
A Parallel Computing

Hybrid Approach for

Feature Selection

Jorge Miguel Barros da Silva
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos
Departamento de Ciência de Computadores

2015

Orientador
Ana Aguiar, Professora Auxiliar, Faculdade de Engenharia da Universidade do Porto

Coorientador
Fernando Silva, Professor Catedrático, Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

To my grandfather,

who I will always remember.

3

Acknowledgements

Many people helped me not only during this thesis but throughout my academic

career, I would like to take this opportunity to thank them all. Foremost, I would like

to express my sincere gratitude to my supervisors Dr. Ana Aguiar and Dr. Fernando

Silva for their continuous advice and support. They have provided me the necessary

tools and have always allowed me complete freedom throughout my dissertation. This

work would have been impossible without their guidance, knowledge and patience.

I would like to thank Dr. Isabelle Guyon and Dr. Lukas Romaszko for kindly

reopening the NIPS challenge for my tests. Their contribution allowed me to improve

my dissertation and I am deeply grateful for that. I would like to thank all IT members

for conceding me the opportunity to be part of such amazing group and for helping

me improve as a professional.

Special thanks must go to my family for providing me unconditional support and

encouragement during my time in graduate school.

My best friends Nuno, Rui, Tânia, Diogo, António, Joana thank you for the caring,

emotional support, laughs, and entertainment you guys have provided. There is no

way I can fully express how much you all mean to me.

Last but certainly not the least, thank you Patŕıcia, for all your love and for always

being there for me.

4

Resumo

O principal objetivo da seleção de carateŕısticas é escolher o menor subconjunto

posśıvel de caracteŕısticas que tenha o menor erro de generalização em relação ao

conjunto total. Devido a conseguir reduzir com eficiência o espaço das caracteŕısticas,

esta técnica é conhecida por melhorar o desempenho da classificação, reduzir o tempo

predição e diminuir os custos de aquisição de dados. Isto torna a seleção de carac-

teŕısticas um passo de pré-processamento fundamental para as tarefas de classificação.

Esta tese apresenta um novo algoritmo h́ıbrido de seleção de carateŕısticas. A novidade

deste trabalho é um novo wrapper, que consiste numa estratégia não uniforme, dividida

em duas fases. A primeira recolhe o maior número de potenciais boas soluções quanto

posśıvel, em seguida, estas são exploradas até à melhor pontuação que podem alcançar.

Além disso, para reduzir o seu custo computacional, a estrutura do wrapper favorece

a utilização de técnicas de paralelização.

Este trabalho explora duas maneiras de paralelizar o algoritmo proposto. A primeira

demonstra como é posśıvel fazê-lo utilizando maquinas em locais diferentes. Por isso

utilizada o paradigma de memória distribúıda. A segunda aproveita as vantagens

de múltiplos processadores na mesma maquina, utilizando o ambiente de memória

partilhada. O desempenho das duas estratégias de paralelização foi avaliado utilizando

até 33 processadores. Os resultados demonstram mostram speedups quase lineares

pare as duas, com a estratégia de memória partilhada a ser melhor que a outra.

Para avaliar a qualidade da seleção de caracteŕısticas do algoritmo, foram utilizados

os cinco datasets do concurso da Neural Information Processing Systems. Os nossos

resultados foram comparados com as submissões anteriores utilizando três métricas:

exatidão, tamanho da solução e uma métrica que combina as duas. Para a primeira

métrica, o algoritmo apresentado teve um rank médio de 60% para todos os datasets,

enquanto que a segunda teve sempre no top 15%. Os resultados da métrica combinada

tiveram sempre na metade superior sendo que para um dataset obtivemos o rank de

22 em 879 submissões.

Todo o código desenvolvido neste trabalho está dispońıvel no github.

5

Abstract

The ultimate goal of feature selection is to select the smallest subset of features that

yields minimum generalisation error from an original set of features. By effectively

reducing the feature space, this technique is known to improve classification perfor-

mance, reduce prediction time, and decrease the cost of data acquisition. This makes

feature selection an essential pre-processing step for any classification task.

This thesis presents a new hybrid feature selection algorithm. The main novelty of this

work is the wrapper, which consists in a non-uniform strategy divided in two phases.

The first phase gathers as many potential good solutions as possible, then the second

one explores them up to the best score they can reach. Furthermore, to mitigate its

heavy computational cost, the wrapper maintains a structure that favours the use of

parallelization techniques.

This work explores two parallel strategies to execute the proposed algorithm in parallel.

The first one exposes how it is possible to solve the problem using machines in different

physical places. Therefore, it uses the distributed memory paradigm. The second

one takes advantage of multiple processing units present in the same machine, using

the shared memory parallel paradigm. The parallel performance of both strategies

is evaluated using up to 33 cores. The results show near linear speedups for both

strategies, with the shared memory strategy outperforming the distributed one.

To assess the quality of the feature selection algorithm, we used the five datasets from

the Neural Information Processing Systems challenge. Our results are compared to

previous submissions using three different metrics: accuracy, size of solution, and a

metric that combines both. For the first parameter, our algorithm ranks on average

among the top 60% for all the datasets while, for the second one it is among the top

15%. For the combined metrics, our results rank among the top half and for one

particular dataset we were able to obtain a rank of 22 out of 879 submissions.

The code developed during the work has been made available in github.

6

Contents

Abstract 7

List of Tables 11

List of Figures 13

1 Introduction 14

1.1 Motivation . 16

1.2 Objectives . 17

1.3 Thesis Structure . 18

2 Literature Review 19

2.1 Classification Problems Workflow . 20

2.2 General Procedure for Feature Selection 21

2.2.1 Subset Generation . 22

2.2.2 Subset Evaluation . 25

2.2.3 Stopping Criteria . 26

2.2.4 Result Validation . 26

2.3 Categorization of Feature Selection Algorithms 27

2.3.1 Filter Algorithms . 27

2.3.2 Wrappers . 28

7

2.3.3 Embedded . 29

2.4 Comparing Feature Selection Algorithms 30

2.5 Hybrid Approach . 31

2.6 Parallel Feature Selection . 32

3 A Hybrid Feature Selection Approach 33

3.1 Data Preparation . 35

3.2 UCAIM Algorithm . 35

3.3 Filter Part . 37

3.4 Grid Search . 39

4 Wrapper Search 41

4.1 Search Strategy . 41

4.2 Subset Evaluation . 43

4.3 Successor Generator . 44

4.4 Work Repetition . 45

4.5 Overview of the Wrapper Search . 46

5 Parallelized Computing Approach 48

5.1 MITWS Parallelization . 48

5.2 Wrapper Parallelization . 50

5.3 Master-Slave Strategy . 51

5.3.1 Strategy Setup . 52

5.3.2 Slave Workflow . 53

5.3.3 Master Workflow . 55

5.4 Shared Memory Strategy . 59

5.4.1 Strategy Setup . 60

8

5.4.2 Memory Coherence . 61

5.4.3 Workers Workflow . 63

6 Performance Tests 67

6.1 Parallel Performance . 67

6.1.1 Testbed Description . 68

6.1.2 Parallel Test . 69

6.1.3 Master-Slave approach . 72

6.1.3.1 Master-Slave Parallel Tests 72

6.1.4 Shared Memory approach . 73

6.1.5 Comparing the Two Approaches 75

6.2 Feature Selection Results . 76

6.2.1 NIPS Datasets . 78

6.2.2 NIPS Results . 79

6.2.3 Testing MITWS Parameters . 83

6.3 MITWS Availability . 86

7 Conclusion and Future Work 89

7.1 Conclusion . 89

7.2 Future Work . 90

A Acronyms 91

B Produced Papers 92

C Appended Images 101

References 105

9

List of Tables

2.1 Pros and cons of feature selection searches. 24

2.2 A taxonomy of feature selection techniques [50]. 31

5.1 Parallelization of the first three parts of MITWS 49

6.1 Results of the speedup test on the Master-Slave approach. 73

6.2 Results of the speedup test on the Shared memory strategy. 75

6.3 Characteristics of the NIPS challenge datasets. 79

6.4 Parameters and solutions of MITWS on NIPS datasets. 80

6.5 Results of MITWS on the NIPS challenge. 80

6.6 MITWS rank using the combined metric. 81

6.7 Impact of the parameters on the wrapper search. 85

10

List of Figures

1.1 Example of a classification problem on Machine Learning. 15

1.2 Model fitting on training data. 16

2.1 Performing feature selection on a dataset. 19

2.2 Workflow for classification problems. 21

2.3 The four steps of feature selection. 22

2.4 Overview of filter approach. 27

2.5 Differences in univariate and multivariate methods. 28

2.6 Overview of wrapper approach. 29

2.7 Overview of embedded approach. 30

3.1 Schematic of the MITWS algorithm. 34

3.2 Workflow of the MITWS algorithm . 35

3.3 Steps of the UCAIM algorithm . 36

4.1 Example of the proposed wrapper search. 42

4.2 How Support Vector Machines work. 43

4.3 Subset evaluation using SVM. 44

4.4 The two types of successor generation on the wrapper search 45

4.5 Mapping a subset into the hash table 46

11

5.1 Parallel scheme for UCAIM, Filter, and Grid Search. 49

5.2 Workflow of a single wrapper task . 50

5.3 Work initialization on both strategies 51

5.4 Parallel Scheme for Master-Slave Strategy 52

5.5 Master-Slave communication flow . 56

5.6 Parallel scheme for the shared memory strategy 60

5.7 Hash Table Partitioning . 62

6.1 Wrapper search example. 70

6.2 Results of testing the CommRate variable 73

6.3 Speedup of the implemented master slave strategy. 74

6.4 Speedup of the implemented shared memory strategy. 74

6.5 Correlating feature reduction and accuracy for several submissions in

the NIPS challenge. 82

6.6 Impact of both successor strategies and the size to switch search phase

on the number of tested subsets and final solution score. 86

C.1 Correlating feature reduction with accuracy for every submission in the

Arcene dataset. 102

C.2 Correlating feature reduction with accuracy for every submission in the

Dexter dataset. 102

C.3 Correlating feature reduction with accuracy for every submission in the

Dorothea dataset. 103

C.4 Correlating feature reduction with accuracy for every submission in the

Gisette dataset. 103

C.5 Correlating feature reduction with accuracy for every submission in the

Madelon dataset. 104

12

Chapter 1

Introduction

Data has become an important asset in today’s society. In fact, it has been asserted as

a new economic class as gold or currency [51]. Despite its value, raw data, especially

in cases where there are large amounts of it, is useless. The value of data is related to

the efficiency of machine learning (ML) algorithms in extracting knowledge from it.

Machine learning is an area in computer science that explores the construction of

algorithms that are capable of finding patterns making predictions on data. These

algorithms do not follow explicit programmed instructions, instead they create models

about the data which allows them to make data-driven predictions or decisions [31].

Due to its potential this area has been thoroughly studied and several algorithms

already exist and have been successfully applied on different problems. Topics such

as speech and image recognition, medical diagnosis, and robotics have benefited from

the improvements in this area. Furthermore, machine learning has been asserted as

the key for innovation, competition, and productivity [8].

According to their characteristics, problems are divided into different categories on

machine learning. This thesis will focus on classification problems, which consists in

using an algorithm to predict the classification label of an example of data. To achieve

that, the algorithm has to be trained with examples of data and their corresponding

labels. In figure 1.1 we can see an example of these problems where the algorithm is fed

with characteristics of images, also known as features, and then it is told which ones

are cats or dogs, which are the labels of the problem. This is known as the training

part and it produces a classifier. Later, new examples of characteristics of images, not

used during the train part, are shown to it, and one expects the classifier to be able

to classify them. The goal of classification algorithms is to produce a classifier that is

13

CHAPTER 1. INTRODUCTION 14

Figure 1.1: Example of a classification problem on Machine Learning.

able to accurately predict new data.

Although classification problems have been widely studied, preparing a classifier for

such tasks is not easy. It is common for machine learning users to face difficulties such

as: how much data is needed, what features should be added, and does the dataset

have outliers and/or noisy data [22]. Usually, researchers gather as much information

as possible about a problem and turn that into a processed dataset for classification

purposes. This methodology often leads to datasets with a large number of features.

In these cases, problems such as curse of dimensionality and overfitting are known

to deteriorate the performance of the learning algorithm [13, 18, 43]. Therefore, it

is critical in any classification problem to reduce the number of features to a smaller

subset before training the classifier.

Feature selection (FS) is the process of selecting a subset of the original features so

that the feature space is reduced according to a certain evaluation criteria [32]. The

goal is to find a smaller subset that yields the minimum generalisation error. This

technique can efficiently reduce the dimensionality (number of features) of the problem.

Feature selection algorithms are divided into three categories: filter, wrapper, and

embedded [32]. The first ones assesses the quality of features by looking at the

properties of data. Wrappers use the learning algorithm to evaluate subsets of features.

Embedded encapsulate feature selection with classifier construction. In addition to

these categories, there are hybrid methods which intend to use a filter approach as a

CHAPTER 1. INTRODUCTION 15

Figure 1.2: Model fitting on training data.

pre-processing step for a wrapper algorithm.

1.1 Motivation

A key requirement to successfully build a classifier is to have data filling the space

or at least the part of it where the model is validated [13]. The amount of required

data grows exponentially with the number of features (dimensions). Moreover, it is

common on classification problems that the chunk of available data is not too large.

Therefore, using a high number increases the volume of the space and data becomes

sparse through it. This introduces the concept of the Hughes effect [45], which is

the name of the curse of dimensionality problem in machine learning. It states that

the predictive power of a machine learning algorithm decreases as the dimensionality

increases with a fixed number of training examples.

In addition to the Hughes effect, there is other problem that is directly related to

using an excessively number of features to produce a classifier. The complexity of

a classification model increases with the dimensionality of the dataset. A complex

model is more fitted to the training data, which means that it starts ”memorizing”

data rather than learn from it. Thus, loosing its capability to generalise and drastically

failing to make predictions for new data. This problem is very common and known as

overfitting [13, 43]. Figure 1.2 illustrates the three cases for model fitting. On the first

one, the model is not fit enough to the data. By contrast, on the last it is overfitted.

The image in the middle, represents a model that despite not being able to perfectly

predict the training data, will be the best one to predict new examples, which is the

goal of the classification problems.

CHAPTER 1. INTRODUCTION 16

High dimension datasets poses a real threat to classification problems. Therefore,

feature selection is commonly used as a pre-processing step in these tasks. By lowering

the dimensions of datasets, feature selection not only increases the performance of the

learning algorithm and the understanding of the classification process, but also reduces

computational time of prediction and costs of data acquisition [55]. However, feature

selection is a very challenging task. In order to select a subset of features, feature

selection algorithms require searching through the feature space, testing subsets of

features, and evaluating them to find the final solution. The search space consists of

all possible subsets, which for a dataset with n features, produces a search space

of size 2n. This makes finding an optimal subset of features intractable in high

dimensional datasets. Moreover, many problems of this kind are asserted as NP-

Hard [38]. Several algorithms exist in literature that tackle this problem. Commonly,

they have to compromise the goodness of their solutions in order to provide results in

a practicable time.

1.2 Objectives

This thesis presents Mutual Information Two-phased Wrapper Search (MITWS), a

new feature selection algorithm based on an hybrid approach. The idea is to first use a

filter methodology to reduce the number of features and then apply a wrapper search in

order to find the final subset. According to the results reported in literature, wrapper

methods tend to find better solutions [30, 17]. However, they are not frequently used in

high dimensional datasets due to their computational cost. By using a filter as a pre-

processing step before the wrapper search, the feature selection algorithm proposed in

this thesis shows that it is possible to use this later technique on datasets with a large

number of features.

MITWS will combine an already existing filter approach with a novel wrapper search

strategy developed during this work. This new technique, encapsulates a new heuristic

that is divided into two phases and intends to propose a different strategy to search for

solutions, while maintaining a structure that would favour the use of several processing

units. Furthermore, to improve computational performance the novel wrapper will

be implemented on both shared and distributed memory parallel environment, using

different strategies on each one.

CHAPTER 1. INTRODUCTION 17

1.3 Thesis Structure

The structure of this thesis is the following. Chapter 2 deals with literature review

of feature selection. It starts with a generalization of the problem, explaining each

type of algorithm while providing information about the most used ones. Chapter 3

thoroughly explains the MITWS algorithm while chapter 4 discusses the novel wrapper

search. Chapter 5 presents two strategies to achieve parallelization of the MITWS

algorithm. Chapter 6 address the performance of the implemented work with respect

to parallel performance and quality of feature selection. Finally, chapter 7 addresses

conclusions and future work.

Chapter 2

Literature Review

The fact that classifiers have low performance for high dimensionality datasets, turns

feature selection into an indispensable component on the process of creating them.

Given a dataset with several features, the idea of FS is to select those that are relevant,

while removing irrelevant and redundant ones (see figure 2.1 for an example). Vergara

et al. [58] explain three possible levels of relevance: strongly, weakly, and irrelevant.

The first one, refers to features that provide unique information about the class,

meaning that they cannot be replaced without loss of information. Weakly relevant

features grant class knowledge, still they are not unique in the dataset, and may be

replaced by others. Irrelevant features do not contribute with any info, therefore they

can be discarded.

In addition to improving classification performance, there are other advantages of

feature selection: facilitating data visualization and comprehension, reducing the costs

of dataset acquisition and storage, reduce training and classification times [22]. As

a consequence, FS has been widely studied. However finding the best features for

a classification task is still challenging. The volume of the search space makes it

infeasible to perform an exhaustive search in most cases. Therefore, numerous different

Figure 2.1: Performing feature selection on a dataset.

18

CHAPTER 2. LITERATURE REVIEW 19

strategies that use heuristics to decrease the computational cost of the problem have

been proposed. This led to the existence of several algorithms in the literature. In

this chapter, we will discuss the most important ones.

2.1 Classification Problems Workflow

Let us start by analysing the required workflow to solve a classification problem in

order to explain the process and to understand where feature selection fits in. The first

step for a classification task is to identify the problem. At this stage, the labels for the

problem should be defined. The next is to construct a dataset for the classification

task. It is crucial that data is related to the problem that is being modelled, otherwise

it will not be possible to achieve good classification results. As a simple example, it

is not possible to anticipate the weather using heart rate information. In addition to

that, only the most informative features about the problem should be used. In cases

where there is not a complete knowledge about that, brute-force is an alternative. In

this scenario, a large number of variables are measured and inserted into the dataset,

expecting that best features can be isolated in the future. As Kotsiantis et al. [31]

stated:

”A dataset collected by brute-force is not directly suitable for induction because of the

noise and possible missing feature values.”

It is possible to deal with this matter, which leads us to the next step in the clas-

sification workflow: data pre-processing. At this stage, key issues such as missing

values and outlier detection should be handled. There are several statistic analysis

approaches to deal with these problems [1, 26]. Additionally, this is the stage of the

problem where the number of features of the problem can be reduced using a feature

selection algorithm.

Selecting the classification algorithm is the step that follows. A wide range of classifi-

cation algorithms exist, and despite their differences it is not easy to foresee which one

is the best for a given problem. Thus, it is a common approach to test and compare

several of them, and in the end, keep the one that provides the best results [31].

Classifiers evaluation is most regularly based on the prediction accuracy. A typical

technique is to divide labelled data in two thirds to train the model, and use the

remaining to test the accuracy. However, this procedure often leads to bad generali-

sation outside of the evaluation dataset. Therefore, to reduce the generalisation error,

CHAPTER 2. LITERATURE REVIEW 20

Figure 2.2: Workflow for classification problems.

more complex techniques, like cross-validation [29], can be used.

As long as the overall procedure is not able to produce a satisfactory classifier, the

process should return to previous stages. There are many causes that may negatively

affect the performance of a classifier [31]:

1. Relevant features are not being correctly identified.

2. Dataset does not have enough examples.

3. The number of features is too large.

4. The selected pre-processing technique is not good enough.

5. The elected classifier is not suited for the problem or needs parameter tuning.

Thus, it is not clear to each stage the workflow should return. The ultimate goal of

every classification task is to perfectly predict unseen data. However, this is extremely

unlikely to occur, and these tasks tend to last very long. Usually, they become an

ongoing work where several new attempts are made in order to improve the predicting

ability of the classifier. Figure 2.2 illustrates the mentioned workflow.

2.2 General Procedure for Feature Selection

Feature selection algorithms operate by combining a search strategy to find combina-

tion of features, with an evaluation method to score them. In the end of the process,

the highest score subset(s) are considered the solution(s). Despite the existence of sev-

eral algorithms, they all follow a general procedure that consists of four steps: subset

generation, subset evaluation, stopping criteria, and result validation [42, 38, 32].

CHAPTER 2. LITERATURE REVIEW 21

Figure 2.3: The four steps of feature selection.

The first one determines which subsets will be tested on the process, the next one

represents the function that assigns a score to subsets, consequently allowing ranking

them. The stopping criteria regulate the intensiveness of the search. Finally, the

results validation is the part where the quality of the solution is assessed. Figure 2.3

illustrates these steps, which we will discuss in more detail in the following sections.

2.2.1 Subset Generation

Subset generation represents the process of the heuristic search, where each state in

the space specifies a candidate subset for evaluation. Two key issues are addressed at

this step: successor generation and search organization.

Successor Generation

Successor generation designates the method for expanding a subset into several new

ones. According to authors of [38], there are four basic operators to address this:

• Forward: New subsets are produced by adding multiple features one at the

time to the subset to which successors are being generated.

• Backward: New subsets are produced by removing multiple features one at the

time from the subset from which successors are being generated.

• Compound: This operator applies k forward steps, followed by l backward

ones. By doing so, new iterations between different features are explored [32].

• Random: Subsets are randomly selected.

CHAPTER 2. LITERATURE REVIEW 22

Search Organization

Search strategy designates the walk-path through the states, defining, along the way,

from which subsets successors should be generated. This part defines the computa-

tional cost of the feature selection algorithm, as well as its ability to find solutions.

Therefore, it is plausible to assume this is the most important part of the procedure.

Authors of [38] categorized searches into: complete, sequential, and random. Due to

the large amount of algorithms that use genetic searches, in this thesis this is added

as a category.

• Complete Search: This type of search guarantees finding the optimal solution.

The exhaustive approach is an example of a complete search. However, to being

characterized as complete, it is not required to be exhaustive. Instead, some

heuristic functions may be used to cut the search space, without compromising

optimal solutions. Branch and Bound and Beam Search [53, 21] are some

examples of other complete searches.

• Sequential Search: Define a group of subsets to test in a certain level, and

select the best to generate the successors to the next one. From within levels,

the number of features on the solutions either increases or decreases one at the

time. These searches are easy to implement and usually provide results very

fast. However, the quality of the solutions is often poor. Some examples of these

searches are stated in [24].

• Random Search: In this approach, the idea is to randomly guide the search.

Las Vegas and Las Vegas Incremental algorithms [42] are both examples that fit

this category.

• Genetic Search: These are a different type of searches that already incorporate

the successor generation. Their idea is to mimic the process of natural selection

which consists of three operators: selection, mutation and crossover. Initially

several candidate solutions are spawned. Then, the quality of each one is evalu-

ated and the best ones are selected. On the next step, new potential solutions are

generated combining the elected ones from the previous stage. Genetic operators

such as crossover and mutation are used at this point. The process repeats until

the end. There are several searches of this type in literature [63].

Due to the importance of this part, it is relevant that the presented searches are further

analysed. Sequential ones are the best in terms of computational cost. On a dataset

CHAPTER 2. LITERATURE REVIEW 23

with n features, most of these methods require testing a maximum of
n∑

i=0

n–i potential

solutions. However, they do not produce good results. Their inability to find quality

subsets is related to the fact that the addition or removal of a feature to the solution is

permanent. During the search, specially in the early stages, there are not any proofs

that the elected features should be part of the optimal solution [17]. Therefore, since

the beginning the quality is being jeopardized.

The complexity of random searches is totally dependent of the defined amount of

tests. Additionally, it is hard to predict the quality of solutions. They rely on the

fact that randomness can help escaping from local optima. Usually, these searches are

associated to cases where there is an individual ranking of features. Therefore, the

randomness of the process can be controlled by it, improving the likelihood of the best

features being selected [11].

The computational cost of genetic searches depends on the size of the initial population

and on the times the process is repeated. As those numbers increase, so does the

probability of finding better solutions. However, these searches tend to converge to

local optima [35].

Complete searches find the global optima. However, they have the highest compu-

tational cost and tend not to be used in high dimensional datasets [38]. During the

process, they rely in a cutting state heuristic. Its intensiveness decreases as more states

are cut-off in the early stages. Additionally, these searches, with the exception of the

exhaustive one, require using a subset evaluation function that prevents the heuristic

from cutting subsets that lead to the global optima. These specific evaluators impact

the definition of the optimal solutions conditioning the characteristics of the final

solution. The monotonicity property for the Branch and Bound algorithm [53] can be

used as an example of these requirements. Table 2.1 summarizes the advantages and

disadvantages of the mentioned searches.

Table 2.1: Pros and cons of feature selection searches.

Search Pros Cons

Sequential Low computational cost Low quality solutions

Random Manageable computational cost Rely on randomness

Genetic Average computational cost Tend to converge to local optima

Good quality solutions

Complete Guarantee finding global optima Very high computational cost

Require specific subset evaluation functions

CHAPTER 2. LITERATURE REVIEW 24

2.2.2 Subset Evaluation

This part defines the process of obtaining a score for the subsets tested. The evaluation

criterion delineates the quality of a subset and it affects the definition of the optimal

solution. More precisely, the global optima to a certain evaluation criterion, may

not even be a local optima on a different one. There are two groups that categorize

evaluation functions: independent and dependent [38].

Independent Criteria

Independent criteria evaluates the quality of a subset of features considering the

characteristics of the data. Most of the times these metrics are used to assess quality

of an individual feature. Additionally, they are associated to filter approaches, which

will be reviewed in section 2.3.1. Based on the metrics used, these criteria are divided

across several categories [42]:

• Distance or divergence measures: the capability of features to differentiate

the conditional probability between classes is assessed. Jeffrey’s divergence and

Kaga’s divergence are some examples of these metrics [32].

• Information or uncertainty measures: the information that a feature adds

to classes is determined. This concept is called information gain, and as an

example we have Shannon entropy and all its variants [58].

• Probability of error measures: the ability of a feature to minimize the

probability of a classification error is estimated. Bayesian probability is the

most known example of this technique [57].

• Dependency measures: assess the capability of features in predicting the

labels. Correlation coefficients can be seen as an example [22].

• Interclass distance measures: the distance in the data space is used to

determine which are the best features to separate different classes. Euclidian

distance is one example of such technique [32].

• Consistency measures: they are based on the principle that features with

same values should belong to the same class. The violation of this rule results

into a penalty for the feature, allowing a score to be obtained. Some of these

approaches are stated in [42].

CHAPTER 2. LITERATURE REVIEW 25

Dependent Criteria

Dependent criteria use the learning algorithm to estimate the quality of features. Every

evaluated subset is used to train the model, then the performance of the later is used to

assign a score to the subset. In classifications tasks the most common way to quantify

the learning algorithm performance is to use the accuracy of predictions. Evaluation

functions that use a dependent criteria are restrictedly associated to wrapper models

which will be thoroughly discussed in section 2.3.2.

2.2.3 Stopping Criteria

Stopping criteria defines the conditions to end the search. Some used criteria are [32]:

• The search is complete.

• Some specified bound is reached. The bound may be a defined minimum or max-

imum cardinality of the subset of features or a maximum number of iterations.

• Finding a sufficiently good subset.

• The successors of the current state do not improve the evaluation criteria.

2.2.4 Result Validation

After the whole process is completed, a final subset of features is obtained. In order

to check whether it is good enough for the problem, it is important to validate it.

A straightforward method for validation is to directly measure the solution using the

prior knowledge about the dataset. If there is information about the relevant features,

it is possible to validate a solution by comparing the selected features against the

ones that are known to be relevant. In these cases, information about which features

are irrelevant or redundant is also important, mainly because their presence in the

solution indicates its quality.

The most common scenario is the lack of knowledge about the dataset. Therefore,

different techniques must be used. For example, it is possible to use the performance

of the final solution on the model, and compare it to the one obtained with the whole

set of features or any other subsets. Additionally, it is normal to use different model

algorithms and compare the final solution on them [9].

CHAPTER 2. LITERATURE REVIEW 26

Figure 2.4: Overview of filter approach.

2.3 Categorization of Feature Selection Algorithms

As stated before, there are several feature selection algorithms, which are categorized

into three groups: filter, wrapper, and embedded [32].

2.3.1 Filter Algorithms

Filter algorithms use an independent metric to evaluate single features or subsets of

features in order to identify which ones are more relevant to the problem. They assume

complete independence between the data and the learning algorithm. As result of that,

the same strategy can be combined with distinct learning algorithms.

These type of algorithms have low computational cost. However, related to the process

of finding solutions, they are known to have worse performance than other types of

feature selection algorithms [17].

An overview of filter algorithms is illustrated in figure 2.4. The first state represents

the part where the metric is used to obtain a solution. After that, the result is used to

train the learning algorithm. In the end, the goodness of the final solution is evaluated

at the model evaluation stage.

Section 2.2.2 identified the five types of metrics that can be used in filters. Neverthe-

less, filter algorithms can still be divided into univariate or multivariate, depending

on the way they search the features [50].

Univariate refers to methods that rank individual features by assigning a score to each

one. Then, the rank can be used to select the solution, or to guide a search towards

it [15, 6]. These methods are very fast to compute, but fail to remove redundant

features that negatively impact learning performance. There are several examples in

the literature [6, 16, 22, 60].

On the other hand, feature selection algorithms that evaluate subsets of features are

named multivariate. They are known to be extremely efficient in removing redundant

features, however they are prone to overfit the model. As a result, it is a common

CHAPTER 2. LITERATURE REVIEW 27

approach to use a univariate method to filter the most irrelevant features, before using

an multivariate method [22]. There exist several algorithms with these characteris-

tics [6, 42, 7].

Figure 2.5 illustrates the differences between the two categories.

Figure 2.5: Differences in univariate and multivariate methods.

2.3.2 Wrappers

The idea of wrappers is to use the learning algorithm as a ”black-box” to guide the

search towards the solution. Therefore, dependent criteria evaluation functions are

used on these models. Figure 2.6 illustrates the overview of a wrapper approach.

Since the learning algorithm is used in the process of selecting features, wrappers

usually find better solutions [30, 17]. However, these solutions are strictly related to

the selected algorithm. Therefore, it is not advisable to use a wrapper to obtain a

subset of features with the intention of using it in several learning algorithms.

In terms of computational cost, wrapper algorithms are expensive, since they require

training and testing the learning algorithm at least one time for each potential solution.

Most of the times, cross-validation techniques are used [17], which even aggravates the

problem. As a result, these methods are not frequently used on datasets with large

amount of features.

Combining different search strategies with distinct classification algorithms results

in creating new wrapper methods. Therefore, there are several algorithms in the

CHAPTER 2. LITERATURE REVIEW 28

Figure 2.6: Overview of wrapper approach.

literature. Some examples are: the hill climbing and best-first search used on Kohavi’s

work [30], scatter search [39], sequential backward or forward search [6], and genetic

searches [27].

2.3.3 Embedded

Embedded methods are inspired in wrappers and filters, trying to use the best qualities

of both. They encapsulate feature nomination with classifier construction. By doing

that, the feature selection part interacts with the learning algorithm which results in

better solutions, as is the case of wrappers. However, they do not require training the

model multiple times, which makes them less computational expensive. Furthermore,

these methods are very specific to a learning algorithm. Meaning that an embedded

method can only be used with the exact learning algorithm it was built to work with.

According to Tang et al. [55] there are three types of embedded algorithms:

1. Pruning: these methods first train the classifier with all the data, and then try

to remove features while maintaining the classifier performance. The RFE-SVM

algorithm introduced at [23] is an example.

2. Build-in: these approaches have a mechanism that selects the features as it

constructs the classifier. Decision trees are the best known example of this

type [14].

3. Regularization models: these strategies use objective functions to try and

minimize fitting errors while eliminating features that are not needed for the

learning algorithm. There are several examples of regulation models: L1-norm,

LASSO, and Concave Minimization [34, 55].

Figure 2.7 illustrates the overview of embedded algorithms. In the same way as

wrappers, there is no separation between learning and feature selection. However,

CHAPTER 2. LITERATURE REVIEW 29

Figure 2.7: Overview of embedded approach.

the model is being created while features are being selected and it is not ready until

the end of the process. Therefore, the model evaluation step has to be done at the

end of the whole process.

2.4 Comparing Feature Selection Algorithms

In this chapter many feature selection algorithms were presented, but still many were

left out. Performing a comparative study of all of them is a very difficult task. Mainly,

because it is very challenging to find out the effectiveness of a FS method, without

knowing in advance which features are relevant on the dataset. This is the most

common case. Moreover, distinct datasets present different challenges which makes it

hard to generalize the quality of algorithms.

The usual way to compare FS algorithms is to use different strategies on the same

problem, and assert the quality of each final solution. Parameters such as number of

features, accuracy of the model, and time can be used.

Belanche et al. [6], tested several fundamental algorithms to assess their performance

in a controlled experimental scenario. Quoted from their conclusion:

”Our results illustrate the pitfall in relying in a single algorithm and sample data set,

very specially when there is poor knowledge available about the structure of the solution

or the sample data size is limited.”

The mentioned study, reinforces the idea shared by many researchers that there is

no clear indication which is the ”best algorithm” for feature selection [41]. Many

comparative studies of existing feature selection methods have been done in the

literature. For example, the work at [6] applied seven filters, two embedded, and

two wrapper methods to 11 synthetic datasets, and compared their performances.

Another example is the work of Duch et al. [15], that compared five entropy-based

CHAPTER 2. LITERATURE REVIEW 30

Table 2.2: A taxonomy of feature selection techniques [50].

Model search Advantages Disadvantages Examples

Filter Univariate

Fast Ignores feature dependencies Information Gain

Scalable Ignores interaction with the learning al-

gorithm

Pearson Correlation

Independent of classifier

Multivariate

Models feature dependencies Slower than univariate techniques LVF

Independent of classifier Less scalable than univariate techniques FOCUS

Better computational complexity than

wrappers

Ignores interaction with the learning al-

gorithm

mRMR

Wrapper Deterministic

Simple Risk of overfitting Sequential searches

Interacts with the classifier More prone to getting stuck on local

optima

Less computationally intensive than ran-

domized

Classifier dependent selection

Randomized

Less prone to local optima Computationally intensive Random searches

Interacts with the classifier Classifier dependent selection Genetic searches

Models feature dependencies Higher risk to overfitting

Embedded Interacts with the classifier Classifier dependent selection RFE-SVM

Better computational complexity than

wrapper

Changing classifier means changing algo-

rithm

Decisions trees

Models feature dependencies LASSO

filter methods. Similarly to the first presented study, here authors also concluded

that there is not one best method for different datasets. Related to high dimension

datasets, work at [14], analysed different FS methods combined with various classifiers.

As a conclusion, authors showed the importance of using FS methods instead of all

the available features. However, once again they did not conclude that there is a

FS method that performs better than all the others. Hao et al. [24] compared the

performance of sequential search and genetic algorithms, reaching the conclusion that

no algorithm consistently outperforms the others.

Several more studies that compare feature selection algorithms with similar outcomes

could be added to the list. Because of that, instead of trying to reason which algorithm

performs better, table 2.2 presents the advantages and disadvantages of each type of

feature selection.

2.5 Hybrid Approach

The three main categories for feature selection algorithms were discussed. However

there is another methodology whose importance has been growing. This relatively new

approach is called hybrid and its goal is to combine filter and wrapper methods for

CHAPTER 2. LITERATURE REVIEW 31

performance improvement. As previously discussed, filter methods are computational

fast but often fail to produce good solutions. On the other hand, wrapper methods

achieve good results but they are very time consuming, and impracticable to use on

high dimensional datasets. The idea behind an hybrid approach is to first use a filter

method to reduce the feature space and then adopt a wrapper mechanism to select

the final solution. By doing that, a high dimensional dataset will be transformed into

a lower dimensional one, therefore using a wrapper approach becomes practical.

There are several filter methods that can cut the feature space. For example, the

IFSFFS algorithm [60] uses F-score filter metric to rank individual features, then the

rank is used to more efficiently guide the wrapper search. On other example, the

QBB algorithm [42] applies the LFV filter algorithm in order to generate subsets,

which are utilized as starting points for a branch and bound search. One last example

is presented in [61], where authors refer to a mutual information metric to remove

features before proceeding to a more computational expensive wrapper search.

2.6 Parallel Feature Selection

Selecting the ideal set of features is far from an easy task. It usually requires many

attempts until the desired result is attained. A conventional methodology is to change

parameters on the algorithms or test different ones to compare results. Moreover,

depending on the size of the dataset and on the algorithm chosen, a feature selection

process can take a large amount of time.

Parallel computing emerged as a potential solution to tackle this problem. Carrying

multiple computations simultaneously to solve a problem relies on the principle that

large problems can, in fact, be divided into smaller ones [12]. Taking a closer look into

the general procedure for feature selection, it consists in generating and evaluating

huge amounts of subsets until a stop condition is reached, and the best subset is

provided as final solution. This problem could be easily divided into smaller tasks,

where each one is defined as the overall process on each subset, turning feature selection

into an ideal candidate for parallel computing techniques. This triggered researchers

to exploit parallelism within feature selection algorithms in order to improve their

execution times. For example, Azmandian et al. [4] used graphic processing units

to accelerate their feature selection algorithm. Lopez et al. [39] also resorted to

parallelism to speed up a scatter search in order to obtain better performance in

terms of execution time and quality of solution.

Chapter 3

A Hybrid Feature Selection

Approach

From the previous chapter it is possible to conclude that filter feature selection meth-

ods are fast to compute, but often fail to produce good results. Otherwise, wrappers

are able to find the best solutions, however the amount of computations required

by them are huge, thus making it impracticable to use them on high dimensional

datasets. Hybrid approaches emerge as a technique to help in this issue. By using a

filter algorithm to decrease the search space of the problem as a first step, they enable

wrapper approaches to be used despite the number of features on the dataset.

Inspired by these facts, an hybrid method is proposed in this thesis, combining a filter

and wrapper method, aiming to preserve the advantages of both while mitigating

their drawbacks. This chapter presents the Mutual Information Two-phased Wrapper

Search (MITWS) which is a new hybrid approach and one of the contributions of this

work. The innovative algorithm combines an already existing filter approach with a

novel wrapper approach developed in the context of this work.

The MITWS algorithm is divided into two parts: filter and wrapper, as illustrated

by figure 3.1. The first one, uses an univariate method to rank features individually.

Based on a threshold and on the estimated ranks, features are selected to the next

phase. The goal of this part is to use a less costly computational method to reduce the

search space. Therefore, removed features are considerer irrelevant and are not used

any further in the next stages of the algorithm. Individual ranks are obtained using

the Mutual Information (MI) [58] as metric to evaluate features. The wrapper part

searches the feature space by using a novel meta-heuristic in order to find the final

32

CHAPTER 3. A HYBRID FEATURE SELECTION APPROACH 33

Figure 3.1: Schematic of the MITWS algorithm.

subset of features. As previously mentioned, wrappers require a learning algorithm

to evaluate the goodness of subsets. By comparing Support Vector Machines (SVM)

with several learning algorithms in the context of classification problems, Vinodhini

and Chandrasekaran [59] show that SVMs in general outperform other classifiers.

Thus, making SVMs a more desirable choice for the proposed method.

Two additional algorithms were added to MITWS: Uncertain Class Attribute Inter-

dependency Maximization (UCAIM) [19] and Grid Search [37]. The first one is used

to discretize data, which is a mandatory procedure to calculate MI in cases where

variables have continuous values. The Grid Search is a very popular method used to

estimate the parameters of learning algorithms.

The workflow of the MITWS algorithm is illustrated in figure 3.2. The first step is

to prepare data, which will later be discretized with the UCAIM algorithm. Then,

the feature space is reduced by eliminating features that are not able to pass the

MI filter. The next stage, if necessary, is to estimate the SVM parameters using the

Grid Search. Finally, the algorithm executes the wrapper search which is responsible

to find the subset of features that is presented as final solution. All the previous

steps are explained in more detail in the following sections, with the exception of the

wrapper search. Since this last part introduces a novel strategy which makes it the

most significant contribution of this thesis, a full chapter is dedicated to it (chapter 4).

CHAPTER 3. A HYBRID FEATURE SELECTION APPROACH 34

Figure 3.2: Workflow of the MITWS algorithm

3.1 Data Preparation

This is the stage where data is read from files and pre-processed. In most cases, this

process includes techniques to find outliers that may jeopardize the performance of

the learning algorithm. Although there are several techniques to detect and remove

them, this process usually requires some knowledge about the dataset. This procedure

is rather specific to the data and thus it is not included as part of the present hybrid

approach. Instead, MITWS assumes that the dataset is already clean and ready for

learning purposes. In any case, this stage implements normalization of the feature

values to a scale from 0 to 1. This is a recommended procedure in order to improve

the performance of learning algorithms [22].

3.2 UCAIM Algorithm

In order to discretize data, UCAIM, an evolution of the original CAIM algorithm [33]

was added to MITWS. Both methods have the goal to delineate intervals on data

in such a way that the interdependence between features values and class labels is

maximum. Despite the fact that both algorithms perform well, the evolutionary

approach adds the offset component, which takes into account cases where data is

unbalanced (number of examples in the data is not equally distributed by the class

labels). The UCAIM algorithm has been shown to outperform the original one in

these cases. Moreover, it performs as well as the CAIM on datasets where data is

balanced [19].

The UCAIM algorithm starts by setting the initial discretization scheme, D, as a set

CHAPTER 3. A HYBRID FEATURE SELECTION APPROACH 35

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

U
C

A
IM

 s
ta

g
e

Values

Normalized data Possible points Discretization scheme Discrete data

Figure 3.3: Steps of the UCAIM algorithm

of two elements: the maximum and minimum values. Then, it proceeds to define a

set of possible points. These are all the midpoints between each adjacent pair in the

sorted and non-duplicate set of values. After that, UCAIM iteratively tries to add

possible points to D. At each round, all possible points are added, one at the time, to

D. Then, formula 3.1, which tries to maximize the interdependence between classes,

is used to evaluate the quality of D with the recently added point. At the end of the

round, the point with the best score is definitely appended to D. The process stops

when no point could improve the score that D has at the start of the round, and

there are at least as many intervals as classes. By the end of the UCAIM algorithm,

a discretization scheme D is obtained. Later, for each feature value, the interval on

D where it belongs is discovered, and the value is converted to the midpoint of that

interval. Thus, achieving the desired discrete data.

Algorithm 1 represents the steps required to find D for a given feature Fi and its

possible values Vi on a classification problem with S label classes. Additionally,

figure 3.3 illustrates an example of all the estimated values during different stages

of the process.

UCAIM(Fi, D) =

n∑
r=1

max2
r×Offsetr
M+r

n
(3.1)

where n is the number of intervals, r iterates through all intervals, maxr is the

maximum value inside an interval, M+r is the total number of values on the interval,

and offset:

CHAPTER 3. A HYBRID FEATURE SELECTION APPROACH 36

Offsetr =

S∑
i=1

(maxr − qir)

S − 1
(3.2)

where S represents the classes labels, qir are the number of values in interval r that

belong to class i, and maxr is the maximum number of values in interval r across all

classes. Basically, Offsetr represents the average difference of the number of points

in all classes to the number of points in the class that has the most points in that

interval.

Algorithm 1 UCAIM Algorithm
1: procedure UCAIM(Vi, S)

2: values← RemoveDuplicates(Vi)

3: min,max← FindLimits(values)

4: B ← GeneratePossiblePoints(values)

5: K = 1, D ← {min,max},
6: BestS ← 0, BestP ← {}
7: while K ≤ S or GlobalUCAIM < BestS do

8: GlobalUCAIM ← BestS

9: D ← D ∪BestP

10: for P ∈ B do

11: auxD ← D ∪ P

12: auxS ← GetUCAIMScore(auxD)

13: BestS,BestP ← UpdateBest(P, auxS)

14: K = K + 1

3.3 Filter Part

In contrast to some feature selection algorithms, the aim of the filter part is not to

select a final subset of features. Instead, MITWS uses it as a pre-processing step to

eliminate features and make it practicable for a more intensive search on the wrapper

part. Therefore, the presented filter should have the following characteristics:

1. Evaluate single features. Several filter approaches evaluate subsets of features

(multivariate methods section 2.3.1). However, to keep a low computational cost

on the presented approach, features are evaluated individually to avoid searching

for feature subsets.

2. Not very restrictive. The percentage of removed features should not be

very large. Although as less features pass the filter the faster the wrapper

ends, it is difficult to accurately assess the quality of a feature just by using

CHAPTER 3. A HYBRID FEATURE SELECTION APPROACH 37

a metric [32]. Moreover, it has been shown that features considered irrelevant

when individually evaluated, are in fact important when inserted into a specific

set of features [22]. Hence, to avoid compromising the goodness of the final

solution, it is important to avoid removing a large number of features at this

stage.

There are several algorithms in the literature that fulfil the first requirement. These

methods are called univariate (section 2.3.1). As previously mentioned, the two

most commonly used univariate metrics are Mutual Information (MI) and Pearson

Correlation Coefficients (PCC). Both metrics measure the dependence between two

variables. Nonetheless, there is a key difference between them. MI measures the

general dependence between the variables while PCC measures linear dependence.

Li et al. [36] tested this property and concluded that this makes MI a better metric.

Moreover, MI has been widely used on feature selection [58, 22, 15]. For these reasons,

MI was selected as metric to evaluate individual features.

In order to calculate MI, a method to estimate the joint probability must be used.

To better understand the calculation of MI, suppose that for a feature f , there are i

possible values and j possible labels. Hence, Pi,j represents the joint probability of the

ith possible value of f belonging to the label j. Then, to calculate MI the following

formula is used:

IG(f) =
∑

i

∑

j

Pi,jlog
Pi,j

(Pi × Pj)
(3.3)

Calculating the MI score for every feature does not remove features by itself, so after

obtaining the scores, a strategy was defined to create a threshold. The idea is to

remove features whose MI score is below the threshold. Since MI scores diverge a lot

when changing datasets, a fixed threshold could not be defined. Instead, users are

able to manipulate a percentage P which is then used on the formula 3.4 to calculate

the threshold. Basically, the threshold is defined as a percentage of the maximum MI

score obtained.

threshold = MImax − (MImax × P) (3.4)

Although MITWS does not present any restrictions to the definition of the value of

P , it is recommended to use a value that does not define a very restrictive threshold.

CHAPTER 3. A HYBRID FEATURE SELECTION APPROACH 38

3.4 Grid Search

SVM was the selected learning algorithm to evaluate subsets of features. These algo-

rithms have some parameters that must be tuned in order to provide better results [37].

However, it is common for researchers not to know which parameters should be used

because they vary depending on the task. On our proposed method, users are allowed

to define the parameters, but if they do not specify them,the algorithm estimates the

best to be used.

MITWS tests several parameters and selects the ones that provide the best results

using a Grid Search. This method tests parameters in two ranges: first, in a larger

one and then, after choosing one value from it, in a smaller scale range. For example,

supposing that for a parameter i, the large range is represented by the values Li =

{..., 27, 29, 211, 213, ...} and imagining that the selected value from the Li is 29, the

algorithm proceeds to search the final parameter value in the following range Si =

{..., 28.5, 28.75, 29, 29.25, 29.5, ...}. There are cases where it is required to estimate more

than one parameter. In these scenarios, all the combinations of possible values and

parameters are tested.

To test a possible value for a parameter, a classifier is modelled. Then, the performance

of the later is adopted as metric to rank the best values. Typically, Grid Search

is applied on the final classifier in order to tune it. However, on the presented

approach, several classifiers will be handled during the process of selecting the subset

of features that will be used on the final one. Moreover, performing a Grid Search for

every considered classifier, is not an option. Doing that would increase the wrapper

computational cost so much that even with a filter to decrease dataset dimensionality,

and parallel computing techniques, it would take huge amounts of time to find a

solution for an average number of features. Therefore, the solution is to estimate the

parameters before starting the wrapper search.

Our proposed algorithm, performs a Grid Search on n randomly generated subsets

before starting the wrapper and after the filter part. The best set of parameters for

each subset count as a vote, and in the end, the parameters set with most votes is

selected. In cases where the highest number of votes is the same in more than one set,

the process generates n new random subsets and the test is reproduced for the tied

values. This process is repeated until there are no more ties. Thus, obtaining a final

value for the parameters.

Algorithm 2 demonstrates the process of estimating parameters for the SVM algorithm

CHAPTER 3. A HYBRID FEATURE SELECTION APPROACH 39

on MITWS.

Algorithm 2 Grid Search
1: procedure Grid Search(n, dataset, possibleV alues)

2: subsets←generateRandomSubsets(n)

3: large = True

4: while True do

5: votes← ∅
6: votes←getVotes(dataset, subsets, possibleV alues)

7: if tiedVotes(votes) then

8: possibleV alues←filterTiedVotes(possibleV alues, votes)

9: else

10: if large then

11: large = False

12: possibleV alues←getSmallerRangeValues(votes)

13: else

14: break

15: parameters←getTopVote(votes)

16:
17:
18: procedure getVotes(dataset, subsets, possibleV alues)

19: votes← ∅
20: for subset ∈ subsets do

21: bestScore = 0

22: bestV alue = 0

23: for value ∈ possibleV alues do

24: score←getSVMScore(dataset, subset, value)

25: if score > bestScore then

26: bestScore = score

27: bestV alue = value

28: votes← votes ∪ bestV alue

29: return votes

Chapter 4

Wrapper Search

The proposed feature selection approach was designed to adopt existing algorithms

for most of the tasks that must be performed. However, the wrapper search is a new

meta-heuristic which, together with the strategies for its parallel execution, makes it

the main contribution of this work. It is the most complex part of MITWS and the

functions used at this stage define its computational cost and ability to find good

solutions. For the sake of understanding, the explanation is further divided into three

sections: search strategy, subset evaluation, and successor generation.

4.1 Search Strategy

Despite the fact that several search strategies exist and have been successfully used

on wrapper approaches, a novel meta-heuristic which is divided in two phases is

introduced in this section. It aims to create a different strategy to search for solutions,

while maintaining a structure that can be easily executed with multiple processing

units. The proposed search organizes subsets as nodes on a tree, whose first level is

composed by n starting subsets, each with a single feature not removed by the filter.

Afterwards, subsets are tested and, if they are good candidates, they are further

expanded into several more subsets. From now on, the words subsets and nodes are

used interchangeably.

The innovative idea of the proposed search is to explore broadly different regions of

the search space, looking for the areas of higher classification accuracy, and then focus

on searching the local maxima in each region. Thus, the search strategy does not have

40

CHAPTER 4. WRAPPER SEARCH 41

Figure 4.1: Example of the proposed wrapper search.

an uniform behaviour, but is divided into two phases. First, as many good solutions as

possible are gathered. Then, they are improved up to the best score they can reach.

The transition between phases takes place when subsets reach a certain number of

features. Figure 4.1 illustrates an example of the implemented wrapper search.

In the first phase, nodes are explored using a breadth first strategy. The decision to

expand a node is based on the distance from its score to the global best. In this step,

a threshold is defined and nodes whose score differs from the global best by less than

a threshold amount, have their successors generated. During the second stage, nodes

are explored using a depth first strategy. In addition to that, they are expanded while

they still improve the score of the subsets from which they originate. The search stops

when there are no more nodes left to explore.

During the second phase in order to avoid excessive work, a mechanism probabilisti-

cally cuts subsets based on how distant their score is from the global best, according

to the following table:

% Distance to global Cut probability

d < 0.5 0%

0.5 ≤ d < 1.0 25%

1.0 ≤ d < 1.5 50%

d ≥ 1.5 75%

CHAPTER 4. WRAPPER SEARCH 42

Figure 4.2: How Support Vector Machines work.

The mechanism executes every t seconds, where t is a value which can be user defined.

Additionally, the first stage threshold that decides if nodes are expanded and the size

at which stages switch, can also be configured. All these parameters have a great

impact on the amount of nodes explored in the search. Thus, it is possible to control

how restrictive the search is by changing them. Insights about their impact will be

given in chapter 6.

4.2 Subset Evaluation

The idea of SVMs is to map vectors of features into higher dimension spaces. Then,

finding hyper planes that separate classes, grouping the most points from the same

class as possible. Hyper planes are defined using support vectors, which are subgroups

of points from each class. Additionally, SVMs have several kernels to choose from.

Each one defines a different way to map data into higher dimensions, consequently

impacting the position of hyper planes. In order to select an adequate kernel, size

and type of data should be taken into account [37]. The number of configurable

parameters on SVMs, depends on the adopted kernel. Figure 4.2 illustrates the two

crucial components of a SVM. The left one represents the mapping of the data into

higher dimensions, and the other, is the hyperplane that divides classes.

The objective of using an SVM component in our strategy is to evaluate the goodness

of a subset of features. In order to improve generalisation outside the training dataset,

a cross-validation strategy is used at this stage [37]. This technique consists in defining

a k number folds and dividing data examples into k groups. Then, for each tested

subset, the classifier is trained with k − 1 groups and the accuracy tested with the

remaining. This process is repeated k times for each subset. In the end the algorithm

CHAPTER 4. WRAPPER SEARCH 43

Figure 4.3: Subset evaluation using SVM.

gets a score for the subset. This score is the average of accuracy obtained for each

fold. This process is illustrated in figure 4.3.

4.3 Successor Generator

The idea is to expand a subset Sj into several new ones, where each of them is

represented by Sj added with a single new feature that was not part of it. In order

to decide how many successors of a subset are generated, two different options are

provided.

The first strategy is to expand a subset Sj into as many successors as the number of

features that are not part of it. For example, if Sj has n features and the total number

of features on the wrapper is K, then expanding Sj will result in K − n new subsets.

One example of this type of expansion is given by figure 4.4a.

An alternative approach, each feature can be added with a specific probability, accord-

ing to a likelihood of improving the evaluation score, estimated in a pre-processing

step described below. By doing so, our approach increases the likelihood of features

with high improvement score being added to new subsets. Figure 4.4b illustrates

this process. There, each new subset has a Pi probability of being generated. The

likelihood of a certain feature contributing to an improvement in the evaluation criteria

is estimated in a pre-search phase. The procedure starts by generating r random

subsets, and evaluates each one of them using the subset evaluation procedure. Then,

the improve capability of Fi is assessed by either adding or removing it from each

subset and checking if the score of the subset improved. In the end, the number

of times Ii, that a feature improved a subset is obtained and used to calculate the

likelihood of improvement using equation 4.1. These values are then used when the

CHAPTER 4. WRAPPER SEARCH 44

(a) Successor generation without probabilities (b) Successor generation with probabilities

Figure 4.4: The two types of successor generation on the wrapper search

wrapper search decides to expand a node.

Pi =
Ii
r

(4.1)

Since the second approach does not expand a subset into all possible successors, it

explores a smaller number of nodes. Thus, making the whole wrapper strategy less

computational costly. In chapter 6, the impact of both approaches on the final solution

and number of subsets tested will be discussed.

4.4 Work Repetition

From the previous section, it was clear that our successor generator function may

spawn subsets that have already been tested before. Moreover, from figure 4.1 it is

possible to note that the search strategy does not handle the problem. Since the

function that evaluates subsets is deterministic, testing a subset more than once is a

waste of computations. Additionally, repeated work is a serious issue to the execution

time of the wrapper search.

To solve this duplicated work problem, we added an efficient data structure, in this

case an hash table. Our strategy consists in producing a unique identifier for every

generated subset during the search, and use it as the hash key to save the associated

subsets in the hash table. Then, every time the successor generator procedure is

CHAPTER 4. WRAPPER SEARCH 45

Figure 4.5: Mapping a subset into the hash table

executed, a very efficient table look up checks which of the new spawned subsets have

already been generated before. Those that have been generated before are discarded

while the new ones have its unique identifier added to the structure.

The hash value is obtained by first sorting the features in a subset, then by adding a

comma separator for each pair, and then by converted the whole subset into a string.

Finally, any possible hash function can be used to create the entry. The mentioned

process is illustrated by figure 4.5.

4.5 Overview of the Wrapper Search

Let us start by explaining the need for a new wrapper strategy and then, introduce the

novelty in our strategy. As addressed during the literature review in chapter 2, there

is no best method to solve all feature selection problems. This issue is directly related

to the fact that a search that guarantees finding the optima solution in a practicable

amount of time does not exist. Therefore, proposing new strategies is useful to tackle

the problem.

The novelty of the wrapper is related to the developed search. Taking a look at the

other components, using a SVM to evaluate subsets of features is a standard procedure

that has been used in other cases [62, 40]. Related to the successor generation func-

tions, one strategy consists in applying a forward operator introduced in section 2.2.1.

The other one uses a similar methodology of feature selection algorithms that ranks

features, and then use the rank in order to increase the likelihood of better features

being selected. This is the case of the Las Vegas Incremental algorithm [42]. On the

other hand, the presented search combines characteristics from different searches in

CHAPTER 4. WRAPPER SEARCH 46

order to, to the best of my knowledge, create a completely innovative approach. For

example, the way subsets are organized during the search reassembles the strategy used

in a Branch and Bound algorithm [53]. The sequential forward wrappers [24] were the

inspiration to define the initial starting points. The idea of combining a breadth search

with a depth search came from the work of Zhou et al. [64]. Nevertheless, the cited

work used the methodology to find the treewidth of graphs and such approach was

never applied to solve the problem of feature selection. Combining all the mentioned

components and adapting some of them, resulted in our wrapper proposal, which is

aimed to explore the feature space in a unusual and efficient way.

To conclude the discussion on the new wrapper approach, we present how the three

mentioned components interact. The main idea is to have all the features that pass the

filter defined as starting points of the search. Then, the wrapper will iterate through

all of them, testing each with the evaluation function and expanding the ones that

have promising scores. During the expansion of a subset, the hash table is used to

remove the generated subsets that have already been tested, and to store the ones that

did not. At the end of the process, all truly new subsets are added to the worklist.

The whole process is demonstrated by the algorithm 3.

Algorithm 3 Search Strategy
1: procedure Search(size,W, data, hashTable, probs, timer)

2: lastStage← False

3: while W 6= empty do

4: s← RemoveLast(W)

5: if Size(s) ≥ size then

6: lastStage← True

7: score← SVMClassification(s, data)

8: if WorthExpand(score, s, lastStage) then

9: newN, hashTable← GenerateSuccessors(s, hashTable, probs)

10: UpdateGlobalScore(score)

11: if lastStage then

12: W ←W ∪ newN

13: W ← CheckCutMechanism(timer,W)

14: else

15: W ← newN ∪W

16:
17: procedure GenerateSuccessors(subset, hashTable, probs)

18: newSubsets← GenerateSucessorsSubset(subset, probs)

19: newWork = ∅
20: for newSubset ∈ newSubsets do

21: if newSubset /∈ hashTable then

22: newWork ← newWork ∪ newSubset

23: hashTable← hashTable∪ getHash(newSubset)

24: return newWork, hashTable

Chapter 5

Parallelized Computing Approach

Parallel computing relies on the principle that large problems can often be divided

into smaller ones, which are then solved concurrently [12]. There are three aspects to

consider in order to check if a sequential algorithm is a good candidate for paralleliza-

tion [11]:

1. Easy Partitioning. Refers to the difficulty in dividing the problem into several

tasks. Algorithms based on a main loop usually are easy to decompose in several

tasks. On the other hand, purely sequential code is not.

2. Independent Partitioning. Indicates the dependency between the partitioned

task execution. As more dependent they are, more communication needs to be

exchanged between processing units. Thus, increasing the challenge of achieving

good parallel performance.

3. Easy Load Balancing. Specifies how easy it is to equally divide the amount

of work between the processing units. In cases where the balancing is not

properly achieved, processes stay idle for a significant amount of time, negatively

impacting the parallel performance gain.

in this chapter the parallelization of the MITWS algorithm is thoroughly discussed.

5.1 MITWS Parallelization

The computational cost of the MITWS algorithm is highly related to the cost of the

wrapper. Although the intensiveness of this part can be manipulated by the user

47

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 48

Figure 5.1: Parallel scheme for UCAIM, Filter, and Grid Search.

defined parameters, in most cases a massive number of subsets will still be explored.

Therefore, finding a way to realise the wrapper search in parallel, will help in reducing

the computation time.

Regardless of the impact of the UCAIM, Filter, and Grid Search parts on the overall

execution of MITWS, the presented algorithm also runs them in parallel, for perfor-

mance purposes. Table 5.1 introduces how parallelization of each part is achieved with

respect to the three parallel aspects previous mentioned.

Table 5.1: Parallelization of the first three parts of MITWS

Procedure Task Partitioning Task Dependency Load Balancing

UCAIM Estimate the discretization

scheme for an individual fea-

ture

Features discretization

schemes are independent

of each other

Features equally divided

among all processing units

Filter (MI) Calculate MI score for a single

feature

MI score of a feature does not

affect any other

Each processing unit receives

the same number of features

Grid Search Evaluate the best parameters

for an individual random sub-

set

The best parameters for a sub-

set are independent from oth-

ers

Random Subsets are equally

distributed among processing

units

For each part, the problem was easily divided into smaller tasks which are independent

from each other. As a result, processes only needed to exchange messages to receive

work and send results. In addition, since the time required to complete a task is nearly

the same for all of them, work balancing was achieved by equally dividing tasks among

the processing units. The parallel scheme for each part is represented in figure 5.1.

Due to the nature of the problems, the parallelization of these three parts was achieved

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 49

Figure 5.2: Workflow of a single wrapper task

with no major difficulty. On the other hand, the wrapper presented some challenges

which will be discussed in the next section.

5.2 Wrapper Parallelization

In the context of our wrapper strategy, a task can be defined in four main steps: get

a subset from a worklist, evaluate it and decide to either expand it or not. In the

expanding procedure it is necessary to generate new subsets and remove those that

have been already tested. The last step is adding the remaining subsets to the worklist.

Figure 5.2 illustrates this workflow.

By contrast to the other parts of MITWS, the wrapper tasks are not totally inde-

pendent. The process of getting a subset and evaluating it, can be executed without

affecting or depending on other tasks. However, the decision to expand, during the

first phase of the wrapper, is based on the global best score, which results from other

tasks. Moreover, the procedure to remove subsets that have already been tested has

to take into account subsets explored across multiple processing units in order to avoid

repeated work. Therefore, the parallel wrapper requires information to be exchanged

between processes.

The strategy to avoid repetition of work in the wrapper search relies on keeping

a constantly updated global hash table with all the subsets tested. Keeping such

structure always up-to-date in a parallel environment may become computationally

costly in terms of performance mainly because every generated subset must be added

as soon as possible to the hash table. Therefore, communication between processes

is often required. Additionally, if the repeated work problem is not successfully

removed, then the parallel performance of the algorithm is drastically reduced thus,

making it the main challenge of the proposed wrapper parallelization. In order to

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 50

Figure 5.3: Work initialization on both strategies

tackle this problem two strategies were implemented and will be discussed in the

following sections. The idea is to demonstrate two possible ways to obtain good parallel

performance on the presented wrapper on two distinct environments: distributed and

shared memory.

On both strategies, a local worklist is defined on every process. At the beginning of the

search, the individual features that reach the wrapper are transformed into subsets

and equally distributed by processes’ worklist. This initialization is represented in

figure 5.3. During the search, processes concurrently test subsets from their own local

worklist using the previous definition of a task. Every time a process expands a subset,

the new work generated, is added to its worklist. The part that removes subsets that

have already been tested is different for each strategy, therefore it will be discussed

during their introduction.

5.3 Master-Slave Strategy

The first implemented strategy is based on the Master-Slave (MS) paradigm for parallel

programming [5]. This paradigm commonly involves two sets of processors: a unique

master and several slaves. The former is responsible for pre and post processing

tasks. On the other hand, the latter are in charge of the actual execution of work.

Contextualizing with the wrapper parallelization, the idea of the strategy is to have

slaves testing subsets, while the master keeps track of the global information such as

the hash table and the best score. Additionally, the latter will be in charge of helping

slaves remove subsets that have been already tested from their worklists, and give

them information about the best score during the search.

In the original MS approach, the slaves communicate restrictedly with the master,

and usually only two messages are required during the whole process. In the first one,

the master sends the work to the slaves, and the last one is where the slaves send

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 51

Figure 5.4: Parallel Scheme for Master-Slave Strategy

the results back. This strategy would not fit the proposed wrapper because of the

requirements of having a constantly updated hash table and best global score. On the

presented parallel strategy, slaves are still restricted to communicate with the master,

however they do it often. The remaining of the section will thoroughly discuss the

parallel strategy.

5.3.1 Strategy Setup

For the sake of understanding lets start by defining the information available on both

type of processes and then, address their workflows. It is important to highlight that

the information, as well as the behaviour of the processing units addressed in this

chapter, is related to the parallel part, and in order to keep the discussion as simple as

possible, variables required for the standard wrapper search introduced in chapter 4

are left out.

Each slave has:

• Worklist: stores the subsets that a slave will test.

• Local hash table: keeps track of the subsets already tested on the slave.

• Best score stores the best score known for the slave.

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 52

• Tested subsets: list that collects the tested subsets between each communica-

tion with the master.

The master has:

• Global hash table: gathers the hash values of every subset tested during the

search.

• Global best score: records the best global score.

• Slave’s worklists stores the current worklist of each slave.

The overall scheme is illustrated by figure 5.4.

5.3.2 Slave Workflow

The goal of the slaves is to process every subsets explored during the search. To

achieve this, they are initialized with different sets of subsets which are stored in their

Worklist, and proceed to iteratively test each element of the list. Every time a slave

generates new work, it is added to its own Worklist. Additionally, every slave keeps

track of all the subsets they generate (in the Local hash table), and test (in the Tested

subsets).

As far as communication is concerned, each slave exchanges messages often with the

master. From the slave’s point of view, the messages represent requests sent to the

master and the respectively answer. The two types of request are the following:

1. The slave requests the master to remove subsets that have already been tested

by other slaves from its Worklist.

2. The slave runs out of work and requests the master for more.

The slave’s workflow is represented by a loop where each iteration consists of all the

necessary steps to test a subset. This loop, as well as the necessary steps, will be

discussed below.

Main Loop

The slave’s main loop iterates until a break condition is reached. At each iteration, it

starts by checking if the Worklist still has subsets. If it does, then the slaves proceed

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 53

to execute the previous definition of a parallel task for a single subset (section 5.2).

In the case it does not, the slave communicates with the master to request work. If

the master sends back an empty Worklist then the slave ends its execution.

The last part of the iteration is to check how much time has passed since the last

time the slave communicated with the master. In case the elapsed time is greater

than CommRate, then the slave will check if the master is available to remove the

duplicated work from its Worklist. If the master removes the repeated work, the

elapsed time and the list with all the tested subsets since the last communication

(Tested subsets), are restarted. The CommRate variable is user defined and allows to

control the rate at which the slave tries to communicate with the master. In chapter 6,

this issue will be discussed in more detail. Algorithm 4 demonstrates the behaviour

of the loop executed by each slave.

Algorithm 4 Slave’s Main Loop
1: procedure Process Work(worklist, commRate)

2: localHT, testedList← ∅
3: bestScore = 0.0

4: elapsedT ime = 0

5: lastStage = False

6: while True do

7: if isEmpty(worklist) then

8: worklist, bestScore← RequestWork(bestScore, testedList)

9: if isEmpty(worklist) then

10: return

11: testedList← ∅
12: subset← RemoveLast(worklist)

13: testedList← subset ∪ testedList

14: worklist, localHT ← ProcessTask(subset, localHT)

15: elapsedT ime← getElapsedTime()

16: if elapsedT ime > commRate then

17: com,worklist, bestScore← RemoveDuplicates(worklist, bestScore, testedList)

18: if com then

19: elapsedT ime = 0

20: testedList← ∅

In order to avoid pseudo code redundancy, the ProcessTask function, refers to the

steps of testing a subset represented by the lines 5 to 15 from the code in algorithm 3.

However, instead of using a global hash table, which the slaves do not have access to,

it uses the Local hash table.

Communication

There are two operations that require communication with the master. From the

slave’s point of view, these communications do not require any computations. Ba-

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 54

sically, they consist in sending a request with some information and waiting for the

return of variables. Independently of the request, the slave always sends the same

parameters: Worklist, bestScore, and testList. The usefulness of all these parameters

will be addressed while discussing the master’s workflow. Moreover, the received

message always consists of two variables. The first one is the Worklist and the other

is the global best score known by the master. The later is required to provide slaves

with the awareness of the global best score.

The first request is the RequestWork, this consists in a procedure that sends the empty

Worklist and expects to receive back some work. If the slave does not receive any,

this is interpreted as the signal to terminate the search. Additionally, the slave has to

stay idle until a response is returned.

The RemoveDuplicates function is a bit more complex. Calling this procedure does

not imply communication between slave and master. The first thing the slave does

is to check if the master is available using the gotMessage function. If so, the slave

sends the request and it receives a Worklist without repeated work. Conversely, if the

master is not available, the slave will not waste time waiting for it, and immediately

returns to process another iteration of the loop. As a quick note, it is important

to notice that if the communication happens, the testList and the elapsedTime are

restarted. Algorithm 5 demonstrates the RemoveDuplicates procedure.

Algorithm 5 Remove Duplicates Procedure
1: procedure RemoveDuplicates(worklist, bestScore, testList)

2: com = False

3: if gotMessage then

4: worklist, bestScore←sendInfo(worklist, bestScore, testList)

5: testList← ∅
6: com = True

7: return com,worklist, bestScore, testList

5.3.3 Master Workflow

The goal of the master is to control the slaves and all the information that requires

global awareness. Its first task is to start every slave. This is achieved by sending

the required parameters along with a different Worklist for each slave. Then, the

master proceeds to answer slave’s requests, communicating with them on a round-

robin fashion [28].

As previously mentioned, there are two types of requests that trigger different mas-

ter’s actions. The RemoveDuplicates procedure requires examining all the subsets

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 55

Figure 5.5: Master-Slave communication flow

of a Worklist, removing those that have already been processed or that are already

scheduled to be tested on a different slave. In the RequestWork case, the master needs

to get part of a Worklist from another slave, and send it back to the one which the

request came from. The work of the master will be thoroughly discussed below.

Main Loop

After initiating all the slaves, the master proceeds to the main loop, where it iterates

until the wrapper search ends. Inside this loop, there is an inner cycle that iterates

through all slaves. At each iteration, the master communicates with a different slave.

This process begins with the sending of a message to the selected slave, which means

that the master is waiting to communicate with it. Then, the master will wait until

it gets a request with three parameters: Worklist, Best Score, and Tested Subsets.

Depending on the content of the Worklist, the master performs a different task.

However, the communication will always end with the master sending a Worklist

and the Global Best Score to the slave. To make this part clear, the flow of messages

is illustrated by figure 5.5.

Independently of the task performed, there are some steps that the master has to

perform. The first one is to update the Global Best Score with the received Best

Score, in case the later is greater than the former. This step guarantees that the

best score discovered during the search is always updated. The master also has to

update the Global Hash Table with the Tested Subsets received at each communication.

This is crucial to keep track of all the tested subsets while the search is executing.

Additionally, after responding to the request, the Slave’s Worklist has to be updated

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 56

with the new Worklist sent to the slave. Despite not being always up-to-date, due

to the round robin polling of slaves by the master, the Slave’s Worklist is important

to remove work repetition. The subsets stored in the Global Hash Table are subsets

already tested by slaves. Subsets that are already scheduled to be processed in the slave

are left out of this structure. Therefore, in order to efficiently remove the duplicated

work from a slave it is necessary to check if the subsets in its Worklist are already

scheduled to be processed in another slave’s Worklist.

The search ends when all slaves run out of work at the same time. This is determined

by the inability of the master in finding work to share when it is requested. Algorithm 6

illustrates the main loop of the master.

Algorithm 6 Master’s Main Loop
1: procedure ManageSlaves()

2: bestScore = 0.0

3: hashTable← ∅
4: search = True

5: while search do

6: for slave ∈ slaves do

7: SendMessage(slave)

8: worklist, score, testedSubsets← ReceiveMessage

9: if score > bestScore then

10: bestScore = score

11: hashTable←addToHashTable(testedSubsets)

12: if empty(worklist) then

13: newWorklist←ShareWork(slave, slavesWorklist, hashTable, bestScore)

14: if empty(newWorklist) then

15: search = False

16: Break

17: else

18: newWorklist←RemoveDuplicates(worklist, slavesWorklist, hashTable, slave)

19: SendWork(newWorklist, bestScore, slave)

20: slavesWorklistslave ← newWorklist

This concludes the master’s activity during the main loop, the remaining of the section

will address the different tasks on the manager.

Remove Duplicated Work

Starting by the RemoveDuplicates function which is the simpler of the two. Given a

Worklist of a slave, this function removes all subsets that are already either on the

GlobalHashTable or in the Worklist of any other slave. Algorithm 7 illustrates this

procedure.

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 57

Algorithm 7 Remove Duplicates Procedure
1: procedure RemoveDuplicates(worklist, hashTable, slavesWorklist)

2: newWL← ∅
3: for subset ∈ worklist do

4: hashV alue←getHash(subset)

5: if hashV alue ∈ hashTable then

6: Continue

7: add = True

8: for list ∈ slavesWorklist do

9: if notSlavesList(slave, list) then

10: if hashV alue ∈ list then

11: add = False

12: Break

13: if add then

14: newWL← newWL ∪ subset

15: return newWL

Share Work

The ShareWork function is called when the Worklist received from a slave is empty.

When this happens, the master proceeds to communicate with the slave which he sees

as having the most work. The concept of ”thinking” is important, that is because

the master estimates the amount of work on the slaves, using the Slaves worklists.

However, this list is only up-to-date after the communication with the respective

slave.

If the master communicates with another slave that also has no work, it adds that

slave to a list of slaves requesting work and proceeds to enquire the next one. Finally,

when a slave that has work is found, its Worklist is equally divided among itself and

all the other slaves that are in the request work list. Before dividing the Worklist, its

duplicated subsets are eliminated using the previous RemoveDuplicates function.

At the end of the procedure, all slaves that communicated with the master receive a

new Worklist and the best score. Additionally, the master also has to update their

current work in the Slave’s worklist. In the case there are no slaves with work to

share, the master sends an empty list to all as the signal to end all computations.

Algorithm 8 illustrates this procedure.

In order to decrease the length of the presented pseudo-code, we intentionally did

not represent some less important parts. For every received message (line 7) during

the procedure, the bestScore needs to be updated if the new value is higher, and the

testedSubsets must be added to the hashTable.

This ends the discussion of the master-slave strategy, one of the two options to achieve

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 58

Algorithm 8 Share Work Procedure
1: procedure ShareWork(slave, slavesWorklist, hashTable, bestScore)

2: shareWork ← ∅
3: while shareWork == ∅ do
4: shareSlave←GetSlaveWithMostWork(slavesWorklist)

5: SendMessage(shareSlave)

6: requestList ∪ shareSlave

7: worklist, score, testedSubsets← ReceiveMessage

8: if empty(worklist) then

9: slavesWorklistshareSlave ← ∅
10: if length(requestList) == length(slavesWorkLlist)−1 then

11: SendEmptyList(requestList)

12: return ∅
13: else

14: newWorklist←RemoveDuplicates(worklist, hashTable, SlavesWorklist)

15: dividedWork ←DivideWork(newWorklist, requestList)

16: for rs ∈ requestList do

17: SendWork(dividedWorkrs, bestScore, rs)

18: SlavesWorklistrs ← divideWorkrs

19: return dividedWorkslave

parallelism on MITWS conferred in this thesis. Proceeding to the analysis of the other

strategy.

5.4 Shared Memory Strategy

The idea of the second presented strategy is to take advantage of a shared memory

environment for interprocess communication. In such conditions, processes have si-

multaneous access to the same memory zones, thus providing a less costly way to

exchange information between processes, as well as the advantage of avoiding the use

of redundant copies of information [54].

Programs that correctly take advantage of these characteristics are usually very ef-

ficient and scalable. However, programming them can be quite troublesome. The

shared memory paradigm introduces the challenge of keeping memory coherent. If two

processes try to operate on the same memory zone at the same time, the memory will

most likely become incoherent making its values unpredictable. This is exemplified

by a simple program: considering a shared variable called count and one program

which uses 10 threads that concurrently want to add 1 to the shared variable. If count

starts with the value 0, then in the end of the program the expected value would

be 10. However, since there is no mechanism that controls the access to the shared

variable, the value of count is unpredictable. This happens due to the concurrent

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 59

Figure 5.6: Parallel scheme for the shared memory strategy

writing operations on the shared variable [54].

In the case of the parallel wrapper, memory incoherence can lead to repeated work or

even loss of the best score. Therefore, this is an issue that must be addressed. One way

to guarantee memory coherence is to use mutual exclusion mechanisms. One solution

is to use locks, which prevent more than one process to operate on the same memory

zone concurrently [54]. Despite the fact that this sounds like a good solution, it is not

the ideal one. These mechanisms introduce an overhead to the program which could

drastically decrease the performance gains obtainable through parallelization. For the

sake of understanding, before going into more details about these issues, the strategy

setup will be explained.

5.4.1 Strategy Setup

Since this strategy does not use a master-slave paradigm, the processes that compute

work are called workers instead of slaves. In the same way as the first implemented

strategy, each worker has its own Worklist which is initialized with some subsets. This

is the only variable that is local to them. All the remaining information is located on

the shared memory. Therefore, the variables that can be accessed by all workers are:

• Hash table: used to record the hash values of the already generated subsets.

• Best score: stores the best score during the wrapper search.

• Request Worklist: keeps track of the workers needing work.

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 60

• Amount of work vector: each slot represents the size of a worker Worklist.

• Elected worker: every time some worker requests work, this variable records

the worker selected to send it.

The parallel scheme is illustrated by figure 5.6.

5.4.2 Memory Coherence

The hash table located in the shared memory is key to avoid the problem of repeated

work. Having every worker constantly updating the hash table and search in it for

repetitions is not a good idea. In the same way as the previous ”count” example,

the workers would start writing in the same memory spaces. Thus, the hash table

would become incoherent, probably leading to the loss of entries which would result

in testing repeated subsets.

As previously discussed, mutual exclusion mechanism could be used to guarantee the

coherence of the memory. To understand why this is not a viable solution to the

parallel wrapper let us go through some facts. A mutual exclusion solution can be

attained by the use of a lock. While a worker is in possession of the lock and is

operating on the shared memory, all the others do not have access to it. The problem,

is the fact that while the other workers are waiting for the memory zone to become free,

they are wasting computational time. Moreover, the rate at which the workers require

access to the variables is also relevant. Considering write operations in the Hash Table,

every time a worker generates a new subset, it has to add its hash value to the memory.

This happens very often and as a result, workers would frequently require access to

the memory zone. Therefore, they would waste too much time waiting for the access,

which consequently would drastically decrease the parallel performance. As a matter

of fact, the rate is dependent on several aspects such as: number of features, size of the

dataset, and number of workers. However, the access rate to the shared memory will

be high in most cases. Due to these reasons, mutual exclusion mechanisms were not

used to control access to the Hash Table, and a different approach was implemented.

Instead of using a unique Hash table, n hash tables are created, where n is the number

of workers in the wrapper search execution. Each hash table is associated with a

different worker, which is the only one allowed to perform write operations in it.

However, any worker is granted access to read from any hash table at any given

time. Therefore, workers are capable of storing in their hash table the hash of subsets

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 61

Figure 5.7: Hash Table Partitioning

they tested and checking all hash tables for repetitions without having to wait for

access. Due to the fact that there are no concurrent write operations in any particular

hash table, memory coherence is guaranteed. To understand this, it is important to

highlight that reading does not change the memory, therefore, workers have free access

to read all the hash tables.

The strategy is not bulletproof with respect to always guaranteeing that the hash table

is up-to-date. There is a scenario where worker i could incorrectly declare subset s

as new work. Consider that s was already generated on worker j, and j is on the

process of writing the new subset to its hash table. While j is operating on the

memory, i checked the hash table of j and did not find s there because j was still

updating the memory. Then, i would declare s as a new subset and in fact, it is not.

Nevertheless, due to the size of the search space of our wrapper, this is not a problem.

The likelihood of this situation happening is quite low, and if in fact happens, the

impact on the parallel performance is barely noticeable. Processing a low amount of

repeated subsets is not an issue on such large scale problems. Conversely, avoiding

wasting computational time in waiting for access to variables is a huge advantage.

Thus, the present strategy is more beneficial than using mutual exclusion

The mentioned approach only refers to the Hash table zone, regarding to other vari-

ables on shared memory. The amount of work vector behaves with the same way

as the Hash table. Each worker has its own slot, where only the owner can modify

its value. The other variables: Best score, Request work list, and Elected worker use

mutual exclusion. This mechanism was introduced due to two main reasons:

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 62

1. The access rate to these variables is much lower, as a result, wasting computa-

tional time is not a problem.

2. All variables have an high impact on the search and having some kind of inco-

herence on them could imply severe consequences.

By contrast to the introduced approach on the Hash Table, the mutual exclusion

always guarantees the workers to read the most updated value of the variables.

5.4.3 Workers Workflow

After describing the problems with using shared memory and explaining the setup

for the strategy, it is time to address the workflow of the workers. On this second

strategy, every process has the same function. Their workflow consists in processing

subsets from their worklists, and verifying when they are required to send work to any

other worker, or even request it themselves. All these steps will be discussed in more

detail in the remaining of the section. Once again, only aspects related to the parallel

strategy are illustrated on its presentation.

Main Loop

In the same way as the first strategy, every worker has a loop which iterates through

the subsets in their Worklists. At the beginning of each iteration, a worker has to

verify two conditions. The first one is to check if it has work left. If not, the worker

adds itself to the Request work list, determines the worker with most work, and selects

it, using the Elect work variable, to send part of its Worklist. If the worker receives

an empty list from the request, then it ends the search. The other test consists in

verifying whether the worker has been selected to send part of its work to any other

worker. If it did, then it calls a procedure that will divide its Worklist among all the

workers that do not have any subsets left.

Afterwards, the iteration proceeds to test a subset that is removed from the Worklist.

Each subset is processed using the previous definition of a parallel task (section 5.2).

Finally, the last step, consists in updating the worker’s amount of work in the global

variable Amount of work vector. Algorithm 9 illustrates the behaviour of the main

loop of a worker.

Once again, to avoid pseudo-code redundancy, the execution of a parallel task for

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 63

Algorithm 9 Worker’s Main Loop
1: procedure Process Work(worklist)

2: while True do

3: if isEmpty(worklist) then

4: worklist← RequestWork(ownWorker)

5: if isEmpty(worklist) then

6: Break

7: if needToSendWork() then

8: worklist←SendWork(worklist, ownWorker)

9: subset← RemoveLast(worklist)

10: ProcessTask(subset)

11: amountWorkownWorker ←length(worklist)

a subset was replaced by a function call, ProcessTask. However, there are several

differences that have to be pointed out.

To start with, the search uses the global Best Score variable to check if subsets are

worth expanding. Reading the variables does not cause memory coherence problems,

however to update the global Best score every time a new highest score is found,

the mutual exclusion mechanism has to be used. This process is established with

algorithm 10.

Algorithm 10 Update Best Score
1: procedure UpdateScore(newScore)

2: if newScore > bestScore then

3: getLockScore()

4: if newScore > bestScore then

5: bestScore = newScore

6: releaseLockScore()

It is worthy to point out that double checking if the new score is higher than the

previous best is not a mistake. This was used to guarantee that while the worker

was waiting for the lock, the Best Score did not change to a value higher than the

newScore.

During the process of generating successors, each worker is in charge of controlling

their repeated work. Due to the fact that on the presented strategy the hash table

is divided into several ones, a new procedure was added to the ProcessTask part.

Basically, this function checks if every new generated subset is already present in any

hash table and those that are not, are added in the hash table of the worker that

generated them. This is demonstrated by algorithm 11.

Besides the main loop, the Request Work and Send Work are the other two functions

that will be explained in more detail.

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 64

Algorithm 11 Check For Repetition
1: procedure GenerateSuccessors(subset, ownWorker)

2: newSubsets← GenerateSuccessorsSubset(subset)

3: newWork ← ∅
4: for newSubset ∈ newSubsets do

5: add = True

6: for worker ∈ workers do

7: if newSubset ∈ hashTableworker then

8: add = False

9: Break

10: if add then

11: newWork ← newWork ∪ newSubset

12: hashTableownWorker ← hashTableownWorker∪ getHash(newSubset)

Request Work

Every time a worker runs out of work, it has to request it from other workers. There

are several steps in order to do that. The first one is to add itself to the Request work

list. Then, it has to select the worker with most work, using the Amount of work

vector, and change the value of the Elected worker to the selected one. When there

are no workers left with subsets to explore, empty lists are sent to every process in

order to end the search.

The whole procedure is protected with a mutual exclusion mechanism, to guarantee

the coherence of the worker elected and the Request work list. Algorithm 12 illustrates

this part of the parallelization.

Algorithm 12 Request Work
1: procedure RequestWork(ownWorker)

2: getLockShare()

3: requestWork ← requestWork ∪ ownWorker

4: electedWorker ← getWorkerMostWork()

5: if workerToSend == −1 then

6: for worker ∈ workers do

7: if worker 6= ownWorker then

8: sendWork(worker, ∅)
9: return ∅
10: releaseLockShare()

11: worklist←ReceiveWork()

12: return worklist

Share Work

In the case that a process is elected to send work, it equally divides its Worklist

among all the processes in the Request work list and itself. The first step to do so, is

CHAPTER 5. PARALLELIZED COMPUTING APPROACH 65

to obtain the same lock used to add workers to that list. This prevents new workers to

add themselves to the list while the elected worker is already sharing work. Then, the

Worklist is finally split into several parts, and each one is sent to a different worker.

There is a special scenario, where the selected worker does not have enough work to

share. In that case, it will postpone the work sending task to the next iteration, in

order to verify if it is able to generate more work while processing another subset.

This is a recursive case until the worker either gets enough work to share, or runs out

of it. If the later happens, the worker will call the RequestWork function, which will

nominate other worker to send work.

Work sharing is a vital feature not only on this strategy but on the master-slave

approach as well. It would be impossible to achieve good parallel performance without

it. Algorithm 13 illustrates the ShareWork function.

Algorithm 13 Share Work
1: procedure SendWork(worklist, ownWorker)

2: if notEnoughWork thenworklist

3: return worklist

4: getLockShare()

5: dividedWorklist← DivideWork(worklist, requestWork)

6: for worker ∈ requestWork do

7: SendWork(worker, dividedWorklistworker)

8: requestWotk ← ∅
9: releaseLockShare()

10: return dividedWorklistownWorker

Chapter 6

Performance Tests

In previous chapters, we introduced a new hybrid feature selection algorithm, named

MITWS, which uses a novel meta heuristic. Additionally, we proposed two parallel

strategies using different memory paradigms to take possible advantage of multiple

processing elements in order to improve execution time. We now aim to assess the

performance of our strategies. We evaluate the performance with respect to two main

factors: performance of parallel execution and quality of feature selection. Thus,

accordingly, this chapter is divided into two big sections each presenting the test

results for each main performance factor. A last section is also included to provide

details on where the produced work is available and how it can be used.

6.1 Parallel Performance

In this section the parallel performance will be addressed. In this test, the speedup

of each implemented strategy will be focused. Speedup is a metric for relative perfor-

mance enhancement when executing a task. This notion was established by Amdahl’s

law [3]. The term can be utilized to show the effect of any performance improvement.

In this work, we will use it to measure the parallel gain of our proposed parallel

strategies when the number of processing units increases. Speedup is calculated using

the following formula:

Speedup =
Told

Tnew

(6.1)

where Told refers to the execution time of the non improved implementation and Tnew

66

CHAPTER 6. PERFORMANCE TESTS 67

to the time on the improved version. In our tests, Told represents the execution time of

the strategy when a single processing unit is used and the Tnew exhibits the execution

time when more processing units are utilized. It is important to highlight that for the

speedup calculations a pure sequential version of the strategy was not implemented.

The parallel strategies require new structures to be defined, some conditions to be

checked and some extra procedures in order to properly execute. Therefore, using

them with a single processing unit will have an overhead when compared to a pure

sequential version. In our case, we estimate that this overhead is barely noticeable.

The number of defined structures is related to the number of processing units, the extra

procedures basically divide data and share work across multiple processing units, and

the conditions are not that computationally expensive. As a result, the overhead when

using a single processing unit is low and we did not have the necessity to implement

a sequential version of the strategy in order to estimate the speedups. However, it is

worth to point out that the Told that will be shown, would have been slightly lower if

a pure sequential version was adopted.

The higher the speedup is, the better parallel gains are obtained. The maximum

speedup achievable on an application depends on its structure. This limit is given

by the Amdal’s law [3]. Despite some recent theories which point to a different way

to calculate the maximum speedup achievable [25], in this work the Amdahl’s theory

will still be used as reference. Basically, the mentioned law states that the maximum

speedup of a program is limited by the sequential parts of it. These are chunks of

the code that cannot be executed in parallel. By itself the concept is quite easy to

understand, if an application which takes 10 minutes to execute, has 2 minutes of

its time in a part of the code that cannot be parallelized. Then, no matter how

many processing units are used, the execution time will not be lower than 2 minutes.

Therefore, the maximum speedup is limited.

On the presented strategy, there are no parts of the algorithm that cannot be executed

in parallel. Therefore, the process of evaluating the performance of the strategies will

be much easier and the speedups will be calculated using the previous formula.

6.1.1 Testbed Description

Addressing the technologies used in the development and testing of both strategies.

The programming language used on both strategies was Python2.7 [49]. For machine

learning functions such as the SVM classifier, cross-validation techniques, etc, the

CHAPTER 6. PERFORMANCE TESTS 68

scikit-learn [52, 46] was adopted.

To achieve parallelism, we defined multiple processes using the unix fork. This is not

the best approach for the shared memory strategy because, by default, processes do

not have access to the same memory zone. However, python GIL [47] prevents multiple

threads from executing python bytecodes at once1. This means, that it is not possible

to use concurrent execution of threads, which would be the natural choice for such

memory paradigm. Instead, in order to simulate shared memory between processes we

used the multiprocessing manager [48]. As a note, simulating shared memory causes

an overhead on the computations that may negatively impact the parallel performance

of the algorithm. Therefore, it is expected that using our shared memory strategy with

threads will improve the results we are reporting later in this section.

Related to the communication between processes, the master-slave strategy uses pipes

for interprocess communication, while for obvious reasons the shared memory approach

relied on processes sharing the same memory space to exchange information.

Hardware Details

The tests were obtained using one node of a cluster of CRACS/INESC TEC research

unit, located at the Department of Computer Science within the Faculty of Sciences

of the University of Porto. Each node has four Quad AMD Opteron 6376 processors,

totalizing 64 cores with 32 cores available for floating point operations. Additionally,

each processor operates at 2.3 GHz and has a 16 MB L2 and a 16 MB L3 cache. The

total amount of RAM available on the system is 256 GB.

6.1.2 Parallel Test

The common approach to assess the speedup of an application is to run it several

times using a different number of processing units. This is what will be presented

on this chapter. However due to the nature of MITWS, it is not possible to select

a dataset, execute it, and expect to get accurate speedup values. The reason for

that is the stochastic part of the algorithm. At each execution, the probabilities

vector that controls the generation of successors would be different. Additionally, the

cut mechanism that operates during the second stage of the wrapper would remove a

1This issue was discovered at a late stage of the work which prevented migrating the whole

implementation to a different programming language.

CHAPTER 6. PERFORMANCE TESTS 69

(a) Using one process.

(b) Using two processes.

Figure 6.1: Wrapper search example.

distinct number of subsets. On top of that, as more processing units are being used on

the MITWS algorithm, the more exhaustive the search is going to be, thus increasing

the likelihood of finding a better solution. This phenomenon can be explained with

an example, considering the first stage of the wrapper search. Here, the decision to

expand a subset after obtaining its score relies on how distant it is from the best score

so far. Therefore, it is plausible to assume that the sooner a high score subset is found,

the less subsets will be expanded, resulting in a lower number of tests.

Examining figure 6.1a, where the top part of a square represents the features of a

subset, and the bottom one its score. Additionally, the edges coming from a square

represent the successors of a subset, and the overall image illustrates the execution of

the wrapper search using a single processing unit. As it is possible to note, there were

a total of 14 tested subsets and the best score found was 76.

If the number of processing units is changed to two, the search tested a total amount

of 17 subsets and the best score found was 80. This can be observed in figure 6.1b.

The reason why there were a different number of explored subsets which resulted

in different scores is easy to understand. While using a single process, the subset

[1, 3] results in a score much higher than the others subsets with two features. This

culminated into not expanding the subset [3, 4]. When using two processing units, the

work is divided among them. Therefore, when the second process decided to expand

the subset [3, 4], it was not aware of the highest score of [1, 3] that were being tested

at the same time on the other processing unit. This resulted in expanding some more

subsets which produced a better score.

CHAPTER 6. PERFORMANCE TESTS 70

The search space on the given example is small, and only uses two processing units,

however it proves the point that the number of processing units changes the exhaus-

tiveness of the MITWS algorithm. It is impossible to find a formula that relates the

increase number of tested subsets with the number of processing units. Additionally,

if a formula is found for a certain dataset, it is extremely likely that it will not work

for a different one. The lack of ”rules” about subset scores is what makes feature

selection such a difficult problem.

To address the speedups on the presented parallel approach, the time it takes to

process a certain number of subsets using different numbers of processing units will be

used. The idea is to define a test in which, independent of the number of processing

units, the final number of tested subsets is always the same. Basically this means that

in the end, the presented results will address the capability of the parallel algorithm

in exploring more nodes in less time. However, if a speedup of 10 is achieved for 16

processing units, that does not translate into: ”if a solution takes X seconds to be

found using a single processor, then 16 processes will make it 10 times faster to find

the solution”, due to the previous mentioned reasons. Instead, it means that using 16

processes, the algorithm will be able to test subsets 10 times faster.

Test Conditions

The defined test consists in verifying the worst case scenario when 20 features reach

the wrapper search. This scenario is characterized by the following properties:

• Every tested subset is expanded independently of the score.

• When expanded, each subset is combined with all possible features. This repre-

sents the successor generation without using the probabilities vector.

• The cutting probability for all subsets during the second stage of the wrapper

search is 0%.

More precisely, this results into an exhaustive search with a total amount of 220− 1 =

1048575 subsets tested. Due to the fact that every subset is expanded, and it tries to

generate all the possible combinations with itself, the number of attempts at producing

and testing repeated subsets is very high. This is a useful feature to test the capability

of the presented solutions in avoiding duplicated work.

CHAPTER 6. PERFORMANCE TESTS 71

6.1.3 Master-Slave approach

Before addressing the speedups test, it is necessary to go back to the CommRate

variable introduced in section 5.3.2. This variable controls the amount of time it

has to pass until the slave tries to communicate with the master. On the presented

strategy, it is important to control this because, while the master is removing repeated

work from the slave’s Worklist, the last one is not producing any work. Thus, this

component of the strategy, although being crucial, can be described as wasted time.

Therefore, if a slave communicates very frequently with the master, it will waste a

large amount of time. On the other hand, if it does not, it will increase the likelihood

of processing repeated work.

Basically, the CommRate represents a trade-off between the capability of not per-

forming duplicated work and the time wasted checking for repetitions. Moreover, it

is not easy to find the best value for this variable because it changes depending on

the problem’s dataset. That is the reason it’s defined as a user variable which can be

manipulated on the algorithm.

In order to give some insight about this trade-off, 17 processing units were used to

execute several times the previous defined test conditions. On each test, the value

of the CommRate was modified. The idea is to show how this variable impacts the

general performance of the algorithm. Figure 6.2 illustrates the results comparing the

number of repeated tests performed with the execution time on each CommRate value.

The outcomes reinforce the previous idea that as the frequency of communications

increases, the less repeated subsets are tested. However, that did not always translate

into better execution times. According to the results, using CommRate around the

50 seconds is the best solution. The amount of repeated work on these values, is

compensated by the not so frequent time wasted removing the repetitions. The results

also provide useful information for future uses of the parallel strategy. As it is possible

to note, the execution times are much worse for low values of CommRate. Therefore,

this variable should defined using values between the interval 40 to 100.

6.1.3.1 Master-Slave Parallel Tests

Table 6.1 presents the results of the speedups tests for the master-slave strategy.

During the tests the CommRate was set to at 50 seconds, the best value obtained

from the previous test.

CHAPTER 6. PERFORMANCE TESTS 72

1 10 20 30 40 50 60 70 80 90 100

of Repeated Subsets 845 3166 5989 7606 8991 13722 18261 22742 21188 22958 27422

Execution Time 8923 8883 8931 8820 8718 8613 8683 8706 8646 8652 8686

0

5000

10000

15000

20000

25000

30000

8400

8500

8600

8700

8800

8900

9000

N
u

m
b

e
r

o
f

re
p

e
a

te
d

 s
u

b
se

ts

CommRate Variable

E
xe

cu
ti

o
n

 t
im

e
 (

se
c)

of Repeated Subsets Execution Time

Figure 6.2: Results of testing the CommRate variable

Table 6.1: Results of the speedup test on the Master-Slave approach.

of processes Execution time (sec) # tested subsets % of repeated subsets Speedup

1 136513 1048575 0.0000 1.00

2 136513 1048575 0.0000 1.00

3 77196 1049653 0.1028 1.77

5 35118 1052073 0.3336 3.89

9 17166 1057822 0.8819 7.95

13 11505 1062299 1.3088 11.87

17 8657 1062574 1.3350 15.77

21 6885 1066574 1.7165 19.83

25 5799 1079628 2.9614 23.54

29 5235 1090226 3.9722 26.08

33 4624 1116719 6.4987 29.52

In addition to the table, figure 6.3 compares the obtained speedup against the ideal

one.

6.1.4 Shared Memory approach

The results for the speedups tests using the shared memory strategy are presented in

table 6.2.

Figure 6.4 illustrates the evolution of the speedup with an increasing number of

processing units, also comparing it with the ideal value.

CHAPTER 6. PERFORMANCE TESTS 73

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

S
p

e
e

d
u

p

Number of processors

Linear Speedup

Implemented Method

Speedup

Figure 6.3: Speedup of the implemented master slave strategy.

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

S
p

e
e

d
u

p

of processors

Linear Speedup

Implemented Method

Speedup

Figure 6.4: Speedup of the implemented shared memory strategy.

CHAPTER 6. PERFORMANCE TESTS 74

Table 6.2: Results of the speedup test on the Shared memory strategy.

of processes Execution time (sec) # tested subsets % of repeated subsets Speedup

1 133984 1048575 0.0000 1.00

2 64148 1048575 0.0000 2.09

4 31427 1048575 0.0000 4.26

8 16406 1048575 0.0000 8.17

12 11055 1048576 0.0001 12.12

16 8457 1048575 0.0000 15.84

20 6812 1048575 0.0000 19.67

24 5825 1048578 0.0003 23.00

28 4948 1048581 0.0006 27.08

32 4409 1048579 0.0004 30.39

6.1.5 Comparing the Two Approaches

Examining the presented speedups results, it is possible to conclude that both method-

ologies scale well when several processing units are used. However, the shared memory

strategy outperforms the distributed one. This section will start by doing an individ-

ual analysis of both strategies, and then will address their discrepancy related to

performance.

Starting with the master-slave strategy, when a small number of processing units is

used, the gain on parallel performance is not relevant. This is explained by the fact

that this strategy requires the master, which basically means that one process will

not be doing any work, and its only propose is to control the others. As the number

of processing units increases, the use of the master is mitigated and the parallel gain

starts to increase. Moreover, the number of repeated work performed during the tests

grows with the number of processing units. Although these values are not alarming,

they still have some impact on the overall execution time.

The shared memory strategy achieves speedups near the linear values. In fact, in some

cases, the algorithm was able to obtain super-linear speedups [2]. Additionally, with

respect to avoiding repeated work, the algorithm proved to be extremely efficient.

In the worst case, 0.0006% of the subsets were tested more than once. This is an

irrelevant number in more than one million tested subsets.

Differences in performance

It is quite easy to explain the differences related to the performance of both strategies.

In fact, part of it was already explained in section 5.4, where the advantages of using

shared memory are stated. As mentioned, shared memory provides a cheap way of

CHAPTER 6. PERFORMANCE TESTS 75

interprocess communication, something that is not possible on distributed memory.

Moreover, it is plausible to consider that the hash table which stores all the subsets,

is the center piece of the wrapper. On shared memory, every worker has access to

it every time they want and this variable is constantly updated. On the other hand,

the slaves on the first strategy do not have access to the global hash table, only the

master does. Therefore, they have to rely on the master to remove a big part of their

repeated work. Since this has a cost, and the master cannot do it to all the slaves

at all times, some repeated work eventually happens, which negatively impacts the

performance. Finally, the main reason for the discrepancy is related to the usage of a

master that counts as a process but does not dispatch any work.

In summary, the shared memory is the perfect environment for the proposed wrapper.

However, the distributed memory strategy has a huge advantage. It is a lot more

difficult to have computer systems that are allowed to share memory with each other,

than to have access to multiple machines that are physically distant from each other.

Therefore, the master-slave strategy, despite performing a little worse, is probably

easier to implement on a large number of machines, and that is the reason why it was

added as part of this work.

6.2 Feature Selection Results

In this section the performance of the MITWS algorithm with respect to feature

selection will be addressed. In this test, MITWS will be applied to find subsets of

features in some public datasets, and then its results will be compared to several

other algorithms that solved the same problem. The idea is to understand where

MITWS ranks among other algorithms. In the test, the quality of the solution will

be evaluated regarding: accuracy of generalisation, number of features of the solution,

and a combination of both.

In 2003, a feature selection challenge was presented at the Neural Information Pro-

cessing Systems (NIPS) conference. It aimed to find algorithms that significantly

outperform methods using all features [44]. In order to achieve it, five binary classi-

fication problems were defined. Each one was represented by a dataset with different

characteristics, which were divided into three sets: train, validation, and test.

For the first two sets, the participants had access to data and its labels. However,

for the test set, data was unlabelled. The challenge consisted in using any machine

CHAPTER 6. PERFORMANCE TESTS 76

learning, statistical analysis, feature selection, and/or any other technique on the

train and validation set, to produce a classifier that provides the best accuracy on

predicting the labels of the test set. The predicted labels were submitted to a web

page which provided feedback about the accuracy of the participant. Additionally,

every submission was recorded, in order to rank the participants.

The challenge closed right after the conference, however its results are still avail-

able [44] and there is still a web page that allows for new test submissions [10]. To

assess the quality of MITWS, the algorithm was applied to the five datasets in order

to produce a subset of features that will be used to construct a classifier. During this

process, no other technique besides those that are part of MITWS, was adopted. For

comparison, the performance of the resulting classifier in each dataset, was confronted

to past submissions of the NIPS challenge.

Typically, feature selection algorithms provide only one subset of features as solution.

By contrast, on MITWS the user is allowed to define a value S that represents the

number of solutions he wants to receive. Meaning that the algorithm will record the

top S solutions found during the search, and in the end it will print them sorted by

their score. This characteristic of MITWS, is useful because it is common that there

are several solutions with almost the same score. What differentiates the quality of

these solutions, is their ability to predict unseen data. This is something that cannot

be tested during feature selection. Therefore, by providing the user with the option

of selecting the number of solutions, we are allowing them testing the performance

of all solutions in unseen data, without rerunning MITWS. For example, in the test

presented in this section, we chose to select 20 solutions for each dataset in order to use

the one that is able to achieve the best accuracy for the unseen data of the validation

set. The process used to obtain a classifier for the NIPS dataset will be explained

next.

For each dataset, the steps in order to produce the classifier were the following:

1. Apply MITWS to the train set of the dataset, with the propose of finding 20

subsets of features.

2. Each subset was adopted to create a classifier and predict the labels of the

validation set.

3. Select as final classifier, the one that was able to obtain the best accuracy for

the validation set.

4. Use it to predict the labels of the test set, and submit the results to the

CHAPTER 6. PERFORMANCE TESTS 77

website [10].

The remaining of this chapter will introduce the datasets adopted, the results of

MITWS, and conclude with a detailed analysis about the performance of the algo-

rithm.

6.2.1 NIPS Datasets

The NIPS challenge datasets are available in several web pages [44, 10, 56]. Here, a

brief description about the classification problem of each one is provided:

• Arcene is a task to distinguish cancer versus normal patterns from mass-

spectrometric data.

• Dexter is a text classification problem in a bag-of-words representation. The

idea is to filter text about ”corporate acquisitions”.

• Dorothea is a drug discovery dataset. Chemical compounds, represented by

structural molecular features, must be classified as active (binding to thrombin)

or inactive.

• Gisette is a handwritten digit recognition problem. The problem is to separate

the highly confusable digits ”4” and ”9”.

• Madelon is an artificial dataset created for the challenge.

For the challenge purposes, several probes were added to the problem in each dataset.

In the context of the challenge, probes are features that are irrelevant for the classifi-

cation, and intend to increase the difficulty of the task.

Datasets are available in three different data formats, their characterization is the

following:

• Sparse Binary: it is not required that every data example has values for all

the features. Moreover, the ones that have are represented either by a ”0” or

”1”.

• Sparse Integer: the same as sparse binary, but instead of having a binary

value, feature values are represented by an integer.

• Dense: every feature has a value which is an integer.

CHAPTER 6. PERFORMANCE TESTS 78

Finally, for each dataset, table 6.3 addresses the number of examples given in every

individual set, the number of features, and the format of the data:

Table 6.3: Characteristics of the NIPS challenge datasets.

Dataset Data Format # Train # Validation # Test # Features

Arcene Dense 100 100 700 10000

Dexter Sparse Integer 300 300 2000 20000

Dorothea Sparse Binary 800 350 800 100000

Gisette Dense 6000 1000 6500 5000

Madelon Dense 2000 600 1800 500

6.2.2 NIPS Results

It would be pointless to use both strategies to obtain the results for the feature

challenge. Therefore, the presented results were obtained using the shared-memory

one. The choice relied on the fact that this strategy has better performance in parallel

environment and therefore will obtain a solution faster.

Regarding user defined parameters during the tests, the following values were used:

Parameter Value

Search threshold during first stage 0.5%

Cutting mechanism during final phase 900 seconds

Successors generation probability estimation

Probability estimation tests 25

Grid search tests 25

SVM kernel RBF

Number of processing units 62

These were the fixed values for all tests, however some parameters such as cross-

validation technique and percentage of the filter had to be adapted according to each

dataset. Table 6.4 presents the used parameters and the best solution obtained for

each problem.

The best subset of each dataset was used in the training part of the classifier. Then,

the labels for validation and test set were predicted. The accuracy value for each are

presented in table 6.5. The final two columns, represent the rank of the accuracy

obtained on the test set, and number of features in the final solution when compared

to all the previous challenge submissions.

For the sake of understanding, the rank columns represent the MITWS position

followed by all the participants. Additionally, not every past submission had the

CHAPTER 6. PERFORMANCE TESTS 79

Table 6.4: Parameters and solutions of MITWS on NIPS datasets.

Dataset Ft Nfpf Cross-validation Sfs Final score Time (sec)

Arcene 0.50 232 Leave-one-out 14 99.00 2156

Dexter 0.94 364 Leave-one-out 72 98.50 32539

Dorothea 0.90 450 5 folds 30 97.63 32962

Gisette 0.97 121 5 folds 85 97.32 53560

Madelon 0.97 255 10 folds 14 87.10 33117

Ft = Filter threshold, Nfpf = Number of features post-filter, Sfs = Size final subset.

Table 6.5: Results of MITWS on the NIPS challenge.

Dataset Train Validation Test Accuracy Rank # Features Rank

Arcene 99.00 82.00 74.56 892/1503 108/1455

Dexter 98.33 83.67 81.65 819/1007 132/936

Dorothea 95.63 94.29 77.18 475/812 70/768

Gisette 98.97 96.80 96.67 465/932 138/879

Madelon 93.35 87.50 88.67 344/1059 248/1001

amount of features of the solution available. Therefore, the number of counted tests

on the challenge is different for the two presented ranks.

Related to accuracy, the results in average rank among the top 60% for all the datasets.

In terms of number of selected features the outcomes are much better since it puts the

MITWS algorithm among the top 15% of all the submissions. Lets look with more

detail at these results.

The outcome of the accuracy came at no surprise, since the goal was to develop a

classifier which accurately predicted the test set. Despite being part of the machine

learning workflow, feature selection is only part of the process and usually several more

techniques such as outlier detection, noisy data removal, and generation of synthetic

data are required [31]. Moreover, knowledge about the specific problem at hand can

improve the generalisation result by targeting feature choice, or through the use of

another metric for calculating the feature subset score in the search [13].

On the presented experiments, the focus was to test the ability of MITWS to find a

good solution according to the score function, which was the accuracy of the learning

algorithm on the training data. Although cross-validation strategies were used to

improve generalization, they were not enough, and in general the classifier presented

a much lower accuracy, when predicting unseen data (validation and test sets). Nev-

ertheless, the results confirm that the proposed hybrid approach, without any further

analysis of the dataset nor additional techniques, was able to produce quite acceptable

results.

CHAPTER 6. PERFORMANCE TESTS 80

With regards to the number of features selected, the MITWS was able to select

less features than most algorithms. Although, this metric was not used to rank the

algorithms during the original challenge, it is very important in the context of feature

selection. Sometimes, it is preferred to produce a smaller size subset than a bigger one

with better performance. Decreasing the cost of producing the dataset and improving

classification time are examples of reasons to justify that choice.

In fact, it would be important to correlate, for every submission, the number of features

selected and the accuracy. With this intent, figure 6.5 allows a graphical visualisation

of the percentage of features reduced and accuracy for every submission in every

dataset of the NIPS challenge. In each image, the center of the red circle demonstrates

the location of the MITWS produced solution. As a note, to ease understanding of

these images, only submissions that are able to obtain accuracies and percentage of

feature reduction higher than 50% are considered. For an illustration that represents

all the submissions see figs. C.1 to C.5 appended to this work.

In addition to the figure, to rank the correlation between feature reduction and

accuracy among submissions, a score metric was defined using the following formula:

TestScore = (% of feature reduction ∗ 50%) + (accuracy ∗ 50%) (6.2)

On this score, the same importance is attributed to the size of the features subset and

accuracy of the classifier. Converting all the past submissions, as well as the MITWS

results, to the new score, originated a new rank presented in table 6.6.

Table 6.6: MITWS rank using the combined metric.

Dataset Accuracy % Feature reduction New score Combined rank

Arcene 74.56 99.86 87.21 410/1455

Dexter 81.65 99.64 90.65 579/936

Dorothea 77.18 99.97 88.58 391/768

Gisette 96.67 98.58 98.12 22/879

Madelon 88.67 97.20 92.94 323/1001

For the combined metric, the MITWS ranks always on the top half of the scores. Ad-

ditionally, the score of the Gisette dataset is in the top 25 which is a big achievement.

To summarize the analysis on the performance of MITWS related to feature selection,

in all cases the algorithm was able to produce a final subset of features that was around

99% smaller than the original set of features, and capable of creating a classifier with

high accuracy. Although there are not guarantees that the optimal subset was found

CHAPTER 6. PERFORMANCE TESTS 81

Figure 6.5: Correlating feature reduction and accuracy for several submissions in the

NIPS challenge.

CHAPTER 6. PERFORMANCE TESTS 82

(it would require to test the whole search space), the wrapper search was able to obtain

a final subset near the perfect score in 4 out of 5 datasets. Moreover, the results were

obtained in a practicable amount of time, considering the size of the datasets and the

cross-validation methods used.

6.2.3 Testing MITWS Parameters

During this work several user parameters on the MITWS algorithm were mentioned,

this part of the thesis will review all of them and assess their impact on the algorithm’s

performance. Since the CommRate, which is the only user defined parameter that

differentiates the two parallel strategies, has already been explained, the discussion will

be related to the presented feature selection algorithm and not its parallel strategies.

Nevertheless, it is important to refer that the presented results along this section were

obtained using the shared memory strategy.

Most of the parameters are used to control the exhaustiveness of the wrapper search.

As it was mentioned, as more exhaustive the search is, the better are the chances of

finding better solutions. However, the execution time is highly influenced. Moreover,

it is important to keep in mind that waiting a lot more time for a solution that is only

a little bit better, may not be worth it. This obviously depends on the goals of the

feature selection. Analysing each user defined parameter.

The number of tests to estimate the grid search and the improvement probabilities

are the only two parameters that do not have a direct impact on the wrapper search.

Both are used in a pre-search stage and the idea is that, as more tests are made, the

chances of estimating better values increases.

The filter percentage defines how many features are able to reach the wrapper part

of the algorithm. Advice about this feature was already given in section 3.3 and its

value will always depend on the dataset. It affects the exhaustiveness of the search

because as more features are present in the wrapper part, the bigger the search space

is.

The cut mechanism on the second phase of the wrapper consists of a timer that

regulates how often subsets are randomly removed from the search. The idea is to

decrease the amount of work at the final stage of the presented wrapper. Therefore,

the more often it removes subsets, the less will be explored.

The search threshold that controls the subset expansion during the first phase of the

CHAPTER 6. PERFORMANCE TESTS 83

wrapper is responsible for the amount of explored subsets. During this stage of the

search, the goal is to gather subsets that are close to the global best solution. The

concept of close is defined by this parameter. Hence, if the percentage increases, so

does the number of subsets tested.

The two remaining parameters are the size at which the wrapper switches phases and

the option to control how successors are generated. For the last part, there are two

options, either use the standard that explores a subset with all the possibilities, or

estimate the improvement probability vector and use it to generate successors. Related

to the number of tested subsets, the first strategy will result in more explored subsets,

since it expands every one in all its possibilities.

The size that determines the change on phase is a more complicated problem. Re-

capitulating the goal of the two-phases, the idea is to gather as many subsets close

to the best score as possible during the first stage, and then explore them until the

best score they can reach. However, analysing how this translates into the number of

tested subsets it is not easy. Therefore, some tests were made to address this issue.

The Madelon dataset from the NIPS challenge was used for the test. The idea was to

verify the score of the final solution, along with the number of tested subsets, as the

size to switch phases increase. Additionally, the impact of both successor generation

functions was assessed by repeating each test using both procedures. Figure 6.6

illustrates the results.

From the outcomes its possible to conclude that the size has a huge impact in the

score of the final solution and the number of tested subsets. Furthermore, small sizes

should be avoided, mainly because they process more subsets and tend to find worse

solutions. Regarding to the successor generation, the improvement probability always

tests a fewer number of subsets as expected. However, the quality of its solutions is

equivalent to the standard one. This reinforces the idea that a more exhaustive search

does not guarantee finding better solutions.

To summarize, table 6.7 demonstrates the impact of the parameters mentioned during

this section on the exhaustiveness of the wrapper search.

CHAPTER 6. PERFORMANCE TESTS 84

Table 6.7: Impact of the parameters on the wrapper search.

Parameter changes
Wrapper

exhaustiveness

Filter percentage

Improvement probabil-

ity

Search threshold

Switch search size

Cutting mechanism

CHAPTER 6. PERFORMANCE TESTS 85

70,00

72,00

74,00

76,00

78,00

80,00

82,00

84,00

86,00

88,00

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
in

a
l
so

lu
ti

o
n

 s
co

re

N
u

m
b

e
r

o
f

te
st

e
d

 s
u

b
se

ts

Size to Switch Search Phase

Tested Subsets Standard Tested Subsets Improve Probability Final Solution Score Standard Final Solution Score Improve Probability

Figure 6.6: Impact of both successor strategies and the size to switch search phase on

the number of tested subsets and final solution score.

6.3 MITWS Availability

The presented work during this thesis aims to further develop a scientific area that

has been widely studied in recent years. For that reason, and with the goal of helping

machine learning researchers with yet another tool, the produced work is provided

under open source licence and available at [20].

Nevertheless, not everyone who works with machine learning has a background in pro-

gramming, nor has the knowledge to dig through Python code to adapt the algorithm

to their needs. Therefore, with the goal of making this work fully available to any

researcher, a system that allows the manipulation of every parameter on MITWS

algorithm, using a configuration file in the XML format, was implemented. The

remaining of this chapter will explain how the system can be used.

The following example illustrates the attributes and their expected type of values, in

the configuration file:

<?xml version="1.0" encoding="utf-8"?>

<settings>

<setting name="train_file"> filename or filename1, filename2</setting>

CHAPTER 6. PERFORMANCE TESTS 86

<setting name="valid_file"> filename or filename1, filename2</setting>

<setting name="test_file"> filename </setting>

<setting name="dataset_type"> name </setting>

<setting name="dataset_name"> name </setting>

<setting name="number_of_features"> number </setting>

<setting name="number_of_processes"> number </setting>

<setting name="number_of_solutions"> number </setting>

<setting name="grid_tests"> number </setting>

<setting name="probability_estimation_tests"> number </setting>

<setting name="cross_validation_strategy"> number </setting>

<setting name="svm_kernel"> name </setting>

<setting name="kernel_parameters"> numbers </setting>

<setting name="estimate_improvement_probabilities"> no or yes </setting>

<setting name="percentage_filter"> number (0-1) </setting>

<setting name="size_to_switch_search_stage"> number </setting>

<setting name="threshold_search"> number (0-100)</setting>

<setting name="search_cutting_timer"> number </setting>

</settings>

The relation between attributes name, and their function in MITWS should be clear.

Nevertheless, for clarification, they will be discussed following the order of the XML file.

The configuration file was adapted to process the tests for the NIPS challenge. For that

reason there are three file attributes, where each one represents a different set. Data can be

inserted into two ways: using only one file where the last column is the label or introducing

data and labels into different files. The exception is the test set, where there are no labels

available, therefore only one is required. Although three files are presented, it is possible to

use only the train one, for the case where the user expects the final subsets of features and

do not want to further test them.

The dataset type is the format of the data. Currently all formats of the NIPS challenge are

acceptable. In addition to that, the CSV format was appended. The dataset name is just a

way to refer to the dataset and the number of features is the total amount of features in it.

The number of processes indicates how many processing units should be used. The num-

ber of solutions stipulate the number of solutions that should be given in the end of the

execution. The test attributes define the amount of tests on the probability estimation and

grid search. The cross validation strategy specify the number of folds to use during the

process of evaluating a subset. The svm kernel defines the kernel of the SVM (currently

available: RBF and linear), while the kernel parameters define its parameters. If this

last attribute is not a number, the MITWS will use the grid search to estimate it. The

CHAPTER 6. PERFORMANCE TESTS 87

estimate improvement probabilities selects the strategy to generate successors, setting it to

”yes” enables the improvement probabilities.

The last four parameters control the exhaustiveness of the search, and the attributes name

is the same as defined on the previous chapter where their impact was assessed.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This work aimed to propose a new feature selection algorithm and a strategy to execute

it with several processing units. During this thesis the new algorithm, MITWS, which

combines several pre-existing techniques with a novel wrapper search was presented and

discussed. Moreover, two strategies to execute MITWS in parallel were presented, one for

distributed memory and another for shared memory. Furthermore, all the produced work

was thoroughly analysed through different perspectives.

Assessing the results of the presented thesis, related to parallel performance and in terms

of scalability, both strategies conferred good results. The distributed memory methodology,

proved to be a reliable way of exploit parallelism using machines in distinct physical locations.

On the other hand, the shared memory approach produced a method that fully takes

advantage of the characteristics of this paradigm. It is essential to highlight that the parallel

gain with this strategy was able to reach super-linear speedup values. Comparing the two

approaches, the later has better parallel performance as detailed in section 6.1.5.

As far as the performance of feature selection goes, MITWS was tested against several

different solutions of the well-known NIPS challenge. Three metrics were considered during

comparison: accuracy, size of the final solution, and a combination of both. Examining the

first one, which was the one adopted on the challenge, MITWS were able to rank around the

60% for all datasets. Due to the reasons stated in 6.2.2, the results were not expected to be

any better. Nevertheless, the MITWS methodology proved to be a reliable way of finding

good solutions, however it can be improved by adding new techniques or testing different

components.

88

CHAPTER 7. CONCLUSION AND FUTURE WORK 89

It is important to state that the novel wrapper search introduced in this thesis was able to

find solutions near the perfect score in a reasonably amount of time. These are promising

indicators of its capability.

Finally, in order to make this an ongoing work, the presented work was provided under a

open-source licence. Additionally, a simple interface for those who do not have programming

background was added, to reach a higher number of users.

7.2 Future Work

As the results of the NIPS challenge state, there are some aspects that can be improved in

MITWS. The core of the algorithm is the novel wrapper search which presented good results.

However, components like the subset evaluation, strategy to filter features, classification

algorithms, or even new techniques such as outlier detection, should be tested and if proven

to perform well, added to the algorithm. One way of continuing to enhance the presented

algorithm, is to test the wrapper search with several different methods in order to determine

which should be used. Additionally, distinct components for different stages of the algorithm

could be defined as parameters in a configuration file.

With regards to the parallel strategy, both proposed strategies performed well in the tests

made in this work. However, there are different highly parallel systems that would require

creating new strategies. These are the case of FPGAs and GPUs. Implementing new parallel

methodologies that take advantage of these structures would be a good future step for this

work.

Appendix A

Acronyms

IT-Porto Instituto de Telecomunicações do Porto

ML Machine Learning

FS Feature Selection

NP-Hard Non-deterministic Polynomial-time Hard

GPU Graphics Processing Unit

IG Information Gain

MI Mutual Information

PCC Pearson Correlation Coefficients

MITWS Mutual Information Two-phased Wrapper Search

SVM Support Vector Machines

UCAIM Uncertain Class Attribute Interdependency Maximization

MS Master-Slave

NIPS Neural Information Processing Systems

XML eXtensible Markup Language

CSV Comma-Separated Values

FPGA Field Programmable Gate Array

90

Appendix B

Produced Papers

During this thesis, a paper was submitted to the IEEE 18th International Conference on

Computational Science and Engineering. The work presented the MITWS algorithm with

the shared memory strategy for parallel execution. The paper was accepted and will be

presented at Porto, Portugal in 22th of October, and published in the conference proceedings.

The submission was attached to this work.

91

A Parallel Computing Hybrid Approach for Feature
Selection

Jorge Silva
Instituto de Telecomunicações & DCC,

Faculdade de Ciencias,
University of Porto, Portugal

Email: up201007483@alunos.dcc.fc.up.pt

Ana Aguiar
Instituto de Telecomunicações

Faculdade de Engenharia,
University of Porto, Portugal

Email: aaguiar@fe.up.pt

Fernando Silva
CRACS/INESCTEC,

Faculdade de Ciencias,
University of Porto, Portugal

Email: fds@dcc.fc.up.pt

Abstract—The ultimate goal of feature selection is to select the
smallest subset of features that yields minimum generalization
error from an original set of features. This effectively reduces
the feature space, and thus the complexity of classifiers. Though
several algorithms have been proposed, no single one outperforms
all the other in all scenarios, and the problem is still an actively
researched field. This paper proposes a new hybrid parallel
approach to perform feature selection. The idea is to use a
filter metric to reduce feature space, and then use an innovative
wrapper method to search extensively for the best solution. The
proposed strategy is implemented on a shared memory parallel
environment to speedup the process. We evaluated its parallel
performance using up to 32 cores and our results show 30 times
gain in speed. To test the performance of feature selection we
used five datasets from the well known NIPS challenge and were
able to obtain an average score of 95.90% for all solutions.

I. INTRODUCTION

In 2011, a report by McKinsey Global Institute asserted
that machine learning is the key for innovation, competition,
and productivity [1]. For several years machine learning has
been widely studied, and new techniques and algorithms are
constantly emerging. However, preparing a classifier for a
classification task is not easy and researchers are commonly
faced with difficulties such as: how much data is needed, what
features should be added, and does the dataset has outliers and
noisy data [2]. Usually, researchers gather as much informa-
tion as possible about a problem and turn that information
into a processed dataset for machine learning purposes. This
methodology often leads to datasets with a large number of
features, which in most cases means poor performance from
the learning algorithm. The problem is commonly known as
the curse of dimensionality [3]. Moreover, as more features are
used the higher is the risk of overfitting, which means adapting
a learning algorithm so much to the training data, that it starts
”memorizing” examples instead of learning from them. Thus,
drastically decreasing prediction accuracy for unseen data [3].

Feature selection is the process of selecting a subset of the
original features so that the feature space is reduced according
to a certain evaluation criteria [4]. The goal is to find the
smallest subset possible that yields the minimum general-
ization error. There are several advantages of using feature
selection: improving classification performance, reducing the
time it takes to classify unseen data, and achieving a better
understanding of the process that generates data [5]. Since
feature selection is able to effectively reduce the dimension

Fig. 1: The four key steps of feature selection.

of the data, it is a commonly used technique to tackle the
previous mentioned classification problems.

Feature selection methods require a full search of the
feature space, testing subsets of features, and evaluating them
to find the final solution. The search space consists of the
combination of all possible subsets, which for a dataset with
n features produces a feature space of size 2n. This makes an
exhaustive search impracticable in most cases. For problems
with a large number of features, finding an optimal subset of
features is usually intractable and many problems of this kind
are asserted as NP-hard [6]. Several algorithms exist in the
literature that tackle this problem. Despite their differences
they all follow the same general approach, which consists
in four key steps: subset generation, evaluation of subset,
stopping criterion, and result evaluation [4]. The first step
defines how successors of a subset are generated and how
the search is guided. The second step represents a function
that is used to measure the quality of a subset. The conditions
that make the search stop are defined in the stopping criterion.
Finally, results validation is the process where the final solution
from the feature selection algorithm is evaluated for its quality.
Figure 1 illustrates an overview of the general process.

Depending on the size of the dataset and on the approach,
feature selection algorithms can take significant time to reach
the stopping conditions. Because of that, parallel computing
emerges as an option to tackle this problem. Taking a closer
look at the general procedure, the problem can be reformulated
as a set of multiples tasks. On this scenario, a task could be
defined as the process of generating a new subset, evaluating it,
and checking if the stopping criterion is reached. Understand-
ably, the processing of a task is completely independent of
processing any other. This makes the feature selection problem
an ideal candidate for parallelization.

Commonly, feature selection algorithms need to compro-
mise the goodness of their solutions in order to provide
results in a practicable time. Moreover, wrapper strategies are
known for producing the best results [6], however they are
not usually used in high dimensional datasets because of their
computational cost. This work proposes a new hybrid feature
selection algorithm that uses a filter procedure to reduce the
feature space and then uses a wrapper search implemented on a
shared memory parallel environment to find the final solution.
With this approach, we aim to achieve better solutions by using
a more computationally expensive approach that explores more
of the search space, combined with parallelism to speedup
execution.

The remainder of the paper is structured as follows: next
we present a brief review of the current state of art of
feature selection algorithms. In section III we thoroughly
explain each component of our approach and how they act
together. Section IV details the proposed novel heuristics
applied in our wrapper search component. Section V details the
implementation of our strategy on a shared memory parallel
architecture. Section VI assesses the parallel performance of
the implemented algorithm. Section VII empirically evaluates
and discusses the results attained with our strategy on several
public datasets. Finally, the last section discusses future work
and present conclusions on our work.

II. STATE OF ART

Feature selection has been widely studied and as result a
large number of algorithms have been proposed. These algo-
rithms can be categorized into three groups: filter, wrapper, and
embedded [4]. Filter algorithms use a classifier independent
metric to evaluate either individual features or subsets. The
idea is to identify which features are more relevant to the
learning task. These methods assume complete independence
between data and the learning algorithm. As a result, the
final solution could be applied to several learning algorithms
without the need to run the filter algorithm more than once.
Usually the metric is fast to compute, therefore filter methods
have low-computational cost. However, in most cases they
fail to produce the optimal subset of features and usually
perform worst than other types of feature selection algorithms.
Examples of filter algorithms in literature are found in [7], [2],
[6], [5].

Wrapper algorithms find the final solution using a learning
algorithm as part of the evaluation criteria. The main idea of
these methods is to use the learning algorithm as a ”black-box”
to guide the search for the optimal solution. The learning is
applied to every candidate solution and the goodness of the
subset is given according to the performance of the learning
algorithm. Due to the learning algorithm being directly used
on the process of selecting features, these methods tend to find
better solutions. Nonetheless, the final solution only applies for
the selected learning algorithm, since using a different one will
most likely result on a different final solution. These methods
have higher computational cost as they require training and
classifying data for each candidate solution. Moreover, cross-
validation techniques are commonly used, which further in-
creases the computational cost of the algorithm [8]. Combining
different search strategies with different classification algo-
rithms results in a new wrapper method, and several examples

can be found in the literature [9], [7], [10].

Embedded methods are inspired by wrapper and filter
algorithms and try to use the best qualities from both types.
These algorithms encapsulate feature selection with classifier
construction. By doing that, the feature selection part interacts
with the learning algorithm. However, it does not require
training the classifier and thus they are usually faster than
wrapper methods. Since these methods do not separate feature
selection from learning, they are very specific to a learning
algorithm. Meaning that an embedded method can only be
applied to a specific learning algorithm. Tang et. al. [11]
categorizes embedded methods into three groups and provides
examples of algorithms for each type.

A. Hybrid Methods

Approaches that combine two categories of feature selec-
tion algorithms are gaining importance in the community. They
are called hybrid methods and combine filter and wrapper
methods in order to further improve the feature selection
process. The idea behind these methods is to use a filter method
to cut the search space into a smaller space, and then use a
wrapper method to select the final solution. As examples of
hybrid algorithms, we have the IFSFF algorithm [12] which
uses a filter method to rank features in order to guide more
efficiently the wrapper search. Another example is the Quick
Branch and Bound algorithm which uses a filter approach to
define subsets as starting points for a wrapper algorithm [7].
More hybrid algorithms are described in [6].

B. Parallel Feature Selection

Selecting the ideal set of features is far from an easy task.
It usually requires many attempts until the desired result is
attained. A conventional methodology is to change parameters
on the algorithms or test different algorithms to compare
results. Moreover, depending on the size of the dataset and
on the algorithm chosen, a feature selection process can
take a large amount of time. This triggered researchers to
exploit parallelism within feature selection algorithms in order
to improve their executions times. For example, Azmandian
et. al. [13] used GPUs to accelerate their feature selection
algorithm. Li et. al. [14] also resorted to parallelism to speed
up a genetic search in the context of feature selection.

III. OVERVIEW OF THE PROPOSED ALGORITHM

In this section, we introduce our proposed hybrid method.
It starts with a filter approach that ranks features individually.
Based on a threshold and on the calculated rank, features are
selected to the next phase. The goal of the filter is to use a
less costly computational method to reduce the search space.
Therefore, removed features are considered irrelevant and are
not used any further in the next stages of the algorithm. We
use Mutual Information (MI) [5] as the metric to individually
rank features. The wrapper phase searches the feature space by
using a novel meta-heuristic in order to find the final subset of
features. Wrapper methods use a learning algorithm to evaluate
the goodness of a subset. In our approach we use Support
Vector Machines (SVM) [15] as our learning algorithm.

The filter and wrapper components represent the main
functions of the algorithm and are responsible for selection

Fig. 2: Workflow of the proposed method.

features. Because, the wrapper search is the most significant
contribution of this paper, we dedicate a full section to it
(Section IV). Both components require some pre-processing
steps that are executed by two additional algorithms: Uncertain
Class Attribute Interdependency Maximization (UCAIM) [16]
and Grid Search [17]. The first one is used to discretize
data, which is a recommended step when using SVMs, and
it is a mandatory procedure to calculate MI in cases where
variables have continuous values. The Grid Search is a very
popular procedure used to estimate the parameters of learning
algorithms.

The workflow of our proposed method is illustrated in
figure 2. We start by preparing data, then discretize it with
UCAIM algorithm. Then, the feature space is reduced by
eliminating features that are not able to pass the MI filter. The
next step is to estimate the SVM parameters using the grid
search. Finally, the algorithm runs the wrapper search which
is responsible to find the subset of features that is presented as
final solution. All algorithm steps are explained in more detail
in the following sections.

A. Prepare Data

This is the stage where data is read from files and pre-
processed. In most cases, pre-processing data includes tech-
niques to find outliers that may jeopardize the performance of
the learning algorithm. Although there are several techniques
to detect and remove outliers, this process usually requires
some knowledge about the dataset. This procedure is rather
specific to the dataset and thus we do not include it as part of
our method. Instead, we assume that the dataset is already
clean and ready for the algorithm. In any case, this stage
implements normalization of the feature values to a scale from
0 to 1. This is a recommended procedure in order to improve
the performance of learning algorithms [2].

B. UCAIM Algorithm

In order to discretize data, we selected the UCAIM algo-
rithm, which is an evolution of the original CAIM algorithm.
Both methods have the goal to delineate intervals on data
in such a way that the interdependence between features
values and class labels is maximum. Despite the fact that
both algorithms perform well, the evolutionary approach adds
the offset component, which takes into account cases where
data is unbalanced. The UCAIM algorithm has been shown to
outperform the original one [16].

The UCAIM algorithm starts by setting the initial dis-
cretization scheme, D, as a set of two elements: the maximum
and minimum values. Then, it proceeds to define a set of

possible points. These are all the midpoints between each
adjacent pair in the sorted and non-duplicate set of values.
After that, UCAIM iteratively tries to add possible points
to D. At each round, all possible points are added, one at
the time, to D. Then, formula 1, which tries to maximize
the interdependence between classes, is used to evaluate the
quality of D with the recently added point. At the end of the
round, the point with the best score is definitely appended to
D. The process stops, when no point could improve the score
that D has at the start of the round. By the end of the UCAIM
algorithm, we get a discretization scheme D. Later, for each
feature value, we discover the interval on D where it belongs,
and convert the value to the midpoint of that interval. Thus,
achieving the desired discrete data.

Algorithm 1 illustrates the steps needed to find D for a
given feature Fi and its possible values Vi on a classification
problem with S label classes.

UCAIM(Fi, D) =

n∑
r=1

max2
r×Offsetr
M+r

n
(1)

Where n is the number of intervals, r iterates through all
intervals, maxr is the maximum value inside an interval, M+r

is the total number of values on the interval and offset:

Offsetr =

S∑
i=1

(maxr − qir)

S − 1
(2)

where S represents the classes labels, qir are the number
of values in interval r that belong to class i, and maxr is the
maximum number of values in interval r across all classes.
Basically, Offsetr is the average difference of the number of
points in all classes to the number of points in the class that
has the most points in that interval.

Algorithm 1 UCAIM Algorithm

1: procedure UCAIM(Vi, S)
2: values← REMOVEDUPLICATES(Vi)
3: min,max← FINDLIMITS(values)
4: B ← GENERATEPOSSIBLEPOINTS(values)
5: K ← 1, D ← {min,max},
6: BestS ← 0, BestP ← {}
7: while K ≤ S or GlobalUCAIM < BestS do
8: GlobalUCAIM ← BestS
9: D ← D ∪BestP

10: for P ∈ B do
11: auxD ← D ∪ P
12: auxS ← GETUCAIMSCORE(auxD)
13: BestS,BestP ← UPDATEBEST(P, auxS)
14: K ← K + 1

C. Filter Metric

In contrast to some feature selection algorithms, we do
not intend to use a filter approach to find a final subset of
features. Instead, our method uses it as a pre-processing step to
eliminate features and make it practicable for a more intensive

search on the wrapper part. Therefore, our filter should have
the following characteristics:

1) Evaluate single features. Several filter approaches
evaluate subsets of features. However, to keep a low
computational cost, we avoid searching for feature
subsets and evaluate features only individually.

2) Not very restrictive. The percentage of removed
features should not be very large. Although as less
features pass the filter the faster the wrapper ends,
it is difficult to accurately assess the quality of a
feature just by using a filter metric. It has been shown
that features considered irrelevant when individually
evaluated, are in fact important when inserted into
a specific set of features [2]. Hence, to avoid com-
promising the performance of the final solution, it
is important to avoid removing a large number of
features at this stage.

There are several algorithms in the literature that fulfil
the first requirement of our list, these methods are called
univariate [12]. Two of the most commonly used metrics of
this type are Mutual Information (MI) and Pearson Correlation
Coefficients (PCC) [2]. Both metrics measure the dependence
between two variables. Nonetheless, there is a key difference
between them. MI measures the general dependence between
the variables while PCC measures linear dependence. Li et
al. [18] tested this property and concluded that this makes
MI a better metric. Based on that work and on the amount
of other works that use MI [5], we decided to use it as the
selected metric to our filter approach.

Calculating the MI score for every feature does not remove
features by itself, so in the next step we define a strategy
that filters features taking into account the required second
characteristic. The idea is to define a threshold and to remove
features for which the MI score is bellow that threshold.
Since MI scores diverge a lot when changing datasets, it is
not possible to use a fixed threshold. Instead, we define the
threshold as a percentage of the maximum MI score, and leave
out features with MI below the threshold.

D. Grid Search

As previously mentioned, we use the SVM as our learning
algorithm. As we will show in the next sections, SVMs have
some parameters that must be tuned in order to provide better
results. However, it is not uncommon for researchers to not
knowing which parameters to use. On our method, we let
users define the parameters; yet, if they do not specify them,
the algorithm estimates the best parameter set to use. We test
several parameters and select the ones that provide the best
results using a grid search. This method tests parameters in
two ranges. First, a large scale range and then, after choosing
one value for the larger range, a smaller scale range is used.
For example, suppose that for a parameter i the first possible
values are Li = {..., 27, 29, 211, 213, ...}. Now imagine that
the selected value from the Li is 29, hence the algorithm
proceeds to search the final parameter in the following range
Si = {..., 28.5, 28.75, 29, 29.25, 29.5, ...}.

Typically grid search is applied to tune the classifier using
the set of features. However, because we use the classifier to
select a subset of features, we need to choose the parameters

Fig. 3: Subset Evaluation

before knowing the feature set to be used. In addition, it
is impracticable to perform a grid search for every subset
being evaluated during the wrapper search. Thus, we perform
a grid search on n randomly generated feature subsets after
the filter and before starting the wrapper search. The best set
of parameters for each feature subset counts as a vote, and the
parameter set with most votes is selected. In cases where the
highest number of votes is the same for more than one set of
parameters, we generate n new random subsets and the test is
repeated for the tied set of parameters. This process is repeated
until there are no more ties.

IV. WRAPPER SEARCH

Our proposed feature selection algorithm was designed to
make use of existing algorithms for most of the tasks that
must be performed. However, the wrapper search is a new
meta-heuristic which, together with the strategy for its parallel
execution, makes it a main contribution of this work. This
is the most complex part of our algorithm and the functions
used at this stage define its computational cost and its ability to
find good solutions. For the sake of understanding, we further
divided its explanation into three sections: learning algorithm,
search strategy, successor generation. The following section
complements the description with the parallel strategy.

A. Learning Algorithm

We use SVM as the learning algorithm to our method based
on the work [15] in which the authors compare several learning
algorithms in the context of classification problems. They
concluded that SVM in general outperforms other classifiers.
SVMs can have different kernels, and each one defines a
distinct way to map data into higher dimensions. In order to
select an adequate kernel, size and type of data should be taken
into account [17]. The number of parameters to be estimated
also depends on the kernel selection.

The function of the SVM in our approach is to evaluate
the goodness of a subset of features. For each tested subset,
we train the classifier with a part of the data and test it with
the remaining. This process is commonly known as cross-
validation [17] and the number of times it is performed for
a subset depends on the defined number of folds. In the end
of the whole process the algorithm gets a score for the subset.
This score is the average of the accuracy obtained for each
fold. This process is illustrated by figure 3.

B. Search strategy

Although several search strategies exist and have been used
on wrapper approaches, we decided to implement a new meta-
heuristic that explores the search space more thoroughly. The
idea was to create a different strategy to search for solutions,

Fig. 4: Example of the implemented wrapper search

while maintaining a structure that could be easily run with
multiple processors. The proposed search organizes subsets as
nodes on a tree whose first level is composed by n starting
subsets, each with a single feature not removed by the filter.
From now on, we use subsets and nodes interchangeably.

The innovative idea of the proposed search is to explore
broadly different regions of the search space, looking for the
areas of higher classification accuracy, and then focus on
searching the local maxima in each region. Thus, the search
strategy doesn’t have an uniform behaviour, but is divided
into two stages. First, we gather as many good solutions as
possible. Then, we improve them up to the best score they
can reach on the second stage. The transition between stages
takes place when subsets reach a certain number of features.
Figure 4 illustrates an example of the implemented wrapper
search.

In the first stage, the decision to expand a node or not is
based on the distance from the obtained score to the global
best. In this step, a threshold is defined and nodes whose
difference of score to the global best is lower than the threshold
are expanded further. During the second stage, nodes are
searched using a depth first strategy and they are expanded
while they still improve the score of their parent. The search
stops when there are no more nodes left to explore. In this
stage, a mechanism cuts subsets with a certain probability to
avoid excessive work. The probability of each subset being cut
is defined based on how distant its score is from the global
best, according to the following table:

% Distance to global Cut probability
d < 0.5 0%
0.5 ≤ d < 1.0 25%
1.0 ≤ d < 1.5 50%
d ≥ 1.5 75%

The mechanism executes every t seconds, where t is a
value which can be user defined.

The defined threshold in the first stage and the size at
which stages switch have a great impact on the amount of
nodes explored in the search. Thus, it is possible to define how
restrictive the search is by manipulating these parameters.

Fig. 5: Successor Generation using improvement probabilities

C. Successor Generator

Finally, we explain how to generate successors of a subset.
The idea is to add to a subset Sj several features that are not yet
part of it. Each feature can be added with a specific probability,
according to a likelihood of improving the evaluation score,
estimated in a pre-processing step described below. If k
features are selected to be added, then k new successors of
Sj are generated. Each one represents Sj combined with a
new feature. By doing so, our method increases the likelihood
of features with high improvement score being added to new
subsets. Figure 5 illustrates this process.

The likelihood of a certain feature contributing to an
improvement in the evaluation criteria is estimated in a pre-
search phase. The procedure starts by generating n random
subsets, and evaluates each one of them using the subset
evaluation procedure. Then, for every Fi we test how the score
of a subset improves when Fi is either added or removed. In
the end we count how many times Fi improved subsets to
calculate the likelihood of improvement. These values are then
used when the wrapper search decides to expand a node.

It is clear that our successor generator function may gener-
ate repeated subsets. Since the function that evaluates subsets
is deterministic, testing a subset more than once is a waste
of computations. But the search strategy does not handle the
problem. Thus, we added a mechanism to avoid work repetition
to the process of generating successors. The hash value of
every tested subset is added to an hash table. Then, every time
a new subset is generated, a look up in an hash table checks
whether it has been tested before, if the answer is positive,
then the successor is discarded.

D. Overview of the wrapper search

In the previous sections, we discussed the several com-
ponents of the proposed wrapper search. It is also important
to understand how they act together. Algorithm 2 details the
overall wrapper search strategy.

V. PARALLELIZED METHOD

The UCAIM, Filter and Grid Search parts of our proposed
approach are not computationally costly, however, the wrapper
part is. Our search strategy is very intensive in the number of

Algorithm 2 Search Strategy

1: procedure SEARCH(size,W, data, hashTable, probs)
2: lastStage← False
3: while W 6= empty do
4: s← REMOVELAST(W)
5: if SIZE(s) ≥ size then
6: lastStage← True

7: score← SVMCLASSIFICATION(s, data)
8: if WORTHEXPAND(score, s, lastStage) then
9: newN ← EXPAND(s, hashTable, probs)

10: UPDATEGLOBAL(score)
11: if lastStage then
12: W ←W ∪ newN
13: else
14: W ← newN ∪W

explored nodes. Thus, finding a way to realise the search in
parallel will obviously help in reducing the computation time.
Although the first three parts are not very expensive, we have
also parallelized them. On UCAIM and Filter parts, our method
achieves parallelism by dividing features by processors. By
contrast, on the Grid Search the random generated subsets are
divided by the processors. Since in all parts, problems were
divided into smaller tasks and each one of them is independent,
this presented no major difficulty.

On the other hand, the wrapper presents a challenge that
can compromise the performance of the algorithm. The wrap-
per requires some information such as the hash table and best
score to be global accessible and constantly updated. Keeping
such structures always updated when executing with multiple
processes may become computationally costly in terms of
performance.

A. Parallel Scheme

We can visualise the problem of our wrapper search as a
set of tasks. Each task is the process of getting a subset from
a work list, evaluate it, decide to either expand it or not, and
in the case of expanding, generate new subsets, remove those
that have been already been tested and in the end, add all the
remaining ones to the work list.

The idea of our parallel wrapper is to define local work
lists on every process and use them to store subsets that still
have to be processed. Then, iteratively, having each process
computing a task for a subset. The processes would get the
subset from their local work list and add new work there as
well. Additionally, in order to remove new generated subsets
already tested, a global hash table that is accessible by all
process is used. There, the hash value of every tested subset
is stored.

At the beginning of the search, the individual subsets of
features are equally distributed among all processes and each
one starts the computations as previous described. During the
search, some processes will run out of work while there are
others with a lot of work left. In order to provide a good work
balance, a process Pi that hasn’t any work, is able to request it
from other process Pj . When Pj sees the request, it will send
part of its work back to Pi.

Fig. 6: Workflow of a single process

The overall workflow for a single process is illustrated by
figure 6, where W represents the local work list.

B. Global information

To achieve the desired parallelism, we decided to use a
shared memory environment where processes have access to
the same memory addresses simultaneously. This paradigm
provides a cheap way of communication between processes
and avoids redundant copies of informations across multiple
processes.

Global information is required to keep an hash table
updated as well as to store the best score found during the
search. To access and update this information we had to use
different strategies. The best score is a single variable defined
in shared memory. The access to it is controlled by a mutual
exclusion mechanism to avoid race conditions.

The hash table required some additional work, using a
unique hash table and have every process constantly updating
it and searching on it for repetitions is not an option. Mainly
because processes would start writing in the same memory
spaces. Thus, the hash table would become incoherent, proba-
bly leading to the loss of entries which would result in lots of
repeated work. On the other hand, using a mutual exclusion
mechanism is not viable because waiting for the access to the
memory would drastically decrease the parallel performance.

In order to make this work we divide the hash table into p
partitions, each one is assigned to a process Pi. Only process
Pi is allowed to write in the partition assigned to it. However,
any process is free to read from any partition at any given
time. By doing that, each process stores the hash of its tested
subsets in its own partition. Then, when it has to check if a
new generated subset is new, it can read from every partition
without having to wait for permission. Mutual exclusion was
avoided and memory coherence is guaranteed because for
every single memory address, only one process is allowed to
write on it.

VI. PERFORMANCE OF THE PARALLELIZATION

In this section we assess the performance of the imple-
mented parallel search with the increase in the number pro-
cesses used in the computation. It is common to run the same
program several times using a different number of processing
units and then get the execution times of each one of them.
However, in our case, changing the number of processes also
changes the amount of visited nodes. For this reason and to

Fig. 7: Hash scheme in shared memory.

Fig. 8: Comparing Speedup against linear

perform all tests with the same conditions, we decided to test
the worst case scenario when 20 features reach the wrapper
search. The worst case scenario for our search is defined by
the following properties:

1) Every subset is expanded
2) When expanded, each subset is combined with all

possible features
3) The cutting probability for all subsets is 0%.

More accurately, this results in an exhaustive search with
a very large number of attempts resulting from repeated work.
Also, this means that regardless of the number of processors,
all tests would search the same feature space which is a total
of 220− 1 = 1048575 subsets. Table I illustrates the results of
our test and figure 8 compares the obtained speedup against
the linear.

TABLE I: 20 Feature Exhaustive Search Data

Processors Execution Time (sec) Speedup Number of tests
1 133984 1.00 1048575
2 64148 2.09 1048575
4 31427 4.26 1048575
8 16406 8.17 1048575
12 11055 12.12 1048576
16 8457 15.84 1048575
20 6812 19.67 1048575
24 5825 23.00 1048578
28 4948 27.08 1048581
32 4409 30.39 1048579

The results show an almost linear speedup in performance
of the parallel search when 32 cores are used. In some cases,
the implemented strategy was able to achieve speedups greater
than the ideal values. Moreover, it was able to efficiently avoid
repeated work by having every process keeping track of their
tested subsets in its partitioned hash table and checking all the
partitioned hash to avoid repeating them. In the worst case,
only 6 subsets out of the 1048575 total subsets were tested
more than once.

VII. FEATURE SELECTION RESULTS

In 2003, the NIPS[19] feature selection challenge was
created and its aim was to find which algorithm would preform
better in terms of classification. The contest consists of five
public datasets, each divided into three sets: train, validation,
and test. For the first two, it is possible to access both data
and labels, while on the last one only data is available. The
idea of the challenge is to use feature selection and machine
learning techniques on the train and validation sets in order to
construct a classifier that is able to accurately predict the labels
of the test set. At the end of the process, one can submit the
generated predictions on the website and it provides feedback
about the results. Nowadays the challenge is still open and
it allows researchers to benchmark their systems. Thus, we
decided to use it in order to test the performance of our
approach. The following table presents the characteristics of
the five datasets[19]:

Dataset Type Features Train Ex-
amples

Validation
Examples

Test Ex-
amples

Arcene Dense 10000 100 100 700
Dexter Dense 5000 6000 1000 6500
Gisette Sparse integer 20000 300 300 2000
Dorothea Sparse binary 100000 800 350 800
Madelon Dense 500 2000 600 1800

Regarding user defined parameters, we used 0.5 for the
search threshold, 8 for the size at which the search changes,
and 900 seconds for the cutting mechanism. In addition to that,
we executed each test using 62 cores and RBF as the SVM’s
kernel. These were the fixed values for all tests, however some
parameters such as cross-validation technique and percentage
of the filter had to be adapted to each dataset. The following
table presents the used parameters and the results obtained:

Dataset Filter
Thresh-
old

Features
Post-
Filter

Cross-
Validation

Size Final
Subset

Final
Score

Time
(sec)

Arcene 0.50 232 Leave-
one-out

14 99.00 2156

Dexter 0.94 364 Leave-
one-out

72 98.50 32539

Gisette 0.97 121 5 folds 85 97.32 53560
Dorothea 0.90 450 5 folds 30 97.63 32962
Madelon 0.97 255 10

folds
14 87.10 33117

After obtaining a final subset for each dataset, we used it
to train a classifier only using data from the train set. Then,
we predicted the labels for every one of the three sets: train,
validation, and test. Later, results were submitted to the NIPS
website and the accuracy of our predictions as well as the
rank among all the submissions are illustrated on the following
table:

The results we obtained ranked among the top 60% for
each dataset. This outcome came at no surprise considering

Dataset Accuracy
Train

Accuracy
Validation

Accuracy
Test

Rank

Arcene 99.00 82.00 74.56 892/1503
Dexter 98.33 83.67 81.65 819/1007
Gisette 98.97 96.80 96.67 465/932
Dorothea 95.63 94.29 77.18 475/812
Madelon 93.35 87.50 88.67 344/1059

that the goal of the challenge set used is directed to evaluate the
overall performance of the classification system. Despite being
part of the machine learning workflow, feature selection is not
the whole process and usually several more techniques such
as outlier detection, noisy examples removal and generation of
synthetic data are required [20]. Moreover, knowledge about
the specific problem at hand can improve the generalisation
result by targeting feature choice, or through the use of another
metric for calculating the feature subset score in the search. In
our experiments, we focused on testing the ability of our search
algorithm to find what was defined as a good subset according
to the score, which was the accuracy of the learning algorithm
on the training sets. Although cross-validation strategies were
used to improve generalization, they were not enough, and
in general the classifier was not able to predict well on
unseen data. Nevertheless, we are quite happy with the results
on the NIPS challenge, because we could confirm that our
hybrid approach, without any further analysis of the dataset
nor additional techniques, was able by itself to produce quite
acceptable results.

In terms of feature selection, our approach, in most cases,
was able to produce a final subset of features that was much
smaller than the original set of features and that had very
high accuracy score. Although we cannot guarantee that the
optimal subset was found, it would require to test the whole
search space, our algorithm was able to achieve results near
the perfect score in 4 out of the 5 tests. Moreover, the results
were obtained in a practicable amount of time, considering the
size of the datasets and the cross-validations methods used.

VIII. CONCLUSION

In this paper, we propose a new hybrid feature selection
approach that resorts to a novel parallel search strategy to
speedup execution. It starts by reducing the feature space
using a filter and then uses a wrapper method to find the
final solution. Because of their high-computation cost, wrapper
methods are not commonly used on high dimensional datasets.
In our experimental evaluation, we tested high dimensional
datasets, thus showing how it is possible to take advantage of
parallelism to thoroughly search larger spaces in a practicable
amount of time. Our initial results show an almost linear
speedup up to 32 cores while being able to find solutions with
near perfect score.

We are aware that the accuracy of the classifier can be
improved by employing better generalization methods, but
that was not the goal of the task at hand. We intend to
experiment on more problems and with other filter methods,
namely PCC [2] and Relief [4], as well as with other classifiers
Decision Trees and kNN[20], methods that fit well with the
approach we proposed.

ACKNOWLEDGMENT

We would like to thank Isabelle Guyon and Lukasz Ro-
maszko who kindly reopening the NIPS 2003 challenge.

This work was partially supported by national funds
through project VOCE (PTDC/EEA-ELC/121018/2010), and
in the scope of R&D Unit UID/EEA/50008/2013, funded by
FCT/MEC through national funds and when applicable co-
funded by FEDER/PT2020 partnership agreement.

REFERENCES

[1] J. Manyika and et. al., “Big data: The next frontier for innovation,
competition, and productivity,” McKinsey Global Institute, no. May, p.
156, 2011.

[2] I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature
Selection,” J. Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

[3] P. Domingos, “A few useful things to know about machine learning,”
Commun. ACM, vol. 55, no. 10, pp. 78–87, 2012.

[4] V. Kumar and S. Minz, “Feature Selection: A literature Review,” Smart
CR, vol. 4, no. 3, pp. 211–229, 2014.

[5] J. R. Vergara and P. A. Estévez, “A review of feature selection methods
based on mutual information,” Neural Computing and Applications,
vol. 24, no. 1, pp. 175–186, 2013.

[6] H. Liu and L. Yu, “Toward Integrating Feature Selection Algorithms
for Classification and Clustering,” IEEE Trans. Knowledge and Data
Engineering, vol. 17, no. 4, pp. 491–502, 2005.

[7] L. Molina, L. Belanche, and A. Nebot, “Feature selection algorithms:
A survey and experimental evaluation,” in ICDM’2002, 2002, pp. 306–
313.

[8] K. Dunne, P. Cunningham, and F. Azuaje, “Solutions to Instability Prob-
lems with Sequential Wrapper-based Approaches to Feature Selection,”
J. Machine Learning Research, pp. 1–22, 2002.

[9] R. Kohavi and G. John, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[10] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507–
2517, 2007.

[11] J. Tang, S. Alelyani, and H. Liu, “Feature Selection for Classification:
A Review,” in Data Classification: Algorithms and Applications, C. Ag-
garwal, Ed. CRC Press, 2014.

[12] J. Xie and W. Xie, “A Novel Hybrid Feature Selection Method Based
on IFSFFS and SVM for the Diagnosis of Erythemato-Squamous
Diseases,” JMLR Workshop on Applications of Pattern Analysis, vol. 11,
pp. 142–151, 2010.

[13] F. Azmandian, A. Yilmazer, J. G. Dy, J. A. Aslam, and D. R. Kaeli,
“GPU-Accelerated Feature Selection for Outlier Detection Using the
Local Kernel Density Ratio,” in ICDM’2012, 2012, pp. 51–60.

[14] R. Li, J. Lu, Y. Zhang, and T. Zhao, “Dynamic Adaboost learning
with feature selection based on parallel genetic algorithm for image
annotation,” Knowl.-Based Syst., vol. 23, no. 3, pp. 195–201, 2010.

[15] V. G. C., “Performance Evaluation of Machine Learning Classifiers in
Sentiment Mining,” Int. Journal of Computer Trends and Technology
(IJCTT), vol. 4, no. 6, pp. 1783–1786, 2013.

[16] J. Ge, Y. Xia, and Y. Tu, “A Discretization Algorithm for Uncertain
Data,” in DEXA’2010, LNCS 6262, 2010, pp. 485–499.

[17] C. Hsu, C. Chang, and C. Lin, “A Practical Guide to Support Vector
Classification,” BJU international, vol. 101, no. 1, pp. 1396–400, 2008.

[18] W. Li, “Mutual information functions versus correlation functions,”
Journal of Statistical Physics, vol. 60, no. 5-6, pp. 823–837, 1990.

[19] “NIPS 2003 feature selection challenge,”
http://www.nipsfsc.ecs.soton.ac.uk/results/?ds=overall, accessed:
2015-04-23.

[20] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classifi-
cation Techniques,” Informatica (Slovenia), vol. 31, no. 3, pp. 249–268,
2007.

Appendix C

Appended Images

100

APPENDIX C. APPENDED IMAGES 101

Figure C.1: Correlating feature reduction with accuracy for every submission in the

Arcene dataset.

Figure C.2: Correlating feature reduction with accuracy for every submission in the

Dexter dataset.

APPENDIX C. APPENDED IMAGES 102

Figure C.3: Correlating feature reduction with accuracy for every submission in the

Dorothea dataset.

Figure C.4: Correlating feature reduction with accuracy for every submission in the

Gisette dataset.

APPENDIX C. APPENDED IMAGES 103

Figure C.5: Correlating feature reduction with accuracy for every submission in the

Madelon dataset.

References

[1] Charu C Aggarwal and Philip S Yu. Outlier detection for high dimensional data. In

ACM Sigmod Record, volume 30, pages 37–46. ACM, 2001.

[2] Enrique Alba. Parallel evolutionary algorithms can achieve super-linear performance.

Information Processing Letters, 82(1):7–13, 2002.

[3] Gene M Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer

conference, pages 483–485. ACM, 1967.

[4] Fatemeh Azmandian, Ayse Yilmazer, Jennifer G Dy, Javed Aslam, David R Kaeli,

et al. Gpu-accelerated feature selection for outlier detection using the local kernel

density ratio. In Data Mining (ICDM), 2012 IEEE 12th International Conference on,

pages 51–60. IEEE, 2012.

[5] Olivier Beaumont, Arnaud Legrand, and Yves Robert. The master-slave paradigm

with heterogeneous processors. Parallel and Distributed Systems, IEEE Transactions

on, 14(9):897–908, 2003.

[6] Lluıs A Belanche and Félix Fernando González. Review and evaluation of feature

selection algorithms in synthetic problems. arXiv preprint arXiv:1101.2320, 2011.

[7] Waad Bouaguel and Ghazi Bel Mufti. An improvement direction for filter selection

techniques using information theory measures and quadratic optimization. arXiv

preprint arXiv:1208.3689, 2012.

[8] Brad Brown, Michael Chui, and James Manyika. Are you ready for the era of ‘big data’.

McKinsey Quarterly, 4:24–35, 2011.

[9] Yi-Wei Chen and Chih-Jen Lin. Combining svms with various feature selection

strategies. In Feature extraction, pages 315–324. Springer, 2006.

[10] CodaLab Competitions feature selection challenge. https://www.codalab.org/

competitions/3931?secret_key=d6c218a3-3b83-4eed-8e39-5b895c5a5e35#

results. Accessed: 2015-05-14.

104

https://www.codalab.org/competitions/3931?secret_key=d6c218a3-3b83-4eed-8e39-5b895c5a5e35#results
https://www.codalab.org/competitions/3931?secret_key=d6c218a3-3b83-4eed-8e39-5b895c5a5e35#results
https://www.codalab.org/competitions/3931?secret_key=d6c218a3-3b83-4eed-8e39-5b895c5a5e35#results

REFERENCES 105

[11] Jerffeson Teixeira de Souza, Stan Matwin, and Nathalie Japkowicz. Parallelizing feature

selection. Algorithmica, 45(3):433–456, 2006.

[12] Peter J Denning and Walter F Tichy. Highly parallel computation. Science,

250(4985):1217–22, 1990.

[13] Pedro Domingos. A few useful things to know about machine learning. Communications

of the ACM, 55(10):78–87, 2012.

[14] Ciro Donalek, S George Djorgovski, Ashish Mahabal, Matthew J Graham, Alan J

Drake, Thomas J Fuchs, Michael J Turmon, A Arun Kumar, N Sajeeth Philip, Michael

Ting-Chang Yang, et al. Feature selection strategies for classifying high dimensional

astronomical data sets. In Big Data, 2013 IEEE International Conference on, pages

35–41. IEEE, 2013.

[15] Wlodzislaw Duch, Tadeusz Wieczorek, Jacek Biesiada, and Marcin Blachnik. Compari-

son of feature ranking methods based on information entropy. In Neural Networks, 2004.

Proceedings. 2004 IEEE International Joint Conference on, volume 2, pages 1415–1419.

IEEE, 2004.

[16] W lodzis law Duch, Tomasz Winiarski, Jacek Biesiada, and Adam Kachel. Feature

ranking, selection and discretization. In Proceedings of Int. Conf. on Artificial Neural

Networks (ICANN), pages 251–254, 2003.

[17] Kevin Dunne, Padraig Cunningham, and Francisco Azuaje. Solutions to instability

problems with sequential wrapper-based approaches to feature selection. Journal of

Machine Learning Research, 2002.

[18] Jerome H Friedman. On bias, variance, 0/1—loss, and the curse-of-dimensionality. Data

mining and knowledge discovery, 1(1):55–77, 1997.

[19] Jiaqi Ge, Yuni Xia, and Yicheng Tu. A discretization algorithm for uncertain data. In

Database and Expert Systems Applications, pages 485–499. Springer, 2010.

[20] GIT mitws repository. https://github.com/JSilva90/MITWS. Accessed: 2015-09-14.

[21] Puneet Gupta, David Doermann, and Daniel DeMenthon. Beam search for feature

selection in automatic svm defect classification. In Pattern Recognition, 2002.

Proceedings. 16th International Conference on, volume 2, pages 212–215. IEEE, 2002.

[22] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.

The Journal of Machine Learning Research, 3:1157–1182, 2003.

[23] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection

for cancer classification using support vector machines. Machine learning, 46(1-3):389–

422, 2002.

https://github.com/JSilva90/MITWS

REFERENCES 106

[24] Hongwei Hao, Cheng-Lin Liu, and Hiroshi Sako. Comparison of genetic algorithm and

sequential search methods for classifier subset selection. In null, page 765. IEEE, 2003.

[25] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer,

41(7):33–38, 2008.

[26] Victoria J Hodge and Jim Austin. A survey of outlier detection methodologies. Artificial

Intelligence Review, 22(2):85–126, 2004.

[27] Thanyaluk Jirapech-Umpai and Stuart Aitken. Feature selection and classification for

microarray data analysis: Evolutionary methods for identifying predictive genes. BMC

bioinformatics, 6(1):148, 2005.

[28] Leonard Kleinrock. Analysis of a time-shared processor. Naval research logistics

quarterly, 11(1):59–73, 1964.

[29] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In Ijcai, volume 14, pages 1137–1145, 1995.

[30] Ron Kohavi and George H John. Wrappers for feature subset selection. Artificial

intelligence, 97(1):273–324, 1997.

[31] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning: A

review of classification techniques, 2007.

[32] Vipin Kumar and Sonajharia Minz. Feature selection: A literature review. Smart CR,

4(3):211–229, 2014.

[33] Lukasz Kurgan, Krzysztof J Cios, et al. Caim discretization algorithm. Knowledge and

Data Engineering, IEEE Transactions on, 16(2):145–153, 2004.

[34] Thomas Navin Lal, Olivier Chapelle, Jason Weston, and André Elisseeff. Embedded

methods. In Feature extraction, pages 137–165. Springer, 2006.

[35] Riccardo Leardi, R Boggia, and M Terrile. Genetic algorithms as a strategy for feature

selection. Journal of chemometrics, 6(5):267–281, 1992.

[36] Wentian Li. Mutual information functions versus correlation functions. Journal of

statistical physics, 60(5-6):823–837, 1990.

[37] Chih Jen Lin, Chih-Wei Hsu, and Chih-Chung Chang. A practical guide to support

vector classification. National Taiwan U., www. csie. ntu. edu. tw/cjlin/paper-

s/guide/guide. pdf, 2003.

[38] Huan Liu and Lei Yu. Toward integrating feature selection algorithms for classification

and clustering. Knowledge and Data Engineering, IEEE Transactions on, 17(4):491–

502, 2005.

REFERENCES 107

[39] Félix Garcıa López, Miguel Garcıa Torres, Belén Melián Batista, José A Moreno Pérez,

and J Marcos Moreno-Vega. Solving feature subset selection problem by a parallel

scatter search. European Journal of Operational Research, 169(2):477–489, 2006.

[40] Sebastián Maldonado and Richard Weber. A wrapper method for feature selection using

support vector machines. Information Sciences, 179(13):2208–2217, 2009.

[41] Mvurya Mgala and Audrey Mbogho. Selecting relevant features for classifier optimiza-

tion. In Advanced Machine Learning Technologies and Applications, pages 211–222.

Springer, 2014.

[42] Luis Carlos Molina, Llúıs Belanche, and Àngela Nebot. Feature selection algorithms: A

survey and experimental evaluation. In Data Mining, 2002. ICDM 2003. Proceedings.

2002 IEEE International Conference on, pages 306–313. IEEE, 2002.

[43] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[44] Neural Information Processing Systems Conference feature selection challenge.

http://web.archive.org/web/20130512034606/http://www.nipsfsc.ecs.soton.

ac.uk/datasets. Accessed: 2015-05-14.

[45] Thomas Oommen, Debasmita Misra, Navin KC Twarakavi, Anupma Prakash, Bhaskar

Sahoo, and Sukumar Bandopadhyay. An objective analysis of support vector machine

based classification for remote sensing. Mathematical geosciences, 40(4):409–424, 2008.

[46] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. The Journal of Machine

Learning Research, 12:2825–2830, 2011.

[47] Python GIL global interpreter lock. https://wiki.python.org/moin/

GlobalInterpreterLock. Accessed: 2015-03-19.

[48] Python Manager python documentation. https://docs.python.org/2/library/

multiprocessing.html#managers. Accessed: 2015-03-19.

[49] Python python 2.7 release. https://www.python.org/download/releases/2.7/.

Accessed: 2015-06-15.

[50] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques

in bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[51] K Schwab, A Marcus, JO Oyola, W Hoffman, and M Luzi. Personal data: The

emergence of a new asset class. In An Initiative of the World Economic Forum, 2011.

http://web.archive.org/web/20130512034606/http://www.nipsfsc.ecs.soton.ac.uk/datasets
http://web.archive.org/web/20130512034606/http://www.nipsfsc.ecs.soton.ac.uk/datasets
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/2/library/multiprocessing.html#managers
https://docs.python.org/2/library/multiprocessing.html#managers
https://www.python.org/download/releases/2.7/

REFERENCES 108

[52] Scikit-learn machine learning in python. http://scikit-learn.org/stable/. Ac-

cessed: 2015-06-17.

[53] Petr Somol, Pavel Pudil, and Josef Kittler. Fast branch & bound algorithms for optimal

feature selection. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

26(7):900–912, 2004.

[54] Per Stenström. A survey of cache coherence schemes for multiprocessors. Computer,

23(6):12–24, 1990.

[55] Jiliang Tang, Salem Alelyani, and Huan Liu. Feature selection for classification: A

review. Data Classification: Algorithms and Applications, page 37, 2014.

[56] UCI machine learning repository. https://archive.ics.uci.edu/ml/index.html.

Accessed: 2015-05-14.

[57] Aki Vehtari and Jouko Lampinen. Bayesian input variable selection using posterior

probabilities and expected utilities. Report B31, 2002.

[58] Jorge R Vergara and Pablo A Estévez. A review of feature selection methods based on

mutual information. Neural Computing and Applications, 24(1):175–186, 2014.

[59] G Vinodhini and RM Chandrasekaran. Performance evaluation of machine learning

classifiers in sentiment mining. International Journal of Computer Trends and

Technology, 4, 2013.

[60] Juanying Xie, Weixin Xie, Chunxia Wang, and Xinbo Gao. A novel hybrid feature

selection method based on ifsffs and svm for the diagnosis of erythemato-squamous

diseases. In WAPA, pages 142–151, 2010.

[61] Eric P Xing, Michael I Jordan, Richard M Karp, et al. Feature selection for high-

dimensional genomic microarray data. In ICML, volume 1, pages 601–608. Citeseer,

2001.

[62] Enzhe Yu and Sungzoon Cho. Ga-svm wrapper approach for feature subset selection in

keystroke dynamics identity verification. In Neural Networks, 2003. Proceedings of the

International Joint Conference on, volume 3, pages 2253–2257. IEEE, 2003.

[63] Silvia Casado Yusta. Different metaheuristic strategies to solve the feature selection

problem. Pattern Recognition Letters, 30(5):525–534, 2009.

[64] Rong Zhou and Eric A Hansen. Combining breadth-first and depth-first strategies in

searching for treewidth. In IJCAI, volume 9, pages 640–645, 2009.

http://scikit-learn.org/stable/
https://archive.ics.uci.edu/ml/index.html

	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives
	Thesis Structure

	Literature Review
	Classification Problems Workflow
	General Procedure for Feature Selection
	Subset Generation
	Subset Evaluation
	Stopping Criteria
	Result Validation

	Categorization of Feature Selection Algorithms
	Filter Algorithms
	Wrappers
	Embedded

	Comparing Feature Selection Algorithms
	Hybrid Approach
	Parallel Feature Selection

	A Hybrid Feature Selection Approach
	Data Preparation
	UCAIM Algorithm
	Filter Part
	Grid Search

	Wrapper Search
	Search Strategy
	Subset Evaluation
	Successor Generator
	Work Repetition
	Overview of the Wrapper Search

	Parallelized Computing Approach
	MITWS Parallelization
	Wrapper Parallelization
	Master-Slave Strategy
	Strategy Setup
	Slave Workflow
	Master Workflow

	Shared Memory Strategy
	Strategy Setup
	Memory Coherence
	Workers Workflow

	Performance Tests
	Parallel Performance
	Testbed Description
	Parallel Test
	Master-Slave approach
	Master-Slave Parallel Tests

	Shared Memory approach
	Comparing the Two Approaches

	Feature Selection Results
	NIPS Datasets
	NIPS Results
	Testing MITWS Parameters

	MITWS Availability

	Conclusion and Future Work
	Conclusion
	Future Work

	Acronyms
	Produced Papers
	Appended Images
	References

