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Abstract

Traffic flow forecasting is an essential component of an intelligent transporta-

tion system to mitigate congestion. Recurrent neural networks, particularly

gated recurrent units and long short-term memory, have been the state-of-the-

art traffic flow forecasting models for the last few years. However, a more

sophisticated and resilient model is necessary to effectively acquire long-range

correlations in the time-series data sequence under analysis. The dominant

performance of transformers by overcoming the drawbacks of recurrent neu-

ral networks in natural language processing might tackle this need and lead to

successful time-series forecasting. This article presents a multi-head attention

based transformer model for traffic flow forecasting with a comparative analysis

between a gated recurrent unit and a long-short term memory-based model on

PeMS dataset in this context. The model uses 5 heads with 5 identical layers of

encoder and decoder and relies on Square Subsequent Masking techniques. The

results demonstrate the promising performance of the transform-based model

in predicting long-term traffic flow patterns effectively after feeding it with sub-

stantial amount of data. It also demonstrates its worthiness by increasing the
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mean squared errors and mean absolute percentage errors by (1.25−47.8)% and

(32.4− 83.8)%, respectively, concerning the current baselines.

Keywords: Intelligent transportation system, Time-series forecasting, Deep

learning, Long short-term memory, Gated recurrent unit, PeMS

1. Introduction

Traffic flow forecasting is a critical component of an intelligent transporta-

tion system (ITS) that helps to reduce congestion cost-effectively. Efficient

implementation of intelligent transportation systems will increase traffic mo-

bility, help to save lives, and boost economies. It is a time series problem

where data from one or more observation sites acquired during previous periods

allows the estimation of the flow count at a future time. Statistical methodolo-

gies and data-driven approaches are commonly employed to build these models.

However, statistical techniques are incapable of dealing with changing traffic

circumstances and complicated route layouts (Elhenawy & Rakha, 2017). On

the other hand, data-driven strategies help to overcome the limits of statistical

methods, i.e., to overcome the non-linearity of traffic with promising outcomes

(Yu et al., 2017).

A substantial amount of time-series data is required for models to work

correctly, and the model’s efficiency is primarily determined by how well it can

capture the Spatio-temporal aspects of traffic conditions. Furthermore, models

are hampered by distorted or missing data, reducing their ability to provide

relevant and dependable forecasting results. Due to their capacity to handle vast

volumes of data quickly and discover hidden or unknown traffic patterns, deep

learning-based approaches, particularly gated recurrent unit (GRU) and long

short-term memory (LSTM), have recently solved some of these shortcomings

(Polson & Sokolov, 2017). However, to learn long-range dependencies in data

sequences, transformers can work much better than LSTM and GRU because

of two main reasons: Firstly, in GRU or LSTM, the path lengths grow linearly

with the distance between two positions of interest; in contrast, the path lengths
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are constant regardless of transformers’ distance. Secondly, with long sequences

and because of memory limitation, parallelisation between training examples is

best suited, and transformers allow more parallelisation than GRU or LSTM (Li

et al., 2021). These two significant advantages of transformers might also lead

to their successful adaptation in time-series forecasting, which had motivated

the current study to assess their employment in traffic flow forecasting tasks.

In terms of architecture, a transformer employs an encoder-decoder struc-

ture, with each encoder layer’s primary goal being to generate information on

how different elements of the input are related to one another. The decoder

part does the opposite, gets all the encoding and uses the built-in contextual

information to generate the output sequence (Lim et al., 2021). The atten-

tion mechanism depends on the association between a query and the output of

key-value pairs. Instead of performing a single attention function, multi-head

attention projects queries, keys and values linearly, multiple times in parallel.

After that, there is a point-by-point feed-forward layer with the same param-

eters at each position. Therefore, it describes the problem as an individual

and identical linear transformation of each element from a particular sequence

(Cholakov & Kolev, 2021).

Transformer-based models proposed by (Xu et al., 2020; Yan et al., 2021 and

Jin et al., 2021) helped to solve some traffic flow forecasting problems. Xu et al.,

2020 developed a spatial transformer based on the self-attention mechanism in

order to capture the spatial correlation and temporal transformer, using multi-

head attention concepts to handle multi-time steps temporal dependencies. Yan

et al., 2021 used multi-head attention based transformer to enhance the predic-

tion performance by modelling the road network as a complex graph, which

demonstrated better latent Spatio-temporal feature identification abilities. Jin

et al., 2021 pre-trained bidirectional encoder representations from Transformers

(BERT) on a large dataset to predict traffic flow. The proposed model differs

from these three algorithms in terms of its architectural simplicity. The first

one used stacked spatial and temporal transformers, making it very complex,

while the second adapted the concept of a complex graph that requires unique
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datasets with nodes and edges, and the third utilised pre-trained BERT. The

presented model uses a conventional multi-head attention mechanism with 5

heads and stacked 5 identical encoder and decoder layers that show excellent

performances in forecasting over a much longer time horizons compared to the

pre-trained BERT based model.

Figure 1: Illustration of the overall idea of the proposed model.

Figure 1 illustrates the overall structure of the proposed model. The model

requires historical data to serve the efficient training purpose. Then, it depicts

the future traffic flow by feeding it with real-time data from a particular road

section. For the conventional models, the input time-series data needs to be

serially passed, one after another, in every time step. The input of the previous

state is necessary to make any operation on the current state. Such information

flow is not well suited for today’s Graphical Processing Units designed for par-
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allel computation. However, the proposed model solves this problem due to its

ability to pass the input sequences parallelly without the concept of time-step.

The main goal of this study was to assess the applicability of transformers

in traffic state forecasting and make comprehensive comparisons with the re-

current neural network (RNN) based approaches: GRU and LSTM. Hence, this

article presents a multi-head attention mechanism based transformer for fore-

casting dynamic traffic flow information. It offers a comparative study between

a multi-head attention based transformer and the GRU and LSTM RNN based

models to solve traffic flow forecasting problems. The results show a much bet-

ter performance of the transformer-based model relatively to the two recurrent

neural network-based models in capturing long-range dependencies effectively.

The main contributions of the current study are as follows:

• It presents a multi-head attention-based transformer model with 5 heads

and a stack of 5 similar encoder and decoder layers, including the Square

Subsequent Masking approach;

• It verifies that the number of encoder-decoder layers, in opposition to

heads, bears significant consequences on the model’s performances;

• It also justifies the need of a considerable volume of data samples for a

transformer to achieve state-of-the-art performances.

This article is organized according to the following structures: Section 2

presents selected state-of-the-art works along with their limitations; Section 3

describes the multi-head attention mechanism based transformer model; Section

4 includes information about the experimental setups and also the obtained

results; Section 5 is devoted to discuss the overall performance and feasibility of

the proposed model in traffic flow forecasting, and finally, Section 6 draws the

conclusions and future work.
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2. Related works

In the literature, RNN based models have dominated traffic state forecast-

ing tasks in recent years (Reza et al., 2021). Because of their internal memory

and ability to retain their input, RNN based models are powerful and robust,

allowing them to anticipate future events. Hence, they are especially good at

forecasting future possibilities based on the data’s sequential properties. This

section summarises state-of-the-art works and their limitations and future po-

tential. Hence, it presents previous important works using GRU, LSTM, and

attention-based transformers for traffic state forecasting problems.

2.1. Long Short-Term Memory

Traditional RNNs often suffer from vanishing gradient problems and cannot

capture long-range dependencies. The Long Short-Term Memory (LSTM) mod-

els have capabilities to tackle the problem (Hochreiter & Schmidhuber, 1997)

because of their unique architecture of gating mechanism, which facilitates an

LSTM to control its memory state updating tasks. Ma et al., 2015 aimed min-

imising back-propagation error decay problem and applied an LSTM model to

predict the future traffic speed that demonstrated relatively high errors and a

lack of robustness. The authors’ consideration of data’s temporal relationships

resulted in those shortcomings. Also, missing samples in datasets can cause

significant problems in achieving the best results. A robust solution to address

those problems is masking and imputation mechanisms that demonstrated a

tremendous improvement in performances for traffic state forecasting problems.

For example, Khan et al., 2019a achieved a mean absolute percentage error

(MAPE) of only 2.10% in the traffic volume prediction task following this ap-

proach. However, the proposed model demonstrated inferior performance in

capturing the seasonality of traffic states.

The models mentioned above suffer from a lack of robustness. The additional

inclusion of weather data showed excellent improvements in mitigating the lack

of robustness. For instance, Jia et al., 2017 fed the model with both speed and
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rainfall data that achieved a MAPE of 12.90% for forecasting the traffic speed

over a 30 minutes horizon. Considering both the Spatio-temporal dependencies

of traffic states also showed considerable robustness enhancement. For example,

Zhao et al., 2017 proposed a greedy layer-wise unsupervised learning technique

to capture both the spatial and temporal correlation in traffic states resulting

in effective improvement in robustness by forecasting over a 30 minutes time

horizon with a mean relative error (MRE) of 9.30%. Another solution to improve

robustness is to eliminate the non-Gaussian disturbances in traffic states. Lu

et al., 2021 introduced cascading Temporal-aware Convolutional Context (TCC)

blocks and a Loss-Switch Mechanism (LSM) to implement the approach and

achieved more improvements in robustness and accuracy. However, compared

to normal RNN, these models are even slower to train. Furthermore, a more

robust model is necessary, mainly to capture long-range dependencies of traffic

states.

2.2. Gated Recurrent Unit

Gated Recurrent Unit (GRU), a sister of the LSTM model, was introduced

by Chung et al., 2015 that needs fewer parameters to train. Fu et al., 2016

was one of the pioneers to apply a GRU on the PeMS (Varaiya, 2007) datasets

for traffic state forecasting, achieving similar results, but with a much faster

convergence than LSTM. Bartlett et al., 2019 examined the performance of

(i) standard RNN, (ii) LSTM, and (iii) GRU based approaches for traffic flow

forecasting problems on the same datasets. The results demonstrated faster

convergence with a root mean squared error (RMSE) of 9.26% by the GRU,

which is better than the others. Modifying the architecture of the GRU by

inserting an additional gate composed of an integrated decay mechanism also

enhanced the accuracy and robustness (Pu et al., 2020). The extra gate helped

the GRU handle the missing sample problem of the datasets and, hence, resulted

in good performances. Also, it facilitated taking into account the temporal

and local aspects of traffic flow and improved the model’s transferability and

reproducibility.

7



The literature also presented the concept of attention mechanisms incor-

porated with GRUs. For example, Khodabandelou et al., 2021 applied the

self-attention mechanism with a GRU and exhibited an excellent performance

gain by achieving a mean absolute error (MAE) of only 1.26 for a 1 hour time

horizon.

The input data for the above-stated models must be transmitted sequentially,

one by one to the model, and past state inputs are required to conduct actions

in the present state, which does not make efficient use of computation. However,

the proposed architecture can efficiently tackle this problem.

2.3. Attention based transformer

The current literature provides a few references on attention-based trans-

former models for traffic state prediction or forecasting tasks. Self-attention

based transformers, as stated by (Li et al., 2019), produced excellent outcomes

in forecasting tasks. However, there were three main drawbacks: (i) the self-

attention matches queries against keys that are unaffected by the local context,

which could lead to anomalies and underlying optimisation difficulties; (ii) the

surrounding context determines whether an observed point is an aberration, a

change point, or a part of the pattern; and (iii) the similarity of queries and keys

is calculated based on their point-wise values, which ignores the local context

entirely. A multi-head attention mechanism can solve the problems mentioned

above, which is one of the objectives of the current study.

A Temporal Fusion Transformer (TFT) combining high-performance multi-

horizon forecasting with interpretable insights into temporal dynamics was pro-

posed by (Lim et al., 2021). Although the main goal was to increase model’s

interpretability, the proposed model showed good performance by capturing the

seasonality of the traffic states, but showed a non-appearance of comprehensive

comparisons with the GRU or LSTM based models in terms of state-of-the-

art metrics. The presented model sought to overcome this limitation based on

comprehensive comparisons with the LSTM and GRU based models.

(Grigsby et al., 2021) proposed a long-range transformer based model for
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dynamic Spatio-temporal forecasting, which achieved a mean absolute percent-

age error of 3.85 on the PeMS dataset. Although the performances were not the

best compared to the graph neural network (GNN) based models, the results

were encouraging enough to justify their goodness. However, the effectiveness

of these models is limited to a particular road; therefore, information from the

adjacent roads or weather data is essential to employ them in any region or sec-

tion. (Jin et al., 2021) proposed a pre-trained BERT to solve such drawbacks

by achieving a MAPE of 7.72% on PeMS datasets. The model suffered from the

over-fitting problem (even more than the original BERT (Devlin et al., 2018))

because of the enormous parameter size. The forecasting time horizon was only

60 minutes, which needs improvement. The mentioned work sought to overcome

the drawbacks of this model to show that forecasting over a long time horizon

is very much possible with a state-of-the-art performance by training the trans-

former from scratch. Hence, there are many scopes to improve accuracy and

robustness in using transformers for time series forecasting.

3. Methodology

This section presents the multi-head attention-based algorithm formulation,

including a description of other baselines based on support vector machine

(SVM), LSTM, and GRU based models, for comprehensive comparisons.

3.1. Support Vector Regression

A SVM looks for a line, or hyperplane in multidimensional space, that divides

two or more classes. The new point is then classified based on whether it is on

the positive or negative side of the hyperplane, as determined by the classes

to be predicted. On the other hand, Support Vector Regression (SVR) applies

the same principle as SVM to regression issues. Regression aims to identify a

function approximating mapping from an input domain to real numbers based

on a training sample. With SVR, the goal is to evaluate just the points within

the decision boundary line. The hyperplane with the most significant number
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of points is the best fit line (Awad & Khanna, 2015). The construction of the

SVR model utilises the radial basis function (RBF) kernel. Hence, if i1 and i2

are two samples represented as feature vectors in some input space, then the

RBF has the following form:

K(i1, i2) = exp

!
−‖i1 − i2‖2

2σ2

"
, (1)

where ||i1 − i2||2 represents the Squared Euclidean Distance between the two

feature vectors, and γ is a free parameter (Ding et al., 2021).

3.2. Long Short-term Memory and Gated Recurrent Unit

The introduction of long short-term memory and gated recurrent units solved

the short-term memory and vanishing gradient problem of RNNs. There are

internal gates that can regulate information flow, as shown in Figure 2. These

gates can determine which data should be kept and discarded in a sequence. It

can then send essential data down long sequences to generate predictions.

LSTMs work with the help of the cell state and numerous gates. The cell

state works as a transportation highway as relative information is transmitted

through the sequence series. In principle, the cell state, like a network’s memory,

can carry relevant information throughout the sequence processing. As an out-

come, the short-term memory effects get reduced due to the flow of information

from previous time steps to later phases. As the cell state travels, information

gets added or withdrawn through the gates. The gates consist of several neural

networks that determine which information is to allow passing. During train-

ing, the gates learn what information is essential to keep or forget (Sherstinsky,

2020).

On the other hand, GRU is a newer recurrent neural network similar to an

LSTM. It can abandon the cell state to use the hidden state to transfer data

sequence. Compared to the complex architecture of LSTM, it consists of only

two gates: a reset gate and an update gate that generally helps GRU to train

faster than LSTM (Dey & Salem, 2017).
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Here, it is used a sigmoid function with sigmoid curve characteristics as an

activation function within LSTM and GRU models, which for a z variable can

be defined as:

S(z) =
1

1 + e−z
=

ez

ez + 1
= 1− S(−z). (2)

Figure 2: Architectures of LSTM (on the left) and GRU (on the right) models

(adapted from Khan et al., 2019b).

3.3. Transformer

A transformer using an encoder-decoder with stacked self-attention and

point-wise, fully connected layers, maps an input sequence of (si1, ..., sin) repre-

sentations to a sequence of continuous c = (sc1, ..., scn) representations. Then,

for a given c, the decoder generates an output (so1, ..., son) sequence of symbols,

one element at a time, as can be seen on Figure 3. The raw input data is first

normalised using a Min-Max Normalisation mechanism and then converted to

sequences. Each sequence element is mapped to an integer token and, then,

passed through an input embedding layer, which is a simple lookup table that

pairs each integer with a continuous learned vector. Once the transformer en-

coder does not have any embedded recurrent neural network layer, this study

uses positional encoding to inject positional information into the embedding.
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cosine and sine functions created two separate vectors for every odd and even

time step. Adding each of them to their corresponding embedding vector would

inject the positional information.

For a X input, if D is the dimension of the embedding vector and pe(m, 2n)

the elements of the positional encoding vector (P ), then, every even time step

(pe(m, 2n)) is defined as:

pe(m, 2n) = sin(m exp [−2n log(1000)/D]). (3)

Again, if pe(m, 2n+1) refers to the elements of the positional encoding P vector,

then, every odd time step (pe(m, 2n+ 1)) is defined as:

pe(m, 2n+ 1) = cos(m exp [−2n log(1000)/D]). (4)

The output of the positional encoding will give another vector with the same

dimension by X + P .

3.3.1. Encoder

Following multiple trial-error testing, the proposed model provides the best

results for a stack of N = 5 identical layers to make up the encoder. Each

layer constitutes a multi-head self-attention mechanism and a position-wise,

fully connected feed-forward network. Each sub-layer used a residual connec-

tion, followed by layer normalisation. That is, the output of every sub-layer

is:

Output = LayerNorm(y + Sublayer(y)), (5)

where Sublayer(y) is the function that the sub-layer implements. All sub-layers

inside the model, including the embedding layers, produce dimension outputs:

D = dmodel = inputfeature size = 250, to support these residual connections.

3.3.2. Decoder

Similarly, following several trial-error testing, a stack of N = 5 identical

layers also makes up the transformer decoder. Generally, the number of layers

of the decoder is two times that of the encoder. However, during this study, an
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identical number of decoder layers provided the best results. The encoder also

adds a third sub-layer to each layer to perform multi-head attention over the

encoder stack’s output and the two sub-layers. Each sub-layers utilises residual

connections, similar to the encoder, followed by layer normalisation. The stacked

decoder self-attention sub-layers needed modifications to prevent their current

positions from mixing with the following positions. Because the masking (Square

Subsequent Masking) and the output embeddings get compensated by one place,

only the known outputs at positions less than i resulted in the prediction of

position i.

3.3.3. Multi-head Attention

The training helped to learn the attention mechanism composed of queries

(Q), keys (K) and values (V ). The idea is that a query vector will be compared

to a set of critical vectors to determine how compatible they are. Each key

vector comes paired with a value vector, and the greater the compatibility of

a given key with the query, the more significant influence the corresponding

value will have on the output of the attention mechanism. From the initial

embedding layer of the beginning of the encoder, a linear transformation of

the embeddings extracted key and value vectors. Each element of the sequence

also provided the query vector. Computing a dot product between the query

and each key, including the key from the same element, called dot product

attention, has been calculated, resulting in a set of unnormalised weights (alpha

vectors): (α0,α1, ....,αn). To normalise them, they are divided by their
√
dk

dimensionality and get passed to a softmax layer:

(α0,α1, ....,αn) =
softmax((α0,α1, ....,αn)#

(dk)
). (6)

Once the weights are normalised, they can be used to take a linear combi-

nation of the value vectors, which is the output of the attention mechanism.

Here, rather than executing a single attention function with keys, values, and

queries, the queries, keys, and values h times are linearly projected to dk, dq,
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Figure 3: Proposed multi-head attention based transformer model architecture.
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and dv dimensions using separate learned linear projections. Simultaneous ap-

plication of the attention function to these projected versions of queries, keys,

and values, resulted in dv-dimensional output values. One more concatenation

and projection (Equation 7) of them yielded the final values, as depicted in

Figure 4. Multi-head attention allows the model to simultaneously attend to

Figure 4: Used multi-head attention architecture (adopted from Vaswani et al.,

2017).

information from various representation sub-spaces at multiple locations. On

the other hand, a single attention head leads to a kind of averaging effect that

limits the resolution of the learned representations:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O. (7)

With h attention heads, h sets of learned projection metrics can be found, where

headi = Attention(QWi
Q,KWi

K , Vi
W ) with the queries and keys having the

same dimentionality due to the dot product, and can be represented by Wi
Q ε

RD×dk , Wi
K ε RD×dk , and Wi

V ε RD×dv . The h output metrics are concate-

nated and then multiplied by another weight matrix WO, which is basically a

squared matrix, and is represented by WO ε Rhdv×D (Vaswani et al., 2017).
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4. Experiments

An NVIDIA DGX Station using CUDA 10.1 version facilitates the training

process. The used computer station consists of 4 NVIDIA Tesla V100 tensor

core GPUs covering a 128GB GPU memory. The open-source PyTorch ma-

chine learning library served as the platform for coding using Python. The first

step for code implementation consisted of defining a class for Positional En-

coding. The mathematical formulation of Equations 3 and 4 helped to acquire

the positions of the elements of the positional encoding vector in even and odd

time steps. Then, adding each element to its corresponding embedding vector

provided the positional information. Secondly, for model construction, another

class was built following the descriptions of sections 3.3.1, 3.3.2 and 3.3.3. The

build-in ’torch.nn’ package served as the building platform of the encoder and

decoder layers. A Square Subsequent Mask function was built within the class

to generate a square mask for the sequence by filling the masked and unmasked

positions with −infinite and 0.0, respectively. Thirdly, for data preprocess-

ing, a separate function was defined based on the size of the input window to

generate the sequences. The ’sklearn.preprocessing’ module helped to import

the Min-Max Scalar function. Fourthly, another function of model training was

build-up. The pre-built mean squared error function and build-in Stochastic

Gradient Descent (SGD) from the ’torch.optim’ package demonstrated their

advantage in calculating the loss and algorithm optimisation. The computa-

tional costs increase with the increase in the number of encode-decoder layers.

It was observed that the insertion of more layers within the transformer encoder

and decoder eventually reduces the model’s performance. A stacked 5 layers of

encoder-decoder architecture with 5 heads provided the best results with a total

training time of 19.4 hours for 100 epochs. A support vector regression, long

short-term memory, and gated recurrent unit-based models were also trained in

the same environment to achieve comprehensive comparisons. A 64 unit input

layer, two hidden layers with a dropout of 0.2, and a dense output layer consti-

tuted the LSTM and GRU studied architectures. The mean absolute percentage
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error (MAPE) and separate mean squared error (MSE) metrics were used for

evaluation purposes.

4.1. Mean Absolute Percentage Error and Mean Squared Error

The proposed model’s accuracy was assessed based on the mean absolute

percentage error and mean squared error metrics. MAPE for each period was

calculated as the average absolute per cent error between the actual and pre-

dicted values. If x, y are the actual and predicted values, N the number of

samples, and xi and yi the values of the ith samples in x and y, respectively,

then MAPE has the following form:

MAPE(x,y) =
100%

N

N$

i=1

%%%%
xi − yi

xi

%%%%. (8)

On the other hand, MSE is the average of the squares of the errors, i.e., the

average squared difference between the actual and estimated values. If x, y are

the actual and predicted values, N the number of samples, xi and yi the values

of the ith samples in x and y, respectively, then MSE between them is:

MSE(x,y) =
1

N

N$

i=1

(xi − yi)
2. (9)

4.2. Dataset

The Caltrans’ Performance Measurement System (PeMS) dataset (Chen,

2002), which includes real-time traffic data from over 39, 000 individual detectors

covering the interstate system in all of California’s main urban areas over a 10-

year period for historical study, was used. It contains 6 months aggregated

traffic flow per 5 minutes of 2, 028 lane points in the southern California region

dated from 1− 6− 2021 to 15− 12− 2021 with a 99359 number of samples.

4.2.1. Data Analysis

To perform meaningful and accurate forecasts, time-series data analysis in-

volves an inherent understanding of the data, such as seasonality and trends.

Generally, line charts are used as a visualisation tool for this kind of analysis.
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Figure 5: Data visualization in terms of seasonality and trends: (from the top to

the bottom) 1st, 2nd, 3rd, and 4th graphs represent the base, trends, seasonality

and residual data, respectively).
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Over an extended period, the trend, which can be upward, downward, or sta-

tionary (as analysed in this study), shows the general direction of the time series

data. On the other hand, seasonality demonstrates the trends in timing, direc-

tion, and magnitude observed between regular intervals due to seasonal factors.

It is known that the raw data is additive as the flow amplitude is always pro-

portional to its mean distribution. Hence, the data represents an additive time

series where the sum of the components expresses each observation. After that,

the application of the decomposition mechanism identified valuable insights, as

shown in Figure 5. The x-axis and y-axis represent the number of samples and

traffic flow per 5 minutes, respectively. The top-most and bottom-most figures

represent the line plots of the original data and residual analysis of the data,

respectively, while the two figures in between present the found trends and sea-

sonality of the original data, respectively. Only a chunk of datasets between

the 1000 to 2000 samples was used for building Figure 5 so it can be easily

understandable. The KPSS test where a p − value (Baum, 2018) above 0.05

confirms the stationary properties of the raw data.

A final inspection of the seasonality includes utilising the autocorrelation

function (ACF) and lag plot analysis. If autocorrelation is small, it indicates

that the data follows small patterns. The ACF plot usually reveals traditional

repeated spikes at the multiples of the seasonal window if there is a strong

seasonal pattern. The above analysis reveals that the used dataset follows small

patterns, Figure 6.

4.3. Data Pre-processing

By comparing the properties of data points, the proposed algorithm tries to

detect trends in the dataset. Problems emerge when the features are on signif-

icantly different scales. As a result, data normalisation ensures that each data

point has the same scale. However, features do not feed the data for transform-

ers, but rather by themselves. Here, the normalisation enables a more smooth

training process to avoid large gradients. As the raw data is stationary, the

Min-Max normalisation method provided better performance. Other normal-
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Figure 6: Auto-correlation and partial autocorrelation analysis of the used

dataset: the upper two graphs represent autocorrelation and partial autocorre-

lation analysis, while the bottom four graphs illustrate lag plot analysis.

isation approaches were tested in the current study, like RobustScaler, which

scales features using robust statistics to outliers, and StandardScaler, which

standardise features by removing the mean and scaling to unit variance. How-

ever, the Min-Max normalisation technique showed its worthiness in the current

context, resulting in the conversion of the minimal and maximum values into a

0 (zero) and 1 (one), respectively. Furthermore, the remaining values find their

attributes to a decimal between 0 (zero) and 1 (one). Converting the data into

input and target sequences for the model is crucial for the preprocessing data

unit. A defined function named ’generate in out sequences’ was used to perform

this step. The first 70K samples served as the training data, and the remaining

were for testing. The construction sequences followed their dependencies on the

size of the input window. For example, if 100 and 10 are the size of the data

and of the input window, then the first 10 data elements would form the first

sequence, and the rest would follow the process. In this approach, the length

of the last sequence became very short, so removing it was the easiest option
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to follow. Different input window sizes allow the formation of varying sequence

lengths, and an input window of size 200 provided the best result.

4.4. Training

To build the transformer encoder block, the following parameters demon-

strated best performance: dmodel = in features = 250, nhead = 5, num layers =

5, and dropout = 0.1. On the other hand, for the transformer decoder block, lin-

ear transformation of the incoming data with in features = feature size = 250

and out feature = 1 served the purpose. The mean squared error (squared L2

norm) loss function and the stochastic gradient descent (SGD) with a learning

rate of 0.005 were used to calculate the loss and optimisation. For algorithm

training, the batch size was 10, and at every epoch, the linear step function

equated with a learning rate of gamma = 0.98 and step size = 1.0 found

worthwhile. The number of model’s parameters was 10, 275, 731. The model

took 19.4 hours for training to 100 epochs with an average training time per

epoch of 700.1 seconds, which is 172.76% higher than of the LSTM or GRU

models. However, compared to the baselines, the model seems to be more sta-

ble. Figure 7 illustrates the comparison of the model’s training and validation

losses against the LSTM and GRU models.

Figure 7: Training loss and validation loss comparison between the three models:

the left and right graphs represent training and validation loss comparisons

between the three models under study, respectively.

The proposed model learns well without underfitting and overfitting prob-

lems relatively the baseline modes under comparison. Nevertheless, the LSTM
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and GRU based models suffered overfitting problems, as shown in Figure 7.

4.5. Results

The training of the model consisted of 100 epochs, and after several trial-

error checking, a model containing 5 heads with a stacked 5 identical encoder-

decoder layers provided the best results. The parameter setup followed the

described information given in the previous section. Two metrics: MAPE and

MSE, were used to assess the models under comparison. A SVR, LSTM and

GRU models were used as baselines. The same computational environment with

identical hyper-parameters befitted their implementations and training. All the

experiments used 200 time steps of observed data to forecast the next 200 time

steps. Compared to the SVR model, the transformer-based model increased

the MAPE value by 83.8%. While relatively to the LSTM and GRU models,

it demonstrated 32.4 and 33.9% improvements, respectively. One can note that

the SVR model demonstrated a MSE value of 3.21, only 1.24% less than of the

proposed model. Table 1 presents the obtained results of this comparison.

Metrics SVR LSTM GRU Transformer

MAPE 51.64% 12.37% 12.66% 8.36%

MSE 3.21 6.07 6.5 3.17

Table 1: Performance comparison in terms of different metrics.

The performance of the proposed model was also compared against another

state-of-the-art model: the TrafficBERT model (Jin et al., 2021). The used

datasets were the same, but the volume was slightly less than the one used in

this study. The authors used only 61/153 days of data from the year 2012;

however, here, 6 months of data from the year 2021 were used. In the referred

work, 12 observed data points were used to forecast the next 12 time steps (60

minutes only) and a MAPE of 7.72% was obtained (Jin et al., 2021). It is much

more challenging to forecast over a longer time horizon, and hence a MAPE of

8.36 does not represent a drawback of the proposed model. Actually, this study
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aimed at forecasting much longer time steps, and, in fact, led to excellent results

in forecasting over 1000 minutes time horizons.

Again, for the first 200 time steps, the transformer predicted the traffic flow

much better than the other baselines, which indicates the model’s worthiness to

capture the hidden dynamics of the traffic flow data more effectively and provide

better prediction accuracy. Figure 8 illustrates the predicted and actual values

of traffic flow of the proposed transformer-based model over a 200 time steps.

For forecasting the future traffic flow, the transformer demonstrated that it is

Figure 8: Performance of the proposed transformer model: the left and right

graphs represent the prediction performance and future forecasting, respectively.

efficient in gaining long range dependencies of the traffic flow, as is shown in

Figure 8. For the next 200 time steps, this figure illustrates that the model can

forecast the traffic flow over a higher time horizon.

Table 2 depicts the effects of different parameters on the performance of

the proposed model. The model containing 5 heads with 5 identical encoder-

decoder layers led to the best results. The increased number of layers within

the encoder-decoder architecture deteriorated the model’s performance. On the

other hand, the increase of the number of heads within the attention mechanism

did not provide evidence of performance gain.
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Heads Encoder Layer Decoder Layer Parameters MAPE

10 10 10 20, 551, 211 10.33%

10 6 6 12, 330, 827 9.258%

10 5 5 10, 275, 731 8.43%

5 10 10 20, 551, 211 10.04%

5 6 6 12, 330, 827 9.09%

5 5 5 10, 275, 731 8.36%

Table 2: Effects of different parameters on the proposed model’s performance.

5. Discussion

Building traffic forecasting models is challenging because their states are

highly dynamic and sometimes difficult to predict. Capturing the Spatio-temporal

features of the traffic states is a critical aspect of building a robust model. For

SVR, it is difficult to capture those features, because capturing Spatio-temporal

features require a large amount of data, and SVR is less capable of dealing with

it. However, it is reasonably memory efficient and effectively when there is a

clear margin of separation between classes. On the other hand, the proposed

model is sufficiently robust when the dataset contains more noise and target

classes overlap, and the results provide evidence to confirm its worthiness.

On top of that, the LSTM and GRU models remember every piece of infor-

mation across time. Hence, they are suitable for time series prediction, mainly

because of their ability to remember past inputs. However, in both cases, the

path lengths between two positions in a sequence always grow proportionally

with distance and support less parallelisation between training samples. Hence,

the proposed model is more suitable for gaining long-range features than the

LSTM and GRU models.

This study investigated the suitabilities of a multi-head attention-based

transformer to overcome the limitations of the conventional models for traf-

fic flow forecasting problems. However, the best outcomes rely on carefully

modelling of the attention mechanism. One of the findings of this study depicts
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that transformers need to be fed with big data to get good performance. The

proposed model performed less effectively in gaining the dependencies with less

number of data samples (around 10K samples), and prediction followed a mean

distribution of the frequency components of the flow values, as shown in Figure

9, which indicates that the model failed to capture the hidden patterns of the

data. Hence, in the case of a multi-attention based transformer, a reasonable

volume of traffic states data is required to get a good result.

Figure 9: Performance of the proposed model in terms of the dataset size: the

left and right graphs are as to datasets of 100K and 10.2K samples, and test

set sizes of 30K and 3K, respectively.

The selection of an input window, i.e., creating input-target sequences, is

vital for good performance. The input data requires proper analysis to find out

the seasonality patterns, and the input sequence size needs to contain season-

ality or trends. For this study case, an input window of size 200 led to the

performances mentioned above. This study also confirmed that the proposed

model designed for input windows with a size less than 200 time steps (inap-

propriate selection of input-target sequences) led to inferior results, as shown in

Figure 10.

The main objectives of this study were to verify the usefulness and valid-

ity of the multi-head attention based transformer for traffic flow forecasting

and compare its performance against the LSTM and GRU based models, which

have been the-state-of-the-art in this field for a few years. The results demon-
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Figure 10: Performance of the proposed model when a different input window

is applied (the hyper-parameters as well as the evaluation criteria were identical

to the ones of previous experiment).

strate that the transformers are well suited for time series forecasting when fed

with large data samples and carefully selecting input-target sequences. Also,

a multi-head attention mechanism instead of self-attention provides a better

performance, especially for multi-step forecasting tasks. The suitability of im-

plementation of such models, both in the private and public sector is wide

and ranges from applications in autonomous vehicles (Song et al., 2021) or

mobility management to the development of adaptive traffic signal controlling

systems (Kim & Jeong, 2019). Besides, its implementation may be helpful in

highway construction projects (Tong et al., 2021), dealing with climate manage-

ment policies (Nejad et al., 2020), or even modelling road accidents reduction

policies (Rashidi et al., 2022). However, it might require more verification or

improvements to increase the model’s efficiency and robustness to make it more

competent in real-world sectors.

6. Conclusion

Traffic flow forecasting is crucial for intelligent transportation systems. As

traffic state is dynamic and sometimes unpredictable, the conventional statis-
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tical models fail to provide efficient performance. On the other hand, machine

learning approaches, particularly deep neural network-based models, can deal

with these problems in manageable ways. This article proposed a multi-head

attention based transformer model for traffic flow forecasting tasks. It also

presented a comprehensive performance comparison against support vector re-

gression, long short-term memory, and gated recurrent unit based models on the

PeMS database. The mean absolute percentage error and mean squared error

were used as evaluation metrics. The results confirmed the superior performance

of the proposed multi-head attention based transformer model by improving the

MAPE value by (32.4− 83.8)% over the baselines under comparison. However,

the SVR based model shows an MSE value of 3.21, only 1.24% less than of

the proposed model. One of the main limitations of the proposed model is its

prediction accuracy, and adding more features might solve this problem. An-

other drawback is that the proposed model is solely effective for a specific road

and correspondent data used to train it. Thus, it would require pre-training on

other datasets in order to be employed for other roads, which is one of the future

developments of this study. Nonetheless, the proposed model does not require

rainfall data or adjacent road information to provide a compelling performance,

which is crucial in order to be integrated in competent intelligent transportation

systems.
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