (2012). tm: Text mining package. R package version
0.5-7.1, 1(8).

Fox, E. (2009). The role of reader characteristics in processing and learning from
informational text. Review of Educational Research, 79(1):197–261.

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., and Schmidhuber,
J. (2008). A novel connectionist system for unconstrained handwriting recognition.
IEEE transactions on pattern analysis and machine intelligence, 31(5):855–868.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics,
speech and signal processing, pages 6645–6649. IEEE.

Hammond, C. and Mitchell, E. (1997). Library instruction for the professions:
Information needs and libraries. Reference Services Review, 25(2):79–87.

Harter, S. P. (1986). Online information retrieval: concepts, principles, and tech-
niques. Academic Press Orlando, FL.

Jindal, N. and Liu, B. (2007). Review spam detection. In Proceedings of the 16th
international conference on World Wide Web, pages 1189–1190. ACM.

Joachims, T. (1998a). Making large-scale svm learning practical. Technical report,
Technical report, SFB 475: Komplexitätsreduktion in Multivariaten

Joachims, T. (1998b). Text categorization with support vector machines: Learning
with many relevant features. In European conference on machine learning, pages
137–142. Springer.

39

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105.

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and docu-
ments. In International conference on machine learning, pages 1188–1196.

Leite, R. and Brazdil, P. (2010). Active testing strategy to predict the best classifi-
cation algorithm via sampling and metalearning. In ECAI, pages 309–314.

Lewis, D. (1997). Reuters-21578 dataset. URL= http: www. research. att. com
lewisreuters21578. html.

Liu, X.-x., Zhou, L., and Du, X.-Y. (2005). A method of sensor management based
on target priority and information gain. Dianzi Xuebao(Acta Electronica Sinica),
33(9):1683–1687.

Lohr, S. (2019). Is there a smarter path to artificial intelligence? some experts hope
so. Last visited 23-Aug-2019.

Lovins, J. B. (1968). Development of a stemming algorithm. Mech. Translat. &
Comp. Linguistics, 11(1-2):22–31.

Madabushi, H. T. and Lee, M. (2016). High accuracy rule-based question classifica-
tion using question syntax and semantics. In Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Papers,
pages 1220–1230.

Maron, O. and Moore, A. W. (1997). The racing algorithm: Model selection for
lazy learners. Artificial Intelligence Review, 11(1-5):193–225.

McCullough, M. E., Emmons, R. A., and Tsang, J.-A. (2002). The grateful dispo-
sition: A conceptual and empirical topography. Journal of personality and social
psychology, 82(1):112.

Melville, P., Gryc, W., and Lawrence, R. D. (2009). Sentiment analysis of blogs
by combining lexical knowledge with text classification. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1275–1284. ACM.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

Mitchell, T. M. (1980). The need for biases in learning generalizations. Citeseer.

40

Montgomery, D. C., Peck, E. A., and Vining, G. G. (2012). Introduction to linear
regression analysis, volume 821. John Wiley & Sons.

Nayak, A. (2016). Race, place and globalization: Youth cultures in a changing world.
Bloomsbury Publishing.

Pal, M. (2005). Random forest classifier for remote sensing classification. Interna-
tional Journal of Remote Sensing, 26(1):217–222.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training
recurrent neural networks. In International conference on machine learning, pages
1310–1318.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–106.

Rennie, J. (2008). The 20 newsgroups data set.

Roitblat, H. L., Kershaw, A., and Oot, P. (2010). Document categorization in legal
electronic discovery: computer classification vs. manual review. Journal of the
American Society for Information Science and Technology, 61(1):70–80.

Rumelhart, D. E. and McClelland, J. L. (1986). On learning the past tenses of
english verbs.

Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C. D.,
and Stamatopoulos, P. (2001). Stacking classifiers for anti-spam filtering of e-mail.
arXiv preprint cs/0106040.

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47.

Seber, G. A. and Lee, A. J. (2012). Linear regression analysis, volume 329. John
Wiley & Sons.

Shwartz-Ziv, R. and Tishby, N. (2017). Opening the black box of deep neural
networks via information. arXiv preprint arXiv:1703.00810.

Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., and Chanona-Hernández,
L. (2014). Syntactic n-grams as machine learning features for natural language
processing. Expert Systems with Applications, 41(3):853–860.

Socher, R. (2014). Recursive deep learning for natural language processing and com-
puter vision. PhD thesis, Citeseer.

41

Squire, D. M., Müller, W., Müller, H., and Pun, T. (2000). Content-based query
of image databases: inspirations from text retrieval. Pattern Recognition Letters,
21(13-14):1193–1198.

Sutskever, I., Martens, J., and Hinton, G. E. (2011). Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 1017–1024.

Symeonidis, S., Effrosynidis, D., and Arampatzis, A. (2018). A comparative eval-
uation of pre-processing techniques and their interactions for twitter sentiment
analysis. Expert Systems with Applications, 110:298–310.

Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector space
models of semantics. Journal of artificial intelligence research, 37:141–188.

Van Rijn, J. N., Bischl, B., Torgo, L., Gao, B., Umaashankar, V., Fischer, S.,
Winter, P., Wiswedel, B., Berthold, M. R., and Vanschoren, J. (2013). Openml: A
collaborative science platform. In Joint european conference on machine learning
and knowledge discovery in databases, pages 645–649. Springer.

Wolpert, D. H., Macready, W. G., et al. (1997). No free lunch theorems for opti-
mization. IEEE transactions on evolutionary computation, 1(1):67–82.

Yang, Y. and Pedersen, J. O. (1997). A comparative study on feature selection in
text categorization. In Icml, volume 97, page 35.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy, E. (2016). Hierar-
chical attention networks for document classification. In Proceedings of the 2016
conference of the North American chapter of the association for computational
linguistics: human language technologies, pages 1480–1489.

Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., and Xu, B. (2016). Text classification
improved by integrating bidirectional lstm with two-dimensional max pooling.
arXiv preprint arXiv:1611.06639.

42

Appendices

43

Appendix A

Table A.1: Specification of computer in which the experiments were run.
Computer Specifications

Processor Intel Core i7-4712HQ CPU @ 2.30GHz x 8
RAM 15,6 GiB
Graphic Card GeForce GT 750M/PCle/SSE2
Disk 305,1 GB

Table A.2: Final workflow rankings based on A3R.

rank workflow repr stop stem spar info algo
1 w152 tf-idf smart porter 0,98 none rf
2 w167 tf-idf none porter 0,98 >0 rf
3 w156 freq smart none 0,98 none rf
4 w193 emb1 none none none none cnn
5 w187 tf-idf default none 0,98 >0 rf
6 w195 emb1 none porter none none cnn
7 w81 tf-idf smart porter 0,99 >0 rf
8 w197 emb1 smart none none none cnn
9 w202 emb2 none none none none cnn
10 w194 emb1 default none none none cnn
11 w198 emb1 default porter none none cnn
12 w200 emb2 none porter none none cnn
13 w204 emb2 default porter none none cnn
14 w196 emb1 smart porter none none cnn
15 w203 emb2 smart porter none none cnn
16 w199 emb2 default none none none cnn

Continued on next page

44

Table A.2 – continued from previous page
rank workflow repr stop stem spar info algo
17 w201 emb2 smart none none none cnn
18 w166 tf-idf smart porter 0,99 >0 rf
19 w148 tf-idf none none 0,98 >0 rf
20 w159 tf-idf default porter 0,98 none rf
21 w163 tf-idf smart none 0,98 none rf
22 w170 freq none none 0,99 >0 rf
23 w177 freq default none 0,99 none rf
24 w180 freq default none 0,98 >0 rf
25 w160 tf-idf default porter 0,98 >0 rf
26 w190 freq smart porter 0,99 >0 rf
27 w183 freq default porter 0,98 none rf
28 w184 freq default porter 0,98 >0 rf
29 w149 tf-idf none porter 0,99 none rf
30 w153 tf-idf default none 0,99 none rf
31 w173 freq none porter 0,99 none rf
32 w161 tf-idf smart none 0,99 none rf
33 w185 freq smart none 0,99 none rf
34 w171 freq none none 0,98 none rf
35 w120 tf-idf smart porter 0,98 >0 svm
36 w100 tf-idf none none 0,98 >0 svm
37 w145 tf-idf none none 0,99 none rf
38 w117 tf-idf smart porter 0,99 none svm
39 w172 freq none none 0,98 >0 rf
40 w146 tf-idf none none 0,99 >0 rf
41 w147 tf-idf none none 0,98 none rf
42 w175 freq none porter 0,98 none rf
43 w86 tf-idf none porter 0,99 >0 rf
44 w188 freq smart none 0,98 >0 rf
45 w189 freq smart porter 0,99 none rf
46 w174 freq none porter 0,99 >0 rf
47 w141 freq smart porter 0,99 none svm
48 w176 freq none porter 0,98 >0 rf
49 w186 freq smart none 0,99 >0 rf
50 w178 freq default none 0,99 >0 rf
51 w137 freq smart none 0,99 none svm
52 w138 freq smart none 0,99 >0 svm
53 w181 freq default porter 0,99 none rf
54 w182 freq default porter 0,99 >0 rf
55 w126 freq none porter 0,99 >0 svm

Continued on next page

45

Table A.2 – continued from previous page
rank workflow repr stop stem spar info algo
56 w168 tf-idf smart porter 0,98 >0 rf
57 w191 freq smart porter 0,98 none rf
58 w179 freq default none 0,98 none rf
59 w192 freq smart porter 0,98 >0 rf
60 w151 tf-idf none porter 0,98 none rf
61 w164 tf-idf smart none 0,98 >0 rf
62 w165 tf-idf smart porter 0,99 none rf
63 w154 tf-idf default none 0,99 >0 rf
64 w169 freq none none 0,99 none rf
65 w150 tf-idf none porter 0,99 >0 rf
66 w157 tf-idf default porter 0,99 none rf
67 w158 tf-idf default porter 0,99 >0 rf
68 w162 tf-idf smart none 0,99 >0 rf
69 w136 freq default porter 0,98 >0 svm
70 w155 tf-idf default none 0,98 none rf
71 w72 tf-idf smart porter 0,98 >0 qda
72 w107 tf-idf default none 0,98 none svm
73 w24 tf-idf smart porter 0,98 >0 lda
74 w105 tf-idf default none 0,99 none svm
75 w21 tf-idf smart porter 0,99 none lda
76 w127 freq none porter 0,98 none svm
77 w108 tf-idf default none 0,98 >0 svm
78 w23 tf-idf smart porter 0,98 none lda
79 w112 tf-idf default porter 0,98 >0 svm
80 w111 tf-idf default porter 0,98 none svm
81 w71 tf-idf smart porter 0,98 none qda
82 w119 tf-idf smart porter 0,98 none svm
83 w63 tf-idf default porter 0,98 none qda
84 w106 tf-idf default none 0,99 >0 svm
85 w60 tf-idf default none 0,98 >0 qda
86 w97 tf-idf none none 0,99 none svm
87 w67 tf-idf smart none 0,98 none qda
88 w19 tf-idf smart none 0,98 none lda
89 w109 tf-idf default porter 0,99 none svm
90 w110 tf-idf default porter 0,99 >0 svm
91 w129 freq default none 0,99 none svm
92 w22 tf-idf smart porter 0,99 >0 lda
93 w115 tf-idf smart none 0,98 none svm
94 w70 tf-idf smart porter 0,99 >0 qda

Continued on next page

46

Table A.2 – continued from previous page
rank workflow repr stop stem spar info algo
95 w114 tf-idf smart none 0,99 >0 svm
96 w68 tf-idf smart none 0,98 >0 qda
97 w59 tf-idf default none 0,98 none qda
98 w121 freq none none 0,99 none svm
99 w64 tf-idf default porter 0,98 >0 qda
100 w65 tf-idf smart none 0,99 none qda
101 w116 tf-idf smart none 0,98 >0 svm
102 w128 freq none porter 0,98 >0 svm
103 w102 tf-idf none porter 0,99 >0 svm
104 w130 freq default none 0,99 >0 svm
105 w101 tf-idf none porter 0,99 none svm
106 w18 tf-idf smart none 0,99 >0 lda
107 w17 tf-idf smart none 0,99 none lda
108 w62 tf-idf default porter 0,99 >0 qda
109 w122 freq none none 0,99 >0 svm
110 w144 freq smart porter 0,98 >0 svm
111 w125 freq none porter 0,99 none svm
112 w20 tf-idf smart none 0,98 >0 lda
113 w61 tf-idf default porter 0,99 none qda
114 w113 tf-idf smart none 0,99 none svm
115 w66 tf-idf smart none 0,99 >0 qda
116 w69 tf-idf smart porter 0,99 none qda
117 w118 tf-idf smart porter 0,99 >0 svm
118 w133 freq default porter 0,99 none svm
119 w132 freq default none 0,98 >0 svm
120 w143 freq smart porter 0,98 none svm
121 w123 freq none none 0,98 none svm
122 w42 freq smart none 0,99 >0 lda
123 w131 freq default none 0,98 none svm
124 w103 tf-idf none porter 0,98 none svm
125 w104 tf-idf none porter 0,98 >0 svm
126 w53 tf-idf none porter 0,99 none qda
127 w139 freq smart none 0,98 none svm
128 w134 freq default porter 0,99 >0 svm
129 w135 freq default porter 0,98 none svm
130 w124 freq none none 0,98 >0 svm
131 w47 freq smart porter 0,98 none lda
132 w142 freq smart porter 0,99 >0 svm
133 w140 freq smart none 0,98 >0 svm

Continued on next page

47

Table A.2 – continued from previous page
rank workflow repr stop stem spar info algo
134 w99 tf-idf none none 0,98 none svm
135 w98 tf-idf none none 0,99 >0 svm
136 w33 freq default none 0,99 none lda
137 w15 tf-idf default porter 0,98 none lda
138 w90 freq smart none 0,99 >0 qda
139 w57 tf-idf default none 0,99 none qda
140 w32 freq none porter 0,98 >0 lda
141 w34 freq default none 0,99 >0 lda
142 w40 freq default porter 0,98 >0 lda
143 w41 freq smart none 0,99 none lda
144 w31 freq none porter 0,98 none lda
145 w56 tf-idf none porter 0,98 >0 qda
146 w79 freq none porter 0,98 none qda
147 w14 tf-idf default porter 0,99 >0 lda
148 w8 tf-idf none porter 0,98 >0 lda
149 w58 tf-idf default none 0,99 >0 qda
150 w25 freq none none 0,99 none lda
151 w26 freq none none 0,99 >0 lda
152 w27 freq none none 0,98 none lda
153 w89 freq smart none 0,99 none qda
154 w55 tf-idf none porter 0,98 none qda
155 w16 tf-idf default porter 0,98 >0 lda
156 w7 tf-idf none porter 0,98 none lda
157 w39 freq default porter 0,98 none lda
158 w91 freq smart none 0,98 none qda
159 w43 freq smart none 0,98 none lda
160 w36 freq default none 0,98 >0 lda
161 w44 freq smart none 0,98 >0 lda
162 w5 tf-idf none porter 0,99 none lda
163 w30 freq none porter 0,99 >0 lda
164 w4 tf-idf none none 0,98 >0 lda
165 w77 freq none porter 0,99 none qda
166 w45 freq smart porter 0,99 none lda
167 w48 freq smart porter 0,98 >0 lda
168 w49 tf-idf none none 0,99 none qda
169 w83 freq default none 0,98 none qda
170 w50 tf-idf none none 0,99 >0 qda
171 w37 freq default porter 0,99 none lda
172 w38 freq default porter 0,99 >0 lda

Continued on next page

48

Table A.2 – continued from previous page
rank workflow repr stop stem spar info algo
173 w78 freq none porter 0,99 >0 qda
174 w11 tf-idf default none 0,98 none lda
175 w9 tf-idf default none 0,99 none lda
176 w46 freq smart porter 0,99 >0 lda
177 w51 tf-idf none none 0,98 none qda
178 w73 freq none none 0,99 none qda
179 w13 tf-idf default porter 0,99 none lda
180 w52 tf-idf none none 0,98 >0 qda
181 w10 tf-idf default none 0,99 >0 lda
182 w82 freq default none 0,99 >0 qda
183 w12 tf-idf default none 0,98 >0 lda
184 w84 freq default none 0,98 >0 qda
185 w88 freq default porter 0,98 >0 qda
186 w75 freq none none 0,98 none qda
187 w54 tf-idf none porter 0,99 >0 qda
188 w3 tf-idf none none 0,98 none lda
189 w1 tf-idf none none 0,99 none lda
190 w35 freq default none 0,98 none lda
191 w85 freq default porter 099 none qda
192 w76 freq none none 0,98 >0 qda
193 w29 freq none porter 0,99 none lda
194 w92 freq smart none 0,98 >0 qda
195 w74 freq none none 0,99 >0 qda
196 w95 freq smart porter 0,98 none qda
197 w94 freq smart porter 0,99 >0 qda
198 w2 tf-idf none none 0,99 >0 lda
199 w6 tf-idf none porter 0,99 >0 lda
200 w80 freq none porter 0,98 >0 qda
201 w28 freq none none 0,98 >0 lda
202 w96 freq smart porter 0,98 >0 qda
203 w93 freq smart porter 0,99 none qda
204 w87 freq default porter 0,98 none qda

49

